
4622 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

Tensor Networks for Latent Variable Analysis:
Novel Algorithms for Tensor

Train Approximation
Anh-Huy Phan , Member, IEEE, Andrzej Cichocki, Fellow, IEEE, André Uschmajew,

Petr Tichavský , Senior Member, IEEE, George Luta , and Danilo P. Mandic , Fellow, IEEE

Abstract— Decompositions of tensors into factor matrices,
which interact through a core tensor, have found numerous
applications in signal processing and machine learning. A more
general tensor model that represents data as an ordered network
of subtensors of order-2 or order-3 has, so far, not been
widely considered in these fields, although this so-called tensor
network (TN) decomposition has been long studied in quantum
physics and scientific computing. In this article, we present novel
algorithms and applications of TN decompositions, with a partic-
ular focus on the tensor train (TT) decomposition and its variants.
The novel algorithms developed for the TT decomposition update,
in an alternating way, one or several core tensors at each iteration
and exhibit enhanced mathematical tractability and scalability
for large-scale data tensors. For rigor, the cases of the given
ranks, given approximation error, and the given error bound are
all considered. The proposed algorithms provide well-balanced
TT-decompositions and are tested in the classic paradigms of
blind source separation from a single mixture, denoising, and
feature extraction, achieving superior performance over the
widely used truncated algorithms for TT decomposition.

Index Terms— Blind source separation, image denoising, nested
Tucker, tensor network (TN), tensor train (TT) decomposition,

Manuscript received October 4, 2018; revised July 19, 2019; accepted
November 13, 2019. Date of publication February 5, 2020; date of current
version October 29, 2020. The work of A.-H. Phan and A. Cichocki was
supported by the Ministry of Education and Science of the Russian Federation
under Grant 14.756.31.0001. The work of P. Tichavský was supported by the
Czech Science Foundation under Project 17-00902S. (Corresponding author:
Anh-Huy Phan.)

A.-H. Phan is with the Skolkovo Institute of Science and Technol-
ogy (Skoltech), 143026 Moscow, Russia, and also with the Tokyo Uni-
versity of Agriculture and Technology, Tokyo 183-8538, Japan (e-mail:
a.phan@skoltech.ru).

A. Cichocki is with the Skolkovo Institute of Science and Technology
(Skoltech), 143026 Moscow, Russia, also with the College of Computer
Science, Hangzhou Dianzi University, Hangzhou 310018, China, also with
the Tokyo University of Agriculture and Technology, Tokyo, Japan, and
also with the Systems Research Institute, 01-447 Warsav, Poland (e-mail:
a.cichocki@skoltech.ru).

A. Uschmajew is with the Max Planck Institute for Mathematics in the
Sciences, 04103 Leipzig, Germany (e-mail: uschmajew@mis.mpg.de).

P. Tichavský is with the Czech Academy of Sciences, Institute of Infor-
mation Theory and Automation, 182 00 Prague, Czech Republic (e-mail:
tichavsk@utia.cas.cz).

G. Luta is with the Lombardi Comprehensive Cancer Center,
Georgetown University, Washington, DC 20057 USA (e-mail:
george.luta@georgetown.edu).

D. P. Mandic is with the Imperial College, London SW7 2AZ, U.K. (e-mail:
d.mandic@imperial.ac.uk).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2956926

Fig. 1. Graphical illustration of a TK2 tensor (left) and a TT-tensor (right)
X= X1 •X2 • · · · •XN . A node represents a third-order core tensor Xn .

tensorization, Tucker-2 (TK2) decomposition, truncated singular
value decomposition (SVD).

I. INTRODUCTION

TENSOR decompositions (TDs) are rapidly finding
application in signal processing paradigms, including the

identification of independent components in multivariate data
through higher order cumulant tensors, signal retrieval in
code-division multiple access (CDMA) telecommunications,
extraction of hidden components from neural data, training of
dictionaries in supervised learning systems, image completion,
and various tracking scenarios. Most current applications are
based on the CANDECOMP/PARAFAC (CPD) [1]–[5] and
Tucker decompositions [6], while their variants, such as the
parallel profiles with linear dependences (PARALIND), the
combination between PARAFAC and Tucker decompositions
(PARATUCK) [7], [8] or Block Term decompositions [9], and
the tensor deflation or tensor rank splitting [10], [11], were
developed for a specific task (for a review, see [12]–[14] and
the references therein).

Within the TDs, the data tensor is factorized into a set of
factor matrices and a core tensor, the entries of which model
interaction between the factor matrices. Such TDs are the
natural extensions of matrix factorizations and allow for most
two-way factor analysis methods to be generalized to their
multiway analysis counterparts. However, despite mathemati-
cal elegance, the aforementioned TDs easily become compu-
tationally intractable or even ill-conditioned when applied to
higher order tensors.

To help resolve these issues, which are a critical obstacle
in a more widespread use of TDs in practical applications,
we here consider another kind of tensor approximation,
whereby multiple small core tensors are interconnected to
construct an ordered network. More specifically, we focus on
the tensor train (TT) decomposition, in which core tensors
connect to only one or two other cores (see the illustration
in Fig. 1), so that the tensor network (TN) appears as a “train”
of tensors [15]. The TT-decomposition has been brought

2162-237X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5509-7773
https://orcid.org/0000-0002-4035-7632
https://orcid.org/0000-0001-8432-3963
https://orcid.org/0000-0003-0621-4766

PHAN et al.: TNS FOR LATENT VARIABLE ANALYSIS 4623

into the TD community through the work of Oseledets and
Tyrtyshnikov [15], although the model itself was developed
earlier in quantum computation and chemistry under the name
of the matrix product states (MPSs) [16], [17]. Compared
with the rank issues in standard TDs, the ranks in the
TT-decomposition can be determined in a stable way, e.g.,
through a rank reduction using truncated singular value
decomposition (SVD). Moreover, by casting the data into
the TT-format, the paradigms such as solving a huge system
of linear equations or eigenvalue decomposition (EVD) of
large-scale data can be reduced to solving the smaller scale
subproblems of the same kind [18], [19]. Owing to the
enhanced tractability in computation, the Hierarchical Tucker
format and the TTs have also been successfully used for
tensor completion in, e.g., seismic data analysis and parametric
PDEs [20]–[22]. Despite success, TT-decomposition as well
as other TNs are yet to gain the same popularity in signal
processing and machine learning as the standard CPD and
Tucker decompositions. To this end, this article aims to address
this void in the literature and present applications of TNs, a
framework that can serve for the separation of signals even
from a single data channel.

As with many other TDs, the basic problem in the
TT-decomposition is to find an optimal representation for the
cases

• when the TT-ranks are given or
• when the approximation error is prescribed.

Existing algorithms for TT-decomposition are based on trun-
cated SVD and sequential projection (SeqProj) (TT-SVD) [15],
[17], [23], whereby the core tensors are composed from the
leading singular vectors of the projected data onto the subspace
of the other core tensors. This method is simple and works
efficiently when data are amenable to the so-imposed strict
models, as is the case in quantum physics. However, for
general data, the ranks are not known beforehand so that the
truncation algorithm is less efficient, and consequently, the TT
solutions do not achieve the optimal approximation error.
More importantly, TT-SVD often yields models with badly
unbalanced ranks and is not guaranteed to yield a tensor with
a minimal total TT-rank or a minimal number of parameters.

In this article, we introduce novel algorithms to approximate
a large-scale tensor by TT-tensors, with a particular emphasis
on the stability and minimum number of parameters. This
is achieved based on an alternating update scheme, which
sequentially updates one, two, or three core tensors at a
time. The main technique also rests upon the Tucker-2 (TK2)
decomposition, a simple case of the TT-decomposition for
the order-3 tensors. Our proposed algorithms are particularly
suited for low-rank approximations with an exact error bound.

This article is organized as follows. The TT-tensors and
tensor operators are introduced in Section II. The TT-SVD
algorithm is elaborated in Section III. Algorithms for TK2 are
presented in Section IV and are used as a basic tool for the
TT-decomposition of higher order tensors. Section V presents
algorithms for the cases when the TT-rank is specified or
when the noise level is given. Section VI shows that the
decompositions can perform even faster when a data tensor
is replaced by its crude TT-approximation. The proposed suite

of algorithms for TT-decomposition is verified by simulations
on signal and image denoising and latent variable analysis.

II. PRELIMINARIES

We shall next present the definitions of tensor contraction,
TT decomposition, and orthogonalization for a TT. The
following three-tensor contractions are defined for an order-N
tensor, A, of size I1 × I2 × · · · × IN and an order-K tensor,
B, of size J1 × J2 × · · · × JK .

Definition 1 (TT Contraction): The train contraction per-
forms a tensor contraction between the last mode of tensor
A and the first mode of tensor B, where IN = J1, to yield a
tensor C = A •B of size I1 × · · · × IN−1 × J2 × · · · × JK ,
the elements of which are given by ci1,...,iN−1 , j2,..., jK =∑IN

iN=1 ai1,...,iN−1 ,iN biN , j2,..., jK .
Fig. 1 illustrates the principle of the train contraction.

Definition 2 (Left and Right Contractions): The n-mode
left contraction between two tensors A and B is denoted
by CL = A�nB and computes the contraction product
between their first n modes to yield a tensor CL of size
In+1 × · · · × IN × Jn+1 × · · · × JK . The right contraction
denoted by CR = A�nB computes the contraction product
between their last n modes and yields a tensor CR of size
I1 × · · · × IN−n × J1 × · · · × JK−n .

Definition 3 (TT Decomposition or TT-Format [15], [17]):
The TT decomposition of a tensor X of size I1× I2×· · ·× IN ,
with a TT-rank (R1, R2, . . . , RN−1), has the form

X = X1 •X2 • · · · •XN−1 •XN

where Xn are the core tensors of size Rn−1 × In × Rn and
R0 = RN = 1.

A tensor X in the TT-format is called a TT-tensor and can be
expressed equivalently through a product of its sub TT-tensors
X = X<n•Xn:m•X>m , where X<n and X>m are, respectively,
the TT-tensors composed by all core tensors to the left of Xn

and to the right of Xm , m ≥ n, that is

X<n = X1 •X2 • · · · •Xn−1

X>m = Xm+1 •Xm+2 • · · · •XN

Xn:m = Xn •Xn+1 • · · · •Xm .

Note that a TT-tensor can always be compressed, e.g., using
the TT-SVD algorithm (see Algorithm 1) with a perfect
accuracy, ε = 0, such that the ranks satisfy

Rn≤min(Rn−1 In, In+1 Rn+1) or Rn≤min

(
n∏

k=1

Ik,

N∏
l=n+1

Il

)

for n = 1, 2, . . . , N − 1. The first inequalities above imply
the second ones.

Definition 4 (Tensor Unfolding): The mode-(n1, n2, . . . ,
nJ) unfolding converts a tensor X into a tensor
Y = [X](n1,n2,...,nJ), given by X(i1, i2, . . . , iN) =
Y(in1, in2, . . . , inJ), where in j is a linear index of
(in j (1), in j (2), . . . , in j (K j)) [1], K j = card(n j). The mode-n
matricization is X(n) = [X](n,{1,...,N}\n).

Definition 5 (Left- and Right-Orthogonality Conditions
[18], [24]): A core tensor Xn of a TT-tensor X = X1 •
X2 • · · ·•XN is said to satisfy the left-orthogonality condition

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

4624 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

if Xn�2Xn = IRn and the right-orthogonality condition if
Xn�2Xn = IRn−1 .
The mode-n left-orthogonalization is achieved using the
orthogonal Tucker-1 decomposition of Xn in the form Xn =
X̃n • L or from the QR decomposition of the mode-(1,2)
matricization [Xn](1,2) = Q R, where [X̃n](1,2) = Q is an
orthogonal matrix, and L = R. The TT-tensor X now becomes

X = X1 • · · · •Xn−1 • X̃n • (L •Xn+1) • · · · •XN .

Similarly, the mode-n right-orthogonalization performs the
orthogonal Tucker-1 decomposition Xn = R • X̃n and results
in

X = X1 • · · · • (Xn−1 • R) • X̃n •Xn+1 • · · · •XN .

Left-orthogonalization up to mode-n performs (n − 1)
left-orthogonalizations of the core tensors to the left of n
such that Xk�2Xk = IRk for k = 1, 2, . . . , n − 1.

Right-orthogonalization up to mode-n performs (N − n)
right-orthogonalizations of the core tensors to the right of
n such that Xk�2Xk = IRk−1 for k = n+1, n+2, . . . , N .

In this article, we consider the following two approximations
of a tensor Y by a tensor X in the TT-format.

1) The TT-approximation with a given TT-rank based
on a minimization in the form

min D = �Y−X�2F . (1)

2) The TT-approximation with a given approximation
accuracy (denoising problem) based on the rank min-
imization problem with the error-bound constraint

min
N−1∑
n=1

Rn s.t. �Y−X�2F ≤ ε2 (2)

such that the estimated TT-tensor X should have mini-
mum total TT-rank or minimum number of parameters

min
N∑

n=1

In Rn−1 Rn s.t. �Y −X�2F ≤ ε2 (3)

where ε2 represents the approximation accuracy. We also
address the case with an exact error bound, that is, (3)
with an equality constraint.

III. TT-SVD, TT-TRUNCATION AND DENSITY MATRIX

RENORMALIZATION GROUP (DMRG) ALGORITHMS

In many practical settings, the TT-decomposition can be per-
formed efficiently using an SeqProj and truncation algorithm,
known as the TT-SVD [15], [17], [23]. More specifically,
the first core X1 is obtained from the R1 leading singular
vectors of the reshaping matrix Y(1), subject to the error norm
being less than ε times the data norm, that is

�Y(1) − U diag(σ) VT �2F ≤ ε2 �Y(1)�2F (4)

or �σ�22 ≥ (1−ε2)�Y(1)�2F . The projected data diag(σ)VT are
then reshaped into a matrix Y2 of size (R1 I2)× (I3 I4 · · · IN),
and the second core tensor X2 is estimated from the leading
left singular vectors of this matrix, whereas the rank R2
is chosen such that the norm of the residual is less than
(1− ε2)1/2�Y2�F .

Algorithm 1 TT-SVD [15], [17]

Input: Data tensor Y: (I1 × I2 × · · · × IN), TT-rank
(R1, R2, . . . , RN−1) or approximation accuracy ε

Output: A TT-tensor X=X1 •X2 • · · · •XN such that
min �Y−X�2F or �Y−X�2F ≤ ε2�Y�2F

begin
for n = 1, . . . , N − 1 do

1 Y = reshape(Y, (In Rn−1)×∏N
k=n+1 Ik)

2 Truncated SVD Y ≈ U diag(σ) VT with given rank Rn or such
that �σ�22 ≥ (1− ε2)�Y�2F

3 Xn = reshape(U, Rn−1 × In × Rn)

4 Y← diag(σ) VT

5 XN = Y

The SeqProj and truncation procedure is repeated in order to
find the remaining core tensors. The algorithm, summarized in
Algorithm 1, executes only (N−1) sequential data projections
and (N − 1) truncated-SVDs in order to estimate N core
tensors. For the exact error bound case, we can use the result
in Supplementary material.

Rounding Operation: The TT-SVD algorithm can be mod-
ified for the decomposition with TT-ranks specified and can
be efficiently implemented if the input is already provided
in the TT-format and is used for further truncation. The
rounding operation is illustrated in Example III. In terms of
the approximation accuracy, it can be shown that [15]

�Y−X�2F ≤
N−1∑
k=1

ε2
k

where εk is the truncation error at the kth step.
When the data are subject to small noise and admit the

TT-format, the TT-SVD works well; however, the algorithm
is less efficient when data are heavily corrupted by noise or
when the approximation is a relatively small rank model.

Remark 1: For the approximation with a given TT-rank
in (1), TT-SVD is not guaranteed to achieve the minimum
approximation error, as illustrated in Examples II, III, and VI.

For the denoising problem in (2), the resulting TT-tensor
from TT-SVD satisfies the error bound, but often exhibits
badly unbalanced TT-ranks.

Remark 2: In the presence of noise, an increase in
the TT-rank of X will make it easier to explain the data,
so that the approximation error will eventually become smaller
than the tolerance error ε2. However, when the TT-ranks are
too high for the problem at hand, adding more terms into X

implies adding noise into the approximation, thus reducing the
reconstruction error. In other words, TT-SVD tends to select
higher TT-ranks than that needed for the decomposition prob-
lem with the bounded error. This is illustrated in Example IV.

DMRG algorithm is another algorithm for
TT-decomposition [18], [25], [26], which works as an
alternating least squares algorithm. Each time it solves a
minimization problem over two consecutive core tensors, Xn

and Xn+1, by means of SVD, then updates Xn+1 and Xn+2
and so on. Like the TT-SVD, DMRG can determine the
TT-ranks based on singular values. However, both algorithms
aim at minimizing the approximation error, but are not
formulated for the decomposition with a given error bound.
These algorithms are best suited to the decomposition with
given ranks or when the error bound is negligible.

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

PHAN et al.: TNS FOR LATENT VARIABLE ANALYSIS 4625

Following Remarks 1 and 2, Sections IV and V present
more efficient algorithms for the two approximation problems
in (1) and (2).

IV. TK2: TT-DECOMPOSITION FOR ORDER-3 TENSORS

Before presenting algorithms for the TT-decomposition,
we shall start with the decomposition for order-3 tensors and
illuminate its relation to the TK2. The algorithm developed in
this section will serve as a basis for updating core tensors in
the TT-decompositions of higher order tensors.

Definition 6: TK2 decomposition [27] of an order-3
tensor, Y, of size I1 × I2 × I3 is given by

Y = X1 •X2 •X3 (5)

where X2 is the core tensor of size R1 × I2 × R2, X1 and
X3 are the two factor matrices of sizes I1 × R1 and R2 ×
I3, respectively, while the TT-rank of the decomposition is
(R1, R2).

By definition, the TK2 decomposition is a
TT-decomposition of an order-3 tensor (see also Fig. 1).
Because of rotational ambiguity, without loss in generality,
the matrices X1 and X3 can be assumed to have orthonormal
columns (for X1) and rows (for X3), that is, XT

1 X1 = IR1 and
X3XT

3 = IR2 . We will show that for both problems (1) and (3),
the two core tensors X1 and X3 are sequentially estimated by
means of EVD, while X2 need not be estimated explicitly.

A. TT-Decomposition With Given Rank

The optimal core tensor X2 is X�
2 = XT

1 • Y •XT
3 , and the

Frobenius norm of the approximation error is given by

D = ∥∥Y− X1 •X�
2 • X3

∥∥2
F = �Y�2F −

∥∥X�
2

∥∥2
F

= �Y�2F − tr
((

XT
3 ⊗ X1

)T Q
(
XT

3 ⊗ X1
))

(6)

= �Y�2F − tr
(
XT

1 Q1 X1
) = �Y�2F − tr

(
XT

3 Q3 X3
)

(7)

where the matrix Q = YT
(2)Y(2) = [Q](1,2) is the mode-(1,2)

unfolding of a tensor Q of size I1× I3× I1 × I3, and Q1 and
Q3 are, respectively, the matrices of size I1 × I1 and I3 × I3

Q1(i, j) =
R2∑

r=1

X3(r, :) Q(i, :, j, :) XT
3 (r, :)

Q3(i, j) =
R1∑

r=1

X1(:, r)T Q(:, i, :, j) X1(:, r).

The new estimate X∗1 in the problem (7) comprises R1
principal eigenvectors of Q1, while X∗3 comprises the R2
principal eigenvectors of the matrix Q3. When I2 	 I1 I3,
we need not process the original tensor Y but only the
matrix Q of size I1 I3 × I1 I3. The algorithm works like the
higher order orthogonal iteration algorithm [6], while its global
convergence is assured under the assumption that the Rn th and
(Rn + 1)th largest eigenvalues of Q1 and Q3 are nonidentical;
otherwise, the dominant invariant subspace is not unique [28].

B. TT-Decomposition With Error Bound Constraint

We seek a model with a minimum number of parameters

min I1 R1 + I3 R2 + I2 R1 R2

s.t. �Y−X1 •X2 • X3�2F ≤ε2, XT
1 X1=IR1 , X3XT

3 =IR2 .

(8)

We will show that the factor matrices X1 and X3 can be
updated in a similar fashion to the previous case.

Lemma 1: In the optimization problem (8), the core tensor
X2 can be eliminated using X�

2 = XT
1 •Y•XT

3 without chang-
ing the minimal achievable number of parameters. Moreover,
for the fixed rank parameters, this choice provides a minimal
error bound. Proof is provided in Supplementary Material [39].

For the TK2 with an exact error bound, the optimal
X∗1 is found from the EVD of Q1, as stated in Supplementary
Material. In practice, we can solve the decomposition with the
inequality constraint and then enforce the equality constraint
in the last iteration.

Similar to the update of X1, the matrix X3 comprises R2
principal eigenvectors of the matrix Q3, where R2 is either
given or determined based on the bound �Y�2F − ε2. The
algorithm for TK2 sequentially updates X1 and X3.

C. Initialization and Refining Procedure

For the TK-2 decomposition with a given rank, the most
efficient initialization method is based on the singular vectors
of tensor unfoldings or the SeqProj like in TT-SVD.

For the decomposition with an error bound constraint,
we adopt the TT-SVD SeqProj method, e.g., initialize X3 as
an identity matrix and then estimate X1. The core X3 will be
updated in the next update circle. The algorithm can converge
quickly but often false to local minima, because the rank
of X1 is often overestimated and relatively small in the first
update, and then, X3 is estimated with a higher rank than the
optimal one.

Truncated HOSVD: More efficiently, we apply the higher
order SVD [6] to find a truncated model with the smallest
number of parameters, which holds

R1∑
r1=1

R2∑
r2=1

∑
r3

g2
r1,r2,r3

≤ �Y�2F − ε2

where G = UT
1 • Y • UT

3 , U1 and U3 comprise the singular
vectors of mode-1 and mode-3 unfoldings, Y(1) and Y(3),
respectively. The factor matrices are then selected as X1 =
U1(:, 1 : R1) and X3 = U3(:, 1 : R3). This initialization
method usually provides better models with a lower approx-
imation error and a smaller number of parameters than the
SeqProj-based method.

Example 1: The red curves illustrated in Fig. 2(left) show
the number of TK2-parameters over iterations for the decom-
position of random tensors of size 100×10×100 with a relative
error bound of 0.8. The SeqProj-like initialization yields a
rank-(13, 92) model, which contains 22 460 parameters within
two iterations and remains badly balanced after 200 iterations.
Using the truncated HOSVD, we obtain an initial rank-(35, 27)
model having only 15 650 parameters and a lower approxima-
tion error. The model is then updated and has 12 650, 12 300,

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

4626 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

Fig. 2. Left: Model refining method for TK2 decomposition with a bound constraint for the tensors of size 100× 10× 100. Center: Performance of single
run of TK2 decomposition with a bound constraint and multistage refining for various ranks R2. Right: TK2 with various bound constraint values.

and 11 950 parameters in the first three iterations, and remains
unchanged and well balanced, while the approximation error
converges after 30 iterations.

Model Refining: Truncated HOSVD initialization demon-
strates to be efficient to TK2 with a bound constraint.
In practice, the estimated model can often be squeezed to a
smaller one. For a feasible solution obtained by the update
in Section IV-B, our approach is to generate a truncated
HOSVD model with the same rank and then use it to initialize
another TK2 decomposition. We continue the model refining
to the estimated model, if it is more compact. Otherwise,
we terminate the procedure.

Illustration of the model refining in the above example is
given in Fig. 2(left). The obtained models after two refinings
have 11 870 and 11 800 parameters, respectively. In addition,
in Fig. 2(center), we compare the number of model parameters
between the single run of the TK2 algorithm and multistage
refining for various values of the initial rank-R2. When the
rank is relatively small, R2 < 15, there is no feasible solution.
When R2 ≥ 37, refining always yields an estimated model
close to the optimal. For the model having 22 460 parameters
initialized by SeqProj, we execute the refining three times and
obtain a final model with 11 920 parameters.

More demonstrations of the truncated HOSVD and refining
is provided in Fig. 2(right) for the approximation of tensors
of size 100 × I2 × 100. In all the test cases, truncated
HOSVD+Refining yields smaller models than the SeqProj.

In summary, we present algorithms for TK2 with/without an
error bound constraint and an efficient initialization and model-
refining procedure. When solving TK2 as the subproblems
within the TT-decomposition, the algorithms often converge
very quickly in 10–20 iterations.

D. TT—A Nested Network of TK2

We will show that a nested network of TK2 decompositions
forms a TT network. First, TK2 decomposition of Y gives two
core tensors, X1 and XN , for the first and last modes

Y ≈ X1 • Z2 •XN

where Z2 = XT
1 • Y • XT

N is of size R1 × I2 × I3 × · · · ×
IN−1 × RN−1. The matrices are estimated from a matrix of
size I1 IN × I1 IN as in (6).

Next, we estimate two core tensors X2 of size R1× I2× R2
and XN−1 of size RN−2 × IN−1 × RN−1 within TK2 of Z2

Z2 ≈ X2 • Z3 •XN−2

where Z3 is a tensor of size R2× I3× I4×· · ·× IN−2×RN−2.
It can be verified that the estimation of the three core tensors

X2, Z3, XN−2 within the TT-tensor X1•X2•Z3•XN−1•XN ,
while fixing the two orthogonal matrices X1 and XN , becomes
the estimation of a TK2 decomposition of Z2

�Y−X1 •X2 • Z3 •XN−1 •XN�2F
= �Y�2F − �Z2�2F + �Z2 −X2 • Z3 •XN−1�2F .

Similarly, we perform the TK2 decomposition of Z3 to get
the core tensors X3 and XN−3. Fig. 3 illustrates the recursive
procedure of the TK2 decompositions, which finally forms a
TT-decomposition of Y.

Remark 3: Different from TT-SVD [15], [17], [23], which
estimates the core tensors from left to right or right to left,
the nested TK2 network estimates a pair of core tensors from
both sides simultaneously, from the outer to inner of the
network.

TK2 with a bound constraint can be used to construct a
TT-model with a bounded approximation error. In the first
layer, X1 and XN are estimated within a smallest TK2 model
such that

�Y−X1 • Z2 •XN�2F = �Y�2F − �Z2�2F ≤ ε2.

This is achieved when �Y�2F − �Z2�2F is close to or attains
the bound ε2

1 = ε2 so that X1 and XT
N have small ranks.

In the second layer, we solve a TK2 with a much smaller
bound

�Z2−X2 • Z3 •XN−1�2F ≤ε2
2 = ε2 − �Y�2F + �Z2�2F
 ε2

1.

A similar procedure is applied to the core tensors Z3,Z4, . . . ,
but the approximation errors are decreasing significantly. If the
bound is attained in the first layer, i.e., ε2

2 = ε2 − �Y�2F +�Z2�2F = 0, then higher layers solve exact TK2 models.
Implying that the factor matrices within TK2 will have full
rank or very high rank, i.e., R3 ≈ R2 I2, RN−1 ≈ IN−1 RN ,
R4 ≈ R3 I3 ≈ R2 I2 I3. In this case, the dimensions of the core
tensors, especially the central cores, grow dramatically, and as
a result, the final TT-model is not very compact. This behavior
is also observed in the TT-SVD.

Remark 4: In order to deal with the large rank issue,
we suggest scaling the error bounds in some first layers
to smaller than the required bounds, e.g., by a factor of
exp(−1 + n/�N/2�), where n = 1, 2, . . . , �N/2� is the layer
index and �N/2� is the greatest integer less than or equal to

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

PHAN et al.: TNS FOR LATENT VARIABLE ANALYSIS 4627

Fig. 3. Nested network of TK2 decompositions forms a TT network.

N/2. Example II demonstrates that NestedTK2 provides better
models than the TT-SVD.

V. ALTERNATING MULTICORE UPDATE

(AMCU) ALGORITHMS

This section presents novel algorithms for TT-
decomposition. We first present a simple form of the
Frobenius norm of a TT-tensor, followed by a formulation of
optimization problems to update single or a few core tensors
at a time.

Lemma 2 (Frobenius Norm of a TT-Tensor [29]):
Under the left-orthogonalization up to Xn and the
right-orthogonalization up to Xm , where n ≤ m,
the Frobenius norm of a TT-tensor X = X1 • X2 • · · · • XN

is equivalent to the Frobenius norm of Xn:m , that
is, �X�2F = �Xn:m�2F .

Proof: With the left- and right-orthogonalizations, the two
matricizations [X<n]T(n) and [X>m]T(1) are the orthogonal
matrices. Hence, �X�2F = �[X<n]T(n) • Xn:m • [X>m](1)�2F =
�Xn:m�2F . �

A. Objective Function and Generalized Framework for the
AMCU Algorithm

We now proceed to simplify the two optimization problems
for the sub-TT-tensors that comprise a single core or a few
consecutive core tensors. For this purpose, we assume that
the TT-tensor X is left-orthogonalized up to Xn and right-
orthogonalized up to Xm , where in our methods, m can take
one of the values n, n + 1, or n + 2.

Let Xn:m = Xn •Xn+1 • · · ·•Xm , then following Lemma 2,
the error function in (1) and in (2) can be written as:

D = �Y�2F + �X�2F − 2Y,X�
= �Y�2F + �Xn:m�2F − 2Tn:m ,Xn:m�
= �Y�2F − �Tn:m�2F + �Tn:m −Xn:m�2F (9)

where Tn:m is of size Rn−1× In×· · ·× Im×Rm and represents
a tensor contraction between Y and X along all modes but the
mode-(n, n + 1, . . . , m) expressed as

Tn:m = (X<n �n−1Y)�N−m X>m for n = 1, 2, (10)

The objective function in (9) indicates that the sub-TT-tensor
Xn:m is the best approximation to Tn:m in both problems (1)
and (3). Following this, we can update (m − n + 1) core

tensors Xn, . . . ,Xm , while fixing the other cores X j , for
j < n or j > m. Since the cost function in (9) is formulated
with the orthogonality conditions on X j , the new estimates
Xn, . . . ,Xm need to be orthogonalized in order to proceed to
the next update. The algorithm should update the core tensors
following the left-to-right order, i.e., increasing n, then switch
to the right-to-left update procedure, i.e., decreasing n.

More specifically, in a single-core update, for which m =
n, the algorithm sequentially updates first the core tensors
X1,X2, . . . ,XN−1, and then XN ,XN−1, . . . ,X2.

When m = n + 1, the update can be performed with
overlapping core indices, e.g., (X1,X2), (X2,X3), …, as in
the DMRG optimization scheme [25]. This method sequen-
tially optimizes (reduces) ranks on the two sides of the core
tensors. When the tensor is of a relatively high order, say 20,
the ranks of the first core quickly tend to become small in the
first few iterations, while the ranks of some last core tensors
remain relatively high. For such cases, updating ranks on only
one side of the core tensors is recommended. For example,
the update (X1,X2), (X3,X4) adjusts the ranks on the left
side of X2 and X4. Ranks on the right side of X2 and X4,
i.e., R2 and R4, will be optimized when the algorithm runs the
right-to-left update procedure, e.g., (X4,X5), (X2,X3). In the
left-to-right update, the ranks R2 and R4 are not optimized,
but can be adjusted after the left-orthogonalization of X2 and
X4. Example IV compares the performance of the proposed
algorithm over different numbers of overlapping core indices.

We also show that this update process is important in order
to reduce the computational costs in a progressive computation
of the contracted tensors Tn:m , while for the particular cases
of m = n, n + 1, and n + 2, we can derive efficient update
rules for the core tensors Xn, . . . ,Xm .

B. Progressive Computation of Contracted Tensors Tn:m
The computation of the contracted tensors Tn:m in (10),

for n = 1, 2, . . . , is the most computationally expensive step

in Algorithm 2, which requires O(
∑n−1

k=1
Rk−1 Rk

∏N

j=k
I j)

operations for the left contraction Ln = X<n �n−1Y, and

O(Rn

∑N

k=m+1
Rk−1 Rk

∏k

j=n
I j) operations for the right

contraction Tn:m = Ln �N−m X>m . For a particular case of
In = I and Rn = R for all n, the computational cost to
compute Tn is of order O(RI N + R2 I N−1).

Since the left contraction Ln can be expressed from Ln−1 as

Ln = X<n �n−1Y = Xn−1�2Ln−1

where L1 = Y, the contracted tensors Tn:m can be
computed efficiently through a progressive computation
of Ln . Similarly, Tn:m can also be computed through the
right-contracted tensors as Tn:m = X<n �n−1 Rm , where
Rm = Y �N−m X>m = Rm+1�2Xm+1. In the left-to-right
update procedure, the contracted tensors Tn:m are computed
from the left-side-contracted tensors Ln . The tensors
Ln+1, . . . ,Ln+s−1 for the next update are then computed
sequentially from Ln as in Step 5 in Algorithm 2. Here,
1 ≤ s ≤ k, while (k−s) represents the number of overlapping
core indices. When the algorithm is in the right-to-left update

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

4628 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

Algorithm 2 AMCU

Input: Data tensor Y: (I1 × I2 × · · · × IN), and
rank-(R1, R2, . . . , RN−1) or approximation accuracy ε2,
k: the number of core tensors to be updated per iteration
1 ≤ s ≤ k where (k − s) indicates the number of overlapping
core indices, and Ñ is the index of the first core to be
updated in the right-to-left update

Output: TT-tensor X=X1 •X2 • · · · •XN of
rank-(R1, R2, . . . , RN−1) such that min �Y−X�2F (or
�Y−X�2F ≤ ε2)

begin
1 Initialize X= X1 •X2 • · · · •XN , e.g., by rounding Y

repeat
% Left-to-Right update--------------------
for n = 1, s + 1, 2s + 1, . . . do

% Tensor contraction in (10)-----------
2 Tn:m =Ln �N−m X>m /* m = n + k − 1,L1 = Y

*/
% Best TT-approximation to Tn:m---------

3 [Xn , . . . ,Xm] = bestTT_approx(Tn:m)
for i = n, n + 1, . . . , n + s − 1 do

4 X= Left_Orthogonalize(X, i)
% Update left-side-contracted tensor-

5 Li+1 =Xi �2 Li

% Right-to-Left update--------------------
for n = Ñ , Ñ − s, Ñ − 2s, . . . do

6 Tn:m =Ln �N−m X>m
7 [Xn , . . . ,Xm] = bestTT_approx(Tn:m)

for i = m, m − 1, . . . , m − s + 1 do
8 X= Right_Orthogonalize(X, i)

until a stopping criterion is met

procedure, the left-side-contracted tensors Ln are available
and do not need to be computed.

A similar procedure can be implemented to exploit the
right-contracted tensors Rm by first executing the right-to-left
update procedure and then switching to the left-to-right update
order.

This computation method is adapted from the alternating
linear scheme [18], [30] or the two-site DMRG algorithm
[19], [25] for solving linear systems or EVDs in which all
variables are in the TT-format. The AMCU is briefly described
in Algorithm 2. The routine bestTT_approx within the
AMCU in Step 3 computes the best TT-approximation to Tn:m ,
which can be a low-rank matrix approximation or the low-
multilinear rank TK2 decomposition, depending on whether
m = n+1 or m = n+2. In general, the choice is free, but when
m = n (single-core updates), the challenge becomes to find
a rank-adaptive procedure for the denoising problem in (2),
as discussed in the next section. The alternating double- and
triple-core update algorithms are presented in Supplementary
Material.

C. Alternating Single-Core Update (ASCU)

We consider a simple case of the AMCU algorithm when
m = n. The contracted tensor Tn is then of size Rn−1×In×Rn ,
and the error function in (9) becomes

D=�Y�2F−�Tn�2F+�Tn−Xn�2F for n=1, 2, . . . , N. (11)

As mentioned earlier, we can perform the TT-decomposition
in two different ways.

Algorithm 3 ASCU Algorithm (two-side rank

adjustment)

Input: Data tensor Y: (I1 × I2 × · · · × IN) and an error bound ε
Output: TT-tensor X=X1 •X2 • · · · •XN of minimum total

TT-rank such that �Y−X�2F ≤ ε2

begin
1 Initialize X=X1 •X2 • · · · •XN

repeat
% Left-to-Right update-------------------
for n = 1, 2, . . . , N − 1 do

2 Tn =Ln �N−n X>n
% Solve TK2 decomposition-------------

3 �Tn − An •Xn • Bn�2F ≤ ε2 − �Y�2F + �Tn�2F
% Adjust adjacent cores---------------

4 Xn−1 ←Xn−1 • An , Xn+1 ← Bn •Xn+1
5 X= Left_Orthogonalize(X, n)

% Update left-side-contracted tensors-
6 Ln ← AT

n •Ln , Ln+1 ←Xn �2 Ln

% Right-to-Left update-------------------
for n = N, N − 1, . . . , 2 do

7 Tn =Ln �N−n X>n
8 �Tn − An •Xn • Bn�2F ≤ ε2 − �Y�2F + �Tn�2F
9 Xn−1 ←Xn−1 • An , Xn+1 ← Bn •Xn+1

10 X= Right_Orthogonalize(X, n)

until a stopping criterion is met

1) For the TT-approximation with a specified rank,
we obtain a solution Xn = Tn .

2) For the TT-decomposition with a given accuracy, Xn

should have a minimum number of parameters, such that

�Tn −Xn�2F ≤ ε2
n (12)

where ε2
n = ε2 − �Y�2F + �Tn�2F is assumed to be

nonnegative. Note that adjusting the ranks Rn−1 and Rn

also requires manipulating Xn−1 and Xn+1 accordingly,
and Tn implicitly depends on these manipulations.

Remark 5: A negative accuracy ε2
n indicates that either the

rank Rn−1 or Rn is quite small, and needs to be increased,
that is, the core Xn−1 or Xn+1 should be adjusted to have
higher ranks. Often, the TT-ranks Rn are set to sufficiently
high values and then gradually decrease or at least behave in
a nonincreasing manner during the update of the core tensors.

It is not straightforward to update Xn in the above problem;
however, by expressing Xn = An • X̃n •Bn as a TK2 (5), the
problem in (12) reduces to finding a TK2 Tn ≈ An • X̃n •Bn

with a minimum number of parameters such that

�Tn − An • X̃n • Bn�2F ≤ ε2
n

where An and Bn are the matrices of size Rn−1 × R̃n−1 and
R̃n × Rn .

Remark 6: The TK2 An • X̃n • Bn can be obtained using
algorithms in Section IV. The new estimate of X is still of
order-N , because An and Bn can be merged into Xn−1 and
Xn+1 as X = X1•· · ·•(Xn−1•An)•Xn•(Bn•Xn+1)•· · ·•XN .

In this way, the three cores Xn−1, Xn , and Xn+1 are
updated. Because An and BT

n are the orthogonal matrices,
the newly adjusted cores Xn−1•An and Bn•Xn+1 obey the left-
and right-orthogonality conditions. Algorithm 3 outlines the
single-core update algorithm based on the TK2 decomposition.
A graphical illustration of the update scheme is given in Fig. 4.

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

PHAN et al.: TNS FOR LATENT VARIABLE ANALYSIS 4629

Fig. 4. Update scheme of the ASCU algorithm for the case of a three-core
update. The core tensor Xn is approximated by TK2 decomposition, A•X∗n•B
with minimal ranks, R∗n−1 and R∗n . The two core tensors, Xn−1 and Xn+1,
are then updated by A and B, respectively.

Fig. 5. Update scheme of the ASCU algorithm for the case of two-core
update. The core tensor Xn is split into two core tensors, X∗n and B, with a
minimal rank R∗n . The core tensor Xn+1 is then updated by B.

Alternatively, instead of adjusting the two ranks, Rn−1 and
Rn , of Xn , we can update only one rank, either Rn−1 or Rn ,
corresponding to the right-to-left or left-to-right update order
procedure. Assuming that the core tensors are updated in the
left-to-right order, we need to find Xn , which has minimum
rank-Rn and satisfies �Tn − Xn • Bn�2F ≤ ε2

n . This problem
reduces to the truncated SVD of the mode-(1,2) matricization
of Tn with an accuracy ε2

n , that is, [Tn](1,2) ≈ Un � VT
n , where

� = diag(σn,1, . . . , σn,R�
n
). Here, for the new optimized rank

R�
n , the following holds:

R�
n∑

r=1

σ 2
n,r ≥ �Y�2F − ε2 >

R�
n−1∑

r=1

σ 2
n,r . (13)

For the approximation with an exact error bound, the first
singular value is adjusted by the difference in the approxima-
tion error (

∑R�
n

r=1 σ 2
n,r + ε2 − �Y�2F)1/2.

The core tensor Xn is then updated by reshaping Un to an
order-3 tensor of size Rn−1 × In × R�

n , while the core Xn+1

Algorithm 4 ASCU Algorithm (one side rank

adjustment)

Input: Data tensor Y: (I1 × I2 × · · · × IN) and accuracy ε
Output: TT-tensor X= X1 •X2 • · · · •XN of minimum total

TT-rank such that �Y−X�2F ≤ ε2

begin
1 X=X1 •X2 • · · · •XN by rounding Y

repeat
% Left-to-Right update------------------
for n = 1, 2, . . . , N − 1 do

2 Tn = Ln �N−n X>n , [Tn](1,2) ≈ U � VT

3 Xn = reshape(U, Rn−1 × In × Rn)
% Adjust adjacent cores--------------

4 Xn+1← (� VT) •Xn+1
% Update left-side-contracted tensor-

5 Ln+1← Xn �2 Ln

% Right-to-Left update------------------
for n = N, N − 1, . . . , 2 do

6 Tn = Ln �N−n X>n , [Tn](1) ≈ U � VT

7 Xn = reshape(VT , Rn−1 × In × Rn)
8 Xn−1← Xn−1 • (U �)

until a stopping criterion is met

needs to be adjusted accordingly as

X�
n+1 = � VT

n •Xn+1. (14)

When the algorithm updates the core tensors in the right-to-
left order, we update Xn by using the R�

n−1, leading to the
right singular vectors of the mode-1 matricization of Tn , and
adjust the core Xn−1 accordingly, that is

[Tn](1) ≈ Un � VT
n

X�
n = reshape

(
VT

n ,
[
R�

n−1, In, Rn
])

X�
n−1 = Xn−1 • Un�. (15)

To summarize, the proposed method updates one core and
adjusts (or rotates) another core. Hence, it updates two cores
at a time. The new estimate X�

n satisfies the left- or right-
orthogonality conditions, and does not need to be orthogo-
nalized again. The algorithm is listed in Algorithm 4, and its
update scheme is illustrated in Fig. 5. Another observation is
that the core tensor Xn+1 or Xn−1 will be updated in the next
iteration after updating Xn . Hence, the update of Xn+1 in (14),
i.e., in Step 5, and the update of Xn−1 in (15), i.e., in Step 9,
can be skipped, except for the last update.

D. TT-SVD as a Variant of ASCU With One Update Round

Consider the approximation of a tensor Y of size I1 ×
I2 × · · · × IN using the ASCU algorithm with one-side rank
adjustment at a given accuracy ε2. The horizontal slices of
the core tensors Xn are initialized by the unit vectors er as
vec(Xn(r, :, :)) = er , for r = 1, 2, . . . , Rn−1, where Rn =∏N

k=n+1 Ik , i.e., the mode-1 matricizations of the core tensors
are identity matrices, [Xn](1) = IRn−1 . Therefore, the con-
tracted tensor T1 is the data Y, and the mode-1 approximation
error is simply the global approximation error ε2

1 = ε2. For
this reason, the ASCU estimates the first core tensor X1 as in
TT-SVD.

Since the core tensors X3, . . . ,XN are not updated, the con-
tracted tensor T2 represents the projection of Y onto the

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

4630 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

TABLE I

COMPARISON OF SUBOPTIMIZATION PROBLEMS PER ITERATION BETWEEN
THE AMCU ALGORITHMS. THE ADCUk OR ATCUk DENOTES

THE ADCU OR ATCU ALGORITHM WITH k OVERLAPPING

CORE INDICES, WHEREAS ASCUk DENOTES THE ASCU
ALGORITHM WITH k-SIDE RANK ADJUSTMENT

subspace spanned by X1, implying that ASCU estimates X2
in a similar way as TT-SVD. The difference here is that the
mode-2 approximation accuracy ε2

2 in ASCU is affected by the
term �Y�2F−�T2�2F [see (12)], which is only zero or negligible
for the exact or high-accuracy approximation ε ≈ 0.

The remaining core tensors X3, . . . ,XN are updated sim-
ilarly, but with different approximation accuracies. Another
difference is that TT-SVD estimates the core tensors once,
while ASCU runs the right-to-left update after it completes
the first round left-to-right update, and so on.

To summarize, TT-SVD acts as ASCU with one update
cycle, but with a different error tolerance. ASCU attains an
approximation error closer to the predefined accuracy.

E. Comparison of the AMCU Algorithms

Table I summarizes the suboptimization problems of
the ASCU, alternating double-core update (ADCU), and
triple-core update (ATCU) algorithms. In general, the ASCU
with one-side rank adjustment (ASCU1) works as
the ADCU with one overlapping core index (ADCU1),
while the ASCU with two-side rank adjustment (ASCU2)
updates the cores similar to the updates of the ATCU with
two overlapping core indices (ATCU2). When the TT-rank is
fixed, the ADCU with nonoverlapping core indices (ADCU0)
is two times faster than the (ASCU1), while ATCU0 is faster
than ADCU0. However, the difference is significant only
when the number of cores is large. More comparisons are
provided in Section VII.

VI. AMCU ALGORITHM FOR INPUT TENSOR

IN TT-FORMAT

Consider a data tensor Y given in the TT-tensor format,
which can be obtained, for example, by the prior compression
of data using TT-SVD or Nested-TK2. Our alternating algo-
rithms can be implemented with a much lower computational
cost due to the efficient tensor contractions between two
tensors, Y and X. In other words, we assume that Y =
Y1 • Y2 • · · · • YN , where Yn are of size Sn−1 × In × Sn .
We next introduce the principles of fast contractions between
two TT-tensors, followed by a formulation of update rules for
the AMCU algorithm.

A. Contraction Between TT-Tensors

As previously stated, the most computationally expensive
step in the AMCU algorithms is to compute the contraction

Algorithm 5 AMCU Algorithm for
TT-Tensor

Input: TT-tensor Y= Y1 •Y2 • · · · •YN , and approximation
accuracy ε, Ñ is the index of the first core to be updated
in the right-to-left update, k is the number of core
tensors to be updated per iteration, and 1 ≤ s ≤ k where
(k − s) indicates the number of overlapping indices,

Output: TT-tensor X=X1 •X2 • · · · •XN such that
�Y−X�2F ≤ ε with lower total TT-ranks

begin
1 Initialize X=X1 •X2 • · · · •XN by rounding Y

% Precompute the right-contracted
matrices �n----------------------------

for n = N − 1, . . . , 1 do
2 �n = (Yn+1 •�n+1)�2Xn+1 /* � N = 1 */

repeat
% Left-to-Right update----------------
for n = 1, s + 1, 2s + 1, . . . do

% Contracted tensor Tn:m, m = n + k − 1
3 Tn:m = �n •Yn •Yn+1 • · · · •Ym •�m

% Best TT-approximation to Tn:m-----
4 [Xn , . . . ,Xm] = bestTT_approx(Tn:m, ε)

for i = n, n + 1, . . . , n + s − 1 do
5 X= Left_Orthogonalize(X, i)
6 �i+1 ← Xi �2(�i •Yi)

% Right-to-Left update----------------
for n = Ñ , Ñ − s, Ñ − 2s, . . . do

7 Tn:m = �n •Yn •Yn+1 • · · · •Ym •�m
8 [Xn , . . . ,Xm] = bestTT_approx(Tn:m, ε)

for i = m, m − 1, . . . , m − s + 1 do
9 X= Right_Orthogonalize(X, i)

10 �i−1 ← (Yi •�i)�2Xi

until a stopping criterion is met

Fig. 6. Benchmark images are used in Examples 2 and 5.

tensors Tn:m . For the two TT-tensors Y and X, we then have

Tn:m = (X<n�n−1Y)�N−mX>m

= (X<n�n−1Y<n) • Yn:m • (Y>m�N−mX>m)

= �n • Yn:m •�m

where the matrices �n = X<n �n−1 Y<n are of size Rn−1 ×
Sn−1 and represent a left contraction between X<n and Y<n

along the first (n − 1) modes, and the matrices �n =
Y>n �N−n X>n are of size Sn × Rn and represent a right
contraction between Y>n and X>n along all but mode-1. The
contraction matrices �n and �n can be efficiently computed as

�n+1 = (X<n •Xn)�n−1(Y<n • Yn) = Xn�2(�n • Yn)

�n−1 = (Yn • Y>n)�N−n (Xn •X>n) = (Yn •�n)�2Xn

with the respective complexities of O(In Rn−1Sn(Rn + Sn−1))
and O(In Rn Sn−1(Sn + Rn−1)).

B. Generalized Framework for AMCU

The algorithm for the TT-tensor is summarized in
Algorithm 5. It is important to emphasize that the right- and
left-contraction matrices, �n and �n , are not computed when
updating the core tensors, but instead, we update either �n+1

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

PHAN et al.: TNS FOR LATENT VARIABLE ANALYSIS 4631

Fig. 7. Number of parameters within the models estimated by TT-SVD, nested-TK2, and AMCU algorithms for different error bounds. Decomposition of
(a) Lena image, (b) Barbara image, and (c) House image.

Fig. 8. AIC of the models estimated by TT-SVD, nested-TK2, and AMCU algorithms for different error bounds. Decomposition of (a) Lena image,
(b) Barbara image, and (c) House image.

or �n−1. In order to achieve this, we first compute the right-
contraction matrices, �n , before entering the main loop. Here,
we denote �N = �1 = 1. At the first iteration, the algorithm
executes the left-to-right update procedure, estimates X1:k as
the best TT-approximation to the tensor Y1:k • �k , orthogo-
nalizes them, and then updates the left-contraction matrices
�2,�3, . . . ,�s accordingly, where 1 ≤ s ≤ k and (k − s)
denotes the number of core tensors to be updated in two
consecutive iterations. The algorithm next updates the core
tensors Xs+1,Xs+2, . . . ,Xs+k .

Similarly, the algorithm computes the new core tensors,
Xn,Xn+1, . . . ,Xn+k−1, left- orthogonalizes them, and then
updates the left-contraction matrices, �n , without computing
the right-contraction matrices, �n . While running the right-to-
left update, the algorithm need not compute the left-contraction
matrices but updates the right-contraction �n−1, . . . ,�n+k−2.

For k = 1, the ASCU algorithm updates Xn as in
Section V-C. For k = 2, the ADCU algorithm computes
a low-rank approximation to the mode-(1,2) unfolding of
Tn,n+1 = �n • Yn • Yn+1 • �n+1 or a truncated SVD of
the following matrix:

[Tn,n+1](1,2) = [�n • Yn](1,2) [Yn+1 •�n+1](1)

where [�n • Yn](1,2) and [Yn+1 • �n+1](1) are, respectively,
of sizes Rn−1 In× Sn and Sn× In+1 Rn+1. When Sn < Rn−1 In

and Sn < In+1 Rn+1, the SVD is computed for a reduced
size matrix UnVT

n , where Un and Vn are the upper triangular
matrices in the QR decompositions of [�n • Yn](1,2) and
[Yn+1 •�n+1]T(1).

For the ATCU algorithm, tensor contractions are computed
for three indices [n, n + 1, n + 2] as

Tn = �n • Yn • Yn+1 • Yn+2 •�n+2.

The algorithm solves the TK2 decomposition of the mode-
((1,2),3,(4,5)) unfolding of Tn as [see also (5)]

min
Un,Vn

�Zn − Un •Xn+1 • VT
n �2F

where Un =[Xn](1,2), Vn =[Xn+2]T(1),Zn =[Tn](1,2),3,(4,5) =
An • Yn+1 • BT

n , and An = [�n • Yn](1,2) are of size
Rn−1 In × Sn , while Bn = [Yn+2 • �n+2](2,3) are of size
In+2 Rn+2 × Sn+1. The two factor matrices, Un and Vn ,
are sequentially estimated as the principal components
of the matrices (Z • Vn)�2(Z • Vn) and the matrices
(UT

n • Z)�2(UT
n • Z).

VII. SIMULATIONS

We first validated the proposed algorithms for fitting
higher order tensors constructed from color images at a
predefined error bound, followed by two examples on
the denoising of exponentially decaying signals, which
admit the TT-representation. Second, the proposed class of
TT-decomposition algorithms was tested on the denoising
of benchmark color images. The final example considers
blind source separation from a single-channel mixture. The
TK2 algorithms in subproblems for the ASCU and the ATCU
stop when the difference in the relative errors is smaller than

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

4632 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

Fig. 9. Denoising of signals at poor SNR. (a) Mean squared angular errors
when K = 222. (b) Execution time in seconds when the signal length
K = 224.

10−4 in 100 iterations. Usually, the algorithms converge in
less than ten iterations.

Example 2 (Fitting Image by TT-Decomposition): This
example demonstrates the effectiveness of the proposed algo-
rithms over the standard TT-SVD algorithm in a decomposi-
tion of benchmark color images of size 256 × 256 × 3 shown
in Fig. 6. Due to the space limit, we illustrate the performances
for the three images “Lena,” “Barbara,” and “House.” The
decomposition aims to express the images by small patches
of size 8 × 8 × 3. In order to achieve this, we applied the
horizontal and vertical shifts within a window of [−2, 2] to
generate 24 copies, which together with the original images
created a tensor of size 25 × 256 × 256 × 3. The data were
then folded by Kronecker folding [31] to yield order-7 tensors,
Y, of size 25× 4× 4× 4× 4× 4× 192.

In Fig. 7, we compared the number of parameters within
the estimated models when the relative approximation errors,
ε, were bounded, that is, �Y − X�F ≤ ε �Y�F . We did
not consider the case when the number of model parameters
exceeded the number of data entries 4 915 200, e.g., when
the approximation error bound ε < 0.03. In all the tests,
the models based on TT-SVD comprised a higher number
of parameters than those obtained by the AMCU algorithms.
For example, in order to explain the tensor constructed from
the “Lena” image at a relative approximation error of 0.0870,
TT-SVD yielded a model consisting of 3 734 573 parameters,
while the models estimated by ASCU, ADCU, and ATCU
needed 308 964, 439 208, and 439 272 fewer parameters to
achieve the relative errors of 0.0851, 0.0870, and 0.0869,

TABLE II

TT-RANKS OF SIGNALS xr OF LENGTH K = 222 AND OF THEIR ESTIMATES

x̂r USING THE TT-SVD AND THE AMCU ALGORITHMS IN
EXAMPLE IV. THE SQUARED ANGULAR ERROR IS

GIVEN ON THE LOGARITHMIC SCALE, AND

THE EXECUTION TIME IS IN SECONDS

respectively. The difference in the number of parameters
between TT-SVD and ADCU can be observed as dotted lines
in Fig. 7.

For the decomposition with low accuracies (high error
bounds), the TT-models in all algorithms became relatively
low rank or rank-1; hence, there was no or not much differ-
ence in terms of the number of parameters. However, with
the same parameters, our algorithms yielded lower approx-
imation errors. The remarkably high difference exceeding
100 000 parameters was observed when the relative approx-
imation errors were lower than 0.4. In summary, AMCU
needed fewer parameters than TT-SVD for the same approxi-
mation error.

We also check the nested-TK2 method with the same TT-
ranks as in TT-SVD (Nested-TK2R) or with the same error
bound (Nested-TK2ε). Fig. 7 indicates that Nested-TK2R

achieved lower approximation errors than the TT-SVD, while
Nested-TK2ε yielded much smaller models. The results of
Nested-TK2ε provided good initialization.

In Fig. 8, we provide a more intuitive way of ranking
the estimated models for the three images based on the
Akaike information criterion (AIC) in the case of least squares
estimation. For each relative approximation error, the best

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

PHAN et al.: TNS FOR LATENT VARIABLE ANALYSIS 4633

TABLE III

PERFORMANCE COMPARISON OF ALGORITHMS CONSIDERED IN
EXAMPLE V IN TERMS OF MSE (dB), PSNR (dB), AND

SSIM FOR IMAGE DENOISING WHEN SNR = 10 dB

model is the one with the lowest AIC score. The results again
confirm that our algorithms provided better models than the
TT-SVD. Upon closer inspection, we can see that the models
determined by ATCU were slightly better than those by ASCU
and ADCU for relatively low-accuracy approximation. The
comparison also indicates that the nested-TK2 yielded better
models than TT-SVD. The models obtained by TT-SVD were
indeed not optimal in terms of the total number of model
parameters.

Example 3 (Reconstruction of Known Target Ranks):
Harmonic retrieval is at the very core of signal-processing
applications. To illustrate the potential of TT-decomposition
in this context, we considered the reconstruction of an
exponentially decaying signal x(t) from a noisy observation
y(t) = x(t)+ e(t) of K = 2d samples, where

x(t) = exp

(−5t

K

)
sin

(
2π f

fs
t + π

3

)
(16)

d = {22, 24 or 26} with f = 10 Hz, fs = 100 Hz, while e(t)
represents the additive Gaussian noise, which was randomly
generated such that the signal-to-noise ratio SNR = −20 dB.

In order to retrieve the original signal x(t) from the noisy
signal y(t), we adopt the tensor-based method in [32], which
first constructs a higher order tensor from the signal and then
approximates this tensor by a low-rank model. For example,
De Lathauwer [32] suggested to use the canonical polyadic
TD and the block term decomposition. In this example,
the observed signal was reshaped to an order-(d− 2) quantics
tensor Y of size 4 × 2 × · · · × 2 × 4 [33], [34]. With
this tensorization, the sinusoid yields a TT-tensor of rank-
(2, 2, . . . , 2), whereas the signal exp(t) yields a rank-1 tensor.
Hence, its Hadamard product, i.e., x(t), admits a TT model of
rank-(2, 2, . . . , 2) [23] and gives the TT-model, Y = X + E,
where X is the TT-tensor of the signal x(t) and E is reshaped
from the noise. In other words, we attempted to approximate
the tensor Y by a TT-tensor with a prior known TT-rank.

In order to compare TT-SVD with the AMCU algorithms,
the tensor Y was first approximated using TT-SVD such that
�Y − X̂�2F ≤ ε2, where ε is a measure of the added noise.

Fig. 10. Lena image corrupted by noise at 10-dB SNR and the patches recon-
structed by different methods in Example 5. (a) Noisy image. (b) TT-ASCU,
mse = 27:37 dB. (c) TT-SVD, mse = 35.11 dB. (d) K-SVD, mse = 34.76 dB.
(e) From left to right, TT-ASCU, TT-SVD, and K-SVD.

The estimated TT-tensors had quite high ranks, which
exceeded the TT-rank of X, and were then “truncated” to the
TT-rank of X [15] using the TT-tensor toolbox [29].

Alternatively, to obtain a TT-tensor having the same ranks
as X, the TT-SVD algorithm computed only Rn = 2 leading
singular vectors from the projected data. The outcome TT-
tensor was used to initialize the AMCU algorithms.

We ran 500 independent trials and assessed performance
through the relative error δ(y, x̂) = (�y − x̂�22)/�y�22 and the
squared angular error S AE(x, x̂) = −20 log10 arccos(xT x̂)/
(�x�2�x̂�2) (dB).

Fig. 9(a) illustrates a performance comparison in terms of
SAEs for the case K = 222, demonstrating that, on average,
the signals reconstructed by our proposed algorithms exhibit
an 8-dB higher SAE than when using the TT-SVD with the
rank specified. For K = 224 and K = 226, the average SAEs
of the TT-SVD were improved to 25.70 and 29.07 dB, but
were still lower than the respective mean SAEs of 32.56 and
38.17 dB achieved using our algorithms.

For completeness, Fig. 9(b) compares the execution times
of the considered algorithms, where ASCU1 and ASCU2
denote the ASCU algorithms with one- and two-side
rank adjustments, respectively, while ADCUk and ATCUk

indicate the ADCU and ATCU algorithms with k overlapping

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

4634 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

core indices, where k = 0, 1, 2. When the signal length
K = 224, the TT-SVD with rounding took an average exe-
cution time of 44.30 s on a computer based on Intel Xeon E5-
1650, clocked at 3.50 GHz and with 64 GB of main memory.
For a given TT-rank, this algorithm worked faster and com-
pleted the approximation in 13.98 s. Since TT-SVD provided
good initial values, ASCU converged quickly in 0.53 s, while
the ADCU and ATCU algorithms were approximately two
times faster than the ASCU. Even when the core tensors were
initialized by unit vectors er , the proposed algorithms con-
verged in less than 2 s. For this kind of initialization, the ATCU
was on average the fastest and ASCU the slowest algorithm.

Finally, we illustrate the performance of the AMCU
algorithms in Algorithm 5 for the task of fitting the TT-tensors
Yε̃, which were approximations to Y with an accuracy of
ε̃ = 0.3, using the TT-SVD. The algorithms achieved an
average SAE of 26.95 dB when the signal length K = 222 and
an SAE of 32.52 dB when K = 224. There was no significant
loss in accuracy compared with the AMCU fit to the tensor
Y. Moreover, the AMCU algorithm required shorter running
times, e.g., 0.24 s for ASCU, and 0.17 s for ADCU and ATCU.
The running time of TT-SVD for initialization is not counted
in the total running times of AMCU algorithms.

Example 4 (Denoising With Unknown Target Ranks): To
illustrate the utility of the TT-decomposition as a tool for
denoising, we considered the noisy signals, y(t) = x(t) +
e(t), and the degraded versions of a signal, x(t), through
contamination with additive Gaussian noise, e(t), where x(t)
can take one of the following forms:

x1(t) = sin(2000 t2/3)

4t1/4

x2(t) = sin(t−1)

x3(t) = sin

(
5(t + 1)

2

)
cos(100(t + 1)2)

x4(t) = sign(sin(8π t))(1+ sin(80π t))

or the damped signal used in Example III. The signals
y(t) in our example had a length of K = 222 and were
tensorized (reshaped) to tensors Y of order-22 and size
2× 2× · · · × 2. With this tensorization, the five signals xr (t)
can be well approximated by the tensors in the TT-format,
with their TT-ranks given in Table II, where x5(t) is the
signal in (16).

We applied the alternating single- and multicore update
algorithms to approximate the noisy tensor with SNR = 0 dB.
The approximation �Y − X̂�2F ≤ ε2 was first performed
using TT-SVD with the accuracy level of ε2 = σ 2 K
and σ the standard deviation of the Gaussian noise. The
reconstructed signals achieved SAEs of 4.18, 6.18, 4.43, 4.36,
and 5.17 dB for the five signals xr (t), respectively. When
using the ASCU, ADCU, and ATCU algorithms, much better
performances were obtained with average respective SAEs =
33.11, 33.49, and 33.23 dB. The performance comparison is
presented in Table II, where ADCU1 and ADCU0 denote the
performances of the ADCU algorithms with one overlapping
index and nonoverlapping indices, respectively. For example,
for the reconstruction of the signal x1(t), ADCU1 enforced

the first eight-core tensors to be quite small with a rank of 1
and could not suppress the TT-ranks of the last core tensors.
Consequently, the TT-ranks R15, R16, R17, and R18 exceeded
those of ADCU0, and the TT-tensor estimated by ADCU1 had
11 578 entries, which was more than the 6798 entries estimated
by ADCU0. Another important observation is that the signal
reconstructed by ADCU1 was worse than the reconstruction
by ADCU0, by about 1-dB SAE.

In addition to higher angular errors, the TT-SVD yielded
approximations with TT-ranks significantly higher than those
of the sources. This detrimental effect did not occur for the
ASCU algorithm. For this example, the TT-SVD took on aver-
age 9.67 s to estimate all the core tensors of the five tensors,
X̂r , while the ADCU and ATCU algorithms needed 2.24 and
2.37 s, respectively, and were slightly faster than the ASCU.

Example 5 (Image Denoising): Next, we tested the proposed
algorithms in a novel application of the TT-decomposition
for image denoising. Given that the intensities of pixels in
a small window are highly correlated, our method was able
to learn hidden structures, which represent relations between
small patches of pixels. These structures were then used to
reconstruct the image as a whole.

For a color image Y of size I × J × 3, degraded by
additive Gaussian noise, the basic idea behind the proposed
method is that for each block of pixels of size h × w × 3,
given by Yr,c = Y(r : r + h − 1, c : c + w − 1, :), a
small tensor Yr,c of size h × w × 3× (2d + 1) × (2d + 1),
comprising (2d+1)2 blocks around Yr,c is constructed, in the
form Yr,c(:, :, :, d + 1 + i, d + 1 + j) = Yr+i,c+ j , where i,
j = −d, . . . , 0, . . . , d , and d represents the neighborhood
width. Every (r, c)-block Yr,c is then approximated through
the TT-decomposition �Yr,c − Xr,c�2F ≤ ε2, where ε2 is the
noise level. A pixel is then reconstructed as an average of all
its approximations by TT-tensors, which cover that pixel.

We used six benchmark color images of size 256 × 256 ×
3 (illustrated in Fig. 6) and corrupted them by white Gaussian
noise at SNR = 10 dB. Latent structures were learned for
patches of sizes 8 × 8 × 3, i.e., h = w = 8, in the search area
of width d = 3. To the noisy images, we applied DCT spatial
filtering before the block reconstruction and applied several
TDs, including the TT-SVD, the Tucker approximation (TKA)
with a predefined approximation error, the Bayesian robust
tensor factorization (BRTF) for low-rank CP decomposition
[35], and the ASCU. The TKA operates in a similar way to the
TK2 algorithm in Section IV, but estimates five factor matrices
for order-5 tensors. In addition, we recovered the image with
sparsity constraints using a dictionary of 256 atoms learned
by K-SVD [36]. For this method, three layers of color images
were flattened to the size 256×768. The dictionary was learned
for the patches of size 8× 8.

The quality of the images reconstructed by the five different
methods was assessed using three indices: mean-squared error
(mse), peak signal-to-noise ratio (PSNR), and the structural
similarity index (SSIM). The results are shown in Table III
and illustrated in Fig. 10. By learning the similarities between
the patches, our proposed method was able to recover the
image and achieved better performance than the well-known
denoising method based on dictionary learning. Moreover,

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

PHAN et al.: TNS FOR LATENT VARIABLE ANALYSIS 4635

the results confirm the superiority of ASCU over the TT-SVD
and other TDs. Using the ADCU algorithm, we obtained
comparable performances with those of ASCU.

An expanded version of this example is provided in Sup-
plementary Material.

Example 6 (Blind Source Separation of Exponentially
Decaying Signals From a Single-Channel Mixture): This
example is provided in Supplementary Material [39].

VIII. CONCLUSION AND FURTHER EXTENSIONS

We have presented novel algorithms for TT-decomposition,
which are capable of simultaneously adjusting the ranks of
two- or three-core tensors while keeping the other cores
fixed. Compared with the TT-SVD, the proposed algorithms
have achieved lower approximation errors for the decompo-
sition with a given TT-rank and yielded tensors with lower
TT-ranks for constrained approximations with a prescribed
error tolerance. By employing progressive computation of con-
tracted tensors and prior compression, the proposed algorithms
have been shown to exhibit low computational complexity.
The proposed algorithms can be naturally extended to the
TT-decomposition with the nonnegativity constraints or
decompositions of incomplete data. The AMCU methods can
also be applied to the tensor chain decomposition [37]. In
the sequel of this article, we aim to illuminate the use of the
proposed algorithms in blind source separation and for a con-
version of a TT-tensor into a low-rank tensor in the canonical
polyadic decomposition. The proposed algorithms have been
implemented in the MATLAB package TENSORBOX [38].

ACKNOWLEDGMENT

Some of the simulations for this project was performed on
the Pardus and Zhores CDISE HPC clusters at Skoltech.

REFERENCES

[1] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and
D. P. Mandic, “Tensor networks for dimensionality reduction and large-
scale optimization: Part 1 low-rank tensor decompositions,” Found.
Trends Mach. Learn., vol. 9, nos. 4–5, pp. 249–429, 2016.

[2] Y. Wu, H. Tan, Y. Li, J. Zhang, and X. Chen, “A fused CP factorization
method for incomplete tensors,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 3, pp. 751–764, Mar. 2019.

[3] X. Chen et al., “A generalized model for robust tensor factorization with
noise modeling by mixture of Gaussians,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 29, no. 11, pp. 5380–5393, Nov. 2018.

[4] Q. Zhao, G. Zhou, L. Zhang, A. Cichocki, and S.-I. Amari, “Bayesian
robust tensor factorization for incomplete multiway data,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 27, no. 4, pp. 736–748, Apr. 2016.

[5] F. Ju, Y. Sun, J. Gao, Y. Hu, and B. Yin, “Vectorial dimension reduction
for tensors based on Bayesian inference,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 29, no. 10, pp. 4579–4592, Oct. 2018.

[6] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1
and rank-(R1, R2,...,RN) approximation of higher-order tensor,” SIAM
J. Matrix Anal. Appl., vol. 21, pp. 1324–1342, Mar. 2000.

[7] R. Bro, R. A. Harshman, N. D. Sidiropoulos, and M. E. Lundy, “Model-
ing multi-way data with linearly dependent loadings,” J. Chemometrics,
vol. 23, nos. 7–8, pp. 324–340, 2009.

[8] G. Favier and A. de Almeida, “Overview of constrained PARAFAC
models,” EURASIP J. Adv. Signal Process., vol. 2014, no. 1, pp. 1–25,
2014.

[9] L. De Lathauwer, “Decompositions of a higher-order tensor in block
terms—Part I: Lemmas for partitioned matrices,” SIAM J. Matrix Anal.
Appl., vol. 30, no. 3, pp. 1022–1032, 2008.

[10] A.-H. Phan, P. Tichavský, and A. Cichocki, “Tensor deflation for
CANDECOMP/PARAFAC—Part I: Alternating subspace update algo-
rithm,” IEEE Trans. Signal Process., vol. 63, no. 12, pp. 5924–5938,
Nov. 2015.

[11] A.-H. Phan, P. Tichavský, and A. Cichocki, “Tensor deflation for
CANDECOMP/PARAFAC. Part 3: Rank splitting,” ArXiv e-prints, 2015.

[12] A. Cichocki, R. Zdunek, A.-H. Phan, and S. Amari, Nonnegative Matrix
and Tensor Factorizations: Applications to Exploratory Multi-way Data
Analysis and Blind Source Separation. Hoboken, NJ, USA: Wiley, 2009.

[13] A. Cichocki et al., “Tensor decompositions for signal processing appli-
cations: From two-way to multiway component analysis,” IEEE Signal
Process. Mag., vol. 32, no. 2, pp. 145–163, Mar. 2015.

[14] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang,
E. E. Papalexakis, and C. Faloutsos, “Tensor decomposition for
signal processing and machine learning,” IEEE Trans. Signal Process.,
vol. 65, no. 13, pp. 3551–3582, Jan. 2017.

[15] I. V. Oseledets and E. E. Tyrtyshnikov, “Breaking the curse of dimen-
sionality, or how to use SVD in many dimensions,” SIAM J. Sci.
Comput., vol. 31, no. 5, pp. 3744–3759, 2009.

[16] A. Klumper, A. Schadschneider, and J. Zittartz, “Equivalence and
solution of anisotropic spin-1 models and generalized t-j Fermion models
in one dimension,” J. Phys. A, Math. Gen., vol. 24, no. 16, p. L955,
Aug. 1991.

[17] G. Vidal, “Efficient classical simulation of slightly entangled quantum
computations,” Phys. Rev. Lett., vol. 91, Oct. 2003, Art. no. 147902.

[18] S. Holtz, T. Rohwedder, and R. Schneider, “The alternating linear
scheme for tensor optimization in the tensor train format,” SIAM J. Sci.
Comput., vol. 34, no. 2, pp. 683–713, 2012.

[19] D. Kressner, M. Steinlechner, and A. Uschmajew, “Low-rank tensor
methods with subspace correction for symmetric eigenvalue problems,”
SIAM J. Sci. Comput., vol. 36, no. 5, pp. A2346–A2368, 2014.

[20] D. Kressner, M. Steinlechner, and B. Vandereycken, “Low-rank tensor
completion by Riemannian optimization,” BIT Numer. Math., vol. 54,
no. 2, pp. 447–468, Jun. 2014.

[21] L. Grasedyck, M. Kluge, and S. Krämer, “Variants of alternating least
squares tensor completion in the tensor train format,” SIAM J. Sci.
Comput., vol. 37, no. 5, pp. 2424–2450, 2015.

[22] C. Da Silva and F. J. Herrmann, “Optimization on the hierarchical tucker
manifold—Applications to tensor completion,” Linear Algebra its Appl.,
vol. 481, pp. 131–173, Sep. 2015.

[23] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295–2317, Jan. 2011.

[24] D. Kressner and F. Macedo, “Low-rank tensor methods for commu-
nicating Markov processes,” in Quantitative Evaluation of Systems,
G. Norman and W. Sanders, Eds. Springer, 2009, pp. 25–40.

[25] S. R. White, “Density-matrix algorithms for quantum renormalization
groups,” Phys. Rev. B, Condens. Matter, vol. 48, no. 14, Oct. 1993,
Art. no. 10345.

[26] I. V. Oseledets and B. N. Khoromskij, “DMRG+QTT approach to
computation of the ground state for the molecular Schrödinger operator,”
MPI MiS Preprint 69/2010, Max Planck Inst. Math. Sci., Leipzig,
Germany, 2010.

[27] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[28] Y. Xu, “On the convergence of higher-order orthogonal iteration,” Linear
Multilinear Algebra, vol. 66, no. 11, pp. 2247–2265, 2018.

[29] I. V. Oseledets. (2014). TT-Toolbox. [Online]. Available: https://github.
com/oseledets/TT-Toolbox

[30] S. V. Dolgov and D. V. Savostyanov, “Alternating minimal energy
methods for linear systems in higher dimensions,” SIAM J. Sci. Comput.,
vol. 36, no. 5, pp. A2248–A2271, 2014.

[31] A.-H. Phan, A. Cichocki, P. Tichavský, D. P. Mandic, and K. Matsuoka,
“On revealing replicating structures in multiway data: A novel tensor
decomposition approach,” in Latent Variable Analysis and Signal
Separation (Lecture Notes in Computer Science), vol. 7191. Berlin,
Germany: Springer, 2012, pp. 297–305.

[32] L. De Lathauwer, “Blind separation of exponential polynomials and the
decomposition of a tensor in rank-(Lr ,Lr ,1) terms,” SIAM J. Matrix
Anal. Appl., vol. 32, no. 4, pp. 1451–1474, 2011.

[33] I. V. Oseledets, “Approximation of 2d×2d matrices using tensor decom-
position,” SIAM J. Matrix Anal. Appl., vol. 31, no. 4, pp. 2130–2145,
2010.

[34] B. N. Khoromskij, “O(dlogN)-quantics approximation of N−d tensors
in high-dimensional numerical modeling,” Constructive Approximation,
vol. 34, no. 2, pp. 257–280, 2011.

[35] Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian CP factorization of
incomplete tensors with automatic rank determination,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1751–1763, Sep. 2015.

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

4636 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

[36] M. Aharon, M. Elad, and A. Bruckstein, “K -SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[37] B. N. Khoromskij, “Tensors-structured numerical methods in scientific
computing: Survey on recent advances,” Chemometrics Intell. Lab. Syst.,
vol. 110, no. 1, pp. 1–19, 2012.

[38] A.-H. Phan and P. Tichavský, and A. Cichocki. (2012).
MATLAB TENSORBOX package. [Online]. Available: https://github.
com/phananhhuy/TensorBox

[39] A.-H. Phan, A. Cichocki, A. Uschmajew, P. Tichavský, G. Luta, and
D. Mandic, “Tensor networks for latent variable analysis. Part I: Algo-
rithms for tensor train decomposition (supplementary),” IEEE Trans.
Neural Netw. Learn. Syst., to be published.

Anh-Huy Phan (Member, IEEE) received the mas-
ter’s degree from the Ho Chi Minh City University
of Technology, Ho Chi Minh City, Vietnam, in 2005,
and the Ph.D. degree from the Kyushu Institute of
Technology, Kitakyushu, Japan, in 2011.

From October 2011 to March 2018, he was a
Research Scientist with the Laboratory for Advanced
Brain Signal Processing, Brain Science Institute
(BSI), RIKEN, Wako, Japan, and from April 2012 to
April 2015, a Visiting Research Scientist with the
TOYOTA Collaboration Center, BSI-RIKEN. Since

May 2018, he has been an Assistant Professor with the Center for Com-
putational and Data-Intensive Science and Engineering, Skolkovo Institute
of Science and Technology (Skoltech), Moscow, Russia. He is currently a
Visiting Associate Professor with the Tokyo University of Agriculture and
Technology (TUAT), Fuchu, Japan. He is the author of three monographs.
His research interests include multilinear algebra, tensor computation, tensor
networks, nonlinear system, blind source separation, and brain–computer
interface.

Prof. Phan received the Best Paper Awards for articles in the IEEE
Signal Processing Magazine (SPM) in 2018 and the International Conference
on Neural Information Processing (ICONIP) in 2016 and the Outstanding
Reviewer Award for maintaining the prestige of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2019.

Andrzej Cichocki (Fellow, IEEE) received the
M.Sc. (Hons.), Ph.D., and Dr.Sc. (Habilitation)
degrees in electrical engineering from the Warsaw
University of Technology, Warsaw, Poland.

He was an Alexander-von-Humboldt Research
Fellow and a Guest Professor with Univer-
sity Erlangen-Nurnberg, Erlangen, Germany. From
1995 to 2018, he was the Team Leader and the
Head of the Laboratory for Advanced Brain Signal
Processing, RIKEN Brain Science Institute, Wako,
Japan. He is currently a Professor with the Skolkovo

Institute of Science and Technology (Skoltech), Moscow, Russia. He is
also a Visiting/Adjunct Professor with the Tokyo University of Agriculture
and Technology (TUAT), Fuchu, Japan, Hangzhou Dianzi University (HDU)
Hangzhou, China, Nicolaus Copernicus University (UMK), Toruń, Poland,
and the Institute of Systems Research (IBS), Polish Academy of Science,
Warsaw. He is the author of more than 500 peer-review articles and six
monographs in English (two of them translated to Chinese). His research
focus on deep learning, tensor decompositions, tensor networks for big data
analytics, multiway blind source separation, and brain–computer interface
and their biomedical applications. His publications currently report over
37 000 citations according to Google Scholar, with an H-index of 84.

Prof. Cichocki is currently among the three most cited Polish Computer
Scientists. He has served as the Founding Editor-in-Chief for the Journal
Computational Intelligence and Neuroscience. He has also served as an
Associated Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING,
the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYS-
TEMS, the IEEE TRANSACTIONS ON CYBERNETICS, and the Journal of
Neuroscience Methods.

André Uschmajew received the Ph.D. degree from Technical University
Berlin, Berlin, Germany, in 2013. He is currently a Research Group Leader
with the Max Planck Institute for Mathematics in the Sciences, Leipzig, Ger-
many, in 2013. His research interests include theory and optimization methods
for low-rank approximation of tensors and high-dimensional equations.

Petr Tichavský (Senior Member, IEEE) received
the Ph.D. degree in theoretical cybernetics and the
Research Professor degree from the Czechoslovak
Academy of Sciences, Prague, Czech Republic,
in 1992 and 2017, respectively.

He is currently with the Institute of Information
Theory and Automation, Czech Academy of
Sciences, Prague. He is the author or coauthor
of research articles in the area of sinusoidal
frequency/frequency-rate estimation, adaptive filter-
ing and tracking of time-varying signal parame-

ters, algorithm-independent bounds on achievable performance, sensor array
processing, independent component analysis, blind source separation, and
tensor decompositions.

Dr. Tichavský has been a member of the IEEE SPS Committee Signal
Processing Theory and Methods from 2008 to 2011 and since 2016. He was
also the General Co-Chair of the 36th IEEE International Conference on
Acoustics, Speech, and Signal Processing ICASSP 2011 in Prague. He served
as an Associate Editor for the IEEE SIGNAL PROCESSING LETTERS from
2002 to 2004 and an Associate Editor for the IEEE TRANSACTIONS ON

SIGNAL PROCESSING from 2005 to 2009 and from 2011 to 2016.

George Luta received the Licentiate Diploma
degree in mathematics from the University of
Timişoara, Timişoara, Romania, in 1987, and the
M.S. and Ph.D. degrees in biostatistics from the
University of North Carolina at Chapel Hill, NC,
USA, in 1996 and 2006, respectively.

After working at the University of North Carolina
at Chapel Hill and the National Institute of Statis-
tical Sciences Research Triangle Park, NC, USA,
he joined the Department of Biostatistics, Bioinfor-
matics and Biomathematics, Georgetown University,

Washington, DC, USA, in 2007, where he is currently a Professor of
biostatistics. His current honorary appointments include being a Visiting
Professor at Aarhus University, Aarhus, Denmark, and a Visiting Professor
at Parker Institute, Frederiksberg, Denmark. He has published more than
100 peer-reviewed articles that have received more than 6000 citations. His
current methodological interests include statistical methods based on non-
negative matrix and tensor factorizations, and statistical methods for measures
of health disparity.

Prof. Luta is an Elected Member of the International Statistical Institute.

Danilo P. Mandic (Fellow, IEEE) is currently a
Professor of signal processing with the Imperial
College London, U.K., where he has been working
in the area of nonlinear and multidimensional adap-
tive signal processing and time-frequency analysis.
He has been a Guest Professor with Katholieke
Universiteit Leuven (KU Leuven), Leuven, Belgium,
and a Frontier Researcher with the RIKEN Center
for Brain Science, Tokyo, Japan. His publication
record includes two research monographs, recurrent
neural networks for prediction and complex valued

nonlinear adaptive filters, noncircularity, widely linear and neural models,
an edited book, signal processing for information fusion, and more than
200 publications on signal and image processing.

Authorized licensed use limited to: UTIA. Downloaded on November 27,2020 at 17:28:54 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

