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Abstract. The present contribution studies the statisticalmodel for discrete time
two-variate duration (time-to-event) data. The analysis is complicated by just
partial data observation caused either by the right-side censoring or even by the
presence of dependent competing events. The case ismodeled and analyzedwith
the aid of a two-variate geometric distribution. The model identiϐiability is dis-
cussedand it is shown that themodel is not identiϐiablewithout proper additional
assumptions. The method of analysis is illustrated both on artiϐicially generated
example and on real unemployment data.
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1 Introduction
Inmany time-to event data cases,more thanonepotential event canbe associatedwith observedobjects. For
example, we can followXandYbeing the times to failure of a device causedbydifferent reasons. To copewith
such cases, variousbivariateprobability distributionshavebeen introduced in the literature (see for example
Marshall andOlkin [6] andmany other sources). However,most of themwere developed for continuous time
cases. In the discrete-time lifetime data (often originated from continuous time processeswith observations
aggregated to intervals), it is assumed that the lifetimes X and Y are discrete random variables (attaining
positive integer values, measured in corresponding time units). Then, the distribution of the time to event
can be modeled by different variants of geometric distribution. Naturally, corresponding discrete bivariate
distributions have been introduced in the literature as well, as the bivariate geometric distribution versions
of Basu and Dhar [1]. However, it might be said that despite frequent discrete measuring of lifetime and
other duration data, very common in applications, few papers related to discrete lifetime data appears in
the literature (see for example, Grimshaw et al. [4], Davarzani et al. [3]). One of the reasons is that the
continuous time models are often more “comfortable” both from the point of analysis and of theoretical
knowledge (compare for instance the frequent use of the Cox regression model).
When each of followed events terminates the observation (like, for instance, a critical failure of a device) the
events are competing, just the ϐirst occurring is observed. When corresponding random variables, times to
these events, are independent, one variable censors (randomly, from the right side) the other. However, if
they are dependent mutually, we deal with more complicated case of dependent competing risks. Discrete
time case is further complicated (when compared to the continuous time setting) by potential occurrence
of both events in the same time interval, though just one of them really happens. Consequently, in general,
in such a case the model parameters are not identiϐiable. This could be easily shown by the analysis of log-
likelihood, which is then evidently over-parametrized.
In thepresent contribution, ϐirst, a versionof two-variate geometric distribution is recalled. Then, the setting
of two competing risk is described, together with well know problems with model identiϐication. The main
part then studies the assumptions under which themodel identiϐiability holds. The analysis method and the
impact of additional assumptions will be illustrated on artiϐicial data and the results discussed. Finally, a
real data example will be presented.

2 Bivariate geometric distribution
Standard univariate geometric distribution corresponds to the order of the ϐirst “1” in the series of Bernoulli
“0-1” attempts. Thus, when U is the Bernoulli r.v. with P(U = 1) = p, the geometric r.v. X “starting at 1” has
P(X = k) = (1− p)k−1 · p, for k = 1,2, ..., EX = 1/p, var(X) = (1− p)/p2.
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Similarly, a basis for the bivariate geometric model is the bivariate Bernoulli random variable (U,V) with
joint probability distribution p00, p10, p01, p11, where pjk = P(U = j,V = k), j, k are 0 or 1. The marginal
probabilities are p1. = P(U = 1) = p10 + p11, p.1 = P(V = 1) = p01 + p11 and the covariance cov(U,V) =
p11 − p1. · p.1. Recall also that in the case p11 = p1. · p.1, i.e. when U, V are non-correlated, they are already
independent, too.
Let us denote corresponding geometric random variables X, Y. Then, as in Basu and Dhar [1], the following
form of bivariate geometric distribution will be considered, for s, t = 1, 2, ...:

P(X = s, Y = t) = ps−1
00 · p10 · p(t−s−1)

.0 · p.1 for s < t,

P(X = s, Y = t) = pt−1
00 · p01 · p(s−t−1)

0. · p1. for s > t,

P(X = s, Y = t) = ps−1
00 · p11 in the case s = t. (1)

Covariance can be also computed easily, its sign is the same as of cov(U,V). Namely

cov(X, Y) = (p10 + p01) ∗ (1+ p00)/(1− p00)3 + (p10/p.1+

+p01/p1.)/(1− p00)2 + p11(1+ p00)/(1− p00)3 − 1/(p.1 p1.).
Correlation then equals corr(X, Y) =cov(X, Y) · p1. p.1/

√
(1− p1.) (1− p.1).

3 Competing risks problem
The interest in the problem of mutually dependent competing risks dates back to 70-ties of the last century.
Formally, there areK random variables Tj, j = 1, ...,K, running simultaneously, each representing the time to
certain event. The occurrence of events, therefore also corresponding random variables, can be dependent
mutually. Observation is terminated at the minimum of them. Let FK(t1, ..., tK) = P(T1 > t1, ...,TK > tK)
be the joint survival function of {Tj}. However, instead the ’net’ survivals Tj we observe just ’crude’ data
(sometimes called also ’the identiϐied minimum’) Z = min(T1, ...,TK) and the indicator δ = j if Z = Tj. Such
data allow for direct estimation of the distribution of Z∗ = min(T1, ...,TK), for instance its survival function
S(t) = P(Z∗ > t) = FK(t, ..., t).
Generally, however, from data (Zi, δi), i = 1, . . . ,N it is not possible to identify the marginal or joint distri-
butions of {Tj}. Tsiatis in [8] has shown that for arbitrary joint model we can ϐind amodel with independent
components having the same incidences, i.e. we cannot distinguish among the models. It follows that it is
necessary to make certain functional assumptions about the form of both marginal and joint distribution in
order to identify them. Several such cases are speciϐied for instance in Basu and Ghosh [2]. Later on the case
of competing risks with covariates was studied by many other authors, in a more precise way, already with
the aid of a copula describing the dependence. However, the results concern mostly the continuous time
setting. On the contrary, our interest lies in the analysis of discrete models.

4 Bivariate geometric distribution under competing risks
As it has already been said, in the competing risks case only T = min(X, Y) is observed. However, in the
discrete time setting a serious problem arises, that both X, Y may occur in the same time interval, i.e. X =
Y = t, however just one of them is observed, the “ϐirst” one. The probability of such an instance equals
p11 ·

∑∞
t=1 p

t−1
00 = p11/(1− p00). In other words, if X = t is observed, on Ywe know only that Y ≥ t and the

probability of such a result is between pt−1
00 · p10 and pt−1

00 · (p10 + p11). In fact, we are not able to evaluate
it precisely, without an additional assumption. Let me recall here a similar problem from the analysis of
discrete-time life tables with censoring. We know the number of item at the beginning of interval, and num-
bers of items failed or censored during. However, for accurate estimation of survival function, for instance by
the Product Limit Estimate, also the order of them is necessary. There are two boundary instances, namely
that censoring precedes failures, or vice versa, the reality is between (c.f. Prentice and Gloeckler [7]). In
order to cope with this problem here, let us ϐirst formulate the following:

Assumption A1. Let us assume that the probabilities of observed data can be expressed with the aid of a
(known) constant C ∈ [0, 1] as

P(T = X = s, Y ≥ T) = ps−1
00 · (p10 + C p11),
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P(T = Y = t, X ≥ T) = pt−1
00 · (p01 + C̄ p11).

Here C̄ = 1− C.

Let us denote these two cases by an indicator δ: δ = 1 in the ϐirst case, δ = 2 in the second. Further,
let p1 = p10 + Cp11, p2 = p01 + C̄p11, p0 = 1 − p1 − p2 = p00. These probabilities are identiϐiable and
characterize the incidence of really observed events.
The sense of Assumption 1 could be clariϐied, at least to certain extent, by following examples:

Example 1. Let us consider a case of employment data The events are “to leave voluntarily”, X, or “to be
ϐired”, Y. One can imagine that one leaves the company just before being dismissed, i.e. X = Y, both are (Y
just potentially) in the same time interval, but only X is observed. On the other hand, it is hard to imagine
an opposite case that one is ϐired despite he already announced his decision to leave. In such a case, C = 1
could be a reasonable choice.

Example 2. X, Y are the times of the ϐirst (or next) goal in an ice-hockey match, of both teams. If one team
scored ϐirst, still therewas a potential possibility that the second teamwould score ϐirst, in the same interval
(the same minute, say). Its chance can be estimated comparing “scoring strengths” of teams, for instance
putting C = p10/(p10 + p01), C̄ = p01/(p10 + p01).

Nevertheless, Assumption 1 itself does not sufϐice to model identiϐication, as it quantiϐies just relative pro-
portionsofp11, not its relation tootherprobabilities. Let observeddata consist inN independent replications
of T, δ, T = min(X, Y), δ = 1, 2. The likelihood of unknown probabilities pjk, j, k = 0, 1, under these data is

L =
N∏

i=1

(
p(Ti−1)
0 · pI[δi=1]

1 · pI[δi=2]
2

)
, (2)

where p00 = p0 and p1 = p10 + C p11, p2 = p01 + C̄ p11. Hence we have 3 unknown parameters related to 2
known (well estimated) incidence probabilities p1, p2. Therefore pjk are not identiϐiable.

4.1 Special cases
The simplest case arises when p11 = 0, i.e. there is no chance of both events occurrence in one time interval.
In such a case there is no identiϐication problem. Notice also that then the corr(U,V) aswell as corr(X, Y) < 0.

Independent variables. Another particular case occurs when U, V are not correlated. They are then also
independent and X, Y are independent as well. In this case Assumption 1 sufϐices to identiϐication of their
distribution, as there are in fact just two probabilities to be estimated, namely p1. and p.1, the rest can be de-
rived from them. This instance covers also the case of right-side random censoring: For example, when X is a
variable of our interest and Y is censoring variable, we are in fact not interested in estimation of characteris-
tics of Y. Nevertheless, we need to assume something about order of values X, Ywhen occurring potentially
in the same time interval. The instance is often encountered when life tables are analyzed, and standardly it
is assumed (as in Prentice, Gloeckler [7]) that censoring occurred at the intervals end. In our setting itmeans
C = 1. Naturally, this is just an assumption, other border case can assume C = 0, the reality is between.

4.2 An assumption guarantying identiϐiability
Let us try to propose another kind of limitation to model parameters. In fact, the meaning of constant C is

C = P(δ = 1|X = Y), C̄ = P(δ = 2|X = Y).

Using the Bayes formula, we are able to evaluate the opposite,

P(X = Y|δ = 1) = P(δ = 1|X = Y) · P(X = Y)
P(δ = 1) .

Denote this by α. As P(δ = 1) = P(δ = 1|X < Y) · P(X < Y) + P(δ = 1|X = Y) · P(X = Y) + P(δ = 1|X >
Y) · P(X > Y) = 1 · p10 + C · P11 + 0, then

α =
C p11

p10 + C p11
and C =

α p10
(1− α) p11

.
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Quite similarly, for β = P(X = Y|δ = 2)we have

β =
C̄ p11

p01 + C̄ p11
and C̄ =

β p01
(1− β) p11

. (3)

Another consequence is that

p11 =
α

1− α
p10 +

β

1− β
p01 = α p1 + β p2. (4)

Constants α, β characterize the proportion of hidden events X = Y in observed δ = 1 or δ = 2, resp. In
fact, as seen also from (4), assumption on knowledge of α, β is much stronger that just Assumption 1 on C.
Nevertheless, it can be considered to be realistic, obtained from a prior knowledge, experience, for instance.
Let us formulate it as:

Assumption A2. Let us assume that both constants α, β deϐined above are known.

Notice that for instanceα = 1means that p10 = 0, all cases with δ = 1 are caused by events X = Y. Similarly,
β = 1 is equivalent to p01 = 0, in fact we then deal with degenerate cases.
Now, it is easy to show that the model is identiϐiable. The log-likelihood is now

L =
N∑

i=1

(
(Ti − 1) ln p00 + I[δi = 1] ln(p10/(1− α)) + I[δi = 2] ln(p01/(1− β))

)
, (5)

with p00 = 1 − p10/(1 − α) − p01/(1 − β). Hence, there are just 2 parameters to be estimated, the rest
are then obtained from them. If both α, β < 1, there is no problem to get consistent estimates of p10/(1 −
α), p01/(1− β), and then of all original pjk, also p11 from (4). Naturally, a wrong speciϐication of α, β, leads
to error in estimates of pjk.
Let us also return to examples 1 and 2 from above: In Example 1, with C = 1, we obtain that α = p11/(p10 +
p11), β = 0, and p11 = α · p10/(1− α). Similarly for C = 0, i.e. C̄ = 1.
In Example 2 we obtain that α = β = p11/(1− p00).

4.3 Artiϐicial example
Thedataweregenerated fromthebivariate geometricmodel (1)withparametersp00 = 0.7, p10 = 0.1, p01 =
0.15, p11 = 0.05. Further, we selected C = 0.5 which yields α = 0.2000 and β = 0.1429, from (3). These
values were taken as known constants, in accord with Assumption 2. The estimation followed the standard
MLE scheme, with the aid of the Newton-Raphson iteration. As it uses the ϐirst and second derivatives of log-
likelihood, then the Fisher information matrix, and, consequently, asymptotic variances of estimates, can be
estimated, too.
Two results are displayed below, with N = 100 and 1000 generated values.
For N = 100:
Estimated p00, p10, p01, p11 = 0.6732, 0.0967, 0.1765, 0.0536.
Their asymptotic standard deviations were estimated as 0.0301, 0.0150, 0.0242, 0.0048.
Further, estimated covariance and correlation of X and Ywas cov(X, Y) = 1.6816, corr(X, Y) = 0.0719, while
the real ’true’ values were 2.2222, 0.0808, resp.
For N = 1000 the following values were obtained:
Estimates p00, p10, p01, p11 = 0.7032, 0.0969, 0.1506, 0.0493,
with asymptotic standard deviations estimated as 0.0085, 0.0045, 0.0065, 0.0014. Finally, covariance and
correlation of X and Ywere estimated as cov(X, Y) = 2.3153, corr(X, Y) = 0.0819.
It is possible to say that the precision of estimates is rather good and increaseswith growing extent of data,N.
In both cases the values of (2-dimensional here) score function, i.e. the ϐirst derivatives of the log-likelihood,
which should be 0 at the log-likelihood maximum, were of order 1.0e− 004.

Summary. In studied setting we are able to estimate consistently just incidence probabilities p1, p2 cor-
responding to observed events δ = 1 or 2, resp., hence also p00 = p0 = 1− p1 − p2. Further, we know that
p1 + p2 = p10 + p01 + p11.
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Under Assumption 1 p1 = p10 + C · p11, p2 = p01 + C̄ · p11, however even the knowledge of C does not sufϐice
to reliable estimation of pjk, except in the case of independent variables U, V. Just under much stronger
Assumption 2 we have that p10 = (1− α) · p1, p01 = (1− β) · p2, and p11 = α p1 + β p2.
A wrong speciϐication of α, β leads to biased estimation of pjk (except p00), while incidence probabilities
p1, p2 are available directly from the maximization of likelihood (2). Simultaneously they sufϐice to replica-
tion of competing risk data, without knowledge of other parameters.

5 Application
Han and Hausman [5] have analyzed the data on unemployment duration, namely the records on 1051 peo-
ple, collected there in Table III (with several insigniϐicant misprints which were corrected). The time is
discrete, as the information was gathered on a week basis, for 70 weeks. More about data origin can be
found in the paper [5]. The data show certain non-regularities, visible also in Figures 1 and 2 below, for
instance signiϐicantly larger numbers of events in 26-th week which is related to a change of support after
the ϐirst half-year of unemployment. In general, the censoring (exit from the study) is caused mostly by the
termination of unemployment insurance beneϐits (it concerns to weeks 39 and 52, too), and, naturally, by
the end of study. Han and Hausman had also an information on several covariates which was not available
to us. They used a discrete version of Cox regression model, with certain not fully justiϐied approximations
(e.g. substituting Gauss distribution instead the Gumbel one). The other problem are ties of events limiting
the correct use of continuous time model. This problem, which we have discussed in previous sections, has
been omitted.
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Figure 2 Incidence probabilities estimated by relative frequencies, of re-employment (above), censoring
(below).
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Wehave concentrated here to the analysis of unemployment termination and censoring as two independent
competing events. Further, it was assumed that censoring occurred at the intervals end, hence constant
C = 1. From this point of view, the situation was simpliϐied and leading to a unique solution. On the other
hand, distributions of Bernoulli random variables U = U(t) for re-employment and V = V(t) for censoring
depended on time – weeks from 1 till T = 70. Let us denote Nt the number of people staying in the study at
the t-th week beginning. Thus, N1 = 1051, Nt+1 = Nt − nt −mt,, where nt, mt are the numbers of persons
re-employed and censored, respectively, in t-th week.
First, the incidence probabilities were estimated as p1(t) = nt/Nt, p2(t) = mt/Nt for variables U(t), V(t),
respectively. These estimates are displayed in Figure 2, while Figure 1 shows the decrease of Nt. In the next
step, estimates ofmarginal probabilities p1.(t)ofU(t) andp.1(t)ofV(t)were computed. Due the assumptions
of independence and of C = 1, it holds that p1(t) = p10(t) + p11(t) = p1.(t)p.0(t) + p1.(t)p.1(t) = p1.(t) and
p2(t) = p01(t) = p0.(t)p.1(t) = (1− p1.(t))p.1(t). Then

p1.(t) = p1(t), p.1(t) = p2(t)/(1− p1(t)).

On the basis of these results, distributions of two independent randomvariables, the time to re-employment,
X, and the time to censoring, Y, were derived easily. Finally, we can construct a distribution of probabilities of
competing events, i.e. of being re-employed at s, before censoring, or being censored at t, still unemployed.
They are

P(X = s, Y ≥ s) =
s−1∏
j=1

(p0.(j)p.0(j)) · p1.(s),

P(Y = t, X > t) =
t−1∏
j=1

(p0.(j)p.0(j)) · p0.(t) · p.1(t).

6 Concluding remarks
It has to be said that the presented results on identiϐiability under mutually dependent competing risks and
discrete time are not satisfactory. Potential occurrence of unobserved events X = Y is the cause of prob-
lems which were overcame just with rather strong assumptions. Naturally, the basic model with constant
probabilities can be generalized. Thus, the ϐinal example considered time-dependent probabilities. In an-
other setting, the probabilities can depend on explanation variables, covariates, for instance via the logistic
regression model. In the continuous time cases, it was proved that the presence of covariates and assump-
tion of a regression model type (e.g. the Cox one) can support the model identiϐiability (see e.g. Volf [9] for
references). However, as the discrete time allows for more events at the same time interval, the situation is
worse. In fact, we were not able to show any facilitation caused by the information provided by covariates.
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