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a b s t r a c t 

In this paper, we propose a new set of discrete orthogonal polynomials called fractional Charlier polyno- 

mials (FrCPs). This new set will be used as a basic function to define the fractional discrete orthogonal 

Charlier moments (FrCMs). The proposed FrCPs are derived algebraically using the spectral decomposition 

of Charlier polynomials (CPs), then the Lagrange interpolation formula is used to derive the spectral pro- 

jectors. Then, each spectral projector matrix is decomposed by the singular value decomposition (SVD) 

technique in order to build a basic set of orthonormal eigenvectors which help to develop FrCPs. FrCMs 

are deduced in matrix form from the proposed FrCPs and are applied for image reconstruction and wa- 

termarking. The experimental results show the capacity of the FrCMs proposed for image reconstruction 

and image watermarking against different attacks such as noise and geometric distortions. 
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. Introduction 

Moments have been widely used in image processing and anal-

sis for many years because of their ability to extract characteris-

ic information from the image locally and globally. They are ap-

lied with excellent results in different fields such as image recon-

truction [1–3,59,60] , image compression [3–5] , image watermark-

ng [6–10] , edge detection [11] , image geometric distortion correc-

ion [12] and image classification [13,61] . 

The basic idea of moments is the projection of the data space

n often orthogonal bases. Indeed, continuous orthogonal poly-

omials [14] such as Legendre [15] , Zernike [16] , Gegenbauer

17] and Fourier–Mellin [18] form continuous orthogonal mo-

ents (COMs), and discrete orthogonal polynomials [14,19] such as

chebichef [20] , Krawtchouk [21,22,59,62] , Charlier [23–25,59,65] ,
Abbreviations: DOMs, Discrete orthogonal moments; COMs, Continuous orthog- 

nal moments; FrCMs, Fractional Charlier moments; CMs, Charlier moments; FrCPs, 

ractional Charlier polynomials; CPs, Charlier polynomials; GSP, Gram–Schmidt pro- 

ess; SVD, Singular value decomposition; MSE, Mean Square Error ; PSNR, Peak- 

ignal-to-Noise Ratio; BER, Bit Error Rate. 
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ahn [23,26,63,66] and Meixner [27,64] constitute discrete orthog-

nal moments (DOMs). 

Generally, the COMs and DOMs of an image are calculated for

nteger orders but sometimes they have to be calculated for real

r fractional orders for reasons of precision and localization of the

egions in the image. In this context, work has been performed

ith the objective of generalizing the calculation of Fourier trans-

orm (FT), discrete cosine transform (DCT), discrete sine transform

DST) for real or fractional orders by proposing new transforma-

ions such as the Fourier fractional transform (FrFT) [28,29] , dis-

rete fractional cosine transform (DFrCT) [30] and the discrete frac-

ional sine transform (DFrST) [30] . The same idea has been devel-

ped in recent years for some continuous orthogonal moments.

. Xiao et al. [31] developed the fractional Legendre polynomials.

. Zhang et al. [32] developed the fractional orthogonal Fourier–

ellin polynomials. K. Parand et al. [33] developed the fractional

hebyshev polynomials. The classical case of these polynomials is

btained if the fractional order is equal to the unit. These examples

f fractional continuous orthogonal polynomials are used as basic

unctions to form new fractional continuous orthogonal moments

f Legendre [31] , Fourier–Mellin [32] and Chebyshev [34] . 

Fractional continuous orthogonal moments are defined in a

artesian or polar continuous space, so their calculation requires

 discretization of the continuous space and an appropriate ap-

roximation of the continuous integrals, which increases the
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complexity of the calculations and causes discretization errors

[20,22,24,26,27,31,32,34,35] . To avoid these problems, X. Liu et al.

[7] derived a new fractional Krawtchouk moments (also known as

Fractional Krawtchouk Transform FrKT), where the kernel function

is fractional Krawtchouk polynomials. To our attention, no other

work concerning the other fractional discrete orthogonal moments

has been published. With this in mind, we propose in this paper

to calculate the fractional orthogonal moments of Charlier in order

to apply them for reconstruction and watermarking image tasks. 

The discrete orthogonal Charlier moments are calculated from

the discrete orthogonal Charlier polynomials. H. Zhu et al. [24] pro-

posed two general forms for calculating discrete orthogonal Char-

lier moments in order to apply them for reconstruction and com-

pression image. M. Sayyouri et al. [36] proposed a set of separable

Charlier–Hahn invariant moments based on the product of Charlier

and Hahn discrete orthogonal polynomials, which are successfully

used in pattern recognition and classification of 2D image, due to

their robustness against geometric attacks such translation, scal-

ing and rotation. The authors [37,38] and [39] have extended these

moments in the 3-D case and have applied them for 3D image re-

construction and classification. 

In this paper, we have proposed a new set of discrete orthog-

onal polynomials called fractional Charlier polynomials (FrCPs),

which are used as a basic function to define a new set of fractional

Charlier moments (FrCMs). The FrCPs are reduced to the classical

Charlier polynomials (CPs) when their fractional order is equal to

the unit. 

The proposed FrCPs are derived algebraically using first the

spectral decomposition of the CPs, then the Lagrange interpola-

tion formula is used to derive the projection matrices of CPs. Next,

each projection matrix is decomposed by the singular value de-

composition (SVD) technique in order to build a basic set of or-

thonormal eigenvectors help to develop FrCPs. The FrCPs are used

to form new FrCs with additional parameters called fractional or-

ders. Once the mathematical context of the new FrCMs has been

developed, image reconstruction and watermarking image are cho-

sen as test applications to verify the practical validity of these new

moments. Image reconstruction by FrCMs is achieved through the

orthogonality property of FrCPs. The proposed watermarking sys-

tem consists of two essential phases: insertion and extraction of

watermark. In the watermark insertion the fractional orders of the

proposed FrCMs are used as security keys. The latter are necessary

for the watermark extraction. In order to avoid the errors produced

from the truncation of the Charlier polynomial matrix, during the

calculation of FrCMs, the Gram-Schmidt process (GSP) is adopted

to guarantee the orthogonality property of CPs for any order, which

improves the image reconstruction capability by FrCMs. To improve

the robustness of the proposed watermarking system to geometric

attacks such as rotation and scaling, a technique was adopted to

estimate rotational angles and scaling factors. Both FrCMs appli-

cations are tested on different images and compared with other

recent methods. 

The rest of the paper is structured as follows. In Section 2 ,

we recall the definition of the classical discrete orthogonal Char-

lier moments. Then, we present the new fractional Charlier poly-

nomials and their properties in Section 3 . Next, we present the

new 1-D and 2-D Fractional Charlier moments in Section 4 . As for

the Section 5 , we introduce a watermarking scheme for 2D im-

ages based on the new FrCMs. The experimental results for eval-

uating the performance of the new FrCMs are given in Section 6 ,

and Section 7 concludes the work. 

2. Charlier moments 

The discrete orthogonal moments of Charlier are projections of

a function f (signal or image) onto the basis of Charlier polynomi-
ls (similarly, Fourier transformation is a projection onto a basis of

he harmonic functions). In this section, we will present the math-

matical background behind the Charlier moment theory, including

olynomials, moments and image reconstruction. 

.1. Charlier polynomials 

The n th Charlier polynomials (CPs) is defined by using hyperge-

metric function as [14] : 

 

a 1 
n (x ) = 2 F 0 (−n, −x ;−a 1 

−1 ) , x, n = 0 , 1 , 2 ..... ∞ (1)

here a 1 is restricted to a 1 > 0, and 2 F 0 () is the generalized hy-

ergeometric function given by: 

 

F 0 (a, b; ; c) = 

n ∑ 

k =0 

(a ) k (b) k (c) 
k 

k ! 
(2)

 a ) k is the Pochhammer symbol given by: 

(a ) k = 

{
1 if k = 0 

a (a + 1) ... (a + k − 1) if k > 0 

(3)

The discrete orthogonal polynomials of Charlier C 
a 1 
n (x ) satisfy

he orthogonality condition: 

∞ 

 

x =0 

ω(x ) C a 1 n (x ) C a 1 m 

(x ) = ρ(n ) δnm 

; n, m ≥ 0 (4)

here ρ( n ) and ω( x ) are the square norm and the weight function

f the CPs, respectively, defined by the following formulas: 

(n ) = 

n ! 

a 1 n 
(5)

(x ) = 

e −a 1 a 1 
x 

x ! 
(6)

To avoid numerical instability when calculating the values of

he CPs, the set of weighted CPs noted 

˜ C 
a 1 
n (x ) is used as follows

14] : 

˜ 
 

a 1 
n (x ) = C a 1 n (x ) 

√ 

ω(x ) 

ρ(n ) 
(7)

uch that the orthogonality condition becomes [40] : 

∞ 

 

x =0 

˜ C a 1 n (x ) ̃  C a 1 m 

(x ) = δnm 

;n, m ≥ 0 (8)

Like other discrete orthogonal polynomials that can be com-

uted using recursive formulas, the CPs can also be calculated us-

ng the following recurrence formula [41] : 

˜ 
 

a 1 
n (x ) = −

√ 

a 1 
n 

(x − n + 1 − a 1 ) 

a 1 
˜ C a 1 
n −1 

(x ) 

−
√ 

a 2 
1 

n (n − 1) 

(n − 1) 

a 1 
˜ C a 1 
n −2 

(x ) (9)

ith 

˜ 
 

a 1 
0 

(x ) = 

√ 

ω(x ) 

ρ(0) 
and 

˜ C a 1 
1 

(x ) = 

a 1 − x 

a 1 

√ 

ω(x ) 

ρ(1) 
(10)

.2. Charlier moments 

Charlier moments (CMs) adopt the name of the CPs which are

sed during its calculation process. The one-dimensional CMs are

efined as [24] : 

 M n = 

N−1 ∑ 

x =0 

˜ C a 1 n (x ) f (x ) n = 0 , 1 , ....N − 1 (11)
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Algorithm 1 Orthonormalization of the Charlier polynomial 

matrix with Gram-Schmidt process. 

Inputs: Parameters Charlier polynomial 

Output: Modified Charlier polynomial matrix ˆ C 

Step 1 for n = 0 : N − 1 

for x = 0 : N − 1 

Using Eq. (10) to compute ˜ C a 1 
0 

(x ) and ˜ C a 1 
1 

(x ) . 

end 

end 

Step 2 for n = 2 : N − 1 

for x = 0 : N − 1 

Using Eq. (9) to compute ˜ C a 1 n (x ) . 

C(x, N) = 

˜ C a 1 n (x ) 

Step 3 for k = 0 : n 

˜ C a 1 n (x ) = 

˜ C a 1 n (x ) −
[

N−1 ∑ 

x =0 

C (x ; N) 
T ˜ C a 1 n (x ) 

]
× ˜ C a 1 n (x ) 

end ˜ C a 1 n (x ) = 

˜ C 
a 1 
n (x ) 

‖ ̃ C 
a 1 
n (x ) ‖ 

end 

end 
ˆ C = 

˜ C a 1 n (x ) 
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here f ( x ) is a signal with length N . 

If the set of CM n is given from order 0 up to N , the moment-

ased signal reconstruction is expressed as follows: 

f (x ) = 

N−1 ∑ 

n =0 

C M n ̃  C a 1 n (x ) (12) 

The 1-D CMs defined in Eq. (11) can be written in the following

atrix form: 

 = C f (13) 

here M = { C M n } n = N−1 
n =0 

, C = { ̃  C 
a 1 
n (x ) } n = N −1 ,x = N −1 

i =0 ,x =0 
and f =

 f (i, j) } i, j= N−1 
i, j=0 

. 

Similarly, the inverse reconstruction procedure can be repre-

ented using the matrix form as follows: 

f = C T M (14) 

The 2-D CMs of an N × N image with intensity function f ( x, y )

re defined as [1] : 

 M nm 

= 

N−1 ∑ 

x =0 

N−1 ∑ 

y =0 

˜ C a 1 n (x ) ̃  C a 1 m 

(y ) f (x, y ) n, m = 0 , 1 , ....N − 1 (15)

The following matrix notation can be simply used: 

 = C T f C (16) 

here M = { C M nm 

} n = N −1 ,m = N −1 
n =0 ,m =0 

, C = { ̃  C 
a 1 
n (x ) } n = N −1 ,x = N −1 

i =0 ,x =0 
and f =

 f (i, j) } i, j= N−1 
i, j=0 

. 

Using the inverse transformation of 2-D CMs, the image func-

ion can be reconstructed by the following formula: 

f (x, y ) = 

N−1 ∑ 

n =0 

N−1 ∑ 

m =0 

˜ C a 1 n (x ) ̃  C a 1 m 

(y ) C M nm 

(17)

Similarly, the inverse moment transform can be represented us-

ng the matrix as follows: 

f = C M C T (18) 

The CPs and CMs introduced into the literature are calculated

or integer orders. In the following sections, we propose the cal-

ulation of the CPs and CMs for fractional or real orders in order

o generalize their calculation and to benefit other properties for

on-integer orders. 

. Proposed Fractional Charlier polynomials 

In this section, we study the eigenvalues and eigenvectors of

Ps which help to develop the new Fractional Charlier Polynomials

FrCPs). 

The Charlier polynomials are orthogonal over the interval [0, ∞ [

ccording to Eq. (8) . To compute the eigenvalues and eigenvectors

f the Charlier polynomial matrix, one must work on a square ma-

rix of finite order N which will affect the property of orthogonal-

ty of the Charlier polynomials. To solve this truncation problem,

e propose to use the Gram–Schmidt process (GSP) [42] which al-

ows to slightly modify the Charlier polynomials in order to make

hem orthogonal. In the continuation of this work, we will use the

SP-modified Charlier polynomials which are orthogonal over the

0, N ] interval, instead of the classical Charlier polynomials. 

Algorithm 1 presents the steps of calculating the Charlier poly-

omial matrix modified by the Gram-Schmidt process (GSP). 

.1. Eigenvalues of the modified Charlier Polynomials 

The modified Charlier polynomial matrix will be noted will be

oted 

ˆ C = { ̃  C 
a 1 
n (x ) } n,x = N−1 

n,x =0 
of the order N in the following. The ma-

rix ˆ C checks the following properties: 
(a) It is orthogonal , so, ˆ C T ˆ C = 

ˆ C ̂  C T = I, where ˆ C T is the trans-

posed matrix of ˆ C and I is the identity matrix. 

(b) It is symmetrical, so ˆ C = 

ˆ C T . 

(c) It has the following two eigenvalues: 

λ1 = +1 and λ2 = −1 (19) 

The proof of property (c) is given in Appendix A . 

The multiplicities of eigenvalues of the matrix ˆ C are deduced

xperimentally as follows: where N is the size of modified Charlier

olynomial matrix. 

Table 2 presents examples of matrices of Charlier polynomials

f order N × N (N = 2,3, and 4) and their eigenvalues with and

ithout the use of GSP. Fig. 1 shows the sum of the eigenvalues as

 function of the size of the matrix of Charlier polynomials modi-

ed by GSP and of the matrix of Charlier polynomials ranging from

 to 30 with a step of 1. These empirical results clearly show that

ith the use of the Gram–Schmidt process the multiplicities of the

igenvalues λ1 = 1 and λ2 = −1 are equal (i.e. Trace( ̂ C ) = 0 ) for N

s even, and for N odd the multiplicity of the eigenvalue λ1 = 1 is

ne more than that of eigenvalue λ2 = −1 (i.e. Trace( ̂ C ) = 1 ). Fur-

hermore, the eigenvalues of the Charlier polynomial matrix with-

ut the use of the Gram–Schmidt process are not 1 and −1 due to

runcation errors. Consequently, the Gram–Schmidt process brings

he property of orthogonality to order N, destroyed by the trunca-

ion of Charlier polynomials to order N. 

.2. Spectral decomposition of modified Charlier polynomials 

According to the spectral theorem [43] , ˆ C has the following

pectral decomposition: 

ˆ 
 = 

2 ∑ 

k =1 

λk P k = λ1 P 1 + λ2 P 2 (20) 

here P k denotes the spectral projector for ˆ C associated with the

igenvalue λk . Also, for any integer m, ˆ C m has the following spec-

ral decomposition [43] : 

ˆ 
 

m = λm 

1 P 1 + λm 

2 P 2 (21) 

In the following, we will present a method to derive the two

rojection matrices P 1 and P 2 . 

According to the corollaries of the spectral theorem [ 44 , p. 403],

ach spectral projector matrix P k can be expressed as: 

 = g ( ̂  C ) k = 1 , 2 (22)
k k 
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Fig. 1. Sum of eigenvalues as a function of matrix size of Charlier polynomials (a) classical and (b) modified by GSP. 
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where g k ( ̂  C ) is a polynomial in 

ˆ C , which satisfies the following con-

dition: 

g k ( λi ) = δi,k i = 1 , 2 (23)

Since matrix ˆ C has only two eigenvalues, the polynomial g k ( ̂  C )

is of the first degree. Using the Lagrange interpolation formula,

g k ( λ) can be expressed as: 

g k (λ) = 

2 ∑ 

i =1 

g k ( λi ) f i (λ) 

= g k ( λ1 ) f 1 (λ) + g k ( λ2 ) f 2 (λ) (24)

where 

f i (λ) = 

2 ∏ 

r=1 
r � = i 

λ − λr 

λi − λr 
i = 1 , 2 (25)

By combining Eqs. (23) , (24) and (25) , we obtain: 

g k (λ) = f k (λ) = 

2 ∏ 

r=1 
r � = k 

λ − λr 

λk − λr 
(26)

By substituting Eq. (19) in the above equation, we find: 

g 1 (λ) = 

λ − λ2 

λ1 − λ2 

= 0 . 5(1 + λ) (27)

g 2 (λ) = 

λ − λ1 

λ2 − λ1 

= 0 . 5(1 − λ) (28)

Using Eqs (22) , (27) and (28) , we get the following expressions

for the projection matrices P 1 and P 2 : 

P 1 = 0 . 5(I + 

ˆ C ) (29)

P 2 = 0 . 5(I − ˆ C ) (30)

In the following, we will study the eigenvalues and the eigen-

vectors of the two spectral projector matrices P 1 and P 2 , then we

will present their properties. 

From Eqs. (29) and (30) , P 1 and P 2 satisfy the following proper-

ties: 

(d) P T 
i 

= P i , i = 1 , 2 
(e) P 2 
i 

= P i , i = 1 , 2 . 

(f) P 1 P 2 = 0 , where 0 denotes the zero matrix. 

The proof of properties (d)–(f) is given in Appendix B . 

(g) The eigenvalues of a projection matrix P 1 and P 2 are only 0

and 1 [45] . 

(h) The #(1) of P 1 is equal to #( λ1 ) of the matrix ˆ C ; and the

#(1) of P 2 is equal to #( λ2 ) of the matrix ˆ C , where #(. )

indicates the multiplicity of an eigenvalue. 

The proof of property (h) is given in Appendix B . 

emma 1. For the non-zero eigenvalues: The eigenvectors of P 1 are

rthogonal to those of P 2 . 

emma 2. For the non-zero eigenvalues: the eigenvectors of P 1 and

 2 are the eigenvectors of ˆ C , corresponding to eigenvalues λ1 = 1 ,

2 = −1 of ˆ C , respectively . 

The proofs of both Lemmas 1 and 2 are given in Appendix ˆ C . 

In the following, we will derive a set of orthonormal eigenvec-

ors of ˆ C by using the singular-value decomposition (SVD) of its

rthogonal projection matrices on its eigenspaces [45] . 

The SVD of P 1 and P 2 are given as: 

 1 = U 1 S 1 V 

T 
1 (31)

 2 = U 2 S 2 V 

T 
2 (32)

here U i and V i (i = 1 , 2) are unitary matrices and S i a diagonal

atrix with real and positive coefficient. 

Using properties (a), (b) and (g), we can easily rewrite the

qs. (31) and (32) as follows: 

 1 = V 1 S 1 V 

T 
1 (33)

 2 = V 2 S 2 V 

T 
2 (34)

It can be observed from (33) and (34) that: 

 1 V 1 = S 1 V 1 ; P 2 V 2 = S 2 V 2 (35)

The above equation shows that V 1 and V 2 are a set of orthonor-

al eigenvectors of P 1 and P 2 , respectively. 

According to Table 1 and proprieties (g) and (h), the multiplici-

ies of the non-zero eigenvalues for P 1 and P 2 are summarized for

n N × N transform in Table 3 . 
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Table 1 

Multiplicities of the eigenvalues for matrix ˆ C . 

N Multiplicity of λ1 Multiplicity of λ2 

Even N 
2 

N 
2 

Odd N+1 
2 

N−1 
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Table 3 

Multiplicities of the non-zero 

eigenvalues for P 1 and P 2 . 

P k 

N 

Even Odd 

P 1 
N 
2 

N+1 
2 

P 2 
N 
2 

N−1 
2 
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According to the Table 3 and Lemma 2 , we are now ready to

erive a set of orthonormal eigenvectors of ˆ C . 

Taking u i and v j be the ith and jth column of V 1 and V 2 , respec-

ively, a set of orthonormal eigenvectors V of ˆ C can be written as

ollows: 

 = 

⎧ ⎨ 

⎩ 

[ 
u 1 , u 2 , ...., u N 

2 
, v 1 , v 2 , ...., v N 

2 

] 
, if N is even [ 

u 1 , u 2 , ...., u N−1 
2 

, u N+1 
2 

, v 1 , v 2 , ...., v N−1 
2 

] 
, if N is odd 

(36) 

.3. Proposed fractional Charlier polynomials 

Based on these results, we are now ready to propose a new set

f Fractional Charlier polynomials (FrCPs). 

Firstly, the columns of V can be rearranged to match eigenvec-

ors to eigenvalues of ˆ C as follows: 

ˆ 
 = 

⎧ ⎨ 

⎩ 

[ 
u 1 , v 1 , u 2 , v 2 ........ u N 

2 
, v N 

2 

] 
, if N is even [ 

u 1 , v 1 , u 2 , v 2 ........ u N−1 
2 

, v N−1 
2 

, u N+1 
2 

] 
, if N is odd 

(37) 

Then, Charlier polynomial matrix ˆ C can be written as follows: 

ˆ 
 = 

ˆ V D ̂

 V 

T (38) 

here D is the diagonal matrix whose diagonal elements are the

igenvalues of ˆ C . From the propriety (c) and Table 1 we have: 

 = 

{
Diag{ 1 , −1 , 1 , −1 ......... 1 , −1 } , if N is even 

Diag{ 1 , −1 , 1 , −1 ......... 1 , −1 , 1 } , if N is odd 

(39) 

Also, the matrix D can be written as e − jkπ with k =
 , 1 , ........., N − 1 as follows: 

 = Diag{ 1 , e − jπ , e − j2 π , ........., e − j(N−2) π , e − j(N−1) π } (40)

Adopting the same idea as that in [46] , the Fractional Char-

ier polynomials (FrCPs) as the generalized version of the Charier

olynomials can be produced by taking the fractional order as the

ower of the diagonal matrix D. 

M

Table 2 

Eigenvalues of Charlier polynomial matrices: classical and modified by G

Size Classical Charlier Polynomials matrix 

N = 2 
C = 

(
0 , 99005 0 , 140014 

0 , 140014 −0 , 97025 

)
eig(C) = [ − 0 , 9802 ; 1 ] ; Trace(C) = 0 . 0198 

N = 3 
C = 

⎛ 

⎝ 

0 , 985112 0 , 170626 0 , 020897 

0 , 170626 −0 , 95556 −0 , 23768 

0 , 020897 −0 , 23768 0 , 926449 

⎞ 

⎠ 

eig(C) = [ − 1 ; 1 ; 0 , 956 ] ; Trace(C) = 0 , 956002 

N = 4 
C = 

⎛ 

⎜ ⎝ 

0 , 980199 0 , 19604 0 , 027724 0 , 003201 

0 , 19604 −0 , 94099 −0 , 2717 −0 , 04738 

0 , 027724 −0 , 2717 0 , 902567 0 , 326059 

0 , 003201 −0 , 04738 0 , 326059 −0 , 86492 

⎞ 

⎟ ⎠ 

eig(C) = [ − 1 ; −0 , 92313 ; 1 ; 0 , 999987 ] ; Trace(C) = 0 , 076858
Finally, the FrCP matrix ˆ C a of size N with order a can be defined

s: 

ˆ 
 

a = 

ˆ V D 

a ˆ V 

T = 

N−1 ∑ 

k =0 

e − jkaπ ˆ v k ̂  v T k (41) 

here ˆ V = [ ̂ v 0 , ̂  v 1 , .........., ̂  v N−1 ] with 

ˆ v k (k = 0 , 1 , ........., N − 1) is the
ˆ 
 eigenvector obtained from Eq. (37) , and D 

a is defined as: 

 

a = Diag{ 1 , e − jaπ , e − j2 aπ , ........., e − j(N−1) aπ } (42)

The properties of FrCP matrix are discussed in the following

ubsection. 

.4. Some properties of fractional Charlier polynomials matrix 

FrCP fractional Charlier polynomials have four important prop-

rties which allow us to find classic Charlier polynomials from FrCP

or case a = 1 , calculate FrCPs of order a + b from a simple multi-

lication of FrCP of order a and of FrCP of order b , calculate the

nverse FrCP of order a from the FrCP of order −a . These proper-

ies of the matrix FrCP can be easily verified as follows: 

• ˆ C 0 = 

ˆ V D 

0 ˆ V T = 

ˆ V ̂  V T = I, where I is the identity matrix. 
• ˆ C 1 = 

ˆ V D 

1 ˆ V T = 

ˆ V D ̂

 V T = 

ˆ C , where ˆ C is the classical Charlier poly-

nomial matrix. 
• ˆ C a ˆ C b = ( ̂  V D 

a ˆ V T )( ̂  V D 

b ˆ V T ) = 

ˆ V D 

a + b ˆ V T = 

ˆ C a + b . 
• ˆ C −a = ( ̂  C a ) −1 , because ˆ C a ˆ C −a = ( ̂  V D 

a ˆ V T )( ̂  V D 

−a ˆ V T ) = 

ˆ V D 

a −a ˆ V T =
I. 

The FrCPs depend on two parameters a 1 and a which can offer

 wide choice in applications where FrCPs are used, compared to

lassical CPs which depend on a single parameter a 1 . When the

ractional order a of FrCPs is unity, we get the CPs. 

. Proposed Fractional Charlier moments 

The generalized Fractional Charlier Moments (FrCMs) are ob-

ained from the FrCPs developed in the previous section. 

Based on Eq. (13) , the 1-D FrCMs of signal f ( x ) with fractional

rder a can be defined as follows: 

 

a = 

ˆ C a f (43) 
SP. 

Modified Charlier Polynomials matrix 

ˆ C = 

(
0 , 990148 0 , 140028 

0 , 140028 −0 , 99015 

)
eig( ̂ C ) = [ −1 ; 1] ; Trace( ̂ C ) = 0 

ˆ C = 

⎛ 

⎝ 

0 , 985114 0 , 170663 0 , 0206 

0 , 170627 −0 , 95619 −0 , 23786 

0 , 020897 −0 , 23784 0 , 97108 

⎞ 

⎠ 

eig( ̂ C ) = [ −1 ; 1 ; 1] ; Trace( ̂ C ) = 1 

 

ˆ C = 

⎛ 

⎜ ⎝ 

0 , 980199 0 , 196042 0 , 027724 0 , 003083 

0 , 19604 −0 , 94101 −0 , 2719 −0 , 04624 

0 , 027724 −0 , 2717 0 , 904708 0 , 326975 

0 , 003201 −0 , 04738 0 , 326811 −0 , 9439 

⎞ 

⎟ ⎠ 

eig( ̂ C ) = [ −1 ; −1 ; 1 ; 1] ; Trace( ̂ C ) = 0 
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{Key1, Key2} 
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Fig. 2. The watermark embedding scheme based on FrCMs. 
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Fig. 3. The watermark extraction scheme based on FrCMs. 

 

 

 

 

 

 

 

5

m

 

o  

p

 

i  

(  

i  

t

 

p  

c  
Based on Eq. (14) and property (a), the reconstruction of the sig-

nal f ( x ) can be found from its moments by using the following ex-

pression: 

f = 

ˆ C −a M 

a (44)

In 2-D case, the FrCMs in terms of FrCPs with fractional order

( a, b ), for an image with intensity function f ( x, y ), can be defined

as follows: 

M 

a,b = 

ˆ C a f ̂  C b (45)

The Eq. (45) leads to the following inverse reconstruction pro-

cedure: 

ˆ −a a,b ˆ −b 
f = C M C (46) 
. Images watermarking system using fractional Charlier 

oments 

Digital watermarking is a vast field that combines a large range

f applications such as authentication, copyright protection, finger-

rint, copy control and broadcast monitoring [47] . 

The basic idea of digital watermarking is to incorporate some

nformation’s (called watermark or message) into another data file

Audio, image, video, 3D objects, etc.) called the host. Incorporation

s done by imperceptible modifications on the host, so that the wa-

ermarked host can replace the original for practical purposes. 

In this paper, we apply the proposed FrCMs in the copyright

rotection application for 2D digital images. For this type of appli-

ation, the digital watermark should have properties such as im-
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Fig. 4. Test grayscale images used in experiments; (a) Male, (b) Barbara, (c) Lena, (d) Couple, (e) Sailboat on lake, (f) Mandrill, (g) Airplane, (h) Peppers, (i) House and (j) 

Boat. 

Fig. 5. Digital watermarks extracted from [58] used in watermark experimenta- 

tions, (a) Horse, (b) Bat, (c) Chicken and (d) Beetle. 
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Fig. 7. Watermarked “Male” images with the quantization step � = 30 using the 

watermark embedding scheme based on: (a) FrCMs, PSNR = 58,78 dB, (b) FrCMs 

without GSP, PSNR = 49.5473 dB, and (c) based on CMs, PSNR = 42.88 dB. 
erceptibility of detection, high detection reliability, and robust-

ess against signal processing and geometric attacks [47] . 

Generally, image watermarking systems for copyright protection

an be divided into:(i) Systems based on watermark schemes in

he spatial domain where the watermark is directly incorporated

y modifying the pixel values of the host image. These systems are

elatively weak in the event of an image attack (image filtering,

ompression, etc.) [47] . (ii) Systems based on watermark schemes

n the transform domain where the watermark is incorporated af-

er the transformation of the host image into a transformation do-

ain. 

In order to increase the robustness of systems against signal

rocessing and geometric attacks, researchers focus on watermark-

ng systems in the transform domain, such that DFT transform [48] ,

CT transform [49] , DST transform, SVD transform [50] ,quaternion

ourier transform [51] , also, recent works based on discrete or-

hogonal moments transformations have been published such as

chebichef moments [9,10,52] , Krawtchouk moments [6] , separable

oments [6,9] and fractional moments of Krawtchouk [7] . 

In this section, we will propose an image watermarking sys-

em based on the proposed FrCMs, offering good visual quality and

easonable resistance against signal processing and geometric at-

acks. This system consists of two essential phases: the insertion
ig. 6. Average PSNR of the 40 watermarked images with different quantization 

teps for various watermarking schemes. 

Fig. 8. Average PSNR of the watermarked images with the quantization step � = 60 

using the watermark embedding scheme based on the proposed FrCMs. 

a  

b

5

 

a

i  

i

 

F

 

b  

t  

p  
nd extraction of watermarks. The description of these phases will

e presented in the following subsections. 

.1. Watermark insertion scheme 

Let I = { f (x, y ) , (0 ≤ x, y < N) } denotes a host gray-scale image,

nd f ( x, y ) is the pixel value at position( x, y ) . W = { w (i, j) , (0 ≤
, j < l) } denotes a binary image to be embedded within the host

mage, and w ( i, j ) ∈ {0, 1} is the pixel value at position ( i, j ). 

The watermark insertion scheme based on FrCMs is shown in

ig. 2 , and is described below: 

Step 1: Watermark preprocessing 

Before watermark insertion, some preprocessing methods can

e added for improving the efficiency of watermarking system. In

his context, to ensure the security of the watermark and to im-

rove the robustness of our watermarking system, the watermark
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Fig. 9. The attacked watermarked “Male” image and the extracted “Horse” water- 

mark: (a) Gaussian White Noise (μ = 0, σ = 1%), BER = 0.1623, (b) Salt & pep- 

pers noise (1%), BER = 0.0117, (c) JPEG 60, BER = 0.04785, (d) Median filtering 

(3 × 3), BER = 0.02050, (e) Average filtering (3 × 3), BER = 0.0107, (f) Gaus- 

sian blur (1), BER = 0.066, (g) Rotation (15 °), BER = 0.06738, (h) Scaling (1.1), 

BER = 0.04785, (i) Translation ( + 7, + 7), BER = 0.481445, (j) Histogram equaliza- 

tion(150), BER = 0.49609. 

5

 

n  

r  

e

 

s

B  
is scrambled from W into W 1 by using the following Arnold trans-

form [53,54] : [
x ′ 
y ′ 

]
= 

[
1 1 

k k + 1 

][
x 
y 

]
mod (N) (47)

where ( x, y ) and ( x ′ , y ′ ) are the pixels of W and W 1 , respectively. N

represents the image size and k a control parameter. This param-

eter can be used as private key during the watermark extraction

process. 

Step 2: Host image blocking 

The host image I is divided into small blocks B k of size 8 × 8

pixels: 

B k = { b k (i, j) , 0 ≤ i, j < 7 } (k = 1 , 2 , ..... N 

2 / 64 ) (48)

Step 3: Fractional Charier Moments 

The FrCMs are computed for each block B k (k = 1 , 2 , ..... N 

2 / 64 )

by using the following equation: 

M 

a,b = C a B k C 
b , k = 1 , 2 , ........ N 

2 / 64 (49)

The FrCMs matrix of one block is denoted M . 

The two polynomial parameters a 1 and b 1 , and the fractional

orders a and b are used to reinforce the security of our watermark

scheme. These values are denoted Key1. 

Step 4: Watermark embedding 

In our scheme, the watermark bit embedding strategy is

adopted. Once the matrix FrCMs of each block is calculated, the

watermark bits are embedded into the host image blocks by modi-

fying the modulus of the coefficients of the real part M 0 of M using

the following quantization function [55,56] : 

| M 

′ 
0 ( key1 , key2 ) | 

= 

{
2� × round 

( | M 0 ( key1 , key2 ) | 
2�

)
+ 

�
2 

, if W 1 (i, j) = 1 

2� × round 
( | M 0 ( key1 , key2 ) | 

2�

)
− �

2 
, if W 1 (i, j) = 0 

(50)

where Key2 denotes the positions of the selected pixels in the

blocks that constitute the second secret key, and M 0 is the old real

part FrCMs matrix of one block, M 

′ 
0 is the new FrCMs matrix of

this block, and � is the quantization step controlling the embed-

ding strength of the watermark bit. 

Note that, for a gray-scale image of size 512 × 512, the total

number of bits that can be embedded is 4096. Therefore, the size

of the watermark must be equal or small than 64 × 64 (64 × 64 =
4096 bits) . 

Step 5: Obtaining the watermarked image. 

The inverse operation of FrCMs is applied on each new block

M 

′ 
0 

to obtain the watermarked image. 

Although, the image watermarking system must have good vi-

sual quality and reasonable resistance against signal processing

and geometric attacks. Some attacks, such as rotation and scaling,

can greatly affect the precision of watermark extraction. This is be-

cause, the rotation operation moves the pixels and some of them

are permanently damaged according to the rotation angle, and for

the scaling operation, the pixel values of an image are replaced or

interpolated in a local neighborhood. Therefore, in order to extract

the watermark correctly, the rotation angle and scale factor of the

attacked image can be estimated to recover the attacked image in

its original form. In this paper, the technique presented in [57] is

adopted to ensure the robustness against these geometric attacks.

For more details, see Ref. [6] . 
.2. Watermark extraction scheme 

The watermark extraction procedure in the proposed system

eeds the main security information {Key1, Key2} to extract cor-

ectly the watermark. Fig. 3 shows the main steps of watermark

xtraction which can be described in the following: 

Step 1: Watermarked image blocking 

Let I w 

denotes the watermarked image. The I w 

is divided into

mall blocks B ∗
k 

of size 8 × 8 pixels 

 

∗
k = { b ∗k (i, j) , 0 ≤ i, j < 7 } (k = 1 , 2 , ..... N 

2 / 64 ) (51)
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Fig. 10. The watermark extraction results of different watermarking schemes for signal processing attacks and geometric ones (BER). 
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Table 4 

The average reconstruction errors based on MSE / PSNR values, of the 

test images shown in Fig. 4 by using the proposed FrCMs, FrCMs with- 

out GSP and classical CMs. 

Moments Average MSE Average PSNR 

FrCMs (a = b = 0 . 3) 2.6323E-24 283.92 

FrCMs (a = b = 0 . 7) 4.1694E-24 281.93 

FrCMs without GSP (a = b = 0 . 3) 1.1986E-6 107.34 

FrCMs without GSP (a = b = 0 . 7) 6.8887E-6 99.74 

CMs 6.4310E-3 70.04 
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Step 2: Fractional Charier moments 

The FrCMs matrix M 

∗ is computed for each watermarked block

B ∗
k 
: 

M 

∗ = C a B 

∗
k C 

b , (k = 1 , 2 , ..... N 

2 / 64 ) (52)

Step 3: watermark extraction 

With the same keys (Key1, Key2) as in the process of water-

mark insertion, the following function is used to extract one bit of

watermark at position( i, j ): 

 

∗
1 (i, j) 

= 

⎧ ⎨ 

⎩ 

1 i f | M 

∗
0 ( key1 , key2 ) | − 2� × round 

( | M 

∗
0 ( key1 , key2 ) | 

2�

)
> 0 

0 i f | M 

∗
0 ( key1 , key2 ) | − 2� × round 

( | M 

∗
0 ( key1 , key2 ) | 

2�

)
≤ 0 

(53)

where M 

∗
0 is the real part of M 

∗ and W 

∗
1 is the extracted scrambled

watermark. 

Step 4: Obtaining the extracted watermark. 

The extracted watermark can be obtained by descrambling W 

∗
1 

to W 

∗ by using the inverse Arnold transform. 

6. Simulation results 

In this section we will provide an experimental validation of the

theoretical framework presented in this paper. This section is di-

vided into two sub-sections. In the first subsection, we will test the

ability of the proposed FrCMs for the reconstruction of 2D images.

In the second part, we will test the imperceptibility and the ro-

bustness of the proposed watermarking scheme against signal pro-

cessing and geometric attacks. Several functions are used to qualify

the proposed FrCMs: 

The Peak-Signal-to-Noise Ratio (PSNR) is used to assess the

quality of the watermarked image or the reconstructed image, by

finding the difference between these images and the original im-

age. PSNR is defined as follows: 

P SNR = 10 log 10 

255 

2 

MSE 
(54)

where MSE is the Mean Square Error given by: 

MSE = 

1 

N × N 

N−1 ∑ 

i =1 

N−1 ∑ 

j=1 

(
I(i, j) − I ′ (i, j) 

)2 
(55)

whit I ( x, y ) is the original image and I ′ ( x, y ) is the watermarked

image or the reconstructed image. 

The Bit Error Rate (BER) is used to measure the similarity be-

tween the original watermark W and the extracted one W 

∗. Lesser

the BER, more robust the watermark is towards the attacks. BER is

defined as: 

BER = 

1 

l × l 

l ∑ 

i =1 

l ∑ 

j=1 

| W 

∗(i, j) − W (i, j) | (56)
All algorithms in this paper are implemented in MATLAB

2015a, and all numerical experiments are performed under Mi-

rosoft Windows environment on a PC with Intel Core i3 CPU

.4 GHz and 3 GB RAM. 

.1. Image reconstruction 

In this subsection, a comparative study between the proposed

rCMs and the classical CMs is performed in terms of image re-

onstruction without and with the Gram-Schmidt process (GSP).

he PSNR and MSE are used as criteria to evaluate the quality of

he reconstructed images. To do this, a set of ten gray-scale im-

ges ( Fig. 4 ) of size 512 × 512 is used in this test. Table 4 shows

he average reconstruction errors, based on the MSE and PSNR val-

es of all test images, using the proposed FrCMs and proposed Fr-

Ms without GSP with fractional orders: (a = b = 0 . 3) and (a =
 = 0 . 7) , and the classical CMs (a = b = 1) . Knowing that the re-

onstruction order is the size of the images for all types of mo-

ents used in this test. Table 5 shows some examples of recon-

tructed images and their MSE / PSNR values using these moments.

It is clear from these results that the image reconstruction er-

ors of the proposed FrCMs are very small compared to the errors

btained by the other types of moments, especially in the case of

 good choice of fractional orders of FrCMs. It can be seen that

he image reconstruction quality improves considerably with the

se of GSP when calculating FrCMs. This shows the effectiveness

f this process in correcting digital errors and preserving the or-

hogonality property when calculating FrCPs, which positively re-

ects on the quality of the reconstructed images. Moreover, these

esults further show that FrCMs with some fractional orders can

ive better reconstruction results than Charlier’s classical moments

of integer fractional orders). 

This experiment validates the mathematical development pre-

ented in this paper and demonstrates the ability of the proposed

rCMs to reconstruct images with excellent results. Once the ca-

acity of moments proposed for image reconstruction has been

emonstrated, these descriptors will be applied for applications

hat use image reconstruction such as image watermarking where

mage reconstruction is a necessary step in the watermark inser-

ion phase. 

.2. Image watermarking 

In this subsection, the watermarking system based on the pro-

osed FrCMs is examined for various signal processing attacks as

ell as for some geometric attacks. Table 6 presents the attacks

ur watermark experimentations. The ten gray-scale test images

 Fig. 4 ) are used as host images and the four binary images of size

4 × 64 are shown in Fig. 5 as test watermarks. 

In the first test, we will study the imperceptibility of the pro-

osed watermark scheme based on FrCMs. Each of the four test

atermarks is incorporated into the ten test images using the wa-

ermark embedding scheme ( Fig. 2 ). A total of 40 watermarked

mages are generated, each watermarked image is compared to

he corresponding original image using the PSNR as a criterion,

or a quantization step � ranging from 1 to 100 with an incre-

ent equal to 5. The average PSNR values are represented ac-

ording to the quantization step in Fig. 6 for the fractional orders

(a = b = 0 . 3) of the FrCMs. Our scheme is also compared to the

atermark scheme based on FrCMs without GSP and that based on

lassical CMs. The results are presented in the same figure ( Fig. 6 )

o facilitate comparison. Fig. 7 shows an example of the water-

arked “Male” images obtained using these schemes for the quan-

ization step � = 30 . 

Figs. 6 and 7 show that the schemes based on the proposed

rCMs give the best results for all quantization steps in terms of
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Table 5 

The reconstructed images of “Male” and “Mandrill” and their MSE/PSNR values yielded by using the proposed FrCMs, FrCMs without GSP and classical CMs. 

Table 6 

Information of the applied attacks. 

Attacks Parameters 

Gaussian White Noise Variance: 1%, 2%, 3% 

Salt & Peppers Noise Density: 1%, 2%, 3% 

JPEG compression Quality: 20%, 40%, 60% 

Median filtering Kernel size: 3 × 3, 5 × 5, 7 × 7 

Average filtering Kernel size: 3 × 3, 5 × 5, 7 × 7 

Rotation Rotation angle: 15 °, 30 °, 45 °
Scaling Scaling factor: 0.9, 1, 1.1 

Translation Translation vector: ( −3, −3), ( + 2, + 2), ( + 7, + 7) 

Gaussian blur Standard derivation: 0.5, 1, 1.5 
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Fig. 11. Average PSNR of watermarked images with different fractional orders. 
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ransparency, especially when the GSP is applied. Opposite to the

cheme based on classical CMs which gives low quality of water-

arked images. It is obvious that watermarked images are very

lose to the originals for the low quantization steps, and the differ-

nce between these images is relatively large when the high quan-

ization steps are used. 

In order to make a fair comparison with other methods in

he following experiments, the quantization step � is chosen to

aintain an acceptable PSNR of about 45 dB. We will use � = 60 ,

= 35 and � = 10 for schemes based on: FrCMs, FrCMs without

SP and classical CMs, respectively. The average quality of the wa-

ermarked images (four watermarked images for each host image)

sing our FrCMs scheme for � = 60 is shown in Fig. 8 . 

In the second test, we will test the robustness of the proposed

rCMs watermark scheme against the signal processing and geo-

etric attacks presented in Table 6 . Each of the 40 watermarked

mages is distorted according to these attacks, then the water-

ark is extracted using the watermark extraction scheme shown in

ig. 3 . The test is performed for the fractional orders (a = b = 0 . 3)

nd the quantization step � = 60 . Fig. 9 shows some examples of

atermarked “Male” images distorted by the attacks used and the

xtracted “Horse” watermarks with their corresponding BER val-

es. 

The robustness of this scheme is compared to that of the

cheme based on FrCMs without GSP and to that of the scheme

ased on classical CMs. The average BER values obtained from

hese schemes are shown in Fig. 10 . In addition, these schemes are

ompared with schemes based on: Tchebichef moments (TMs) [9] ,
rawtchouk moments (KMs) [6] , Krawtchouk fractional moments

FrKMs) [7] , SVD transformation [45] , discrete fractional Fourier

ransform (DFrFT), discrete fractional cosine transform (DFrCT) and

iscrete fractional sine transform (DFrST). 

By examining Figs. 10 (a–h), it is clear that the scheme based on

he proposed FrCMs provides very satisfactory results for most at-

acks, such as white Gaussian noise, salt & peppers noise, median

ltering, average filtering, JPEG compression, rotation and scaling,

here the BER values are very low, indicating that the extracted

atermarks can be easily recognized after these attacks and are

ery close to the originals as shown in examples Figs. 9 (a–h). How-

ver, according to Figs. 10 (i and j), this scheme is not very robust

gainst translation and histogram equalization attacks where the

ifference between the extracted watermarks and originals is rela-

ively important as shown in examples Figs. 9 (i and j). 

This is due on the one hand to the approach of the blocks used

y our scheme which does not allow to extract correctly the wa-

ermark in the case of translation because of change of the posi-

ions blocks of image. On the other hand, the adopted embedding
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Fig. 12. Average BER of extracted “Horse” watermark with various fractional orders, for combined attacks; (a) Attacks 1, (b) Attacks 2 and (c) Attacks 3. 

Fig. 13. Columns 1 to 10 show the extracted “Horse” watermarks with fractional order up to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1, respectively. In the first row, the 

fractional orders (a = b = 0 . 3) are used in the watermark insertion phase, and the second row, the fractional orders (a = b = 0 . 7) are used in the watermark insertion phase. 
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strategy does not use the difference between two adjacent block

coefficients to incorporate the watermark bit, and in the case of

histogram equalization, the modification of the pixel values of each

block has a severe impact on the accuracy of watermarking extrac-

tion. Note that, for all attacks, the BERs of the FrCMs-based schema

are considerably lower than those of the CMs-based schema, indi-

cating that the proposed schema is robust to different attacks than

the one based on the classical CMs. 

In terms of comparison between the other schemes, the pro-

posed scheme offers better robustness against most attacks than

the schemes based on TMs, KMs, FrKMs, SVD, DFrFT, DFrFT, DFrFT,

DFrCT and DFrST, where the BERs of proposed scheme are consid-

erably smaller than those of the other eight watermark schemes. 

In the third test, we will show the influence of the variation

of the fractional orders on the watermark imperceptibility and the
robustness. The “Horse” watermark is embedded in the ten test 
mages ( Fig. 4 ) in order to generate ten watermarked images. The

verage PSNR is plotted ( Fig. 11 ) as a function of fractional order

anging from (a = b = 0 . 1) to (a = b = 1) with a step of 0.1. The

uantization step is � = 60, and the average PSNR of FrCMs with-

ut GSP and that of classical CMs are also plotted on the same

gure for a better comparison. 

In addition, the influence of the variation of fractional orders on

he watermark robustness is analyzed for the following combined

ttacks: 

Attacks1: Salt & Pepper noise (1%) + Median filtering

(3 × 3) + JPEG 60. 

Attacks2: Salt and Peppers noise (1%) + Average Filtering

(3 × 3) + Scaling (1.2). 

Attacks3: Rotation 15 ° + Gaussian White noise (1%) + Gaussian

blur (0.5). 
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Fig. 14. BER of extracted “Horse” watermark with various fractional orders. (a) Fractional orders (a = b = 0 . 3) are used in the watermark insertion phase, (b) Fractional orders 

(a = b = 0 . 7) are used in the watermark insertion phase. 
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The 10 watermarked images are distorted according to these at-

acks, and the average BER of the extracted “Horse” watermark is

lotted against the fractional order in Fig. 12 . Note that, the trans-

ation and the histogram equalization attacks are not considerate

n this test in order to not damage all results. 

From the Fig. 11 , we can see that our schemes based on FrCMs

rovide good watermark imperceptibility for most fractional orders

han the scheme based on classical CMs, except for some fractional

rders (a = b = 0 . 5 and a = b = 0 . 6) . In addition, Fig. 12 shows that

ur schemes are more robust against combined attacks where BERs

re very low for most fractional orders than the scheme based on

Ms. We can conclude that a better choice of these fractional or-

ers can give the best results in terms of imperceptibility and ro-

ustness of the watermark. Note that the GSP greatly improves the

esults obtained in terms of imperceptibility and robustness of the

atermark as shown in Figs 11 and 12 . 

In the last test, we will show that the proposed FrCMs reinforce

he security of the watermark system. The “Male” and “Horse” im-

ges are adopted as host and watermark images, respectively, and

ttacks are not considered in this test. In the watermark insertion

hase, the two fractional orders (a = b = 0 . 3) and (a = b = 0 . 7) are

sed to generate two watermarked images of “Male”. In the water-

arking extraction phase, the watermark extracted from “Horse”

s obtained by using the watermark extraction scheme ( Fig. 3 )

ith fractional orders varying from 0.1 to 1 with a step of 0.1.

ig. 13 shows the extracted “Horse” watermarks for different frac-

ional orders, and their corresponding BER values are shown in

ig. 14 . 

It is clear from these figures that the extracted “Horse” wa-

ermark is recognizable only when the same fractional orders

Key1) are used for watermarking insertion and extraction. On the

ther hand, wrong fractional orders in the watermarking extraction

hase give unrecognizable extracted watermarks where their BERs

re greater than 0.5. 

The results of this subsection justify that the proposed Fr-

Ms constitution a new attractive transformation for watermarking

eld. 

. Conclusion 

In this article, we have proposed a new set of discrete orthogo-

al moments named fractional Charlier moments FrCMs. The spec-
ral decomposition of the Charlier polynomials is adopted to de-

ermine the new fractional Charlier polynomials FrCPs which are

sed as kernel in FrCMs. The fractional orders of FrCMs give a wide

hoice in applications where FrCMs are used. The experimental re-

ults demonstrated that some better choice of these fractional or-

ers can achieve best results in the fields of reconstruction and

atermarking image. 
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ppendix A 

Proof of property (c). Let λ be an eigenvalue of Charlier poly-

omial matrix and x the corresponding eigenvector, then 

ˆ C x = λx ,

sing the properties (a) and (b), we have: 

 = 

ˆ C ̂  C x = λ ˆ C x = λ2 x (A1)

hus 

( λ2 − 1) x = 0 (A2)

The matrix ˆ C has only two eigenvalues {1, −1}, The proof of

q. (19) has been completed 

ppendix B 

Proof of properties (d–f). Let ˆ C ∈ C 

N×N be Charlier polynomial ma-

rix, with their eigenvalues on the diagonal of a diagonal ma-

rix 	 = diag( λ1 , ...... λN ) ∈ C 

N×N and the corresponding eigenvec-

ors forming the columns of a matrix V = [ u 1 , ......, u N ] ∈ C 

N×N , we

ave: 

ˆ 
 = V 	V 

−1 (B.1) 

https://doi.org/10.13039/501100001824
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where, the orthonormal vectors u 1 , ...... u N are eigenvectors of ˆ C , cor-

responding to eigenvalues λ1 , ...... λN . 

ˆ 
 = [ u 1 · · · · · · u N ] 

⎛ 

⎝ 

λ1 

. . . 

λN 

⎞ 

⎠ 

⎡ 

⎣ 

u 

T 
1 

. . . 

u 

T 
N 

⎤ 

⎦ (B.2)

ˆ 
 = [ λ1 u 1 · · · · · ·λN u N ] 

⎡ 

⎣ 

u 

T 
1 

. . . 

u 

T 
N 

⎤ 

⎦ (B.3)

ˆ 
 = λ1 u 1 u 

T 
1 · · · · · ·λN u N u 

T 
N (B.4)

Notice that the matrices 

P j := u j u 

T 
j ∈ C 

N×N (B.5)

are orthogonal projectors, since P T 
j 

= P j and 

P 2 j : = u j (u 

T 
j u j ) u 

T 
j = u j u 

T 
j = P j 

ˆ C = 

N ∑ 

j=1 

λ j P j (B.6)

if j � = k , then the orthogonality of the eigenvectors implies 

P j P k = u j u 

T 
j u k u 

T 
k = 0 (B.7)

The proof of properties (d–f) has been completed. 

Proof of propriety (h) . Let γ , η and λ be respectively the eigen-

values of the matrices P 1 , P 2 and 

ˆ C of size N × N , using (29) and

(30) , we have: 

| γ I − P 1 | = | γ I − 0 . 5( ̂  C + I) | = | (γ − 0 . 5) I − 0 . 5 ̂

 C | 
= | (γ − 0 . 5) I − 0 . 5 ̂

 C | = 0 . 5 

N | (2 γ − 1) I − ˆ C | 
= 0 (B.8)

Similarly, we have 

| ηI − P 2 | = 0 . 5 

N | (2 η − 1) I − ˆ C | = 0 (B.9)

and 

| λI − ˆ C | = 0 (B.10)

From (B.8) –(B.10) , we have 

2 γ − 1 = λ (B.11)

−(2 η − 1) = λ (B.12)

Hence, if λ = 1 , there is γ = 1 , η = 0 , and if λ = −1 , then γ = 0 ,

η = 1 . 

The proof of propriety (h) has been completed. 

Appendix C 

Let P 1 and P 2 the spectral projection matrices of modified Char-

lier polynomial matrix ˆ C ∈ C 

N×N , and x, y be their eigenvectors cor-

responding to λ = 1 , respectively. 

Proof of Lemma 1 . From Table 1 and property (g) , we have: 

P 1 x = x (C.1)

and 

P 2 y = y (C.2)

using (C.1) and (C.2) and property (f) , we have: 

x T y = ( P 1 x ) 
T ( P 2 y ) = x T P 1 

T P 2 y = 0 (C.3)

The proof of Lemma 1 has been completed. 
Proof of Lemma 2 . From Eq. (20) , Lemma 1 and property (f) we

ave: 

ˆ 
 x = ( λ1 P 1 + λ2 P 2 ) x = λ1 P 1 x + λ2 P 2 x 

= λ1 P 1 x + λ2 P 2 P 1 x = λ1 P 1 x + λ2 P 
T 
2 P 1 x 

= λ1 P 1 x = λ1 x (C.4)

ˆ 
 y = ( λ1 P 1 + λ2 P 2 ) y = λ1 P 1 y + λ2 P 2 y 

= λ1 P 1 P 2 y + λ2 P 2 y = λ2 P 2 y = λ2 y (C.5)

The proof of Lemma 2 has been completed. 
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