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Abstract—Transfer learning strategies are typically designed
in a deterministic manner, without processing uncertainty in the
knowledge transfer mechanism. They also require the dependence
between the participating learning procedures—Bayesian filters
in this work—to be explicitly modelled. This letter develops an
approach which relaxes both of these restrictive assumptions.
We frame the proposed Bayesian transfer learning technique as
fully probabilistic design of an unknown hierarchical probability
distribution conditioned on knowledge in the form of an external
probability distribution. This yields a randomized design around
a base density for transfer learning which has been reported in
previous work by the authors. In the Kalman filtering context,
this hierarchical relaxation—which induces a knowledge-driven
mixture state predictor—significantly improves tracking perfor-
mance when compared to conventional transfer learning methods.

Index Terms—Fully probabilistic design, hierarchical models,
Bayesian transfer learning, randomized design, Kalman filters.

I. INTRODUCTION

Transfer learning is a principled framework for exploiting
knowledge of an external agent (source task) to improve
learning of a primary agent (target task) [1]. Various signal
processing applications rely on transfer learning to process
language [2], brain activity [3], protein records [4], satellite
images [5], etc. We are particularly motivated by developing
a transfer learning strategy for a network of signal processing
nodes which implement Bayesian filtering. These include
Gaussian filters [6]—whose basic representative is the Kalman
filter—and particle filters [7].

The standard way for Bayesian transfer learning strategies
to incorporate external knowledge is through elicitation of a
prior distribution [8]. To facilitate application of Bayes’ rule,
such methods require specification of a probabilistic model for
conditioning on transferred knowledge, typically in the form of
external data. We refer to this conventional setting as complete
modeling. In contrast, this letter considers transfer of external
knowledge in the form of a probability distribution, broadening
the range of admissible external knowledge representations.
However, a probabilistic model for conditioning on such a
distribution is rarely available, obviating the use of Bayes’
rule. In this incomplete modeling setting, fully probabilistic
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design (FPD) [9]—an axiomatically justified [10] generaliza-
tion of the maximum entropy principle [11]—provides the
optimal tool for design of the conditional distribution. FPD has
recently been utilized to develop static [12] and dynamic [13]
transfer learning strategies between a pair of Kalman filters.
A recent extension of the FPD principle addresses incomplete
modeling scenarios via hierarchical Bayesian model design
[14], thereby quantifying the uncertainty in the unknown
conditional distribution. This randomized design has been used
to formulate a transfer learning framework which accounts
for uncertainty in the knowledge transfer mechanism [15].
In this letter, we apply this hierarchical FPD approach to
knowledge transfer between Bayesian filters. By accounting
for the randomized nature of the transfer learning mechanism
in this way, an infinite mixture of state predictors is induced,
yielding an improved filtering performance in comparison with
deterministic approaches, such as [12].

II. HIERARCHICAL FPD TRANSFER LEARNING BETWEEN
A PAIR OF BAYESIAN FILTERS

Let us consider a state-space model given by

xi ∼ F(xi|xi−1), (1a)
zi ∼ F(zi|xi), (1b)

where i = 1, . . . , n denotes the discrete-time index. Here, we
assume that the state variable xi ∈ x ⊆ Rmx is measured only
indirectly through the observation variable zi ∈ z ⊆ Rmz .
The model (1) is fully characterized by the state-transition (1a)
and observation (1b) probability densities, with the convention
x0 ≡ ∅. The essential object in formulating the basic inference
tasks related to (1) is the joint predictive model

F(zi, xi|zi−1), (2)

where zi−1 ≡ (z1, . . . , zi−1). Indeed, the conditional and
marginal densities of (2) facilitate computation of the Bayesian
filtering and predictive recursions [6].

We address the task of knowledge transfer from an external
to a primary Bayesian filter [12]. The objective is to design
the prior of the primary Bayesian filter A(xi|FE, zi−1)—c.f.,
the marginal density of (2)—which accommodates additional
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knowledge in the form of an observation predictor, FE, pro-
vided by the external Bayesian filter. However, we assume
that this prior is not only unknown but also uncertain, and we
thus model it hierarchically by the hyper-prior S(A|FE, zi−1).
Therefore, we extend the basic setting (2) to form the hierar-
chical joint unknown model

M(zi, xi,A|S,FE, zi−1) ≡
FE(zi|zE,i−1)A(xi|FE, zi−1)S(A|FE, zi−1), (3)

where we apply assumptions defined as

M(zi|xi,A,S,FE, zi−1) ≡ FE(zE,i|zE,i−1)
∣∣
zE,i=zi

, (4a)

M(xi|A,S,FE, zi−1) ≡ A(xi|FE, zi−1), (4b)
M(A|S,FE, zi−1) ≡ S(A|FE, zi−1). (4c)

Here, (4a) implements the knowledge transfer by constraining
the FE-conditioned model of zi ∈ z to be the external observa-
tion predictor, FE. We model zi based on only the information
accumulated in FE and conditionally independently of xi ∈ x.
(4b) considers that FE and zi−1 are sufficient for influencing
xi, and that S provides no additional information about xi.
In (4c), we simply assign the hyper-prior to A. In this letter,
M and A denote (unknown) variational-from densities and F
denotes a (known) fixed-form density.

Assumptions (4) constrain the functional form of M and thus
delineate the knowledge-constrained set of admissible models
M. With FE being fixed and provided by the external filter,
and A generated randomly by S, the only variational quantity
to be optimized in (3) is S. In summary, we seek

M ∈M ≡ {models (3) with FE fixed and
A generated by variational S}. (5)

FPD is an approach for finding an optimal design Mo of an
unknown model M while respecting the set-based knowledge
constraint M ∈ M (resulting from empirical facts, assumed
density forms etc.) and taking into account preferences about
M expressed by an ideal model MI. The FPD-optimal design
Mo ∈ M is the unique density that is closest to MI in the
minimum Kullback-Leibler divergence (KLD, [16]) sense,

Mo ≡ argmin
M∈M

D(M||MI), (6)

with the KLD from M to MI being given by

D(M||MI) ≡ EM

[
log

(
M

MI

)]
,

where EM denotes the expected value with respect to M.
We choose the hierarchical joint ideal model as

MI(zi, xi,A|SI,FE, zi−1)≡ F(zi, xi|zi−1)SI(A|FE, zi−1), (7)

where we apply assumptions given by

MI(zi, xi|A,SI,FE, zi−1) ≡ F(zi, xi|zi−1), (8a)
MI(A|SI,FE, zi−1) ≡ SI(A|FE, zi−1). (8b)

In (8a), we define the ideal for (xi, zi) ∈ x × z to be the
joint model (2). This density is the key object in devising the

primary filter and thus a reasonable reference for our design.
(8b) simply defines a user-defined ideal hyper-prior for A.

Proposition 1. The unknown joint augmented model belongs
to the knowledge-constrained set, M ∈ M (5), and the ideal
model MI is (7), then the FPD-optimal hierarchical model—
i.e., the solution of (6)—is

Mo(zi, xi,A|So,FE, zi−1) =

FE(zi|zE,i−1)A(xi|FE, zi−1)So(A|FE, zi−1),

where

So(A|FE, zi−1) ∝ SI(A|FE) exp
{
−D(A||Â)

}
, (9)

Â(xi|FE, zi−1) ∝ F(xi|zi−1)

× exp
{
−
∫

ln
(
F(zi|xi)

)
FE(zi|zE,i−1)dzi

}
, (10)

and the FPD-optimal design of A becomes

Ao(xi|FE, zi−1) = ESo [A]

=

∫
A(xi|FE, zi−1)So(A|FE, zi−1)dA. (11)

Proof. The proof follows from Theorem 1 of [15].

Â in (10) fulfills the role of a base density [17] around
which randomized choices of A are distributed via the FPD-
optimal hyper-prior (9). It is a deterministic transformation of
fixed-form distributions in the non-hierarchical setting [12],
[13]. The expected prior (11) under (9) replaces the pre-
prior, F(xi|zi−1), of standard Bayesian filtering. This ensures
optimal transfer of FE, while respecting uncertainty in the
knowledge transfer mechanism.

III. HIERARCHICAL FPD TRANSFER LEARNING BETWEEN
A PAIR OF KALMAN FILTERS

This section specifies Proposition 1 to the case of (1) being
the normal linear state-space model,

F(xi|xi−1) ≡ Nxi
(Axi−1, Q), (12a)

F(zi|xi) ≡ Nzi(Cxi, R), (12b)

where Nv(µ,Σ) is the normal density of argument v, with the
mean vector, µ, and the covariance matrix, Σ; and A and C
are matrices of appropriate dimensions. If we adopt (12) and
F(x1) ≡ Nx1(µ1|0,Σ1|0), then the conditional and marginal
densities of (2) become

F(xi|zi) = Nxi
(µi|i,Σi|i), (13a)

F(xi|zi−1) = Nxi
(µi|i−1,Σi|i−1), (13b)

F(zi|zi−1) = Nzi(zi|i−1, Ri|i−1), (13c)

with the shaping parameters being computed recursively as

µi|i = µi|i−1 +K(zi − zi|i−1), (14a)

Σi|i = Σi|i−1 −KRi|i−1K
>, (14b)

µi|i−1 = Aµi−1|i−1, (14c)

Σi|i−1 = AΣi−1|i−1A
> +Q, (14d)

zi|i−1 = Cµi|i−1, (14e)

Ri|i−1 = CΣi|i−1C
> +R, (14f)
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where K = Σi−1|iC>R
−1
i|i−1, and > denotes matrix transpo-

sition. Specifically, (13a) and (13b) form the data and time
steps of the conventional Kalman filter.

To appropriately choose the form of the unknown random-
ized design, A, and the ideal hyper-prior, SI, in (9), we first
need to investigate the form of the base density (10) in the
context of (12). We do so in the next lemma.

Lemma 1. The observation model and the state pre-prior are
(12b) and (13b), respectively, and the external observation
predictor is FE(zi|zE,i−1) ≡ Nzi(zE,i|i−1, RE,i|i−1). Then, the
base density (10) becomes

Â(xi|FE, zi−1) = Nxi(µ̂i|i−1, Σ̂i|i−1), (15)

where the shaping parameters are computed according to

µ̂i|i−1 = µi|i−1 + L(zE,i|i−1 − zi|i−1), (16a)

Σ̂i|i−1 = Σi|i−1 − LRi|i−1L
>, (16b)

with L = Σi|i−1C
>R−1

i|i−1.

Proof. The proof follows from the standard calculus.

Recall that Proposition 1 furnishes an FPD-optimal relax-
ation around the normal base density design (15). Therefore, it
is reasonable to specify the functional form of the randomized
density A as normal,

A(xi|FE, zi−1) ≡ Nxi(µ,Σ), (17)

with unknown parameters defined as Θ ≡ (µ,Σ). Only the
normal-inverse-Wishart ideal hyper-prior SI is invariant un-
der the FPD-optimal hierarchical knowledge transfer mecha-
nism in (9):

SI(µ,Σ|FE, zi−1) = Nµ(µI, βIΣ)iWΣ(νI,ΛI). (18)

The parametric constraint on A allows us to write S(A|FE,
zi−1) = S(Θ|FE, zi−1).

Proposition 2. The base density and the unknown prior are
given by (15) and (17), respectively, and the ideal hyper-prior
is (18). Then, the FPD-optimal hyper-prior (9) becomes

So(µ,Σ|FE, zi−1) = So(µ|Σ,FE, zi−1)So(Σ|FE, zi−1), (19)

where the conditional factor is

So(µ|Σ,FE, zi−1) = Nµ(µ̄i|i−1, Σ̄i|i−1), (20)

with the shaping parameters

µ̄i|i−1 = Σ̄i|i−1

(
1
βI

Σ−1µI + Σ̂−1
i|i−1µ̂i|i−1

)
, (21a)

Σ̄i|i−1 =
(

1
βI

Σ−1 + Σ̂−1
i|i−1

)−1
, (21b)

and the marginal factor is

So(Σ|FE, zi−1) ∝ iWΣ(νI,ΛI)|Σ|
1
2

×NµI
(µ̂i|i−1, βIΣ + Σ̂i|i−1) exp{− 1

2 tr(ΣΣ̂−1
i|i−1). (22)

Proof. The proof follows from the standard calculus.

µi|i =µ
o
N,i|i−1+K(zi−zoN,i|i−1)

Σi|i =Σ
o
N,i|i−1−KR

o
N,i|i−1K

>

K=Σ
o
N,i|i−1C

>
(R

o
N,i|i−1)

−1

Data Step

µi|i−1 =Aµi−1|i−1

Σi|i−1 =AΣi−1|i−1A
>

+Q

Time Step

Use (µi|i−1,Σi|i−1) in (16) to approximate
(22) by (24) and thus obtain (wj ,Σj)Ni=1.

Use (wj ,Σj)Ni=1 in (27) to compute (µo
N,i|i−1,Σ

o
N,i|i−1).

Constraint Step

Fig. 1. FPD-optimal processing for hierarchical static knowledge transfer
between Kalman filters

The exponential term in (9) prevents us from applying the
conjugate analysis between the normal and normal-inverse-
Wishart densities. Therefore, the marginal factor (22) is in-
tractable, and we need to resort to approximate techniques.
However, the conditional factor (20) is tractable, allowing us
to integrate µ out analytically in the derivation of (11), as
shown in the following proposition.

Proposition 3. The unknown prior and the optimal hyper-
prior are (17) and (19), respectively. Then, the FPD-optimal
prior (11) becomes

Ao(xi|FE, zi−1)

=

∫
Nxi

(µ̄i|i−1,Σ + Σ̄i|i−1)So(Σ|FE, zi−1)dΣ, (23)

where (µ̄i|i−1, Σ̄i|i−1) are given by (21).

Proof. The proof follows from the standard calculus.

We approximate the intractable marginal density (22) by an
appropriately chosen Monte Carlo method [18], allowing us
to formulate the empirical approximation

SoN (dΣ|FE, zi−1) =

N∑
j=1

wjδΣj (dΣ), (24)

where wj is the weight which assesses the contribution of the
particle Σj to the approximation (24). After plugging (24) into
(23), and integrating with respect to Σ, we obtain

AoN (xi|FE, zi−1) =

N∑
j=1

wjNxi
(µ̄ji|i−1,Σ

j + Σ̄ji|i−1), (25)

being a finite mixture approximation of the infinite mixture
induced in (11). If such a density were applied to replace
(13b) in the Kalman filter recursive flow, the complexity of
(13a) would grow exponentially with i. Therefore, we apply
the moment matching [19] at each i to approximate (25) by

AoN (xi|FE, zi−1) ≈ Nxi(µ
o
N,i|i−1,Σ

o
N,i|i−1), (26)
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Fig. 2. Left: the mean norm squared-error (MNSE) of the primary filter
versus the observation variance RE of the external Kalman filter. Right: the
MNSE of the primary filter versus the number of degrees of freedom νI of the
ideal hyper-prior density (18). The results are averaged over 1000 independent
simulation runs. We compare (i) the Kalman filter with No Transfer (NT),
(ii) Static Bayesian knowledge Transfer (ST) [12], (iii) Hierarchical Static
Bayesian knowledge Transfer (HST) given by Algorithm 1 (this paper), (iv)
informally adapted version of HST (iHST) discussed in Section V (this paper);
and (v) Measurement Vector Fusion (MVF) [21].

with the shaping parameters computed as

µoN,i|i−1 =

N∑
j=1

wjµ̄ji|i−1, (27a)

ΣoN,i|i−1 =

N∑
j=1

wj [Σj + Σ̄ji|i−1

+ (µoN,i|i−1 − µ̄
j
i|i−1)(µoN,i|i−1 − µ̄

j
i|i−1)>]. (27b)

The tractable substructure used to compute (23) allows us to
decrease the variance of estimators associated with (25) com-
pared to those we would eventually obtain when sampling µ,Σ
jointly, the idea known as Rao-Blackwellization (RB) [20].

The proposed algorithm can now be summarized in Fig. 1,
where we use zoN,i|i−1 and RoN,i|i−1 to denote the shaping pa-
rameters of the observation predictor computed from µoN,i|i−1

and ΣoN,i|i−1, respectively.

IV. NUMERICAL ILLUSTRATION

We consider the scalar state-space model (12) with A =
0.95, C = 1, Q = 1, and R = 1, which illustrates the key
features of our algorithm. The initial statistics are µ1|0 = 0
and Σ1|0 = 1; the statistics of the ideal hyper-prior are νI = 1,
βI = 100, µI = 0, and ΛI = 0.3; and the number of time steps
is n = 200. We use importance sampling to compute (24), with
the bootstrap proposal density [18] given by iWΣ(νI,ΛI) and
N = 25. We calculate the mean norm squared-error, MNSE =
1
n

∑n
i=1 ||xi−µi|i||2, with || · || being the Euclidean norm, for

various methods in Fig. 2.
In the left part of Fig. 2, we assess the primary filter

with fixed observation variance, R, while varying the external
observation variance, RE, which quantifies the impact of the
confidence of the external knowledge. The NT filter does

not use any external knowledge and thus defines a reference
MNSE level for evaluating whether the compared methods
deliver positive or negative knowledge transfer. The MNSEs of
the remaining filters change with the ratio of R to RE. We see
that the proposed HST filter offers improved performance over
all the other algorithms for RE < 1 (positive transfer). This
filter also surpasses the ST filter for all RE. However, the HST
filter is not robust above the threshold where RE = R because
it is not able to reject the external knowledge and recover the
performance of the NT and MVF filters. We observe that the
HST filter suffers from negative transfer when the external
observations are more imprecise than the primary ones. The
iHST filter is discussed in Section V.

In the right part of Fig. 2, we further investigate the positive
transfer case where we hold R = 1 and RE = 10−3 fixed.
We vary the number of degrees of freedom νI in (18), which
acts as the concentration parameter for (18) around its prior
expected values of µ and Σ. The remaining hyper-parameters
of (18) are the same as above. The MNSEs of the NT, ST, and
MVF filters are obviously constant as these methods do not
use the hyper-prior. As νI increases, the external knowledge
is increasingly rejected, and the FPD-optimal predictor (23)
becomes dominated by the hyper-parameters in (18). This prior
domination greatly increases the MNSE, and points to the need
for low values of νI in hierarchical FPD-optimal knowledge
transfer.

V. DISCUSSION

The ST filter developed in [12] considers unknown A as a
non-random density, without introducing the top hierarchical
level. The relation between the ST filter and its HST extension
proposed in this letter is that the FPD-optimal design of A
given in [12] coincides with the base density (10). Therefore,
the ST filter can be seen as a certainty-equivalent type of
Bayesian filter, thus unequipped with A-measure of uncer-
tainty. The fact that this structure is involved in the HST
filter carries over the disadvantage of the ST filter [12], [13],
which lies in the insensitivity of transferring the covariance
of the external observation predictor, RE,i|i−1. In [12], this
issue was informally resolved by replacing R by RE,i|i−1

in the covariance of the primary observation predictor (14f),
making the performance of the ST filter exactly equivalent to
the MVF filter. We now apply the same substitution in the
HST filter. This replacement forms the iHST filter introduced
in Section IV. The left part of Fig. 2 shows that the iHST filter
provides better performance than the HST filter for RE > 10−1

and thus offers an increased robustness against the negative
transfer. Nevertheless, the iHST filter still suffers from the
negative transfer to a small degree. This issue maybe caused
by accumulation of the approximation error brought by the
importance sampling and moment matching.

We also implemented the HST and iHST methods without
the RB from Proposition 3. For fixed computational resources,
we can achieve far greater precision with the proposed algo-
rithms compared to the non-RB ones.

Authorized licensed use limited to: UTIA. Downloaded on November 29,2021 at 13:14:19 UTC from IEEE Xplore.  Restrictions apply. 



VI. CONCLUSION

This letter provides a framework for knowledge transfer
between Bayesian filters. The methodology relies on the
FPD-optimal, knowledge-constrained, design of a hierarchical
Bayesian model, which is conditioned on an external probabil-
ity density, and equips the transfer learning mechanism with
measures of uncertainty. The specific instance of this generic
approach, where the interacting signal processing nodes are
represented by the Kalman filters, demonstrates that the top
hierarchical level proposed in this letter utilizes the external
knowledge in a more efficient way compared to the preceding
approach presented in [12]. However, the adverse feature of
the insensitivity to transferring the covariance of the external
observation predictor—as originally reported in [12]—prevails
in the algorithm developed here as well. The hyper-parameters
of SI (18) are chosen as fixed values for all time-steps of the
current algorithm. Future work will focus on optimal, data-
driven, adaptation of these hyper-parameters at each time step.
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