
Journal of Economic Behavior and Organization 192 (2021) 324–356 

Contents lists available at ScienceDirect 

Journal of Economic Behavior and Organization 

journal homepage: www.elsevier.com/locate/jebo 

Does parameterization affect the complexity of agent-based 

models? 

Jiri Kukacka 

a , b , ∗, Ladislav Kristoufek 

a , b 

a Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, Prague 8 182 00, Czechia 
b Charles University, Faculty of Social Sciences, Institute of Economic Studies, Opletalova 26, Prague 1 110 00, Czechia 

a r t i c l e i n f o 

Article history: 

Received 17 July 2020 

Revised 30 July 2021 

Accepted 1 October 2021 

JEL classification: 

C13 

C22 

C63 

D84 

G02 

G17 

Keywords: 

Financial agent-based models 

Parameterization 

Complex systems 

Multifractal sensitivity analysis 

Detrended fluctuation analysis 

a b s t r a c t 

We examine the complexity of financial returns generated by popular agent-based models 

through studying multifractal properties of such time series. Specifically, we are interested 

in the sensitivity of the models to their parameter settings and whether some patterns 

emerge in the connection between complexity and a specific type of parameter. We find 

that (i) herding behavior mostly boosts the model complexity as measured by multifrac- 

tality, (ii) various in-built stabilizing factors increase model complexity, while (iii) the role 

of the intensity of choice, the number of agents, as well as the chartists’ representation 

have rather model-specific effects. Finally, the core feature driving the model complexity 

seems to be the implementation of a switching mechanism governing agents’ interactions. 

The heterogeneous set of nine analyzed models thus offers some universal concepts that 

hold across their range. Our results also indicate that complex dynamics are observed not 

only for the benchmark parameter settings but also for other combinations of parameter 

values for most models. This opens new avenues for future research and specifically mo- 

tivates examining the models in more detail by focusing on other dynamic properties in 

addition to the herein presented multifractality. 

© 2021 Elsevier B.V. All rights reserved. 

 

 

 

1. Introduction 

Financial agent-based models ( LeBaron, 2006; Hommes, 2006; Chen et al., 2012; Dieci and He, 2018 ) have not only

successfully proven their replication abilities of the stylized facts of financial time series but have also allowed for a more

elaborate analysis of the link between their design and the system dynamic properties they generate. The former might 

include both the theoretical derivation of the models as well as a specific setup of parameter calibration. Even though 

the topical literature has rather moved from constructing more complicated models toward their estimation ( Fagiolo et al., 

2007; Windrum et al., 2007; Grazzini et al., 2017; Lux and Zwinkels, 2018; Lux, 2018; Fagiolo et al., 2019; Platt, 2020 ), the

discussion of the model parameter sensitivity is usually lacking, and the models are often introduced with either one or 

a limited number of parameter settings showing only the stylized behavior of the data they generate. However, a more 

detailed insight into such sensitivity will help to understand the often-complicated dynamics of these models, not only for 

the purposes of interpretation and possible policy implications but also to support selection of proper tools and instruments 

for the model estimation. Deciding whether to use likelihood-based estimation methods for a given model when observing 
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multiple local maxima of the metrics for a perceived optimal parameter setting of such model is a typical example of such

dilemma. Naturally, as the agent-based models are defined through a set of parameters and there are many possible outputs 

of interest that describe the dynamics of the generated series, the problem at hand becomes highly multidimensional. One 

thus needs to be rather strict in at least one of the dimensions to make the task not only feasible but also understandable

and presentable. In a similar vein, the generated series, usually financial returns, can be described in variety of ways and

their dynamic properties can be characterized by many statistics and measures. 

In this paper, we build on the flexibility of the financial agent-based models to disentangle effects that can lead to the

multifractal behavior of financial time series. We focus on multifractality as a nontrivial feature of financial series that is fre-

quently studied empirically ( Lux and Kaizoji, 2007; Zhou, 2009; Barunik et al., 2012 ), but its interpretation and connection

to the markets’ characteristics have been quite limited. Partially building on the fractional generalizations of autoregres- 

sive moving average processes (ARFIMA/FARIMA, going back to Mandelbrot and Van Ness (1968) ), which are traditional 

instruments for modeling financial returns, multifractality allows for complicated scaling of moments in the process dynam- 

ics. To better describe such complex behavior, various models have been proposed, such as the multifractal random walk 

( Bacry et al., 2001 ), the Markov-Switching Multifractal ( Calvet and Fisher, 2001 ), and the multifractal model of asset returns

( Calvet and Fisher, 20 02; Lux, 20 04 ) leading to multifrequency approaches to the news arrival into asset pricing ( Calvet and

Fisher, 2007 ) as well as asset pricing and risk sharing based on an aggregation of heterogeneous beliefs ( Calvet et al., 2018 ).

It has also been connected to critical and extreme events on the financial markets ( Lux and Ausloos, 2002; Siokis, 2017 ).

Being a unique phenomenon connected to various specifics of the financial markets and the processes they generate, mul- 

tifractality is a straightforward metric that offers a unique opportunity to study the effect of specific parameter settings on 

complex dynamics of the generated time series ( Ivanov et al., 2001; Shimizu et al., 2002; Lopes and Betrouni, 2009 ). 

In addition, multifractality and agent-based models form a natural pair as multifractality and multiscaling emerge 

through heterogeneous perception of information flows. These can be possibly represented by multiplicative cascades form- 

ing the basis for multifractal behavior of financial series ( Calvet and Fisher, 2002 ) but mostly directing towards frequency-

specific, and thus investment horizon specific, interpretation of shocks and fundamental information of the pricing process 

of financial assets and their risk premia as well as frequent switching within the pricing dynamics. This again resembles the

typical structure of agent-based models with agents changing their investment strategies ( Calvet and Fisher, 2008 ). Emer- 

gence of the multifractal dynamics in data generated by the agent-based models is thus at hand. By connecting the financial

agent-based models with the multifractal framework, we check whether and how the multifractal features of the time se- 

ries generated by these models of financial markets react to changes with respect to their parameters governing, e.g., the 

switching between trading strategies, herding behavior, the number of agents in the model, and others. Even though there 

are other possibilities of measuring the complexity of time series, mostly derived from or built on various entropy mea- 

sures that are also often used in other agent-based models contexts such as goodness-of-fit measures ( Gonzales Andino 

et al., 20 0 0; Torres and Gamero, 20 0 0; Chen et al., 20 09; Marks, 2013; Barde, 2016; 2017; Lamperti, 2018a; 2018b ), fractal

and multifractal measures have been put under higher scrutiny concerning specific properties of financial time series—

the financial ‘stylized facts’ ( Cont, 2001 )—and their properties have been heavily studied and understood as reviewed by 

Jiang et al. (2019) , at least compared to the other methods. 

Each agent-based model we focus on is subjected to a unified simulation-based sensitivity analysis in which we study 

how multifractal properties of the model-generated series react to varying parameter settings and whether intuitive pat- 

terns of the relationship can be generalized over the utilized scale. Taking advantage of the simulation-based approach, we 

circumvent the issues of empirical estimation ( LeBaron and Tesfatsion, 2008; Grazzini and Richiardi, 2015; Recchioni et al., 

2015 ). A grid strategy of analyzed setups together with the statistical robustness of a Monte Carlo study require advanced

computational server capacities. For most models, we observe nontrivial patterns of the parameterization-complexity rela- 

tionship for which we provide an overall interpretation and potential explanations. The current paper can be seen as an 

extension of Kukacka and Kristoufek (2020) which uncovered several specific agent-based models that can generate multi- 

fractal series in the default baseline setting. Here, we present a much more detailed study within parametrizations of each 

specific model, focusing on interactions and influence of different types of parameters on the multifractality strength rather 

than comparing the models in their baseline setting among them, thus providing a deep insight into dynamical properties 

of given models. 

At this point, it seems important to clearly distinguish between the complexity of the models themselves and the com- 

plexity of their outputs. Via the multifractal analysis, we explicitly focus on the latter, i.e., on the “sensitivity analysis and the

complexities inherent in the exploration of the space that encapsulates both the parameters and the outcomes” ( Lee et al.,

2015 ). But one might suggest that in some cases, we also implicitly/unintentionally study the former phenomenon. For in- 

stance, when varying the number of agents in the Gilli and Winker (2003) and Alfarano et al. (2008) models, we make the

mutual interactions among agents less or more complicated/complex in terms of the complexity of given models. Such un- 

derstanding follows the interpretation of agent-based frameworks as computational models “suitable for describing complex 

systems” ( Mandes and Winker, 2017 ). The authors clearly define two dimensions of complexity: “the size of the model itself 

(number of components, parameters, description length, non-linearity, etc.) and the emergent complexity resulting from the 

aggregation of individual behavior.” Therefore, it also seems crucial to distinguish between the complicatedness of a model, 

typical for large models with many different interactions and long simulation times, and the complexity of its output. Nei- 

ther directly implies the other, especially the complexity of a model output does not directly imply the complicatedness of 
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the given model. Indeed, according to our analysis, even models with a straightforward structure can generate very complex 

output dynamics. 

In the next section, we briefly introduce the technical mechanisms of the multifractal formalism and its estimation. The 

following section in detail describes the Monte Carlo simulation setup. What comes after are the two core sections that 

present the methodology and results for the nine financial agent-based models. The last section summarizes the results, 

presents uncovered common patterns and several apparent contradictions, and concludes with future research prospects. 

We find that (i) herding behavior mostly boosts the model complexity as measured by multifractality, (ii) various in-built 

stabilizing factors increase model complexity, while (iii) the role of the intensity of choice, the number of agents, as well as

the chartists’ representation have rather model-specific effects. Finally, the core feature driving the model complexity seems 

to be the implementation of a switching mechanism governing agents’ interactions. The heterogeneous set of models we 

study thus offers some universal concepts that hold across their range. Supplementary material associated with this article 

containing R code for the MF-DFA estimator of the generalized Hurst exponent, R code for an illustrative replication of 

the results, and the scripts to produce the presented heat map graphics can be found on GitHub at the following address:

github.com/jirikukacka/Kukacka _ Kristoufek _ 2021 [created 2021-05-25]. 

2. Multifractality and its estimation 

2.1. From long-range dependence to multifractality 

In the time series analysis, multifractality is a property describing complex behavior of the series with respect to rich 

scaling of its moments. As its special case for the second moment of a series, long-range dependence (sometimes also re-

ferred to as long-term memory or persistence) is represented by a power-law behavior in its autocorrelation structure. In the 

frequency domain, we observe divergence of the spectrum f (λ) at the origin so that f (λ) ∝ λ1 −2 H for frequencies λ → 0+ .

In the time domain, the process is characterized by an asymptotically hyperbolically decaying autocorrelation function so 

that ρ(k ) ∝ k 2 H−2 for lags k → ±∞ ( Beran, 1994 ). The Hurst exponent H in both approaches is the characteristic param-

eter of such processes. For H = 0 . 5 , there is no long-range dependence. Persistent processes are represented by H > 0 . 5

and anti-persistent processes by H < 0 . 5 . Even though long-range dependence is usually studied only for stationary pro-

cesses with the Hurst exponent between 0 and 1, the possibilities are richer and cover for instance nonstationary but still

mean-reverting processes with 1 ≤ H < 1 . 5 . A unit-root process has H = 1 . 5 that leads to the connection to the (fractional)

integration parameter d so that d = H − 0 . 5 for Gaussian processes. 

There are various definitions of multifractality but the one of Calvet and Fisher (2002) has become one of the most

prominent and standard ones. It states that a stochastic process { X t } with stationary increments is multifractal as long as it

holds that: 

E (| X t | q ) ∝ t τ (q )+1 . (1) 

The scaling function τ (q ) is linear for unifractal (monofractal) processes and concave for multifractal processes, and q ∈ R

is the moment order. This connects back to the special case of long-range dependence (with q = 2 ) since the asymptotic

behavior of the autocorrelation function of such process leads to a power-law scaling behavior of variance of its integrated 

(cumulative) series ( Di Matteo et al., 2005; Di Matteo, 2007; Buonocore et al., 2016 ). In the language building on the long-

range dependence Hurst exponent H, the generalized Hurst exponent H(q ) of a multifractal series can be expressed as: 

H(q ) = 

1 + τ (q ) 

q 
. (2) 

The concave scaling function τ (q ) then implies H(q ) decreasing in q , which in turn allows using the range of the generalized

Hurst exponents as a measure of multifractality of the series in question. In natural sciences ( Kantelhardt, 2009 ), it is more

common to describe the multifractal processes through their singularity strength α and singularity spectrum f (α) . These 

are defined as: 

α(q ) = 

∂τ (q ) 

∂q 
and f (α(q )) = qα(q ) − τ (q ) . (3) 

The spectrum width is then used as a measure of multifractality. The connection between the generalized Hurst exponent 

H(q ) and the singularity measures is then given through: 

α(q ) = H(q ) + qH 

′ (q ) and f (α(q )) = q 
(
α(q ) − H(q ) 

)
+ 1 . (4)

In the simulation study, we use the latter alternative, i.e., the spectrum width: 

�α( q ) ≡ max 
q 

α( q ) − min 

q 
α( q ) (5) 

as the measure of multifractality. Note that the results given by the singularity spectrum width and the generalized Hurst 

exponent width are qualitatively very similar, as shown in the recent study by Kukacka and Kristoufek (2020) . 
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Table 1 

Empirical example of multifractality. 

Asset �α(q ) mean ratio confidence 

10Y Treasury Yield 0.5002 2.8011 1.0000 

Apple Inc. 0.2348 2.5849 1.0000 

Bitcoin 0.7097 5.2475 1.0000 

Crude Oil 0.2158 1.3740 0.7720 

EUR/USD 0.1632 3.4157 0.9990 

Gold 0.4478 5.8728 1.0000 

S&P500 0.2331 1.4844 0.8910 

Note: �α(q ) is the estimated multifractal spectrum width for 

the given asset, mean ratio is the mean ratio between the es- 

timated width and 10 0 0 widths estimated on the resampled 

time series, and confidence represents the proportion of such 

ratios above 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Multifractal detrended fluctuation analysis 

As an estimator of the generalized Hurst exponents that are in turn used to estimate the multifractal spec- 

trum through �α(q ) , we utilize the Multifractal Detrended Fluctuation Analysis (MF-DFA) that was proposed by 

Kantelhardt et al. (2002) as a generalization of the Detrended Fluctuation Analysis (DFA) of Peng et al. (1993) that has

led to various other extensions ( Podobnik and Stanley, 2008; Podobnik et al., 2011; Qian et al., 2015 ). The original DFA pro-

cedure builds on scaling of detrended variances of the integrated long-range dependent processes and estimates the Hurst 

exponent through a scaling law between the average variance estimated on subsamples of a given length and the length 

(scale) itself. For each scale s , the series is split into N s nonoverlapping boxes and for each box ν , we calculate a mean

squared error from a trend (usually linear) F 2 
DF A 

(ν, s ) . Up to this point, the DFA and MF-DFA procedures are the same. The

mean squared error is then averaged over all boxes of the same length s but with an exponential weight of q/ 2 . For q = 2 ,

i.e., the long-range dependence case, we obtain the standard average. The fluctuation function for scale s and moment q is

given as: 

F q (s ) = 

(
1 

2 N s 

2 N s ∑ 

ν=1 

(
F 2 DF A (ν, s ) 

)q/ 2 

)
1 /q . (6) 

We eventually obtain the generalized Hurst exponent H(q ) from the following scaling law: 

F q (s ) ∝ s H(q ) . (7) 

There are various specifications, mostly with respect to the type of detrending and scaling range. The details are given in

Kantelhardt et al. (2002 , p. 89–91). In our setting, we adhere to the linear detrending and set the minimal range to s min = 10

and the maximum range to s max = T / 10 where T is the studied time series length. The step between scales is set to 10.

There is no clear consensus on the minimum and maximum scales or steps between scales. We keep within the range of

s min = 5 and s max = T / 4 that are considered as extremes (compare Kantelhardt et al. (2001) ; Alvarez-Ramirez and Escarela-

Perez (2010) ; Alvarez-Ramirez et al. (2010) ; Rak and Grech (2018) ) and use the step between scales above 1 to keep the

computational burden manageable. The range of moments is set between q min = −4 and q max = 4 with a step of q step = 1 .

Similarly to the ranges of scales, there is no clear consensus on such ranges. Most frequently, these are set at ±3 , ±4 , ±5 , or

±10 . However, in the context of financial series, we stay conservative and opt for ±4 as one might get to troubles with the

existence of moments ( Buonocore et al., 2017; Morales et al., 2012 ). As the generalized Hurst exponent is monotonous in

moments q , one may measure multifractality only using the exponents for the lowest and highest moments. As a precaution

for finite samples, we still estimate the generalized Hurst exponents and thus also the width of the spectra on a range of

moments with a step of 1. Even though it is more common to use the step of 0.1 in many studies, it is purely for graphical

purposes that we are not interested in. 

Multifractality is often considered a measure of complexity of the underlying time series ( Ivanov et al., 2001; Shimizu

et al., 2002; Lopes and Betrouni, 2009 ). However, apart from correlations, being linear and mostly nonlinear, multifractality 

is also detected in processes with heavy tails ( Jiang et al., 2019; Jiang and Zhou, 2008; Liu et al., 2008; Rak and Grech,

2018 ). Therefore, to distinguish between the types of apparent multifractality, we examine properties of the original simu- 

lated series as well as the shuffled series, where all correlations are removed by shuffling but the distributional properties 

remain. One is then able to separate these two sources. For illustration, Table 1 summarizes the estimated multifractal spec-

trum widths �α(q ) of daily logarithmic returns of different financial assets (a government bond, a stock, a cryptoasset, two

commodities, an exchange rate, and a stock index) between 1 Jan 2014 and 30 Jun 2021. As statistical inference for mul-

tifractality measures is practically problematic to obtain analytically due to specific behavior under various distributional 

properties, correlation structures, and small/finite samples ( Jiang et al., 2019 ), we present a mean ratio of estimated �α(q )

of the given series and its shuffled counterparts (1,0 0 0 random draws with replacement) to control for distributional and

sample size effects. If there is no correlations-induced multifractality present in the data, the ratio is expected to be equal
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to 1. We add a confidence measure that represents a proportion of ratios above 1. The highest ratios are found for gold and

bitcoin pointing at the most complex dynamics in the data-generating processes. Five out of seven series show high mean 

ratios and confidence of 1 or very close to it. Crude oil seems to be the least complex of the list with the mean ratio close

to 1 and a rather low confidence. A similar approach towards statistical inference is applied in the Monte Carlo simulation

study that now follows. 

3. Monte Carlo simulation study 

3.1. General Monte Carlo setup 

A unified setup of the Monte Carlo numerical studies for each model is described below. All computations are executed 

using R. To manage the computationally extensive Monte Carlo setup, we utilize parallel server capacities and take advantage 

of doParallel and the foreach packages. This combination enables an evaluation of independent for-loop iterations in parallel 

on multicore computational servers. 

10 0 0 independent runs ensure the statistical validity of the presented results for each experiment. Model output time 

series have a unified length T = 20 0 0 0 after discarding 10 0 0 initial burn-in observations so that a potential influence of

the initial conditions is eliminated. Since we study models intended to simulate daily financial time series, the unified 

length T = 20 0 0 0 is selected concerning the approximate maximum of the standardly available history of the US shares

since the 1950s. Fig. A.10 displays typical individual time series outputs of the examined models under this setup. While the

left half of the figure is based on T = 20 0 0 0 , the right half zooms the respective left-hand side series for the 20 0 0 middle

observations to allow for a more detailed visual examination. The sufficiency of the initial burn-in period is assumed because 

we work with time series models of generally unpredictable financial returns. It is further supported by the visually stable 

dynamics of the depicted time series. Table A.3 then complements the typical graphical outputs by aggregate descriptive 

statistics and their 90% sample confidence intervals based on 10 0 0 random runs under the benchmark parameterization 

and the above-mentioned general simulation setup. We observe that even though the dynamics can be quite heterogeneous, 

there are no degenerate time series. 

3.2. Design of the simulation study 

For each financial agent-based model, we select its key parameters governing the model dynamics. Examples of these 

key parameters are, e.g., the intensity of choice governing the switching between trading strategies in the Brock and 

Hommes (1998) , Gaunersdorfer and Hommes (2007) , and Schmitt (2020) models, herding behavior intensities in the 

Gilli and Winker (2003) and Alfarano et al. (2005, 2008) models, parameters associated with the population dynamics of 

fundamentalists and chartists in the cusp catastrophe model, or the price misalignment parameter in the Franke and West- 

erhoff (2011) model, etc. We also propose a benchmark parameterization that always follows, where possible, the original 

research paper introducing the model or a most suitable follow-up research article proposing a specific model setup. The 

details for each model are presented in Section 4 . 

As we aim to focus only on a few key parameters for each model, a simple and intuitive 2D grid search design represents

a suitable methodology for our analysis. If one wanted to analyze multiple parameters in various combinations, the curse 

of dimensionality associated with this straightforward experimental approach would perhaps quickly exhaust any available 

computational resources and threaten to make the analysis infeasible, at least for the given extent of nine examined models. 

In Section 6.5 , we thus outline potential avenues for future research that could tackle this issue and enhance the potential

for an additional more extensive analysis based on, e.g., a surrogate modeling method. 

For selected pairs of parameters, we thus define a grid of parameterization setups by multiplying each benchmark pa- 

rameter value by the factors of 1 . 25 i , i ∈ {−5 , −4 , −3 , −2 , −1 , 0 , 1 , 2 , 3 , 4 , 5 } . Hence, we obtain a rich 11 rows × 11 columns

grid lattice of parameter combinations in which the benchmark parameterization appears at the middle [6 , 6] position. Thus, 

the selected grid covers an approximate range between one-third and triple of the benchmark parameter values, allowing 

studying the models’ behavior in their neighborhood in reasonable detail. The other parameters keep their benchmark val- 

ues. If not explicitly stated otherwise, this setup is implemented by default with no modifications. Exceptional adjustments 

are always emphasized in the model description. An example in which we cannot utilize the general setup is, e.g., the spec-

ification of the grid of values for a memory parameter in the Brock and Hommes (1998) model that is already set to its

theoretical borderline value within the benchmark parameterization. 

For all 121 parameter combinations, we always compare the output for the original simulated series with the output 

for a randomly shuffled series. Shuffling the original series by randomly mixing all its observations results in eliminating 

any autocorrelation links. Therefore, this comparison serves as a tool to distinguish multifractality due to a complex agent- 

based correlation structure of the given model from multifractality due to distributional properties, mostly heavy tails, of 

the underlying data generating process. 
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3.3. Detection of multifractality due to an agent-based correlation structure 

We always present two main figures with results in the format of an 11 × 11 ‘heat map’ lattice for each pair of param-

eters. The first one depicts the ‘multifractality strength.’ It displays the sample average of ratios between the multifractal 

spectra �α(q ) (5) for the original simulated series and the randomly shuffled series over all individual random runs. Sim-

ply put, based on a bootstrap, we first calculate the ratios, and subsequently, we evaluate the mean of its Monte Carlo

distribution: 

multifractality strength (q ) = 

1 

N 

N ∑ 

n =1 

�αn,original (q ) 

�αn,shu f f led (q ) 
, (8) 

where typically N = 10 0 0 random runs according to Section 3.1 . The displayed color in the heat map gradually changes from

red (dark) to pale as this ‘average multifractality ratio’ increases. 

The second heat map depicts the sample-based confidence level that the multifractality strength (8) is higher than 1. 

More specifically, it displays the fraction of individual ratios higher than 1 over all random runs: 

confidence level for multifractality (q ) = 

1 

N 

N ∑ 

n =1 

I(n, q ) , (9) 

where an indicator function I(n, q ) = 1 if 
�αn,original (q ) 

�αn,shu f f led (q ) 
> 1 and zero otherwise. 

Together, these two figures indicate the presence of a statistically significant multifractality at the 5% level if the multi- 

fractality strength (8) is > 1 and the confidence level for multifractality (9) is ≥ 0 . 95 for a given parameter combination. The

observed multifractality is then apparently driven by a complex agent-based structure of the model as in the randomly shuf- 

fled series considered in the denominator of the individual multifractality ratios, any autocorrelation dependence completely 

deteriorates. Moreover, we only present results for parameter combinations leading to at least 95% numerical stability of the 

simulated model over all random runs, ensuring that only non-diverging model setups are considered. 

To elaborate the statistical significance of the multifractality even more thoroughly, we also present a third heat map with 

the confidence levels that a given multifractality strength ratio is statistically significantly different from the one associated 

with the benchmark parametrization. This statistical hypothesis is evaluated via the standard Welch’s unequal variances t- 

test ( Welch, 1947 ) with the null hypothesis of equal means because the sample variances of the Monte Carlo distributions

of the multifractality ratios based on 10 0 0 random runs differ markedly across the grid: 

confidence level for differences = 1 − p-value of the Welch 

′ s t-test . (10) 

For a clear illustration, we depict this third type of the heat map also in the main text for the cusp and Ising models

in Fig. 1 and Fig. 2 , panel (c), but for the matter of space, for other models, we relegate it to Appendix, Fig. B.11 . Naturally,

each benchmark parameterization must be accompanied by the confidence level 0 (the darkest red), which also serves as 

a practical check of the graphical accuracy of the results. We kindly refer the reader to the GitHub repository for technical

details of implementation and graphical depiction of the heat maps. 

As a specific example, we can conclude that a model under the benchmark parameterization, usually depicted at the 

middle [6 , 6] position of the heat map lattice, generates considerable multifractal patterns due to a complex agent-based 

correlation structure if we observe the multifractality strength noticeably higher than 1 in the first heat map, and the second

heat map confirms its statistical confidence ≥ 95%. The third heat map then summarizes how statically significantly is 

the multifractality strength affected by the changes in model parametrization. And of course, the higher the multifractality 

strength and the respective confidence levels, the stronger multifractal pattern is detected. 

4. Model ‘families’ 

All financial agent-based models analyzed in this paper have already been studied w.r.t. their general multifractal proper- 

ties in a companion paper by Kukacka and Kristoufek (2020) where one can find complete formal descriptions of individual

models together with complete benchmark parameterizations. We thus only focus on the key formulas containing selected 

parameters instead of the overall model descriptions for the current analysis. We also keep the formalism of model descrip- 

tions to avoid confusion. We especially aim at explaining the role that the analyzed parameters play in the model derivation

or the impact they have on the overall model dynamics. 

The following sections structure the nine models according to their ‘lineage’ to four model ‘families’ to foster discussion 

regarding various agent-based mechanisms and key model parameters. Table 2 summarizes all presented models with their 

main features and key references. 

4.1. Oldest models inspired by other scientific disciplines 

As modern Finance is a rather young scientific discipline, it is not surprising that the first financial agent-based models 

were inspired by other scientific disciplines. Namely, Biology in the case of the cusp catastrophe model, which was devel- 

oped to explain sudden, discontinuous changes within morphogenetic processes, and Physics for the Ising model, which is 

clearly inspired by the model of ferromagnetism. 
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Fig. 1. Results for the cusp catastrophe model (1974) Note: The heat map color gradually changes from red (dark) to pale as the displayed value increases. 

The multifractality strength > 1 and the confidence level for multifratality ≥ 0 . 95 indicate the presence of a statistically significant multifractality due to 

a complex agent-based correlation structure at the 5% level. Similarly, values in panel (c) ≥ 0 . 95 indicate a statistically significant difference of the given 

ratio in panel (a) compared to the benchmark parametrization. The presented values are based on 10 0 0 random runs and rounded to one and two decimal 

digits. The confidence level 0.99 stands for ≥ 0 . 99 . Depicted parameters: α1 ...interacts with the ‘fundamental’ side of the market; β2 ...interacts with the 

‘speculative’ side of the market. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Results for the Bornholdt (2001) Ising model Note: The heat map color gradually changes from red (dark) to pale as the displayed value increases. 

The multifractality strength > 1 and the confidence level for multifratality ≥ 0 . 95 indicate the presence of a statistically significant multifractality due to a 

complex agent-based correlation structure at the 5% level. Similarly, values in panel (c) ≥ 0 . 95 indicate a statistically significant difference of the given ratio 

in panel (a) compared to the benchmark parametrization. The presented values are based on 100 random runs and rounded to one and two decimal digits. 

The confidence level 0.99 stands for ≥ 0 . 99 . Depicted parameters: α...global coupling parameter; β ...responsiveness parameter of the orientation updating 

of spins. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

4.1.1. Cusp catastrophe model (1974) 

Catastrophe Theory was proposed by Thom (1975) and one of the simplest deterministic model specifications, the cusp 

catastrophe, was suggested by Zeeman (1974) to model sudden crashes of stock markets as endogenous events triggered by 

trading activities of speculators. The model was extended to a stochastic version in Cobb (1981) by implementing a Gaussian

white noise process to the derivation of the dynamic system. Barunik and Kukacka (2015) further develop a method that
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Table 2 

Models’ presentation. 

Model Key reference Origin Objective Output Types of agents # of agents Switching mechanism 

Oldest models inspired by other scientific disciplines 

Cusp catastrophe Zeeman (1974) Biology stocks log-returns a F&C NA continuous 

Ising Bornholdt (2001) Physics stocks, FX log-returns buyers & sellers 1024 ferromagnetism 

Adaptive belief system family 

BH (1998) Brock and Hommes (1998) ABS stocks deviations b F&C unit population multinomial logistic 

GH (2007) Gaunersdorfer and Hommes (2007) ABS stocks returns naive c F&C unit population binomial logistic 

‘Ant’ herding dynamics family 

GW (2003) Gilli and Winker (2003) ANT FX price ⇒ % � F&C 100 transition probabilities 

ALW (2005) Alfarano et al. (2005) IAH stocks, FX log-returns F&noise traders unit population transition probabilities 

ALW (2008) Alfarano et al. (2008) IAH stocks, FX log-returns F&noise traders 100 noise traders sentiment index 

Structural stochastic volatility family 

FW (2011) Franke and Westerhoff (2011) IAH stocks, FX log-returns F&C majority index transition probabilities 

SW (2017) Schmitt and Westerhoff (2017) IAH, ABS stocks, FX log-returns F&C unit population binomial logistic 

Note: ‘Origin’ according to Chen et al. (2012) : ABS stands for the adaptive belief system, ANT for the ‘ant’ type of system, and IAH for the interactive 

agent hypothesis. The main ‘Objective’ shows the type of market being primarily modeled. ‘Output’ reports the type of the generated time series. ‘Types 

of agents’ stands for the kind of involved agents (F&C...fundamentalists and chartists), and the ‘# of agents’ displays their number under the benchmark 

parametrization (NA...not applicable). Finally, ‘Switching mechanism’ reports the mechanism used for dynamic updating of agents’ market fractions, where 

applicable. 
a volatility-adjusted 
b from the constant fundamental price 
c so-called Efficient Market Hypothesis believers using a naive forecasting rule 

 

 

 

 

 

 

 

 

allows for a rigorously correct application of the cusp in modeling turbulent stock market periods accompanied by strongly 

dynamic clustered volatility of stock returns. The solution is based on normalization of the stock market returns by their 

consistently estimated volatility utilizing the concept of realized variance. 

The model simulates the time-variant equilibrium surface of the stochastic cusp catastrophe potential function as: 

d y t = (αz,t + βz,t y t − y 3 t ) d t + d W 1 ,t , (11) 

where αz,t and βz,t are the control variables representing the equilibrium state of the system and W 1 ,t is the standard 

Wiener process. αz,t and βz,t further linearly depend on n independent variables z i,t , i = 1 . . . , n , t = 1 . . . , T , as follows: {
αz,t = α0 + 

∑ n 
i =1 αi z i,t , 

βz,t = β0 + 

∑ n 
i =1 βi z i,t . 

(12) 

Most importantly, the dimensions of the control space αz,t and βz,t represent the asymmetry and the bifurcation sides of 

the model. The former is better known in the economic agent-based literature under the term ‘fundamental’ and the latter 

as ‘speculative’ sides of the market. 

Benchmark The baseline parameterization follows Barunik and Kukacka (2015) : the number of independent variables 

is set to n = 2 and their realizations are drawn from the uniform distribution U(0 , 1) . Coefficients of (12) are set as: α j =
{−2 , 3 , 0 } and β j = {−1 , 0 , 4 } , j = { 0 , 1 , 2 } . 

Key parameters The setup ensures that z 1 ,t solely determines the fundamental αz,t side of the market since α2 = 0 ; and

z 2 ,t only drives the speculative βz,t side since β1 = 0 . In a trivialized real-world parable, we can think of z 1 ,t as a variable

representing fundamental investors, e.g., large institutional funds, while the variable z 2 ,t substitutes for speculative money 

in the market and trading activities of so-called chartists. Parameters governing the model dynamics are therefore α1 and 

β2 that interact with the ‘fundamental’ variable z 1 ,t or the ‘speculative’ z 2 ,t , respectively. Increasing α1 thus strengthens the 

stabilizing role of the fundamental traders during the bullish and bearish phases of the market, i.e., before and after the

crash, in which they exert the reverting pressure since they perceive the market overvalued or undervalued, respectively. 

Increasing β2 , on the other hand, supports the destabilizing forces by the speculators leading the market to the bifurcation 

region where speculators are leaving the market ‘en masse’, which may trigger a stock market crash. 

4.1.2. Bornholdt (2001) Ising model 

The Bornholdt (2001) financial market version of the Ising model parallelizes an asset market to the ferromagnetic model. 

Buyers are represented by spins with a positive ( +1 ) and sellers with a negative ( −1 ) value located in an L × L squared lat-

tice. The values of spins are dynamically updated in time so that the jth spin S j,t+1 , j = 1 . . . , L 2 , t = 1 . . . , T represents a

buyer with a probability P i,t = 1 / 
(
1 + exp (−2 βh i,t ) 

)
, where β is a responsiveness parameter, and a seller with the comple-

mentary probability. The local field h i,t : 

h i,t = 

L 2 ∑ 

j=1 

J i, j S j,t − αC i,t 

∣∣∣∣∣ 1 

L 2 

L 2 ∑ 

j=1 

S j,t 

∣∣∣∣∣, (13) 

combines the neighboring forces, where J i, j = 1 for the four nearest neighbors and zero otherwise, and the reaction to the

global prices, where α > 0 is a global coupling parameter and C i,t represents a strategy of spin i . 
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Interestingly, Cont and Bouchaud (20 0 0) suggest a related model also based on the original Ising framework that is able

to explain the relations between the observed heavy tails in the financial data and the herding behavior of investors. 

Benchmark The baseline parameterization follows Kristoufek and Vosvrda (2018) who set α = 4 , β = 2 / 3 , and L = 32 .

Due to an enormous computational burden of the model algorithm, we present results based on 100 independent runs of 

the simulation experiment instead of the usual 10 0 0 runs. 

Key parameters We study the combinations of the global coupling parameter α reflecting the strength of the minority 

game behavior and the responsiveness parameter of the orientation updating of the individual spins β . 

4.2. Adaptive belief system family 

The evolutionary switching principle based on the bi/multinomial logistic model originally introduced by Brock and 

Hommes (1997) became widely applied in the financial agent-based literature. Its financial market application leads to a 

stylized adaptive endogenous selection among a ‘menu’ of different trading strategies. The dynamics of this feedback system 

thus depend not only on the model observables and random shocks but is predominantly driven endogenously by the future 

heterogeneous expectations ( Lucas, 1978 ) of the market participants. 

4.2.1. Brock and Hommes (1998) heterogeneous agent model 

In the famous Brock and Hommes (1998) model, the population of investors is provided with a heterogeneous set of 

trading strategies, among which they choose based on the observed past profitability. Hommes (2006) suggests a compact 

notation of the system of equations that we further condense to: 

Ry t = 

H ∑ 

h =1 

x h,t−1 (g h y t−1 + b h ) + ε t , (14) 

x h,t−1 = 

exp (γ [ U h,t−1 + δU M,h,t−2 ]) ∑ H 
h =1 exp (γ [ U h,t−1 + δU M,h,t−2 ]) 

, (15) 

where (14) represents a pricing formula determining the price level of a risky asset p t = y t + p̄ , t = 1 . . . , T , in which p̄ is

the fundamental price, R is the risk-free gross interest rate, and ε t is an independent and identically distributed (i.i.d.) error

term. Most importantly, x h,t−1 are the population fractions of investors following the ‘ h -type’ ∈ { 1 , . . . , H} trading strategy

g h y t−1 + b h defined by a trend parameter g h and a bias parameter b h . While the fundamental trading strategy suggests

g h = b h = 0 , different technical trading strategies and extrapolation techniques used by chartists can be defined via various

combinations of a nonzero trend and bias parameters. (15) defines the population fraction x h,t−1 of investors using the 

trading strategy h applying the multinomial logit formula. Here, U h,t−1 is the h th recently observed profitability, U M,h,t−2 is 

its historically observed past probability determined by the ‘memory’ parameter 0 ≤ δ ≤ 1 , and γ ≥ 0 is the intensity of 

choice. 

Benchmark The baseline parameterization follows the setup suggested in Kukacka and Barunik (2013, 2017) and 

Polach and Kukacka (2019) : R = 1 . 0 0 01 , ε t ∼ N(0 , 0 . 1) , H = 2 , g 1 = b 1 = 0 , g 2 = 0 . 4 , b 2 = 0 . 3 , γ = 10 . Finally, the memory

parameter is set to δ = 0 . 99 ( Gaunersdorfer and Hommes, 2007 ). 

Key parameters Parameters governing the model dynamics comprise the specification of the switching formula (15) : 

the intensity of choice γ and the memory δ; and the trend and bias parameters from (14) : g h and b h , respectively. W.r.t.

the former pair, γ determines the willingness of investors to switch between the trading strategies based on their past 

profitability. Extreme theoretical values suggest the following behavior. For γ = 0 , there is no switching among trading 

strategies; for γ = + ∞ , all investors switch to the currently most profitable strategy during each period. For 0 ≤ γ ≤ + ∞ ,

some investors keep the ‘status quo’ but some switch to a more attractive strategy each period. Parameter δ represents the 

strength of the memory of investors since it actually dilutes the perception of the past realized profitability via a weighted

average formula. Finally, the trend and bias parameters set as g 2 > 0 and b 2 > 0 represent a trend-following strategy that is

slightly upward-biased, the combination that most likely corresponds to the average aggregate behavior of the speculative 

side of the stock markets ( Kukacka and Barunik, 2017 ). 

Importantly, the general design of the simulation study ( Section 3.2 ) needs to be partially adjusted for this model. For

δ, we set up the grid range using discrete steps applied by subtracting 0 . 004 × j, j ∈ { 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 , −1 , −2 } from the

benchmark value since δ = 0 . 99 is already very close to its theoretical border 1. This leads to the location of the benchmark

parameterization at the [9 , 6] position of the 11 × 11 grid lattice instead of the middle position for panels (a) and (b) in

Fig. 3 . For other parameters, we apply the general simulation setups. The benchmark parameterization for panels (c) and (d)

thus keeps the middle [6 , 6] position. 

4.2.2. Gaunersdorfer and Hommes (2007) model for volatility clustering 

Gaunersdorfer and Hommes (2007) propose an adaptation of the Brock and Hommes (1998) framework and enrich the 

original model in several aspects. This modification, while rather minor from the theoretical viewpoint, markedly improves 

the model ability to replicate empirically observed clustering of volatility. The expectation formation mechanism no longer 
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Fig. 3. Results for the Brock and Hommes (1998) model Note: The heat map color gradually changes from red (dark) to pale as the displayed value 

increases. The multifractality strength > 1 and the confidence level for multifratality ≥ 0 . 95 indicate the presence of a statistically significant multifractality 

due to a complex agent-based correlation structure at the 5% level. The presented values are based on 10 0 0 random runs and rounded to one and two 

decimal digits. The confidence level 0.99 stands for ≥ 0 . 99 . Depicted parameters: γ ...intensity of choice; δ...memory; g 2 ...trend extrapolation; b 2 ...bias. The 

benchmark parameterization in (a) and (b) exceptionally appears at the [9 , 6] position. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

 
follows the general specification of an ‘ h -type’ trading strategy in (14) , but, for H = 2 , the fundamentalists’ ( f ) and chartists’

( c) expectations are set as: 

{
E f,t−1 [ p t ] = p̄ + v (p t−2 − p̄ ) , 
E c,t−1 [ p t ] = p t−2 + w (p t−2 − p t−3 ) , 

(16) 
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where p t is a price level of a risky asset, t = 1 . . . , T , p̄ is the fundamental price, 0 ≤ v ≤ 1 is the fundamentalists’ parameter,

and w ≥ 0 is the trend-following parameter for chartists. 

The switching dynamics of population fractions follow (15) in the first step, but the additional step introduces a ‘penalty’

to the fraction of chartists based on an actual distance between the current price level and p̄ : {
˜ x c,t−1 = x c,t−1 exp [ −(p t−2 − p̄ ) 2 /ψ] , 
˜ x f,t−1 = 1 − ˜ x c,t−1 , 

(17) 

where ψ > 0 is the correction term. When the price deviates markedly from its fundamental value, the exponential cor-

rection in the denominator increases and effectively decreases the population fraction of chartists compared to a standard 

result of (15) . The unchanged result of the binomial switching formula (15) only applies for p t−2 = p̄ . 

Benchmark The baseline parameterization follows Gaunersdorfer and Hommes (2007) and Gaunersdorfer et al. (2008) : 

H = 2 , v = 1 , w = 1 . 9 , the fundamental price p = 10 0 0 , and the correction term ψ = 1800 . The intensity of choice and the

memory parameter in (15) are set as: γ = 2 , δ = 0 . 99 . 

Key parameters We first study the combination of parameters of the two elementary trading strategies, v and w . The

benchmark setup of v = 1 , essentially a naive forecast, already represents a ‘pure’ version of the fundamental behavior

consistent with the Efficient Market Hypothesis. Second, we focus on the combination of the intensity of choice γ (see 

Section 4.2.1 for a discussion of its impact on the model dynamics) and the correction term ψ that reflects worries of

chartists from a growing probability of a forthcoming correction due to an increasing deviation between the current and 

fundamental price. This parameter can be understood as a penalty due to a growing mispricing since it effectively hinders 

the evolution of large price deviations based on the extrapolative trend-following behavior. It thus serves as a stabilizing 

term of the system. 

The general design of the simulation study ( Section 3.2 ) again needs to be partially adjusted. For v , we set up the grid

range using discrete steps applied by subtracting 0 . 01 × j, j ∈ { 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 } from the benchmark value because

for v > 1 , the model exhibits explosive behavior. This leads to the location of the benchmark parameterization at the [6 , 11]

position of the 11 × 11 grid lattice instead of the [6 , 6] position for panels (a) and (b) in Fig. 4 . For other parameters, we

apply the general simulation setups. The benchmark parameterization for panels (c) and (d) thus keeps the middle [6 , 6]

position. 

4.3. ‘Ant’ herding dynamics family 

The third family of models follows the ‘ant dynamics’ tradition introduced by Kirman (1991, 1993) . This interesting con-

cept of herding behavior represents another frequently used principle of the dynamics of population fractions in financial 

agent-based models as it can trigger nonlinear endogenous dynamics leading to large fluctuations of the entire market. 

Based on direct interactions, agents of one sub-population can persuade and ‘recruit’ the members of another sub-population 

to join their group. 

4.3.1. Gilli and Winker (2003) model of herding 

Gilli and Winker (2003) computationally implement the Kirman (1991, 1993) model and link the herding behavior based 

on discrete interactions to the activities of FOREX market participants. Based on the notation in Barde (2016) , there are

N agents in the model divided to two subgroups: fundamentalists ( f ) and chartists ( c). The dynamics of the model are

governed by switching probabilities: {
P c→ f 

t = (1 − x t )(ε + ρx t ) , 

P f→ c 
t = x t (ε + ρ(1 − x t )) , 

(18) 

where x t represents the population fraction of fundamentalists in time t , t = 1 . . . , T , ε is the probability of a spontaneous

switch between f and c groups, and ρ is the probability of a successful recruitment. Expectations about the price p t of the

two groups are then defined as: {
E f (�p t ) = φ( ̄p − p t−1 ) , 
E c (�p t ) = p t−1 − p t−2 , 

(19) 

where φ is the adjustment speed to the fundamental price p̄ . 

Benchmark The baseline parameterization follows the original Gilli and Winker (2003) setup, where N = 100 agents, 

switching probabilities ρ = 0 . 264 and ε = 0 . 0 0 01 , the adjustment speed φ = 0 . 0225 , and the fundamental price p = 10 0 0 . 

Key parameters Naturally, we first focus on the probabilities of a spontaneous switching ε and of a successful recruit- 

ment ρ as the key drivers of the dynamics of the model. Increasing both probabilities is hypothesized to have an increasing

impact on modeling complexity. Second, we also study the impact of the adjustment speed on the fundamental price φ
and the number of individual traders in the model N, rounded to integer values. Increasing N can be generally expected to

have a positive impact on the complexity of the model since a model populated by more agents can intuitively exhibit more

complex behavior. The impact of the adjustment speed φ is kept without prior expectation. 
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Fig. 4. Results for the Gaunersdorfer and Hommes (2007) model Note: The heat map color gradually changes from red (dark) to pale as the displayed value 

increases. The multifractality strength > 1 and the confidence level for multifratality ≥ 0 . 95 indicate the presence of a statistically significant multifractality 

due to a complex agent-based correlation structure at the 5% level. The presented values are based on 10 0 0 random runs and rounded to one and two 

decimal digits. The confidence level 0.99 stands for ≥ 0 . 99 . Depicted parameters: v ...fundamentalists’ parameter; w ...trend-following parameter for chartists; 

γ ...intensity of choice; ψ ...mispricing correction for trend followers. The benchmark parameterization in (a) and (b) exceptionally appears at the [6 , 11] 

position. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

4.3.2. Alfarano, Lux, and Wagner (2005) model of asymmetric herding 

The model by Alfarano et al. (2005) generalizes the concept of the ‘ant mechanics’ by implementation of asymmetric 

herding tendencies. There are two subpopulations of N market participants consisting of n t fundamentalists ( f ), who be- 

lieve in price reversals to the fundamental value, and N − n t chartists ( c), who are essentially noise-traders. The population
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fractions dynamically update according to asymmetric switching probabilities: {
P c→ f 

t = (N − n t )(ε 1 + n t ) ρ, 

P f→ c 
t = n t (ε 2 + (N − n t )) ρ, 

(20) 

where ε 1 and ε 2 are parameters governing asymmetric probabilities of a spontaneous switch from c → f or from f → c,

respectively, and ρ is a probability of a successful recruitment. 

Benchmark The baseline parameterization follows Alfarano et al. (2005) : ε 1 = 16 , ε 2 = 4 . 9 , and ρ = 0 . 0025 . The number

of market participants is not calibrated since an analytical solution for the model is derived for large N. 

Key parameters There are three parameters of the model presumably influencing the complexity of the model. The 

parameters ε 1 and ε 2 have a positive impact on the switching probabilities of fundamentalists and chartists, respectively, 

so one might also expect them to be positively associated with the complexity of the model, which is a rationale partially

based on the results of the Gilli and Winker (2003) model. On the other hand, since both parameters are solely associated

with spontaneous switching and there is also a probability parameter of a successful recruitment ρ that represents the 

strength of the herding tendency of the model participants, one might preferably expect ρ to be positively associated with 

model complexity and keep the expectation about the impact of ε 1 and ε 2 undefined. 

4.3.3. Alfarano, Lux, and Wagner (2008) model 

The model by Alfarano et al. (2008) no longer implements asymmetric herding behavior of its predecessor ( Alfarano et al.,

2005 ). There is a subpopulation of fundamentalists and a subpopulation of n c noise traders in the model. Noise traders

are characterized by a dynamic switching process of opinion changes between an optimistic and a pessimistic mood that 

governs the overall herding dynamics of the model. The transition probabilities are determined by the Poisson intensity 

a ≥ 0 of autonomous switching and the ‘herding-based’ pairwise switching rate b ≥ 0 . The case of b > a is associated with an

intensive herding that leads to strong majorities of optimistic or pessimistic noise traders. The model is then characterized 

by a bimodal distribution of the sentiment index x t ∈ 〈−1 , 1 〉 : 

d x t = 

2 n o,t 

n c 
− 1 = −2 ax t d t + 

√ 

2 b(1 − x 2 t ) + 

4 a 

n c 
d B 2 ,t , (21) 

d ̄p t = σ f d B 1 ,t , (22) 

where n o,t represents the number of optimistic noise traders at time t , t = 1 . . . , T , B 1 ,t and B 2 ,t are independent Wiener pro-

cesses, p̄ t denotes the log fundamental price, and σ f ≥ 0 is the standard deviation of innovations to the fundamental price. 

The sentiment index x t = 0 for a balanced sentiment and reaches positive or negative values for optimistic or pessimistic

majorities of noise traders. 

Benchmark The baseline parameterization follows Ghonghadze and Lux (2016) and Chen and Lux (2018) and their 

Langevin approximation of the model, where n c = 100 , a = 0 . 0 0 03 , b = 0 . 0 014 , and σ f = 0 . 03 . 

Key parameters Naturally, the intensity a ≥ 0 governing autonomous switches of opinion together with the rate b ≥ 0 of 

‘herding-based’ pairwise switching are the key parameters influencing the model dynamics and presumably also the model 

complexity. We hypothesize that both have a positive impact on the multifractal behavior of the model. Additionally, we 

study the impact of the standard deviation of fundamental innovations σ f together with the number of noise traders n c ,

rounded to integer values. Increasing the number of noise traders is expected to increase the complexity of the model, 

whereas for the magnitude of innovations, one can argue both ways: larger innovations are likely to support nonlinear 

dynamics of the model that might lead to higher complexity of the system, but, on the other hand, smaller innovations

might make the system less stochastic, leading to higher predictability. 

4.4. Structural stochastic volatility family 

Other successors of the Kirman (1993) tradition of the ‘ant’ herding mechanism are Franke and Westerhoff (2011, 2016) . 

However, the authors further emphasize the concept of structural stochastic volatility as an important source of complex 

dynamics supporting the financial stylized facts replication. 

4.4.1. Franke and Westerhoff (2011) structural stochastic volatility model 

In the Franke and Westerhoff (2011, 2016) model, there are N market participants in the model, n t fundamentalists ( f ) 

and N − n t chartists ( c). The majority index is defined as x ′ t ∈ 〈−1 , 1 〉 = (2 n t − N ) /N and reaches its maximum for a market

populated only by fundamentalists. Switching probabilities follow: {
P c→ f 

t = ν exp ( s t ) , 

P f→ c 
t = ν exp ( −s t ) , 

(23) 

where ν represents a flexibility parameter and s t is the switching index: s t = a 0 + a x ′ x ′ t−1 + a d (p t−1 − p̄ ) 2 , where a 0 is an

autonomous switching parameter, a x > 0 is a herding parameter, a d > 0 determines the influence of price misalignment, and

p̄ is the log fundamental price. 
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The excess demand functions are defined as: {
d f t = φ( ̄p − p t ) + u 

f 
t , 

d c t = χ(p t − p t−1 ) + u 

c 
t , 

(24) 

where φ and χ are adjustment parameters for fundamentalists and chartists, respectively, and i.i.d. u 
f 
t ∼ N(0 , σ 2 

f 
) and u c t ∼

N(0 , σ 2 
c ) amend each of the excess demands with a group-specific stochastic noise. 

Benchmark The baseline parameterization follows Franke and Westerhoff (2016) : the flexibility parameter ν = 0 . 05 ; a 0 = 

−0 . 155 , a x = 1 . 299 , and a d = 12 . 648 ; p̄ = 0 ; the excess demand parameters φ = 0 . 198 and χ = 2 . 263 ; σ f = 0 . 782 and σc =
1 . 851 . 

Key parameters In the grid analysis, we first tune the price misalignment a d and the flexibility parameter ν . As a d in

fact drives the mean-reversion tendency, i.e., decreases the propensity to switch and stabilizes the model, while increasing ν
increases the switching probabilities, one might expect the model complexity to be negatively related to a d and positively to

ν . We further study the impact of the two adjustment parameters φ and χ . Because fundamentalists serve as a stabilizing

force of the market while chartists destabilize the system, one might expect the model complexity to be positively related 

to φ and negatively to χ . 

4.4.2. Schmitt and Westerhoff (2017) model with sunspots 

The agent-based model by Schmitt and Westerhoff (2017) represents a simple large-scale framework that shares many 

common features with the Franke and Westerhoff (2011) model but also the binomial logistic switching mechanism with 

the Adaptive belief system family. While individual market participants are characterized by their own individual trading 

rules, under a set assumptions, e.g., a large number of agents, the large-scale model can be translated into a small-scale

version. One of the main distinguishing innovations is that the stochastic errors for the individual trading rules are not 

independently distributed. Instead, they follow a multivariate-normal distribution with a time-varying covariance structure. 

In case of high mutual correlation, occasional ‘sunspot’ occurrences influence the model dynamics. The ‘sunspots’ represent 

various rare but crucial real-world financial market events, e.g., an unexpected exogenous shock with potential to trigger an 

extreme market episode or a strong short-term influence by opinion leaders. 

We analyze the ‘S-CF’ model version, where sunspots can influence the behavior of both chartists and fundamentalists. 

There are N agents in the model and the time-varying variance-covariance matrices of the error distributions are character- 

ized by elements ρC = X C /N and ρF = X F /N, where X C , X F follow: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

X 

C 
t−1 = 

{
X 

C,h with probability S C 

X 

C,l with probability 1 − S C , 

X 

F 
t−1 = 

{
X 

F,h with probability S F 

X 

F,l with probability 1 − S F , 

(25) 

where X C,h , X C,l , X F,h , X F,l define the (l)ow and (h)igh boundaries, and S C , S F represent sunspot event probabilities for proba-

bilities for chartists and fundamentalists, respectively. The market fraction of chartists follows: 

W 

C 
t−1 = 

1 

1 + exp 

(
γ [ b 0 + b H (1 − 2 W 

C 
t−2 

) + b M (F − P t−2 ) 2 ] 
), (26) 

where γ is the intensity of choice, and b 0 , b H , and b M represent the predisposition, herding, and price misalignment param-

eters, respectively. The parameters in (26) are homogeneous for the whole model population. 

Benchmark The baseline parameterization follows Schmitt and Westerhoff (2017 , Table 2, S-CF, Fig. 5): X C,h = 20 , X F,h =
40 , S C = 0 . 009 , S F = 0 . 005 ; γ = 1 , b 0 = −0 . 336 , b H = 2 . 446 , b M = 19 . 671 . 

Key parameters We first study the combination of the sunspot events probabilities S C , S F associated with the behavior of

chartists and fundamentalists, respectively. Since sunspots represent completely unpredictable stochastic market events, one 

might hypothesize both probabilities to be negatively associated with model complexity. Based on experience with analysis 

of the Franke and Westerhoff (2011) model, we further study the impact of the price misalignment parameters b M and 

the intensity of choice γ , which is not implemented in the Franke and Westerhoff (2011) model. As these two parameters 

appear in the denominator of (26) , their increase tends to reduce the fraction of fundamentalists in the market. 

5. Results and interpretation of the multifractal analysis 

5.1. Oldest models inspired by other scientific disciplines 

5.1.1. Cusp catastrophe model (1974) 

Fig. 1 depicts the results for the cusp model. The middle [6 , 6] positions of the heat map lattice with the benchmark

parameterization suggest that while panel (a) displays an average ratio between the estimated multifractal spectrum �α(q ) 

for the original simulated series and the randomly shuffled series of 3.4, this ratio is significantly higher than 1 only at the

78% confidence level (panel b). That means it is not significantly higher than 1 even at the 20% level. Such a seemingly
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contradictory behavior indicates that while the multifractality strength ratios based on some individual random runs of 

the model are very high, leading to an average of 3.4, however, only 78% of the runs lead to an individual ratio higher

than 1. This result is naturally comparable with the conclusions of Kukacka and Kristoufek (2020) because the middle [6 , 6]

positions of the heat map lattice follow the identical benchmark parameterization. 

More importantly, we observe a clear pattern of a potential multifractality evolution within the grid of parameter combi- 

nations. The multifractality strength due to the agent-based correlation structure of the cusp model slightly increases in the 

‘North-North-West’ and the ‘North-North-East’ directions from the middle [6 , 6] position, i.e., with decreasing the β2 param- 

eter, while significantly decreases in the ‘South-East’ direction, i.e., with increasing both key parameters. However, for any 

parameter combination, the multifractality remains clearly statistically insignificant at standard levels as captured in panel 

(b), although an increasing tendency of the confidence level follows the same direction as for the increasing multifractality 

strength. 

Panel (c) then provides additional information about the statistical confidence of differences between the specific multi- 

fractality strength ratios vs. the benchmark middle [6 , 6] position based on the Welch’s unequal variances t-test. Although 

the individual multifractality measures remain statistically insignificant according to panel (b), the numerical differences 

among them gain even strong statistical significance following similar directions as for the above-commented increases and 

decreases of the multifractality strength. 

To conclude, the multifractal sensitivity analysis extends the parameterization-specific results of Kukacka and Kris- 

toufek (2020) ; however, it still does not suggest any considerable multifractal properties of the cusp catastrophe model 

even under a rich grid of proposed parameterizations of the key model parameters. 

5.1.2. Bornholdt (2001) Ising model 

Fig. 2 depicts the results for the Bornholdt (2001) Ising model. The benchmark [6 , 6] positions reveal a considerable

multifractality strength of 5.6 (panel a), which is, however, statistically significantly higher than 1 only at the 63% confidence 

level (panel b). 

Most importantly, the global coupling parameter α does not seem to have any systematic impact on the complexity of the 

model. W.r.t. the responsiveness parameter β , its increasing value is associated with an increasing multifractality strength 

for lower βs reaching the highest values for and slightly above the benchmark parametrization. On the contrary, β ≥ 1 . 04

and higher lead to a numerical divergence of the model. This is an expected outcome as the original Ising model has a

critical temperature of a transition from a ferromagnet to a paramagnet that depends on β for a given α ( Bornholdt, 2001 ).

In the analyzed model, for high β , any positive/negative h then means ‘buy’/‘sell,’ and the system quickly converges to the

situation of zero returns, and it actually collapses. Such situations are represented by black positions in the grid of results. 

We can observe the highest confidence levels of the multifractal properties under β = 0 . 43 . This finding has a clear

interpretation from the field of physics as for α = 0 in the original Ising model, the critical temperature 1 /β = 2 . 269 ⇒ β
. =

0 . 44 . However, the confidence level that the multifractality strength is significantly higher than 1 never exceeds 80% (panel

b) irrespective of the value of α. 

Finally, the statistical significance of multifractality differences w.r.t the benchmark middle [6 , 6] position reported in 

panel (c) suggests a rather clear pattern: multifractality strengths are generally not statistically significantly different at the 

5% level in the close neighborhood of the benchmark parameterization, but again, under already highlighted β = 0 . 43 and

lower, their differences gain increasing statistical significance. 

To conclude, our analysis mainly supports the setup of the responsiveness parameter β around the benchmark value, 

which produces one of the strongest multifractal behaviors. In contrast, the global coupling parameter α does not exhibit 

any systematic impact. However, the level of multifractality driven by a complex agent-based correlation structure of the 

model is statistically insignificant for any combination of these two key parameters. 

5.2. Adaptive belief system family 

5.2.1. Brock and Hommes (1998) heterogeneous agent model 

Fig. 3 , panels (a) and (b), depict the results for the intensity of choice γ and the memory δ. The benchmark [9 , 6] po-

sitions suggest a considerable multifractality strength of 3.0 (panel a), which is, however, statistically higher than 1 only at 

the 78% confidence level (panel b). Nonetheless, we can observe a pattern of further multifractality evolution. The multi- 

fractality due to the agent-based correlation structure markedly increases in the ‘South-East-East’ and the ‘North-East-East’ 

directions from the benchmark [9 , 5] positions, i.e., with increasing γ even keeping δ fixed or with increasing both. It also

gains statistical confidence in the same direction: already for the circa doubled γ = 19 . 53 , even when benchmark δ is fixed,

we observe a strongly statistically significant multifractality driven by a complex agent-based structure of the model repre- 

sented by the average multifractality ratio (panel a) of 5.0 and the 96% confidence level. In contrast, combinations in other

directions from [9 , 6] reveal decreasing multifractal patterns. 

Fig. 3 , panels (c) and (d), depict the results for the trend and bias parameters g 2 and b 2 , respectively, and report a very

robust and strong pattern of the multifractal behavior for the model. The multifractality due to the correlation structure 

strongly increases in the ‘South-East’ direction from the benchmark [6 , 6] positions, i.e., increasing both parameters. Already 

for the benchmark g 2 = 0 . 4 and b 2 = 0 . 469 , the ratio of 6.7 represents a strongly significant multifractality strength as cap-

tured by the 99% confidence level that it is indeed statistically higher than 1. For higher parameterizations of b , even lower
2 
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values of g 2 still reveal strong and statistically significant multifractality driven by a complex agent-based structure of the 

model. 

Assessment of the statistical significance of multifractality differences across the grid of parametrizations can be found 

in Fig. B.11 , panels (a) and (b). In both cases, most or parametrizations lead to strongly statistically significantly different

multifractality ratios. Still, there are apparent ‘border lines’ linked to the benchmark positions [9 , 6] and [6 , 6] that naturally

separate areas with lower and higher multifractality as detected above. 

To summarize, our results reveal that a partially puzzling behavior and a ‘negative’ conclusion about the multifractal 

characteristics of the Brock and Hommes (1998) model in Kukacka and Kristoufek (2020) are markedly parameterization- 

specific. Under the increasing intensity of choice γ and/or the bias b 2 and trend g 2 parameters, we observe a significant

multifractality suggesting high and even increasing complexity of the model. 

5.2.2. Gaunersdorfer and Hommes (2007) model for volatility clustering 

Fig. 4 , panels (a) and (b), depict the results for the fundamentalists’ parameter v and the trend-following parameter w .

The benchmark [6 , 11] positions reveal a considerable multifractality strength of 4.6 (panel a), which is statistically signif- 

icantly higher than 1 at the 96% confidence level (panel b). Importantly, only the benchmark value v = 1 in combination

with above-benchmark values of w and the value v = 0 . 99 exhibit statistically significant multifractal behavior based on

confidence levels ≥ 95% . The multifractality strength and confidence level then slightly increase with increasing w while 

both metrics clearly deteriorate with decreasing both parameters. 

Fig. 4 , panels (c) and (d), depict the results for the intensity of choice γ and the trend following the correction term

ψ . The multifractality behavior due to the agent-based correlation structure of the model generally increases and becomes 

statistically significant in the ‘South-West’ direction from the benchmark [6,6] positions, i.e., with increasing ψ surprisingly 

supported by decreasing γ . In other words, both a higher mispricing penalty and a less intensive switching of agents be-

tween trading strategies likely slow down the dynamic behavior of the model, which markedly supports its multifractal 

features. 

Statistical significance of multifractality differences across the grid can be found in Fig. B.11 , panels (c) and (d). The

former reports a clear statistical significance for almost all parametrizations except the ones in the closest surroundings 

of the benchmark [6 , 11] position, while the latter reveals a relatively wide, slightly downward-sloping band of statistical 

insignificance separating areas with lower and higher multifractality as detected above. 

To summarize, our grid analysis considerably extends and enriches the parameterization-specific results of Kukacka and 

Kristoufek (2020) . Surprisingly, the multifractal behavior of the model is mostly associated with increasing the mispricing 

correction term ψ and decreasing the intensity of choice γ . This is rather counterintuitive as it contradicts results for the 

original Brock and Hommes (1998) model in which an increasing complexity of the model is associated with increasing 

intensity of choice (see Section 5.2.1 ). Also, increasing the trend-following parameter w leads to a significant multifractality 

for the two highest values of the fundamentalists’ parameter v , i.e., for models with (almost) completely naive fundamental 

forecasters. 

5.3. ‘Ant’ herding dynamics family 

5.3.1. Gilli and Winker (2003) model of herding 

Fig. 5 , panels (a) and (b), depict the results for the transition probabilities ε and ρ . While the benchmark [6 , 6] positions

suggest a considerable multifractality strength of 7.8 (panel a) but the respective confidence level of 89% (panel b) re- 

mains beyond standard statistical significance levels. However, we can observe a clear pattern of the multifractality changes 

in the grid of parameters. The multifractality strength generally increases in the ‘South-East’ direction and markedly de- 

creases in the ‘South-West’ direction from the benchmark [6 , 6] positions, i.e., it generally increases/decreases with increas- 

ing/decreasing spontaneous switching probability ε supported, in addition, by the increasing recruitment probability ρ . The 

confidence levels (panel b) suggest that the key multifractal parameter in the model is the spontaneous switching proba- 

bility ε since only for its above-benchmark values does the model exhibit a statistically significant multifractality due to 

an agent-based correlation structure, as captured by the levels ≥ 0 . 95 . The confidence levels also slightly decrease with

increasing the probability ρ but at a considerably slower speed. 

Fig. 5 , panels (c) and (d), depict the results for the adjustment speed φ to the fundamental price and the number of

agents N in the model. In general, while the multifractality strength due to the correlation structure of the model increases 

with the growth of both parameters (panel c), it only gains statistical significance with the decreasing number of agents N

(panel d). 

Fig. B.11 , panels (e) and (f) detect large subsets of the grid parametrizations leading to statistically indifferent multifrac- 

tality levels. The multifractality differences gain statistical significance only in the directions of a considerable decrease or 

increase of the multifractality strength. 

To summarize, one of the key parameters responsible for the complex behavior of the Gilli and Winker (2003) model is

the probability of a spontaneous switching ε for which an increase gives rise to statistically significant multifractal behavior. 

For high values of ε, the probability of successful recruitment ρ further contributes to the complexity of the model. These 
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Fig. 5. Results for the Gilli and Winker (2003) model Note: The heat map color gradually changes from red (dark) to pale as the displayed value increases. 

The multifractality strength > 1 and the confidence level for multifratality ≥ 0 . 95 indicate the presence of a statistically significant multifractality due to a 

complex agent-based correlation structure at the 5% level. The presented values are based on 10 0 0 random runs and rounded to one and two decimal digits. 

The confidence level 0.99 stands for ≥ 0 . 99 . Depicted parameters: ε...spontaneous switching probability; ρ ...recruitment probability; φ...fundamentalists’ 

adjustment speed; N...number of agents. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
results confirm our expectation about a positive impact of the switching probabilities on the model complexity. Contrary to 

our expectation, the number of agents N appears negatively associated with the model’s complexity as only low values of N

lead to strongly significant multifractality. 
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Fig. 6. Results for the Alfarano et al. (2005) model Note: The heat map color gradually changes from red (dark) to pale as the displayed value increases. 

The multifractality strength > 1 and the confidence level for multifratality ≥ 0 . 95 indicate the presence of a statistically significant multifractality due to 

a complex agent-based correlation structure at the 5% level. The presented values are based on 10 0 0 random runs and rounded to one and two decimal 

digits. The confidence level 0.99 stands for ≥ 0 . 99 . Depicted parameters: ε 1 ...governs spontaneous switching probability for fundamentalists; ε 2 ...governs 

spontaneous switching probability for chartists; ρ ...recruitment probability. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

5.3.2. Alfarano, lux, and wagner (2005) model of asymmetric herding 

Fig. 6 , panels (a) and (b), depict the results for the parameters ε 1 and ε 2 governing the spontaneous switching probabil-

ities. The benchmark [6 , 6] positions suggest a considerable multifractality strength of 4.1 (panel a), and panel (b) provides

evidence of its 97% statistical confidence. We also observe that for parameter combinations of a below-benchmark value of 

ε , especially combined with above-benchmark values of ε , the model numerically diverges. 
2 1 

342 



J. Kukacka and L. Kristoufek Journal of Economic Behavior and Organization 192 (2021) 324–356 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regarding ε 1 and ε 2 , the multifractality due to the model correlation structure markedly increases from the benchmark 

[6 , 6] position as ε 1 decreases while ε 2 remains stable or increases. Thus, the two parameters governing spontaneous switch-

ing probability seem to have an opposite impact on the model complexity, at least in a subsector of the grid lattice of model

parameterizations. 

Fig. 6 , panels (c) and (d), depict the results for ε 1 governing the spontaneous switching probability for fundamentalists,

and the recruitment probability/herding tendency ρ . For the above-benchmark combinations of both parameters, the model 

numerically diverges; however, we can observe a clear pattern of the multifractality changes in the remaining two quadrants 

of the parameters grid. The model complexity clearly increases and gains statistical significance in the ‘North-West’ direction 

from the benchmark [6,6] position, i.e., with ε 1 decreasing while ρ increases. 

Assessment of the statistical significance of multifractality differences across the grid of parametrizations can be found 

in Fig. B.11 , panels (g) and (h). In both cases, most or parametrizations lead to strongly statistically significantly different

multifractality ratios but there are apparent insignificant ‘border lines’ linked to the benchmark positions that separate areas 

with lower and higher multifractality detected above. 

To conclude, our analysis again markedly extends the parameterization-specific results of Kukacka and Kris- 

toufek (2020) where the Alfarano et al. (2005) model displays a puzzling multifractal behavior. The two crucial parameters 

triggering multifractal behavior of the model are the ε 1 decreasing the fundamentalists’ spontaneous switching probability 

and the increasing herding tendency ρ . The latter results follow our expectations as well as agree with the results for the

Gilli and Winker (2003) model from the same ant mechanics family. The former also makes intuitive sense, although it is

consistent with the results of the previous model only in the decreasing direction. 

5.3.3. Alfarano, Lux, and Wagner (2008) model 

Fig. 7 , panels (a) and (b), depict the results for the a intensity of autonomous switches and b herding rate. The bench-

mark [6 , 6] positions suggest a considerable multifractality strength of 3.5 (panel a), but the respective confidence level of

86% (panel b) remains beyond standard statistical significance levels. However, one can observe a clear pattern of an in- 

creasing multifractality due to the agent-based correlation structure in the ‘South-East’ direction, i.e., with increasing both 

key parameters while decreasing in the opposite direction. For combinations with higher values of calibrated parameters, it 

also clearly gains statistical significance. 

Fig. 7 , panels (c) and (d), depict the results for the standard deviation σ f and the number of noise traders n c . Surprisingly,

in contrast to our expectations, the number of noise traders does not impact the complexity of the model. The numerical

differences in the individual columns of panels (c) and (d), to which different parameterizations of n c are associated, can be

safely attributed to the stochastic nature of the Monte Carlo analysis. The impact of the standard deviation σ f then seems

to follow our latter explanation, i.e., the decreasing magnitude of innovations leads to higher predictability. We observe a 

statistically significant multifractal behavior for the four lowest parameter values of σ f = { 0 . 01 , 0 . 012 , 0 . 015 , 0 . 019 } . 
Similarly to the Alfarano et al. (2005) model, Fig. B.11 , panels (i) and (j) detect clear ‘border lines’ across the grid that

separate areas with statistically significantly lower and higher multifractality detected above. 

To conclude, this sensitivity analysis markedly enriches the knowledge about the complex behavior of the 

Alfarano et al. (2008) . The two crucial parameters governing the dynamics of the model, the intensity of autonomous 

switches a and the herding rate b, can also trigger statistically significant multifractal behavior under the parameter combi- 

nation with high values. Surprisingly, the number of noise traders who switch between the optimistic and pessimistic mood, 

i.e., the model’s dynamic core, does not impact the model complexity. Finally, the magnitude of the fundamental innovations 

σ f can increase the system’s complexity via its stabilization. 

5.4. Structural stochastic volatility family 

5.4.1. Franke and Westerhoff (2011) structural stochastic volatility model 

Fig. 8 , panels (a) and (b), depict the results for the price misalignment parameter a d and the flexibility parameter ν . The

benchmark [6 , 6] positions suggest a considerable multifractality strength of 5.6 (panel a), and panel (b) provides evidence 

of its ≥ 0 . 99 statistical confidence. The model thus exhibits strongly statistically significant multifractal features directly 

under the benchmark parameterization. We can then observe further slight evolution of increasing multifractality in the 

‘North-West-West’ direction from the benchmark [6 , 6] positions, i.e., with decreasing both the price misalignment param- 

eter and the flexibility parameter. On the other hand, especially in the ‘North-East’ direction, i.e., with increasing the price 

misalignment parameter while decreasing the flexibility parameter, the model generally loses its multifractal properties. 

Fig. 8 , panels (c) and (d), depict the results for the adjustment parameters for fundamentalists ( φ) and chartists ( χ ),

respectively. In contrast to our expectations, χ does not seem to have any important impact on the model complexity as 

directly seen from the ‘column-shaped’ structure of Fig. 8 . On the other hand, the multifractality tends to slowly grow

from the benchmark [6 , 6] positions with increasing φ. On the contrary, it gradually declines with decreasing φ and even

deteriorates w.r.t. the statistical confidence for its smallest values. 

Assessment of the statistical significance of multifractality differences across the grid of parametrizations can be found in 

Fig. B.11 , panels (k) and (l). Importantly, the slight evolution of increasing multifractality in the ‘North-West-West’ direction 

detected in Fig. 8 , panels (a), see above, is only associated with an unclear significance pattern at the 5% level. On the other

hand, the multifractality decrease in the ‘North-East’ direction is clearly statistically significant. Panel (l) then displays a 
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Fig. 7. Results for the Alfarano et al. (2008) model Note: The heat map color gradually changes from red (dark) to pale as the displayed value increases. 

The multifractality strength > 1 and the confidence level for multifratality ≥ 0 . 95 indicate the presence of a statistically significant multifractality due to 

a complex agent-based correlation structure at the 5% level. The presented values are based on 10 0 0 random runs and rounded to one and two decimal 

digits. The confidence level 0.99 stands for ≥ 0 . 99 . Depicted parameters: a ...intensity of autonomous switching; b...herding rate; σ f ...standard deviation of 

fundamental innovations; n c ...number of noise traders. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

similar pattern observed for the Alfarano et al. (2008) model with, in this case, a relatively wide, vertical band separating

areas with statistically higher and lower multifractality. 

To summarize, our analysis confirms statistically significant multifractal features of Franke and Westerhoff (2011) for a ro- 

bust grid of parameter values. The crucial drivers of the model complexity are, in line with our expectations, the decreasing

price misalignment parameter a d and increasing adjustment parameters for fundamentalists φ, both stabilizing the model 
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Fig. 8. Results for the Franke and Westerhoff (2011) model Note: The heat map color gradually changes from red (dark) to pale as the displayed value 

increases. The multifractality strength > 1 and the confidence level for multifratality ≥ 0 . 95 indicate the presence of a statistically significant multifrac- 

tality due to a complex agent-based correlation structure at the 5% level. The presented values are based on 10 0 0 random runs and rounded to one 

and two decimal digits. The confidence level 0.99 stands for ≥ 0 . 99 . Depicted parameters: a d ...price misalignment parameter; ν ...flexibility parameter; 

φ...fundamentalists’ adjustment parameter; χ ...chartists’ adjustment parameter. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

dynamics. Surprisingly, parameters ν and χ with a destabilizing impact that support the model dynamics do not seem to 

have any important impact on model complexity. 

5.4.2. Schmitt and Westerhoff (2017) model with sunspots 

Fig. 9 , panels (a) and (b), depict the results for the probabilities S C , S F . The benchmark [6 , 6] positions reveal a consid-

erable multifractality strength of 3.5 (panel a), which is statistically significantly higher than 1 at the 97% confidence level 
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Fig. 9. Results for the Schmitt and Westerhoff (2017) model Note: The heat map color gradually changes from red (dark) to pale as the displayed value 

increases. The multifractality strength > 1 and the confidence level for multifratality ≥ 0 . 95 indicate the presence of a statistically significant multifractality 

due to a complex agent-based correlation structure at the 5% level. The presented values are based on 10 0 0 random runs and rounded to one and two 

decimal digits. The confidence level 0.99 stands for ≥ 0 . 99 . Depicted parameters: S C ...chartists’ sunspot probability; S F ...fundamentalists’ sunspot probability; 

b M ...price misalignment parameter; γ ...intensity of choice. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

(panel b). We can then observe a regular but slight tendency to multifractality increase in the ‘North-West’ direction, i.e., 

with decreasing both sunspot events probabilities, which follows our expectation. Moreover, according to panel (b), statisti- 

cal significance at the 5% level is reached under most of the parameterizations. 

Fig. 9 , panels (c) and (d), depict the results for the price misalignment parameters b M and the intensity of choice γ .

The results suggest that the benchmark [6 , 6] parameterization and its close neighborhood, especially γ = 1 , gives rise to

almost the highest and statistically significant multifractality at the 5% level. Importantly, the multifractality strength and 
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the related confidence level generally strongly deteriorate for above-benchmark values of γ as well as in the ‘North-West’ 

direction, i.e., for the smallest values of γ when combined with the smallest values of b M . 

Similarly to the Gaunersdorfer and Hommes (2007) model, panel (d), Fig. B.11 , panels (m) and (n) detect wide ‘border

lines’ across the grid that naturally contain the benchmark [6 , 6] positions and separate areas with statistically significantly 

lower and higher multifractality detected above. 

To conclude, our analysis enriches the parameterization-specific knowledge about the multifractal properties of the 

Schmitt and Westerhoff (2017) model obtained by Kukacka and Kristoufek (2020) . There is a slight impact of the sunspot 

probabilities S C , S F ; however, a statistically significant multifractal behavior is only observed for the benchmark parameteri- 

zation and its close neighborhood, especially for γ = 1 . 

6. Discussion and conclusions 

6.1. Generalization of results 

The multifractal sensitivity analysis of the heterogeneous set of nine financial agent-based models delivers several com- 

mon results or general patterns regarding the influence of the parameter values on model complexity. For most of the 

models, our findings markedly extend the parameterization-specific results of Kukacka and Kristoufek (2020) . However, for 

the cusp catastrophe model ( Fig. 1 ), the Bornholdt (2001) Ising model ( Fig. 2 ), and to some extent for the Schmitt and West-

erhoff (2017 , Figure 9) model with sunspots, only a nondescript impact of model parameterization on their complexity can 

be observed. Surprisingly, such a conclusion regards the oldest models (cusp catastrophe, Ising, see Section 4.1 ) as well as

the most recent model of our set. One might suggest that the complexity of financial agent-based models likely increases 

over time as more complicated modeling frameworks are being developed. Our analysis, however, argues that this is not a 

general tendency since already some of the first financial agent-based models have exhibited very complex behavior under 

specific parameterizations, and the pattern of an overall multifractality strength goes up and down in time. 

Our updated methodology for multifractality detection further helps to uncover a richer multifractal behavior for the 

Gaunersdorfer and Hommes (2007) , Alfarano et al. (2005) , and Schmitt and Westerhoff (2017) models even under their 

benchmark parameterizations (see Figs. 4, 6, 9 ) which appeared puzzling or statistically insignificant at the 5% level in

Kukacka and Kristoufek (2020) . Although, this paper does not study the increasing ability of multifractality detection with 

increasing sample size, which we keep fixed in our sensitivity analysis. For the other five not yet mentioned models, we ob-

serve patterns of complexity evolution associated with specific model parameters. This is an especially important result for 

the Brock and Hommes (1998 , Figure 3) model that, under the benchmark parameterization, does not meet the multifractal 

criteria of the Kukacka and Kristoufek (2020) analysis and displays a partially puzzling behavior. 

6.2. Common findings and apparent contradictions 

As the four suggested model families (see Table 2 ) share similar modeling concepts, it is crucial to study some generally

observed patterns or, on the other hand, apparent contradictions. For this purpose, one always needs to consider the inter- 

section of information contained in all three heat maps for each parameter combination. First, we can conclude that param- 

eters associated with the herding behavior of agents represented by the recruitment probability ( Gilli and Winker, 2003 , Fig-

ure 5 (a) and (b), par. ρ) or herding rate ( Alfarano et al., 2008 , Figure 7 (a) and (b), par. b) generally exhibit a strong impact

on model complexity as their increase leads to increase and statistical significance of multifractality. For the Alfarano et al.

(2005 , Figure 6 (c) and (d), par. ρ) model, increases of the recruitment probability lead to numerical divergence, but its

decrease is also associated with statistically significant changes of the multifractality strength. This is an intuitive result 

since the herding behavior is likely associated with the formation of complex agent-based correlation structures. A similar 

impact can be clearly observed for the Adaptive belief system family for increasing trend extrapolation parameters ( Fig. 3 (c)

and (d), par. g 2 ; and Fig. 4 (a) and (b), par. w ), essentially replacing the herding mechanism within the multinomial logistic

switching framework. 

Second, various parameters with a stabilizing impact, e.g., memory in the Brock and Hommes (1998 , Figure 3 (a) and

(b), par. ρ) model, the mispricing correction parameter in the Gaunersdorfer and Hommes (2007 , Figure 4 (c) and (d), par.

ψ) model, the decreasing intensity of fundamental innovations in the Alfarano et al. (2008 , Figure 7 (c) and (d), par. σ f )

model, decreasing price misalignment and flexibility parameters in the Franke and Westerhoff (2011 , Figure 8 (a) and (b), 

par. a d and ν) model, or decreasing sunspot probabilities in Schmitt and Westerhoff (2017 , Figure 9 (a) and (b), par. S C and

S F ) strongly support the complexity of the given models and its statistical significance therein. In a similar vein, parameters

generally positively associated with the population of fundamental traders, i.e., again related to the stabilizing tendencies, 

also support multifractal properties of most models where applicable ( Gaunersdorfer and Hommes, 2007; Gilli and Winker, 

2003; Franke and Westerhoff, 2011 , see Figures 4, 5, 8, par. v , φ) but not always ( Alfarano et al., 2005 , Figure 6, par. ε 1 ).
Both of the latter results seem intuitive because various stabilization tendencies make the system less stochastic, leading to 

higher predictability. 

On the other hand, for ‘other or opposite then highlighted’ areas of the parameterization grid, the analyzed models gen- 

erally do not generate statistically significant multifractal dynamics. Moreover, the intensity of choice, one of the core drivers 
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of the dynamics of many financial agent-based models, seems to have a potentially strong but strictly model-specific im- 

pact: it is strongly positively related to model complexity in the Brock and Hommes (1998 , Figure 3 (a) and (b), par. γ )

model, but it does not exhibit any considerable impact in the Gaunersdorfer and Hommes (2007) and Schmitt and Wester-

hoff (2017) models (see Figs. 4, 9 , par. γ ). Next, an increasing number of agents does not have any statistically significant

impact on the model complexity in the Alfarano et al. (2008 , Figure 7 (c) and (d), par. n c ) model. An opposite tendency is,

however, observable for Gilli and Winker (2003 , Figure 5 (c) and (d), par. N). This is a surprising result since one might ex-

pect that more interacting agents will likely give rise to multifractal correlation structures in general. Finally, the parameters 

associated with the population of chartists, i.e., related to generally destabilizing tendencies in the markets, seem to harm 

the model complexity in the cusp catastrophe model ( Fig. 1 , par. β2 ), a positive impact in the Brock and Hommes (1998 ,

Figure 3 (c) and (d), par. g 2 and b 2 ) model, and no important effect on the model complexity in the model by Alfarano et al.

(2005 , Figure 6 (a) and (b), par. ε 2 ). 

6.3. Agent-based mechanisms leading to multifractality 

While none of the oldest models inspired by other scientific disciplines generates statistically significant multifractal 

behavior, all other models from the remaining three families are associated with statistically significant multifractality in 

a specific subset of their parametrization grid. Therefore, a distinguishing feature ultimately driving the model complexity 

seems to be the implementation of a switching mechanism governing agents’ interactions. For the Adaptive belief system 

family and the model by Schmitt and Westerhoff (2017) , this is represented by the multinomial logistic formula ( 15,17 , and

26 ) whose impact is governed by the intensity of choice. For the ‘Ant’ herding dynamics family ( Section 4.3 ), it can be

proxied by the autonomous switching and recruitment probabilities, or the herding rate. As the probability of autonomous 

switching is essentially an opposite concept to the herding behavior, it most likely affects the model complexity through a 

different transmission channel than herding, e.g., by supporting nonlinear dynamics of given models. Finally, in the Structural 

stochastic volatility family ( Section 4.4 ), the switching mechanism is represented by the switching index. 

When aggregated information from all three types of heat maps is considered, the Gaunersdorfer and Hommes (2007 , 

Figures 4 and B.11) and Alfarano et al. (2008 , Figures 7 and B.11) models are perhaps the two most robustly associated

with a complex, statistically significant multifractal behavior and with a significant impact of the parameterization changes 

on the model complexity. For these two models, we summarize the ‘sufficient’ parametric conditions for the presence of 

multifractality. According to Fig. 4 for the Gaunersdorfer and Hommes (2007) model, considering the fundamentalists’ pa- 

rameter v and chartists’ trend-following parameter w , we observe the emergence of a statistically significant multifractality 

at the 5% level for any w under v = 0 . 99 and for larger w ≥ 1 . 9 under v = 1 which is the borderline value of the grid. Ac-

tually, the second pair of values represent the benchmark parameterization at the [6 , 11] position. For the nexus between

the intensity of choice γ and the trend followers’ mispricing correction term ψ , any value of γ combined with ψ ≥ 1800 ,

which again resembles the benchmark parameterization, leads to a statistically significant multifractality. Both findings sup- 

port the necessity and sufficiency of strong stabilizing factors for the multifractality emergence for this model. According to 

Fig. 7 for the Alfarano et al. (2008) models, considering the intensity of autonomous switching a and the herding rate b, we

observe the emergence of multifractality roughly for the above-benchmark levels of both parameters, i.e., for combinations 

of a strong herding tendency with strong autonomous switching. For the nexus between the intensity of standard deviation 

of fundamental innovations σ f and the number of noise traders n c , any value of n c combined with σ f ≤ 0 . 019 leads to a

statistically significant multifractality. These results further support the importance and sufficiency of a strong stabilizing 

tendency represented by low σ f together with intensive switching and herding behavior of agents. 

6.4. Seemingly puzzling multifractality strength below one 

For the Bornholdt (2001) Ising model, the responsiveness parameter setup β = 0 . 22 is associated with a seemingly puz-

zling multifractality strengths (see Fig. 2 (a)) clearly below 1. This is a numerical result without any theoretical rationale 

since the level of multifractality in the randomly shuffled series considered in the denominator of the individual multifrac- 

tality strength ratios should generally be lower or the same as that of the original simulated series. 

However, an occasionally lower level of multifractality estimated for the original simulated series can be explained be- 

cause some models are more likely to generate negatively autocorrelated returns for some parameter combinations. This is 

caused by a strong mean-reverting model dynamics or even ‘wild jumping’ up and down under various unrealistic parame- 

terizations. This seemingly puzzling phenomenon is studied, e.g., in Barunik et al. (2012) for the generalized Hurst exponent 

estimation method, and we presuppose a similar behavior also for the MF-DFA. 

Table A.3 confirms this suspicion as the 90% sample confidence interval of the estimated AR(1) coefficient for the Ising 

model is completely negative. As Table A.3 only contains statistics for the benchmark parametrization, we also estimate the 

Ising’s AR(1) coefficient for one of the apparently affected parametrizations: β = 0 . 22 , α = 4 , which also gives completely

negative 90% sample confidence interval (−0 . 15 ;−0 . 13) . 

For several other models, namely by Gilli and Winker (2003) , Alfarano et al. (20 05, 20 08) , and Schmitt and Wester-

hoff (2017) , the confidence interval of the estimated AR(1) coefficient also interferes with negative values. Therefore, a sim- 

ilar phenomenon might partially affect the multifractality strength results for other models, especially under parametriza- 

tions associated with low confidence levels. Still, the impact on the Bornholdt (2001) Ising model is by far the most apparent
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one because, for other potentially affected models, it never translates to the numerical value of the multifractality strength 

below 1. 

6.5. Realism of parameterizations and future outlook 

A straightforward avenue for potential future research is assessing how realistic the parameterizations for individual 

models leading to agent-based-driven multifractal behaviors actually are. This is important, especially for the parameteriza- 

tions relatively far away from the benchmark settings suggested in the original research papers or the follow-up research 

articles studying their behavior. However, it needs to be noted that such research, provided that the identical methodology 

is used, would need to focus on a smaller subset of models to make the endeavor realistic and computationally bearable. 

As our results show that various complex dynamics are observed not only for the benchmark parameter settings but also 

for many other combinations of parameter values, one of the natural future steps under the computational limits of the 

current methodology might focus on a specific model or a family of models. Through the study of its ability to replicate

other financial stylized facts concerning the parameter setting, one should obtain a more comprehensive picture and ascer- 

tain whether the ‘success’ in one area does not lead to impractical and unrealistic properties in other important dynamic 

and/or distributional properties of the model-generated series. One such example, albeit still rather limited, is Kristoufek and 

Vosvrda (2018) who study the Efficient Market Hypothesis, i.e., no autocorrelation and Gaussian distribution of returns, of 

the Bornholdt (2001) Ising model and show that other parameter combinations are leading to a setting that is realistic from

the financial perspective but not previously discussed. Building on such detailed studies of specific models, we could even- 

tually arrive at important policy or structural implications for financial markets and, in turn, make financial agent-based 

models more appealing and influential. 

Another promising future research direction that could overcome the computational limitations of the current grid search 

experimental design is taking advantage of a surrogate modeling method ( Lamperti et al., 2018 ). This approach based on

Sobol sampling would lead to a considerably more efficient search over the parameter space, allowing for relatively quick 

identification of interesting regions, for a more detailed analysis combining multiple parameters in more dimensions, or 

for a more ‘granular’ focus. However, such a conceptual methodological advancement would bring new layers of necessary 

‘training’ of each surrogate model and additional analysis of the sufficient surrogate model approximation. It also needs 

to be verified what potential impact on the multifractal features of individual models such a surrogate modeling approach 

might bring and whether it does not alter properties of multifractality estimators. Therefore, a proper analysis of the given 

approach must be completed before its implementation within the multifractality estimation. 

Code availability 

Supplementary material associated with this article containing R code for the MF-DFA estimator of the generalized Hurst 

exponent, R code for an illustrative replication of the results for the Gaunersdorfer and Hommes (2007) model ( Section 4.2.2,

Section 5.2.2 ) together with the respective output, and the scripts to produce the presented heat map graphics can be found

on GitHub at the following address: github.com/jirikukacka/Kukacka _ Kristoufek _ 2021 [created 2021-05-25]. 

Declaration of Competing Interest 

None. 

Acknowledgment 

We gratefully acknowledge financial support from the Czech Science Foundation under the ‘Multifractality analysis in 

finance’ project [17-12386Y] and from the Charles University PRIMUS program [project PRIMUS/19/HUM/17]. Kukacka grate- 

fully acknowledges financial support from the Charles University UNCE program [project UNCE/HUM/035]. The MATLAB code 

of the ALW (2008) model has been kindly provided by Prof. Thomas Lux (University of Kiel, Germany) and Dr. Zhenxi Chen

(South China University of Technology). The MATLAB codes of the GW (20 03), ALW (20 05), and FW (2011) models have been

kindly provided by Dr. Sylvain Barde (University of Kent, UK). The Mathematica code of the SW (2017) model has been

kindly provided by Prof. Frank Westerhoff (University of Bamberg, Germany). The MATLAB code of the GH (2007) model has 

been downloaded from the agentFin 0.1 documentation web page [accessed 2019-10-28] by Prof. Blake LeBaron (Brandeis 

University, USA). This paper has benefited from discussions with participants at the 24th Annual Workshops on Economic 

Science with Heterogeneous Interacting Agents in London (2019) and the 24.5th Workshop on Economics with Heteroge- 

neous Interacting Agents (2021, online). Finally, we are very thankful to the two anonymous reviewers for their inspiring 

comments and detailed suggestions. 

Appendix A. Descriptive statistics and model outputs 
349 

https://github.com/jirikukacka/Kukacka_Kristoufek_2021
http://people.brandeis.edu/-pl2X-sim-blebaron/classes/agentfin/GaunersdorferHommes.html


J.
 K

u
k

a
ck

a
 a

n
d
 L.

 K
risto

u
fek

 
Jo

u
rn

a
l
 o

f
 E

co
n

o
m

ic
 B

eh
a

v
io

r
 a

n
d
 O

rg
a

n
iza

tio
n
 19

2
 (2

0
2

1
)
 3

2
4

–
3

5
6
 

Table A.3 

Descriptive statistics. 

Cusp (1974) BH (1998) Ising (2001) GW (2003) ALW (2005) GH (2007) ALW (2008) FW (2011) SW (2017) 

Mean -0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

( - 0.12;0.08) ( - 0.10;0.10) (0.00;0.00) (0.00;0.00) (0.00;0.00) (0.00;0.00) (0.00;0.00) (0.00;0.00) (0.00;0.00) 

SD 1.18 0.11 0.01 0.04 0.01 0.01 0.04 0.01 0.01 

(1.17;1.19) (0.11;0.11) (0.01;0.01) (0.00;0.07) (0.01;0.01) (0.01;0.01) (0.04;0.04) (0.01;0.01) (0.01;0.01) 

Skew 0.39 0.01 0.00 0.48 0.31 0.12 0.00 0.00 0.01 

(0.37;0.41) ( - 0.10,0.11) ( - 0.04;0.03) ( - 0.01;1.31) ( - 1.57;1.34) ( - 0.02;0.12) ( - 0.05;0.05) ( - 0.06;0.07) ( - 0.51;0.54) 

Ex Kurt -0.93 0.06 0.21 17.27 138.74 23.69 0.93 1.44 12.51 

( - 0.96; - 0.90) ( - 0.01;0.13) (0.01;1.18) (0.0;73.52) (5.19;153.43) (0.91;3.61) (0.76;1.08) (1.26;1.64) (6.35;22.61) 

J - B 0.00 0.00 0.16 0.03 0.00 0.00 0.00 0.00 0.00 

(0.00;0.00) (0.0;0.01) (0.00;0.68) (0.00;0.20) (0.00;0.00) (0.00;0.00) (0.00;0.00) (0.00;0.00) (0.00;0.00) 

ADF ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 

(0.01;0.01) (0.01;0.01) (0.01;0.01) (0.01;0.01) (0.01;0.01) (0.01;0.01) (0.01;0.01) (0.01;0.01) (0.01;0.01) 

KPSS 0.01 0.08 ≥0.10 0.05 ≥0.10 ≥0.10 ≥0.10 ≥0.10 ≥0.10 

(0.01;0.02) (0.01;0.10) (0.10;0.10) (0.01;0.10) (0.06;0.10) (0.10;0.10) (0.10;0.10) (0.10;0.10) (0.10;0.10) 

L - B 0.19 0.00 0.00 0.00 0.23 0.00 0.45 0.21 0.32 

(0.00;0.78) (0.0;0.00) (0.00;0.00) (0.00;0.00) (0.00;0.85) (0.00;0.00) (0.02;0.93) (0.00;0.82) (0.00;0.91) ̂ AR (1) 0.01 0.37 -0.28 0.31 0.00 0.10 0.00 0.01 0.01 

(0.00;0.03) (0.36;0.39) ( - 0.30; - 0.23) ( - 0.34;0.46) ( - 0.03;0.03) (0.06;0.15) ( - 0.01;0.01) (0.00;0.03) ( - 0.01;0.02) 

Note: The results are based on 10 0 0 random runs of the examined models under the benchmark parameterization and the general simulation setup. Resulting 90% sample 

confidence intervals are reported in () parentheses. p-values are reported for the statistical tests: H 0 for the Jarque-Bera test is ‘normality,’ H 0 for the augmented Dickey-Fuller 

test is ‘unit root/nonstationarity,’ H 0 for the Kwiatkowski-Phillips-Schmidt-Shin is ‘stationarity,’ and H 0 for the Ljung-Box test is ‘no autocorrelation on the first lag.’ ̂ AR (1) 

reports the estimated AR(1) coefficient based on the ARIMA (1,0,0) model. The figures are rounded to 2 decimal places. Models are ordered chronologically. 
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Fig. A.10. Model outputs Note: The left half of the figure displays typical time series outputs of the examined models under the benchmark parameteriza- 

tion and the general simulation setup. The right half zooms the respective left-hand side series for the 20 0 0 middle observation. 
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Appendix B. Confidence levels for differences 

Fig. B.11. Results for the confidence levels for differences Note: The heat map color gradually changes from red (dark) to pale as the displayed value

increases. The confidence level ≥ 0 . 95 indicate a statistically significant difference of the given multifractality ratios in Fig. 3 –Fig. 9 compared to the

benchmark parametrization. The presented values are based on 10 0 0 random runs and rounded to one and two decimal digits. The confidence level 0.99

stands for ≥ 0 . 99 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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