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The design of district metered areas (DMA) in potable water supply systems is

of paramount importance for water utilities to properly manage their systems.

Concomitant to their main objective, namely, to deliver quality water to con-

sumers, the benefits include leakage reduction and prompt reaction in cases of

natural or malicious contamination events. Given the structure of a water

distribution network (WDN), graph theory is the basis for DMA design, and

clustering algorithms can be applied to perform the partitioning. However,

such sectorization entails a number of network modifications (installing cut-

off valves and metering and control devices) involving costs and operation

changes, which have to be carefully studied and optimized. Given the complex-

ity of WDNs, optimization is usually performed using metaheuristic

algorithms. In turn, optimization may be single or multiple-objective. In this

last case, a large number of solutions, frequently integrating the Pareto front,

may be produced. The decision maker has eventually to choose one among

them, what may be tough task. Multicriteria decision methods may be applied

to support this last step of the decision-making process. In this paper, DMA

design is addressed by (i) proposing a modified k-means algorithm for par-

titioning, (ii) using a multiobjective particle swarm optimization to suitably

place partitioning devices, (iii) using fuzzy analytic hierarchy process (FAHP)

to weight the four objective functions considered, and (iv) using technique for

order of preference by similarity to ideal solution (TOPSIS) to rank the Pareto

solutions to support the decision. This joint approach is applied in a case of a

well-known WDN of the literature, and the results are discussed.

KEYWORD S

decision making, district metered areas, fuzzy AHP, graph theory, k-means algorithm,

metaheuristic, multiobjective optimization, TOPSIS, water distribution systems

1 | INTRODUCTION AND LITERATURE REVIEW

The complex structures of water distribution networks (WDNs) are responsible for delivering drinkable water to citi-
zens. Topography of cities, dynamics of consumption, and highly looped networks may cause lack of service uniformity
and make systems management a complex task. Large efforts have been devoted to improve WDN management, mainly
regarding leakage. In Rahman et al.1 an extensive literature review is presented, which collects the most important
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contributions to leak management in water distribution systems. Among the alternatives for better controlling pipe
pressure, the creation of district metered areas (DMAs) stands out. Different pressurized zones can be better operated
by splitting the network into smaller parts, the so-called DMA.2 When efficiently operated, DMAs are capable to control
the hydraulic pressure in water pipes, thus reducing leakage, what is one of the most important objectives for water
utilities. Furthermore, a well partitioned network can react promptly in anomalous scenarios as contamination intru-
sion (either natural or malicious), for which correct network management pursued by isolating the non-affected area is
crucial for health security.

DMA creation can be basically divided into the two following phases: identification of DMA zones and installation
of metering and control devices, as well as cut-off valves.

Identification of DMA zones could be approached by using experts' knowledge. However, advances in applied math-
ematics and computational models in water systems have made it possible the use of the graph theory and data mining
for this task.2–6

Since water network models are built in terms of nodes and links simulating, respectively, the users and pipes
composing the water systems, these models can be seen as graphs, with the consequent possibility of applying graph
theory.7 Graph connectivity is explored as an important feature for DMA creation by means of algorithms such as the
deep-first search (DFS)8 and the breadth-first search (BFS)9 in water networks.10 Comparing both tools, Lifshitz and
Ostfeld11 propose the division of a Mexican water network into independent but interconnected networks. The DFS
and BFS algorithms are also explored in Alvisi and Franchini12 for water network clustering. An important point to be
highlighted about this work consists of the proposal of DMA creation to study contamination spread. The BFS is
applied in Ciaponi et al.13 to define the nodes of a graph that constitute each DMA, and the shortest path distance from
each source is computed to determine the set of boundary pipes for each DMA.

By linking graph theory and data analysis, community algorithms have also been proposed to identify DMA
regions.2,5,13,14 Specifically, Campbell et al.2 combine the concept of accumulated shortest path value and social com-
munity detection algorithms to identify DMAs. A community structure detection algorithm is also applied in Diao
et al.5 The study uses a community structure to create physical boundaries for DMAs. Community detection is per-
formed to maximize the matrix modularity. In the realm of data mining and clustering algorithms, Gaussian mixture
models (GMM) are applied in Chatzivasili et al.14 to identify DMAs in water networks.

The purely data mining algorithms are capable to cluster high-dimensional datasets; however, the straightforward
application to WDNs is not easy. This difficulty originates from the fact that features characterizing each node should
be exhaustively defined to avoid clustering physically unconnected nodes. Coordinates of nodes are commonly used as
input together with physical and hydraulic features. However, using coordinates is not enough to guarantee the connec-
tion of all the nodes in a cluster. This evidence can indeed lead to the design of unfeasible layouts, with consequent
losses of time and money.

By coupling graph theory and data mining algorithms, this paper proposes a modified k-means algorithm for DMA
region identification. Such a modified algorithm considers the connectivity of nodes during the clustering stage by
guaranteeing the interconnection of all the nodes within a cluster. The main advantage of this proposal with respect to
the simple k-means algorithm regards the correction of clusters by considering information about real links of the water
network.

Despite there are many water utilities still using operators' expertise to identify DMAs zones, data mining tools rep-
resent an effective support for decision makers to accomplish this task.

Let's move now to the second phase of DMA design. After identifying the regions and building a DMA structure,
control devices must be installed in an optimal way. In this direction, a trade-off has to be reached between the cost of
control devices and the operational parameters of the water network. Indeed, if, on the one hand, installing many
devices improves network control, on the other hand, this has an impact on project costs and operation. From the opti-
mization point of view, placing control devices and cut-off valves can be studied as an optimization problem subjected
to a set of operational constrains. By using social community detection for DMA region identification, optimization is
put to work at two levels in Brentan et al.3 The authors use particle swarm optimization (PSO) to select the position of
control devices and cut-off valves at the first level and, successively, they obtain the operational point of control devices
at the second level. The concept of minimal background leakage is applied in Laucelli et al.15 to locate the best locations
for cut-off valves.

Since DMA creation modifies the hydraulic behavior of water networks, many objectives could be explored during
the process of optimal placement of valves and DMAs entrances. The traditional approach that minimizes the surplus
pressure in the system, then reducing background leakage, has been widely explored in the literature.16,17 Even prior to
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the introduction of the concept of DMA took place, the objective of reducing leakage by means of pressure reducing
valves (PRV) can be considered as a pioneer approach for optimization of water systems. With new challenges and
requirements for water companies, governmental institutions guidelines, and global goals, the main objectives of DMA
creation have also become the reduction of the energy spent on operation, and the improvement of water quality and
resilience of systems.

Regarding optimization, single and multiobjective approaches have been proposed in the literature by combining
various objectives for optimal DMA's entrance and cut-off valve installation.3,6 While single objective approaches attri-
bute different weights to the objectives, multiobjective solutions are capable to find a trade-off among all the objectives.
Both cases present their own challenge. In the single objective approach, weights change throughout the search space,
by attributing different importance to the objectives. Nevertheless, a single solution is obtained from the optimization
process and it can be directly implemented in the water system. In contrast, multiobjective solutions are not unique,
and water utilities' managers have to decide about which solution will be eventually implemented. In this case, an anal-
ysis supported by the use of multicriteria decision-making (MCDM) methods can be useful to help decision makers in
this task, by providing an answer in terms of which solutions, among those belonging to the set of the non-dominated
solutions of the Pareto front, represent optimal trade-offs according to the evaluation of differently weighted criteria.

Regarding MCDM approaches commonly used in the literature, the FAHP (fuzzy analytic hierarchy process), first
proposed in Creaco et al.17 as an evolution of the traditional AHP,18 represents a valuable way to manage situations
affected by uncertainty by taking advantage of the fuzzy set theory.19,20 Regarding the field of application of the men-
tioned method, a wide review (190 related papers) has been published by Kubler et al.21 which recognize the FAHP as
an effective tool for criteria weight calculation.

As shown by many authors,22–24 the method has also been integrated with other MCDM techniques aimed at rank-
ing the alternatives under evaluation. In this regard, the TOPSIS (technique for order of preference by similarity to ideal
solution) effectively works across various application areas.25 Such a technique was developed by Hwang and Yoon26 as
a simple way to solve decision-making problems by ranking various decision alternatives.27 With respect to other
MCDM methods, TOPSIS allows to get the final ranking even if the set of solutions is large, as it is often the case of
solutions belonging to the Pareto front. Moreover, this method is able to obtain the ranking of alternatives without
pairwise comparing them, what may be a really high time-consuming task when we have to deal with a huge number
of solutions. This was already shown in a previous conference contribution28 we aim to develop in this paper, which is
a substantial extension of that contribution. Among other new aspects, the TOPSIS was applied to rank optimal solu-
tions, but the objectives were considered as having the same mutual importance. On the contrary, in the present
extended research, we integrate the FAHP to attribute different weights to the objectives on the basis of judgments pro-
vided by an expert in the field of water distribution management. The weights were used to combine various objectives
in a single objective problem and now we also rank the Pareto solutions using TOPSIS. Additionally, regarding the
optimization problem, the modified k-means algorithm is applied to identify DMA regions in a real-size benchmark
water network. The boundary pipes are identified as possible positions for control and cut-off valves. In this context,
the objective of the MCDM application to the multiobjective problem consists of selecting solutions representing opti-
mal trade-offs (among the set of optimal solutions belonging to the Pareto front) under the perspective of the considered
evaluation criteria weighted by means of the FAHP. We note that the same weights were used to build the objective
function for the single objective optimization approach presented in Brentan et al.28 which we also consider now for
comparison with the results regarding the multiobjective optimization performed in the present research.

The flowchart of Figure 1 synthetizes the entire procedure implemented in the present paper.

2 | MATHEMATICAL METHODS: CLUSTERING BASED ON A MODIFIED
K -MEANS ALGORITHM AND OPTIMIZATION

In this section, we present the mathematical methods used in our approach for DMA design in a WDN, leaving the
integrated multicriteria approach for the next section. First of all, a modification of the traditional k-means algorithm is
presented for partitioning the nodes of the network into clusters on the basis of the physical connections between
nodes. After that, this section formalizes the mathematical formulation of objective functions with relation to the prob-
lem of optimal valve placement for DMA design. Lastly, the multiobjective evolution of the PSO approach is described
as a way to solve the optimization problem. The output of the whole stage will be a set of nondominated solutions, that
is, the Pareto front, to be successively treated by means of the integrated multicriteria approach.
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2.1 | Clustering process using a modified k-means algorithm

As stated in the introduction, DMA design starts by clustering the nodes of the network. Among the various
methods suitable for this step, a simple and effective one is the k-means algorithm. The classical k-means is based
on grouping samples by a similarity measure, being the Euclidean distance between samples and centroids the
most used metric. To exemplify the process, let's take a set with m data points χ = [x1, x2…xm] where each point
xi = [xi,1, xi,2, …, xi,n]. Taking a predefined number of clusters k, the method starts distributing randomly the k
centres in the data space. The Euclidean distance di,j between each center j and each data point xi is computed.
The data points are classified as belonging to cluster j if the distance di,j is minimum when compared with all the
other centres. When all groups are identified, new position of each center is calculated as the mean value of all
the points belonging to the corresponding cluster. The process is repeated (distance calculation, point classification,
and center replacement) until the distance between the centres at iteration t − 1 and t is smaller than a tolerance
value.

In this work, a modification of k-means is proposed to consider the physical links between the nodes. Before
replacing the center, a verification is performed to identify the links between one node and the others. Since k-means
was not originally developed for graph clustering, the algorithm does not use connectivity information for clustering. In
this sense, it may occur that some nodes end up clustered in a certain group with no physical connection to this group.
When this kind of wrong classification happens, a clustering post-processing is performed, and unconnected nodes are
assigned to the neighbor group they have real physical connection with. Concluding this stage, the centres are
recalculated, based on the average value of the cluster's point position. This modification is important to guarantee the
identification of physically feasible DMA's.

One important task on using clustering algorithms, such as k-means, is defining the number of clusters. In Novarini
et al.29 various mathematical and engineering criteria for DMA design are evaluated. Mathematical criteria evaluate the
quality of the clustering process in terms of external and internal measures. Among those mathematical criteria, the
Davies-Bouldin (DB) criterion30 evaluates the final clustered data considering the distances among data points in a clus-
ter and the corresponding center (intracriterion) and the distances among centres (intercriterion). The DB criterion is
written as

FIGURE 1 Flowchart summarizing the

proposed procedure
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DB=
1
k

Xk

i=1
maxi ≠ j Di,j

� �
, ð1Þ

where Di,j is the ratio of distances within the same cluster i and the distances between clusters i and j, written as

Di,j =
di + dj
di,j

, ð2Þ

where di is the mean distance between the points belonging to cluster i and the center of this cluster; dj is the mean dis-
tance between the points belonging to cluster j and the center of this cluster; and di,j is the distance between the centres
i and j. The lower DB the better the clustering, since internally the points are near to the respective centres while the
centres are far from each other.

2.2 | Mathematical formulation of optimal valve placement for DMA design

After identifying each DMA region, optimal places for the corresponding entrances, where control devices and flow
meters have to be installed, should be identified. Furthermore, cut-off valves should also be installed on other pipes
linking the DMAs. These devices are crucial for effective isolation and control of DMAs. Cut-off valves and control
devices, however, modify the hydraulics of the system, usually reducing pressure, and consequently leakage, but also
impairing the system resilience. Furthermore, cutting pipes make the water take alternative paths to reach the users.
As a result, as pointed by Brentan et al.31 DMA creation can increase the water age, with a negative impact on the water
quality. Bearing in mind these hydraulic modifications of the water system not only should the cost be minimized, but
also the benefits should be maximized and the drawbacks minimized.

The problem can be thus formulated by means of four objective functions, corresponding to minimize the cost (F1),
minimize pressure management (F2) as proposed in,32 maximize resilience of the system (F3) as proposed in,33 and min-
imize water quality (F4), as proposed in34

F1 =
XNb

j=1
c dj
� �

, ð3Þ

F2 =
XT

t=1

1
Nn

XNn

i=1

Pi,t−Pmin

Pmin
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi,t−Pmtð Þ2

Nn

r

Pmt

0
BB@

1
CCA, ð4Þ

F3 =
1
T

XT

t=1

PNn
i=1qi,t hi,t−h*i,t

� �
PNr

k=1Qk,tHk,t +
PNp

j=1
Pj,t

γ −
PNn

i=1qi,th
*
i,t

, ð5Þ

F4 =

PNn
i=1

PT
t=1ki,tqi,t WAi,t−WAmaxð ÞPNn

i=1

PT
t=1qi,t

: ð6Þ

The variables are as follows:

• F1 calculates the accumulated cost, c(dj), of control devices and flow meters installed, which depends on the diameter
dj of the boundary pipes, these being Nb in total.

• F2 is called pressure uniformity. This parameter measures the distance of the operational pressure Pi,t of the network
from the minimal operational pressure Pmin and from the average pressure of the network Pmt . It is composed by the
sum for all simulation time steps, totaling T time steps, and for each node i from a total of Nn nodes.

• F3 is called resilience index and can be seen as a relation between the required and the available power in the system;
qi,t and hi,t are, respectively, the flow and hydraulic head at node i at time step t; h*i,t is the required hydraulic head
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to deliver the demand at node i time step t; Qk,t and Hk,t are the outlet flow and hydraulic head of the reservoir k at
time step t in a network with Nr reservoirs; Pj,t is the power of pump j at time step t in a network with Np pumps.

• Finally, F4 is a quality parameter related to the water age; ki,t is a Boolean variable, equal to 1 when the water age
WAi,t at node i at time step t is greater than a water age limit WAmax.

Since optimal valve placement is an engineering problem, operational constraints should be considered during the pro-
cess. Minimal operational pressure for demand nodes and nonnegative pressure for connection nodes are considered as
constraints. Bearing in mind the stated optimization problem and the fact that a heuristic algorithm is used for solving
it, the constraints are handled by penalty functions, as presented in Equation 7.

C1= δ Pi,t−Pmin, ij j: ð7Þ

Here, Pmin, i is the minimal operational pressure if the node i is a demand node, or zero otherwise and δ is the penalty
coefficient, responsible for amplifying the fitness value of a solution that violates the minimal operational pressure.
Nonnegative pressure at junctions is treated similarly. In this work, δ is set to 106, so as to guarantee convergence.

For the single objective approach, the penalty function is summed to the combined objective functions. For the mul-
tiobjective approach, penalties, obviously, only affect objective functions F2 and F3.

2.3 | Particle swarm optimization

Optimization problems in water distribution analysis have been explored with heuristic algorithms. Among the classical
heuristic algorithms, PSO,35 a swarm-based metaheuristic, has an important place on solving complex optimization
problems. The algorithm is based on a flock of birds traveling in the search for food. The principle of PSO is the
improvement of solutions, guiding their search for optimal solutions. Each particle of the swarm is evaluated according
to its position on the search space. The position changes through iteration using its search velocity, which is updated
following a linear combination of three parameters:

vt+1
i =wvt

i + c1r1 xti−pt
i

� �
+ c2r2 xti−gt

� �
, ð8Þ

where vt+1
i is the search velocity of particle i at iteration t+1; wvti is called inertia term and is responsible to

avoid roaming by partially maintaining the particle search direction of the last iteration given by its previous velocity vti
weighted by the inertia coefficient, w; c1r1 xti−pt

i

� �
is the cognitive term and is calculated as the difference

between the last particle position and the best position already occupied by the particle, weighted by a cognitive
coefficient c1 and multiplied by a random number r1; finally, the third term, c2r2 xti−gt

� �
, is called social term,

and is calculated by the difference between the last position of the particle and the best position ever occupied by
a swarm particle (the swarm leader), weighted by a social coefficient c2 and multiplied by a random number
r2. The main goal of the random numbers is to avoid local optimal points, leading the particles to explore the sea-
rch space.

Different from single objective optimization algorithms, multiobjective approaches do not find just one optimal
solution, but a set of compromise solutions, the so-called Pareto front. In Coello and Luchega,36 an extension from sin-
gle-objective PSO to multiobjective PSO (MOPSO) problems is proposed.

The main structure of MOPSO follows the proposal of Eberhart and Kennedy,35 by using the original equations of
PSO. The position and velocity of the particles are randomly initialized. A particle's position vector represents a possible
solution. Each particle is evaluated under the objective functions. After evaluating all particles, the nondominated solu-
tions are stored. To identify nondominated solutions, considering two solutions xa and xb, it is said that xa dominates xb
if and only if both conditions (a) and (b) below are satisfied.

a. xa is no worse than xb for all objectives, and
b. xa is strictly better than xb at least for one objective.
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For each single solution xp, it is possible to know the number np of solutions dominating xp and the set of solutions
Sp dominated by xp. By definition, nondominated solutions have np = 0 and integrate the so-called primary Pareto
front.

With the primary Pareto front, a new velocity and position for each particle are calculated, and the objective func-
tions are reevaluated. This process is repeated until a convergence criterion is reached, such as a maximum number of
iterations, or no improvements in the Pareto front. The method results in a set of nondominated solutions with an
optimal compromise relation for all the objectives.

3 | INTEGRATED MULTICRITERIA APPROACH

This section presents the MCDM methodologies used in this paper to support the optimization problem. The main
objective consists of treating the solutions belonging to the Pareto front resulting from the former stage. Specifically, we
aim to obtain a final ranking of solutions to the ones representing the best trade-offs under the considered evaluation
criteria. As analysis criteria, we create a direct correspondence with the objectives of the optimization problem and
apply an MCDM technique to derive their mutual degree of importance while simultaneously managing uncertainty of
input evaluations. Once criteria weights have been derived, their values will be used with the rest of the input data for
the application of another MCDM method able to rank large sets of solutions. Specifically, the FAHP will be applied to
calculate criteria weights, and the TOPSIS will be implemented to select the optimal solution representing the best
trade-off under the perspective of the previously weighted criteria. These techniques are described next.

3.1 | The FAHP to calculate criteria weights

As previously said, the fuzzy set theory is a helpful support tool in solving those situations involving human judgments,
thus affected by uncertainty of evaluations. Its main advantage consists in the possibility of representing linguistic vari-
ables through fuzzy numbers rather than crisp values, with associated a degree of membership μ(x) varying between
0 and 1.

As recalled in a previous work,37 there are various types of fuzzy numbers, TFN (triangular fuzzy numbers) ~n and
TrFN (trapezoidal fuzzy numbers) ~m being the most common21,38:

~n= a, b, cð Þ, ð9Þ

~m= d, e, f , gð Þ, ð10Þ

where a ≤ b ≤ c and d ≤ e ≤ f ≤ g. Addition, multiplication, and inversion (considered in this study) are examples of
common algebraic operations than can be performed with TFNs ~n1 and ~n2:

~n1⊕~n2 = a1 + a2, b1 + b2,c1 + c2ð Þ, ð11Þ

~n1�~n2 = a1 × a2, b1 × b2,c1 × c2ð Þ, ð12Þ

~n1
−1 =

1
c1
,
1
b1
,
1
a1

� �
: ð13Þ

Taking advantage of the use of fuzzy numbers, the FAHP method can be implemented for the purpose of our research
by performing three steps in sequence, as suggested in39 (1) building the hierarchy structure representing the decision-
making problem under analysis; (2) collecting fuzzy pairwise comparisons from experts with respect to evaluation
criteria; and (3) calculating the vector of criteria weights that represent their mutual importance.

Concerning the stage of fuzzy pairwise comparisons collection, fuzzy input evaluations (translating linguistic judg-
ments attributed by the expert or decision-making team) have to be collected in a FPCM (fuzzy pairwise comparison
matrix), ~X , which is a squared, reciprocal matrix:
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~X =

~x11 � � � ~x1n

..

. . .
. ..

.

~xn1 � � � ~xnn

2
664

3
775, ð14Þ

the generic element ~xij expressing the degree of preference of criterion i with respect to criterion j with a certain level of
uncertainty. Reciprocity implies that for each element ~xij = x1, x2, x3ð Þ of the matrix ~xji = 1

x3
, 1
x2
, 1
x1

	 

holds (for conve-

nience, we have omitted here the subindices).
Linguistic variables used to express pairwise comparisons about the relative importance between a pair of criteria

refer to the fuzzy version of the Saaty scale (Figure 2). The considered variables and the associated TFNs are: equal
(EQ), (1, 1, 2); moderate (M), (2, 3, 4); strong (S), (4, 5, 6); very strong (VS), (6, 7, 8); and extreme (EX) importance,
(8, 9, 9). The TFNs (1, 2, 3), (3, 4, 5), (5, 6, 7) and (7, 8, 9) correspond to intermediate values. The diagonal elements,
~x11,~x22, …, ~xnn , of matrix ~X , express the comparison between an element and itself. As a consequence, they have all
associated an evaluation of “equal,” what corresponds to the TFN (1, 1, 2) according to the presented scale.

Once filled in the FPCM ~X , the literature offers several approaches to calculate the vector of weights. Chang40

proposes to derive crisp weights from the input matrix, by means of the extent analysis method. The value of fuzzy
synthetic extent with relation to the ith element of matrix ~X can be calculated as follows:

Si =
Xm

j=1
~xij �

Xn

i=1

Xm

j=1
~xij

h i−1
, ð15Þ

in our case n = m, since the FPCM ~X is a square matrix.
With relation to two fuzzy pairwise comparisons (e.g., two TFNs ~n1 and ~n2), we aim to establish the degree of possi-

bility that ~n1 ≥ ~n2, defined in25

V ~n1 ≥ ~n2ð Þ= μ x*
� �

=

1 if b1 ≥ b2
0 if a2 ≥ c1

a2−c1
b1−c1ð Þ− b2−a2ð Þ otherwise

8>><
>>:

, ð16Þ

where x* is the ordinate of the highest intersection point P between the two membership functions μ~n1 and μ~n2 of the
two considered TFNs (Figure 3). In order to compare the two TFNs ~n1 and ~n2, both values V ~n1 ≥ ~n2ð Þ and V ~n2 ≥ ~n1ð Þ
have to be calculated.

We can also determine the possibility degree that a fuzzy number ~n is greater than k fuzzy numbers ~ni i=1…kð Þ as

V ~n ≥ ~n1,~n2,…,~nkð Þ=V ~n ≥ ~n1ð Þand ~n ≥ ~n2ð Þand…and ~n ≥ ~nkð Þ½ �=minV ~n ≥ ~nið Þ, i=1…k: ð17Þ

In this way, we can link each criterion Xi given in the FPCM ~X to the related value of fuzzy synthetic extent by
defining:

FIGURE 2 Fuzzy version of the

Saaty scale38

8 BRENTAN ET AL.



x*
0
Xið Þ=minV Si ≥ Skð Þ, ð18Þ

for k = 1…n, k ≠ i. The vector of crisp and not normalized weights is lastly given by

W 0 = x*
0
X1ð Þ,x*0 X2ð Þ,…,x*0 Xnð Þ

	 
T
, ð19Þ

having the former weights to be normalized with respect to their total to obtain the final vector of normalized crisp
weights:

W = x* X1ð Þ,x* X2ð Þ,…,x* Xnð Þ� �T
: ð20Þ

The last operation consists in checking the consistency ratio (CR) of the FPCM ~X . To such an aim, each fuzzy value ~xij
of the matrix needs to be defuzzified and transformed into a crisp value xij by means of the graded mean integration
approach40:

G ~xij
� �

= xij =
x1 + 4x2 + x3

6
: ð21Þ

After having defuzzified each value of the matrix, consistency can be easily verified with the proper threshold.42 We
underline that checking consistency represents a fundamental issue in this kind of application. Indeed, if judgments
were not consistent, this would have a negative impact on the whole quality of final decision. In such a case, experts
should be asked to formulate new judgments until the condition of consistency is met.43

3.2 | The TOPSIS to rank optimal solutions

The TOPSIS method is capable to rank even large sets of alternatives, such as the set of optimal solutions of the deci-
sion-making problem under analysis, for example, those belonging to a populated Pareto front. The method calculates
distances from each solution to a positive ideal solution and to a negative ideal solution. The solution representing the
best trade-off under the considered criteria is the one characterized by the shortest distance to the positive ideal solu-
tion, and the farthest to the negative one.

First of all, the TOPSIS technique needs the preliminary collection of the following input data to be applied: a
decision matrix (collecting the evaluations gij of each alternative i under each criterion j), the weights of criteria
(representing their mutual importance), and their preference directions (to establish if criteria have to be minimized or
maximized).

FIGURE 3 Representation of the degree of

possibility that ~n1 ≥ ~n2
40,41
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The implementation of the procedure is led by the following five main steps.

• Building the weighted normalized decision matrix, for which the generic element uij is calculated as

uij =wj � zij,8i,8j; ð22Þ

where wj is the weight of criterion j and zij is the score of the generic solution i under criterion j, normalized by means
of the equation:

zij =
gijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i=1g

2
ij

q ,8i,8j: ð23Þ

Identifying the positive ideal solution A+ and the negative ideal solution A−, calculated through the following
equations:

A+ = u*1,…,u*k
� �

= uijj j∈I 0
� �

, uijj j∈I 00
� �� �

; ð24Þ

A− = u−
1 ,…,u−

k

� �
= uijj j∈I 0

� �
, uijj j∈I 00
� �� �

; ð25Þ

I0 and I00 being the sets of criteria to be, respectively, maximized and minimized.

• Computing the distance from each alternative i to the positive ideal solution A+ and to the negative ideal solution A−

as follows:

S+
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

j=1
uij−u*j

	 
2
r

, i=1,…n; ð26Þ

S−
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

j=1
uij−u−

j

	 
2
r

, i=1,…n: ð27Þ

Calculating, for each alternative i, the closeness coefficient C*
i which represents how the solution i performs with

respect to the ideal positive and negative solutions:

C*
i =

S−
i

S−
i + S*i

,0≤C*
i ≤ 1,8i: ð28Þ

Obtaining the final ranking of alternatives on the basis of the closeness coefficients calculated above. Consequently,
with relation to two generic solutions i and z, solution i must be preferred to solution z when C*

i ≥ C*
z .

4 | CASE STUDY

The DMA design methodology proposed is applied to the literature benchmark water network called EXNET.44 It is a
large-size water network since it supplies around 400,000 consumers and the network is composed of 1891 nodes and
2465 pipes. The network is fed by two reservoirs and five injection nodes (well pumps). Each node is used as a data
point for the clustering analysis, and is endowed with its topological features, namely geographical position, elevation
and base demand.
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4.1 | DMA identification

To define the number of clusters, the modified k-means algorithm is applied by varying k from 2 to 15. The best number
of clusters, which minimizes the intra-criterion and maximizes the intercriterion, is nine, as shown in Figure 4. Figure 5
shows the clustered network with EPANET, using latitude and longitude coordinates. This configuration results in
136 boundary pipes that are candidates to be selected as DMA entrances.

4.2 | Fuzzy AHP to identify weights for the objective functions

As previously stated, the FAHP technique is applied to determine weights of the objective functions, treated as evalua-
tion criteria for single objective optimization. The same weights will be used later within TOPSIS. The four evaluation
criteria used for the analysis (F1, cost, F2, lack of pressure, F3, resilience, and F4, water age/quality) have been pairwise
compared by using the linguistic scale of Figure 2. The responsible of the safety management system of a water distribu-
tion utility was involved in such a task, given his relevant background for providing effective pairwise comparisons
between pairs of criteria characterizing the topic under evaluation. Tables 1 and 2 respectively report the collected lin-
guistic evaluations and the FPCM of input for the FAHP application (the last column reporting the final vector of nor-
malized criteria weights).

Table 3 summarizes the values of fuzzy synthetic extent for each criterion, calculated by means of formula 11; the
related degrees of possibility, obtained through formula 12; and the components of the nonnormalized vector of
weights, achieved by formula 14.

It is lastly possible to get the normalized vector of weights W = (0.3612, 0.3612, 0.1742, 0.1034)T, already presented
in the last column of Table 2, to verify the consistency of the FPCM. After having defuzzified the values of the matrix
through the graded mean integration approach, we can affirm that the level of consistency of judgments is acceptable
being the CR index equal to 0.0642, that is, within the allowed threshold of 0.08 established in.27

4.3 | Single-objective solution

PSO is run with 400 particles, using inertia weight varying from 1.2 to 0.8 and cognitive and social coefficients equal to
1.95, following the literature suggestion,35 resulting in a scenario with 55 entrances. In the present work, the number of
entrances is not limited, allowing more than one entrance by DMA. Table 4 summarizes the results for each objective
function for the best particle.

FIGURE 4 Davies-Bouldin index for various numbers of

clusters applying modified k-means algorithm
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The optimized layout improves pressure uniformity by reducing the operational pressure of the system. Conse-
quently, network resilience is reduced whereas water age grows. This occurs because, when cutting pipes, water has to
follow a longer path to reach some consumers. Figure 6A,B presents a pressure and water age surface plot for the maxi-
mum demand time.

In terms of pressure, the south-west region is the most affected by the DMA enforcement, what significantly reduces
the pressure. Broadly speaking, it is possible to appreciate pressure improvement in the west region.

In terms of water quality, the southern region reduces its water age. This can be observed by the light red on the
optimized surface. At the same time, the water age is harmed in the western region. This relation between improve-
ment of pressure management and water age harming is expected because, when closing a pipe to control pressure,
water reaches some nodes following a longer path.

FIGURE 5 DMA regions identified by the

modified k-means algorithm

TABLE 1 Linguistic evaluations provided by the expert

F1 F2 F3 F4

F1 - EQ M M

F2 - - M/S EQ/M

F3 - - - EQ/M

F4 - - - -

TABLE 2 FPCM and vector of criteria weights

~X F1 F2 F3 F4 Weights

F1 (1, 1, 2) (1, 1, 2) (2, 3, 4) (2, 3, 4) 36.12%

F2 (12, 1, 1) (1, 1, 2) (3, 4, 5) (1, 2, 3) 36.12%

F3 (14,
1
3,

1
2) (15,

1
4,

1
3) (1, 1, 2) (1, 2, 3) 17.42%

F4 (14,
1
3,

1
2) (13,

1
2, 1) (13,

1
2, 1) (1, 1, 2) 10.34%
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4.4 | Multiobjective approach and TOPSIS ranking of the Pareto solutions

The application of MOPSO is applied considering the four abovementioned objective functions and uses 400 particles to
explore the search space. The algorithm parameters take the same values as for the single-objective PSO. After several
iterations, the algorithm results in a Pareto front with 7 nondominated solutions. This is a small Pareto front that usu-
ally has hundreds or thousands of solutions. The complexity of the hydraulic network considered, together with the
many nonfeasible solutions discarded, reduced significantly the number of possible solutions.

With this recognition, by applying the TOPSIS method, we want to provide a structured framework able to deal with
general situations, including those cases in which the number of alternatives to be ranked is large. In the particular case
study herein analyzed, the TOPSIS method has been applied to rank the seven solutions belonging to the Pareto front,
being the application suitable and extendable for cases characterized by higher numerousness. Obviously, cost, lack of
pressure and water age (respectively F1, F2 and F4) will be minimized, whereas resiliency (F3) will be maximized. Differ-
ently from the application presented in Hwang et al.,27 the evaluation criteria have not herein assigned the same impor-
tance, but input weights will be those obtained previously through the FAHP. Results of the TOPSIS application are
reported in Table 5.

4.5 | Discussion of results

The solutions in the first positions of the final ranking obtained by applying TOPSIS are characterized by higher values
of the closeness coefficient, as can be appreciated by observing the last column of Table 5. Higher values of the close-
ness coefficient show that those alternatives have large distance to the negative ideal solution and small distance to the
positive ideal solution; these ideal solutions have been previously identified within the set of input data by means of for-
mulas 24 and 25. Similar solutions appear in Table 5, such as 1 and 2, or 6 and 7. This happens by the closeness of those

TABLE 3 Synthesis of FAHP main results

Values of Fuzzy Synthetic Extent

S1 = 6:00,8:00,12:00ð Þ� 1
33:33 ,

1
21:92 ,

1
15:87

� �
= 0:18,0:36,0:76ð Þ

S2 = 5:50,8:00,11:00ð Þ� 1
33:33 ,

1
21:92 ,

1
15:87

� �
= 0:16,0:36,0:69ð Þ

S3 = 2:45,3:58,5:83ð Þ� 1
33:33 ,

1
21:92 ,

1
15:87

� �
= 0:73,0:16,0:37ð Þ

S4 = 1:92,2:33,4:50ð Þ� 1
33:33 ,

1
21:92 ,

1
15:87

� �
= 0:06,0:11,0:28ð Þ

Degrees of Possibility to Compare Values of Fuzzy Synthetic Extent

V(S1 ≥ S2) 1 V(S2 ≥ S1) 1 V(S3 ≥ S1) 0.4822 V(S4 ≥ S1) 0.2861

V(S1 ≥ S3) 1 V(S2 ≥ S3) 1 V(S3 ≥ S2) 0.5014 V(S4 ≥ S2) 0.3145

V(S1 ≥ S4) 1 V(S2 ≥ S4) 1 V(S3 ≥ S4) 1 V(S4 ≥ S3) 0.7865

Components of the Nonnormalized Vector of Weights

x*
0
(F1) = V(S1 ≥ S2, S3, S4) = min(1; 1; 1) = 1

x*
0
(F2) = V(S2 ≥ S1, S3, S4) = min(1; 1; 1) = 1

x*
0
(F3) = V(S3 ≥ S1, S2, S4) = min(0.4822; 0.5014; 1) = 0.4822

x*
0
(F4) = V(S4 ≥ S1, S2, S3) = min(0.2861; 0.3145; 0.7865) = 0.2861

TABLE 4 Objective function values for best solution of single optimization

Objective Function Optimal Solution Original Network

F1 (cost [US$]) 120,542 -

F2 (pressure uniformity) 89.28 92.21

F3 (resilience) 0.88 0.95

F4 (water age index [h]) 4.00 3.69
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TABLE 5 TOPSIS results

Ranking Position # Pareto Solution
F1 F2 F3 F4 Closeness Coefficient

Valuew1 = 36.12% w2 = 36.12% w3 = 17.42% w4 = 10.34%

1 6 6.30E+04 8.31E+01 3.58E+00 0.87E+00 0.9233

2 7 6.32E+04 8.31E+01 3.58E+00 0.86E+00 0.9152

3 5 6.55E+04 8.29E+01 3.56E+00 0.85E+00 0.6858

4 3 7.00E+04 8.34E+01 3.61E+00 0.79E+00 0.0998

5 1 7.02E+04 8.29E+01 3.60E+00 0.79E+00 0.0873

6 2 7.05E+04 8.28E+01 3.60E+00 0.78E+00 0.0627

7 4 7.08E+04 8.28E+01 3.60E+00 0.78E+00 0.0534

FIGURE 6 (A) Pressure surface comparing original network and optimized solution (single objective). (B) Water age surface

comparing original network and optimized solution (single objective)
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solutions in the Pareto front. This ranking approach shows the interest of MCDMs to select trade-off scenarios under
the considered criteria. The first solution shows the best cost while the second highest pressure uniformity and lowest
resilience. That means, the best hydraulic and operation conditions will appear in the most expensive scenario. This is
because more installed valves allow to reduce even more the operational pressure. The relation between resilience and
pressure uniformity can also be highlighted. Scenarios with lower pressure uniformity present lower resilience, since
resilience is calculated based on overpressure, and pressure uniformity tries to minimize overpressure. Comparing with
the single objective solution, it is possible to observe that multi-objective solutions dominate the single objective
solution, since better values for three of the four objectives are reached. The selected solution (Solution 6) has a lower
cost, and better pressure uniformity and water quality index than the single objective one. As expected, this solution
also exhibits a lower resilience index.

To evaluate the hydraulic and quality effects of the selected solution from the Pareto's front, Figure 7,B present
pressure and water age maps, and compare the chosen optimal solution with the network with no DMA structure.
Pressure is significantly reduced in the south-west region of the network, as observed also for the single-objective
solution. However, for the multiobjective solution, also the eastern side of the network has the pressure reduced,

FIGURE 7 (A) Pressure surface comparing original network and optimized solution (multi objective). (B) Water age surface comparing

original network and optimized solution (multiobjective)
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something is not occurring for the single-objective solution. In the case of water age, one crucial indicator of
water quality in the network, the southern side of the network has increased this parameter in most of the pipes.
In the northern and central areas of the network, it is possible to observe a reduction on water age, thus increas-
ing the quality of water. This happens due to the changes on the topology, which increases the flow of a set of
pipes.

Comparing single and multiobjective optimization, the average water age on the demand nodes is the same, 8.61 h.
This value is slight lower than the one for the original network, 8.76 h. Usually, closing pipes for DMA creation
increases water age, thus harming the water quality. However, in this case study, the consideration of water quality
during the optimization process allows to reduce the water age, improving the water quality. In terms of pressure, the
average pressure in the single and multiobjective approaches are respectively 36.85 and 34.63 m, while in the original
network, this value is 38.98 m. This comparison shows that the multiobjective approach is able to define better manage-
ment for pressure, reducing the water age.

5 | CONCLUSIONS

The present work proposes a fully automated algorithm for DMA design based on clustering analysis, multiobjective
optimization, and multicriteria analysis, which is compared with a weighted single-objective approach. The clustering
analysis is undertaken through a modified k-means algorithm evaluated under the Davies-Bouldin criterion, resulting
in nine DMAs. The weighted single optimization found a feasible solution that could be implemented. However, the
multiobjective optimization for entrance location is conducted with MOPSO and finds seven nondominated solutions
in a trade-off between various objectives. In addition, an integrated MCDM approach, making use of the FAHP and
TOPSIS, is applied to firstly weight objectives and to secondly rank the nondominated solutions. The aim consists in
identifying that optimal solution representing the best trade-off in fulfilling the objectives to be matched. Operational
and hydraulic criteria are used to evaluate the solutions. The selected solution from TOPSIS has better hydraulic and
water quality parameters with lower cost, when compared with the single-objective solution. Even though for the use
case addressed, the optimization process of multiobjective results in a reduced number of Pareto solutions, the
multilevel (multiobjective and multicriteria analysis) algorithm is able to handle hundreds of solutions without high
computational effort. The multilevel algorithm finds a feasible and high-performance solution, guaranteeing low cost
and good efficiency of the system.
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