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Abstract - The present paper deals with managerial deci-
sions for PredictiveMaintenance (PrdM) of complex service sys-
tems. We propose a Multi-Criteria Decision-Making (MCDM)
approach aimed at sorting those failure modes potentially in-
volving critical components into risk classes for interventions
prioritisation and maintenance control. In this context, the
sorting technique ELimination Et Choix Traduisant la REal-
ité (ELECTRE) TRI is applied to support in finding the root
causes that can be eliminated for failure prevention and/or min-
imization. This methodology presents the advantage to not rely
on comparisons (as well as on their transitivity) between pairs of
elements, simplifying computations for complex systems. To be
sorted, decision elements are indeed compared with single ref-
erence profiles and the final assignment may constitute a valid
alternative to the traditional ranking of failures achievable by
other MCDM techniques and, among others, consistency-based
methodologies. The proposed approach will be eventually ap-
plied to a case study from the industrial reality.

1 Introduction and objectives
Predictive Maintenance (PrdM) is one of the strategies used to
predict failures based on inspection, condition monitoring, past
failures, maintenance and other types of data. Numerous stud-
ies have been undertaken in literature in this field and different
PrdM models and processes have been developed in the context
of industry 4.0. Developments have been made on the basis of
Artificial Intelligence (AI), Machine Learning (ML), Statistical
Process Control, Deep Learning (DL), Internet of Things (IoT),
Big Data, cyber physical system and cloud environment, pro-
viding useful directions for future work. These methods enable
failure prediction on the basis of data collection from various re-
sources. However, failures are corrected by firefighting without
addressing the true underlying causes [1]. Hence, it has been
concluded from literature that there is still the need to develop
approaches valuable in predicting failure and identifying related
causes for pursuing core systems optimisation.

The present paper proposes a Multi-Criteria Decision-
Making (MCDM) approach for complex service systems whose
core components are subjected to PrdM interventions. In par-
ticular, we aim to sort potential failures modes of components,
along with their related root causes, to ordered risk classes by
means of the MCDM method ELimination Et Choix Traduisant
la REalité (ELECTRE) TRI. The application of such a technique
enables to highlight which failures are associated to higher risk
conditions, then requiring higher priority of interventions by op-
timising the monitoring process for the whole system. This ap-
plication allows to sort failures without performing judgments of
preference between pairs of relevant decision-making elements
nor checking their consistency, as required by other MCDM
methods. The paper is organised as follows. Section 2 provides
a comprehensive literature review about the main topics of re-
search. Section 3 reminds to the ELECTRE TRI technique and
section 4 presents and solves a real case study. Conclusions are
discussed in section 5 along with possible future developments.

2 Literature review
Manufacturing equipment failures are crucial in those indus-
tries posing enormous losses in terms of maintenance cost and
operations stoppage. In manufacturing industries, the primary
objective of maintenance and reliability managers is to enhance
the availability of assets [2]. It is not worthy to repair equip-
ment once they have failed since failures should be predicted
and controlled even before their occurrence, by identifying re-
lated underlying causes. According to Omshi et al. [3] various
maintenance and replacement methods have been proposed so
far, varying from simple age-based to condition-based mainte-
nance. Further, Lundgren et al. [4] review numerous mainte-
nance models and found that their applications are limited in
industry to quantify the effects of maintenance. PrdM is one
of the maintenance policies used to predict failures by using
equipment condition monitoring, inspection, sensors, life cycle,
process data, systems and past failures data.
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Such a policy discourages routine and preventive mainte-
nance interventions, by promoting a more proactive mainte-
nance approach. A lot of research has been conducted on PrdM
till date. Cheng et al. [5] identify that reactive maintenance
is unable to inhibit failures and preventive maintenance cannot
predict the future condition in advance so assets can be repaired
earlier in order to extend their life. They use a PrdM approach
with advanced technologies to avoid such limitations. Hashim
et al. [1] propose a customised PrdM model to minimize the
maintenance cost of centrifugal pump in chemical plant. Miller
and Dubrawski [6] review literature on PrdM from system point
of view and differentiated failure risk forecasting and condition
estimation abilities, presently used for simple components and
needed to solve critical assets. Gohel et al. [7] develop a ML al-
gorithm to carry out PrdM of nuclear infrastructure. Daniyan et
al. [8] use AI for PrdM and developed training modules to train
maintenance personnel to monitor and analyse data from IoT
and other sources in order to predict the condition and potential
failure of a rail-car wheel bearing. Hsu et al. [9] use statistical
process control andML to detect faults of wind turbine and indi-
cate maintenance predictions. Moreover, Jimenez-Cortadi et al.
[10] review different maintenance approaches and presented the
process to be adopted for implementation of data driven PrdM in
machine decision making as well as data collection and process-
ing. Fernandes et al. [11] propose an infrastructure deployed
for failure detection in boilers, making possible to forecast faults
and errors. Their paper also presents initial PrdM models based
on the collected data. Namuduri et al. [12] review the DL
algorithms used for PrdM and present a case study of engine
failure prediction. Their study also discusses the current use of
sensors in the industry and future opportunities for electrochem-
ical sensors in PrdM. Peters et al. [13] explore a few typical
ML techniques and also develop a novel one. Sang et al. [14]
look at how to support PrdM in the context of Industry 4.0. Es-
pecially, the application of RAMI4.0 architecture supports the
PrdM using the FIWARE framework.

With a particular relation to the decision-making field,
MCDM methods are an effective tool involving both subjec-
tive and quantitative elements. Various MCDM policies and
methodologies have been recommended in literature over the
recent years to select the options representing the best trade-off
according to a set of evaluation criteria, and this is one of the
broadly used decision making approach in such different fields
as production, business, energy, economy, environment, sus-
tainability, supply chain management, tourism, manufacturing
systems, material, safety and risk, operations research, quality,
technology, project management and so on. Mardani et al. [15]
present various studies that show the vitality of the approach and
stated various methodologies proposed in the literature. One of
theMCDMmethods widely used is ELECTRE TRI. The ELEC-
TRE TRImethod has emerged from the ELECTREmethod after
a series of versions including ELECTRE I, II, III, IV, IS. This
is a multi-criteria sorting and decision aiding method used to
deal with ordinal classification problem and allocates alterna-
tives to predetermined categories [16, 17]. Various ELECTRE
TRI applications have been found in literature in different areas
and organizations. Fontana and Cavalcante [18] use ELECTRE

TRI method for storage location assignment issues. Norese and
Carbone [19] use it to evaluate and assign each airport to a se-
quential category in Italian Airports. Becker [20] applies the
technique for ICT technology in enterprises. Trojan and Morais
[21] use this method for reduction of losses in water distribution
networks, maintenance of power distribution networks [22], and
maintenance of water distribution network [23]. Certa et al.
[24] use ELECTRE TRI in the project risk management field.
Further, Brito et al. [25] apply this method for assessing risks
in natural gas pipelines. Moreover, Trojan and Marçal [26] use
ELECTRE TRI method for sorting maintenance types by multi-
criteria analysis to clarify maintenance concepts in production
and operations management. Almeida-Filho et al. [27] develop
a decision support system based on MCDM for an electrical
power distribution company to support maintenance planning.
DeAlmeida et al. [28] provideMCDMmodels to categorize and
allocate maintenance priorities for more effective maintenance
planning. From the study of the existent literature, it is possible
to conclude that many real case applications of ELECTRE TRI
method has been related to the maintenance field. However, ap-
plications of this method in PrdM are limited, so that we propose
the mentioned methodology for complex systems subjected to
PrdM interventions. The main purpose consists in providing
analysts with a tool capable to assist in potentiating failure con-
trol processes without pairwise comparing all the elements of
analysis, simplifying calculations for complex systems.

3 Materials and method
ELECTRE TRI can be implemented by developing two phases
in sequence. The first phase consists in defining outranking
relations between pairs of alternatives and reference profiles
by means of the calculation of concordance and discordance
indices. The second phase consists in assigning alternatives to
classes on the basis of the outranking relations established during
the previous phase. The previous definition of ordered classes
without any intersection among the related reference profiles is
required, as well as the collection of the following input data:

• set of criteria �: , (: = 1, . . . ,  ) and criteria weights F: ,
expressing the mutual importance of the aspects considered
as relevant for the analysis;

• set of reference profiles % 9 , ( 9 = 1, . . . , �) corresponding to
specific evaluations for each criterion;

• number � + 1 of classes �ℎ determined by the � reference
profiles;

• set of alternatives �8 , (8 = 1, . . . , �) and related evaluations
�: (�8) under each criterion;

• cutting value _, that is a threshold value ranged in the interval
[0.5, 1];

• indifference, strong preference and veto thresholds character-
ising outranking relations, respectively indicated by the nota-
tions �: , (: , and +: .

Once accomplished the input data collection, an exhaustive
description of the method can be consulted in [29].
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4 Case study
The present case study shows the application of the described
ELECTRE TRI methodology to a real complex system sub-
jected to interventions of predictive maintenance. Specifically,
the complex system is a vehicle deputed to the street cleaning
service. The reliability diagram of the system was elaborated in
previous research [30] as well as the related block diagram de-
tailing the system structure [31]. This last research specifically
identified a set of three critical components to be monitored with
priority to lead interventions of predictive maintenance. These
three elements are three hydraulic pumps, fundamental to guar-
antee the functioning of the most important sweeping elements
along with the loading-up and emptying systems. Acceleration
had been established as a parameter correlated to the wear state
of pumps to be measured by a proper network of sensors.

We are going to analyse the three hydraulic pumps. The list
of possible failures and root causes involving these elements is
provided in Table 1, which also shows the potential effects of
failures on the whole system functioning.

TABLE 1. Failures, root causes and criteria evaluation

ID Failures Causes Effects
�1 Pump I:

fault dis-
tribution
system

No power supply;
fluid characteristics;
failure of valves or
other elements.

Compromised functioning of
hydraulic circuit and hy-
draulic actuators; work po-
sition not taken; brush and
roller rotation not allowed.

�2 Pump I:
mechanical
fault

Wear of the elements
(journal boxes, bear-
ings, etc.); wear of
the sealing elements.

Compromised functioning of
hydraulic circuit and hy-
draulic actuators; work po-
sition not taken; brush and
roller rotation not allowed.

�3 Pump II:
fault dis-
tribution
system

No power supply;
fluid characteristics;
failure of valves or
other elements.

Compromised functioning of
the loading and unloading
system; work position not
taken; waste not loaded; tank
not emptied.

�4 Pump I:
mechanical
fault

Wear of the elements
(journal boxes, bear-
ings, etc.); wear of
the sealing elements.

Compromised functioning of
the loading and unloading
system; work position not
taken; waste not loaded; tank
not emptied.

�5 Pump II:
fault dis-
tribution
system

No power supply;
fluid characteristics;
failure of valves or
other elements.

Compromised functionality
of the elevator plant; diffi-
culty in the interaction be-
tween the elevator plant and
the collection tank; loading of
waste in the tank not carried
out; stopped elevator plant.

�6 Pump I:
mechanical
fault

Wear of the elements
(journal boxes, bear-
ings, etc.); wear of
the sealing elements.

Compromised functionality
of the elevator plant; diffi-
culty in the interaction be-
tween the elevator plant and
the collection tank; loading of
waste in the tank not carried
out; stopped elevator plant.

By analysing Table 1, there are two types of possible failures
that have been identified for pump I (deputed to the sweeping
system), pump II (deputed to the loading system) and pump III
(deputed to the emptying system). Although failures are related
to the same root causes, they may lead to significantly differ-
ent effects depending on the different distribution of the three
pumps throughout the system. The ELECTRE TRI application

is indeed aimed at finding those specific root causes on which
a priority of action is required. To such an aim, the six failures
(i.e. alternatives of the MCDM problem) are going to be sorted
in the following three ordered risk classes: �1, low priority; �2,
medium priority; �3, high priority. The assignment procedure
is carried out according to three main evaluation criteria: B1,
execution time; �2, execution modality; �3, frequency. The first
two criteria refer to the execution of maintenance interventions
whereas the third criterion refers to failure occurrence. Criteria
have been evaluated by means of a decision-makers’ panel and
their values (Table 2) posteriorly translated to a numerical scale
(Table 3) of values ranged within the interval [1, 5].

TABLE 2. Evaluation of alternatives under criteria
ID �1 �2 �3
�1 4.00 3.00 3.00
�2 4.00 3.00 3.00
�3 2.00 3.00 2.00
�4 3.00 3.00 2.00
�5 2.00 3.00 2.00
�6 3.00 3.00 2.00

TABLE 3. Evaluation scale
Criteria Evaluation Value
�1, �2 Low 1.00

Medium-Low 2.00
Medium-high 3.00
High 4.00

�3 Remote 1.00
Occasional 2.00
Probable 3.00
Frequent 4.00

The preference and indifference thresholds have been respec-
tively assumed as a half and a quarter of the width of classes,
whereas veto threshold has been assumed as equal to the width
of classes. Table 4 presents results derived from the both the pes-
simistic and the optimistic procedure. The pessimistic procedure
begins from the upper value limiting reference profiles defining
classes. It assigns the alternative �8 to the class for which the
condition that �8 is at least as good as profile %ℎ is verified, that
is class �ℎ+1. The optimistic procedure begins from the lower
value limiting reference profiles defining classes. It assigns the
alternative �8 to the class for which the condition that %ℎ is pre-
ferred to �8 is verified, that is class �ℎ . Readers are encouraged
to consult [32] for further information. Since no divergence
exists between the two procedures, we can affirm that no incom-
patibility relations exist within the set of evaluated elements.
The assignment of each failure to the defined classes has been
achieved under the assumption of equally weighted criteria and
by fixing three values for the cutting level _ : 0.60, 0.70, 0.80.
Results have been eventually double checked and validated by
means of the J-Electre-v2.0 software for multi-criteria decision
aid (https://sourceforge.net/projects/j-electre/files/).

TABLE 4. Assignment of alternatives to classes
ID _ = 0.60 _ = 0.70 _ = 0.80
�1 �3 �3 �3
�2 �3 �3 �3
�3 �2 �2 �2
�4 �2 �2 �2
�5 �2 �2 �2
�6 �2 �2 �2
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We can derive various useful observations by analysing the
results obtained through the ELECTRE TRI technique. All the
three analysed pumps are considered as critical components for
the complex system under analysis. Nevertheless, failures po-
tentially involving pump I have been classified within the high
priority class, whereas failures potentially involving pumps II
and III have been assigned to the medium priority class. Such
an output is important for organising the maintenance interven-
tions on the system since it highlights the required maximum
priority by means of a structured MCDM support.

Figure 1 shows the block diagram representing the subsys-
tems of the vehicle directly depending on pump I functioning.

Figure 1. Block diagram of subsystems impacted by pump I

By minimising the root causes related to the potential occur-
rence of failures �1 and �2, it will be then possible to optimise
the hydraulic circuit, actuators and such sweeping elements as
brush and roller. Moreover, since a network of sensors is avail-
able to monitor pump I, II and III, the present application may
also suggest a preferable allocation of sensors since failure root
causes in need of higher priority have been associated to pump
I. Results lastly confirm to be robust since no variations can be
noted by varying the cutting level (Table 4).

5 Conclusions and future work
The main objective of the present research consists in assuming
a MCDM perspective for maintenance management of service
systems. In particular, we propose the application of the ELEC-
TRETRI technique for sorting failures potentially involving core
components of systems subjected to predictive maintenance and
related root causes. The main purpose is to highlight which
root failure causes should be suppressed with priority by as-
signing failures to ordered priority classes. This application can
be useful to support predictive maintenance management by as-
suring quick actions and operational readiness. We applied the
proposed approach to a real world service system and, in par-
ticular, to sort common failures involving its core components.
The application has been led by considering different values of
cutting level to gain an overview about possible variations of
results. An advantage of the proposed approach is that failures
classification can be achieved without eliciting preference be-
tween pairs of alternatives, being elements pairwise compared
just with reference profiles defining classes. This is certainly a

more effective procedure when the number of core elements to
be taken into account increases, enabling to manage complexity
and potentially no transitive comparisons.

Possible future developments of the present research con-
sist in extending the application to the whole system apart from
the core components and in integrating the proposed method
with a further MCDM technique to calculate criteria weights.
This will be done to take into account the possibility that the
main aspects of analysis may have different mutual influence on
the final result. The aspect of dependence among criteria and
alternative may be the object of further applications by contem-
plating again the potential presence of no transitive preference
relations. Analysing the possible presence of dependency re-
lations among the main elements of analysis will indeed be an
important indicator to globally enhance predictive maintenance
management.
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