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ABSTRACT
Compositional models, as an alternative to Bayesian networks, are
assembled from a system of low-dimensional distributions. Thus the
respective apparatus falls fully into probability theory. The present
paper surveys the results supporting the design of computational
procedures, without which the application of these models to prac-
tical problems would be impossible.

Themethods of inference cannot dowithout a possibility to focus
on a part of the considered multidimensional model and to incorpo-
rate data describing the actual situation. Thus the paper shows how
to computemarginals and conditionals of multidimensional models.
Also, the paper briefly solves the problem of computing the effect of
an intervention, in case the model is interpreted as a causal model.
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Inscription

It was in 2008 when being on a visit at the Binghamton University (SUNY), I promised my
distinguished friend Prof. George J. Klir, a founder and the editor in chief of the Interna-
tional Journal of General Systems, a series of three papers summarizing results on theory of
probabilistic compositional models. Since that time, a long time has passed and many things
have changed. Compositional models stepped out beyond the scope of probability theory into
several generalized uncertainty theories and gained the capability of representing causal rela-
tions. However, from the intended series of papers, I published just two: on basic properties
(IJGS 2011) and structural properties of compositional models (IJGS 2015, coauthored by
Václav Kratochvíl). I was postponing the last paper until some open problems are solved, I
did not expect there might be a reason to rush. So it happened that when George passed away
in May 2016, I had not even started preparing the promised last paper. So, I am keeping my
pledge only now and devote this paper to the memory of Prof. George J. Klir.

Radim Jiroušek

1. Introduction

Though this paper is a follow-up of the previous two papers on the theory of compositional
models published in International Journal of General Systems (Jiroušek 2011; Jiroušek and
Kratochvíl 2015), we still owe the readers amore intuitive explanation of why the described
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models are called “compositional”. This is because a simple answer, they are based on the
application of the operator of composition, though fully true, does not satisfy the inquisitive
reader, but evokes a natural continuation: why is the operator called compositional? So, let
us start the paper, rather unconventionally, by answering the latter question.

We assume that a notion of “decomposition” is a generally intuitively accepted notion
used in many fields (and not only) of sciences. In artificial intelligence, problems are
decomposed into its subproblems, in mathematics, positive integers are unambiguously
decomposed into the powers of prime numbers. In Jiroušek (2020), we studied how to
decompose knowledge if formalized, say, using logical expressions. One can even decom-
pose a big wardrobe into pieces to move it from one house to another. Let us illustrate the
matter of decomposition with an example of graphs (Golumbic 1980; Lauritzen, Speed,
and Vijayan 1984).

Two (simple) graphs G1 = (V1,E1) and G2 = (V2,E2) form a decomposition of a graph
G = (V ,E) if

(1) G1, G2 are induced subgraphs of G, and V1 ∪ V2 = V , E1 ∪ E2 = E,
(2) V1 �= V �= V2,
(3) V1 ∩ V2 is complete in G.

Notice that condition (1) guarantees that the original object can be fully reconstructed
from the decomposed parts (nothing is lost). Condition (2) guarantees that the subobjects
are simpler than the decomposed object. Eventually, the last condition (3) guarantees that,
in a way, the subobjects fit each other; it guarantees the existence of the inverse operation.
It means that when reconstructing the original object the operation of composition can be
applied. Notice also that not all objects can be decomposed into simpler parts and that
pieces from different decompositions need not fit each other.

Naturally, the decomposition of objects into smaller parts is usually done on purpose.
The considered wardrobe, being decomposed, is easier tomove, and subproblems are, usu-
ally, easier to solve. From this point of view, the present paper is the most important from
the above-mentioned series of papers on compositional models. Namely, it shows that the
properties of compositional models (studied in the previous two articles) allow for efficient
computational procedures, theymake the application of thesemodels to inference possible.
Principally, to make an inference from the knowledge represented in the form of a multi-
dimensional compositional model, we need a possibility to compute its marginals and the
necessary conditionals. Marginalization corresponds to “focusing” on those variables, val-
ues of which we are interested in (either we know their values, or we want to update their
probabilities). And the conditioning may be used for updating.

Like the preceding ones, this is a survey paper summarizing important computational
methods for compositional models as well as presenting some unpublished results. To do
it, in the next section we briefly recall the notation and terminology used in the previ-
ous papers as well as the basic theoretical properties of the operator of composition and
compositional models. Then, Section 2 will be devoted to procedures making the efficient
computation of marginal distributions possible, and Section 3 will deal with computa-
tion of conditionals. In the latter section, we will also show how to compute the effect of
interventions in case that the considered compositional model is interpreted as a causal
model.
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2. Basic notions and notation

Holding the notation from the preceding papers, we denote the considered finite-valued
variables by lower-case Roman characters {u, v,w, . . .}. Their sets are denoted by upper-
case Roman characters such as K, L,M,N, . . ., with possible indices. Xu denote the set of
values of variable u, and, analogously, XK denote the set of all combinations (vectors) of
values of variables from K. Thus if K = {u, v,w}, then XK = Xu × Xv × Xw. Elements of
Xu (values of variables) and XK (vectors of variable values) are also called states and will
be denoted by bold lower-case Roman characters {a, b, c, . . .}.

Lower-case Greek characters denote probability distributions, e.g. π(K) is a probability
distribution defined for variables from K. Its marginal distribution for variables from L ⊂
K is denoted either simply π(L) or π↓L (π↓∅ = 1). An analogous notation is also used for
states: for a ∈ XK , a↓L is a state from XL, which is a projection of a. Thus for K = {u, v,w}
and a = (au, av, aw) ∈ XK , and L = {u,w}, a↓L = (au, aw).

Twodistributions κ(K) andλ(L) are said to be consistent if1 κ↓K∩L = λ↓K∩L. Notice that
if K and L are disjoint, then κ(K) and λ(L) are always consistent because κ↓∅ = λ↓∅ = 1.

Consider a probability distribution π(N). If for three disjoint subsets K, L,M ⊆ N
(assume that both K, L �= ∅) it holds that

π↓K∪L∪Mπ↓M = π↓K∪Mπ↓L∪M , (1)

we say that groups of variables K and L are conditionally independent given M for proba-
bility distribution π , and denote it K⊥⊥L | M [π]. In case that M = ∅, we say that groups
of variables K and L are independent and denote it K⊥⊥L [π]. If for two distributions π(K)

and κ(K) it holds that for all a ∈ XK

κ(a) = 0 =⇒ π(a) = 0,

then we say that κ dominates π and express this situation in symbols π � κ .

2.1. Operator of composition and its anticipating generalization

Definition 2.1: For two arbitrary distributions κ(K) and λ(L), for which κ↓K∩L � λ↓K∩L,
their composition is given by the following formula:2

(κ 
 λ) = κ · λ

λ↓K∩L .

In case κ↓K∩L �� λ↓K∩L the composition remains undefined.

Remark 2.2: The reader certainly noticed that in this definition we relaxed one of the
conditions mentioned in the Introduction. Namely, we do not require that both κ and λ

are simpler than κ 
 λ. It means that we admit situations when K ⊆ L, or L ⊆ K, which, as
we will see later, will appear to be useful.

In Jiroušek (2011), we presented simple examples showing that the operator is neither com-
mutative nor associative. In the cited paper and in Jiroušek (2002), we proved its basic
properties, which are summarized in the following assertion.
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Theorem 2.3: Suppose κ(K), λ(L) and μ(M) are probability distributions. The following
statements hold under the assumption that the respective compositions are defined:

(1) (Domain): κ 
 λ is a probability distribution for K ∪ L.
(2) (Composition preserves first marginal): (κ 
 λ)↓K = κ .
(3) (Reduction): If L ⊆ K then κ 
 λ = κ .
(4) (Extension): If M ⊆ K then κ↓M 
 κ = κ .
(5) (Perfectization): κ 
 λ = κ 
 (κ 
 λ)↓L.
(6) (Commutativity under consistency): κ andλ are consistent if and only if κ 
 λ = λ 
 κ .
(7) (Associativity under RIP): If K ⊇ (L ∩ M) or L ⊇ (K ∩ M) then (κ 
 λ) 
 μ = κ 


(λ 
 μ).
(8) (Stepwise composition): If (K ∩ L) ⊆ M ⊆ L then (κ 
 λ↓M) 
 λ = κ 
 λ.
(9) (Exchangeability): If K ⊇ (L ∩ M) then (κ 
 λ) 
 μ = (κ 
 μ) 
 λ.
(10) (Simple marginalization): If (K ∩ L) ⊆ M ⊆ K ∪ L then (κ 
 λ)↓M = κ↓K∩M 


λ↓L∩M.
(11) (Conditional independence): (K \ L)⊥⊥(L \ K) | (K ∩ L)[κ 
 λ].
(12) (Factorization): Let M ⊇ K ∪ L. (K \ L)⊥⊥(L \ K) | (K ∩ L)[μ] if and only if

μ↓K∪L = μ↓K 
 μ↓L.

Aswewill see in the next section, the lack of associativity of the operator of composition
can be sufficiently compensated by its generalization called an anticipating operator.

Definition 2.4: Consider an arbitrary set of variablesM and two distributions κ(K), λ(L).
Their anticipating composition is given by the formula

κ ©
M λ = (λ↓(M\K)∩L · κ) 
 λ = (λ↓(M\K)∩L 
 κ) 
 λ.

The operator ©
M is called an anticipating operator of composition.

Notice that κ©
∅ λ = κ 
 λ. Thus it is clear that the result of the compositionmay remain
undefined. However, it follows immediately from the respective definitions that if κ 
 λ is
defined then also κ©
M λ is defined. Both κ 
 λ and κ©
M λ are distributions defined for
the same set of variables.

Let us also note that the computations corresponding to these two operators are of the
same computational complexity. So, the main difference between the anticipating operator
and the operator 
 is that the generalized operator is parameterized by an index set. In the
following theorem (proved in Jiroušek 2011), we articulate themain purpose for which this
operator is introduced. Namely, operator 
 can be substituted by an anticipating operator
simultaneously with changing the ordering of operations.

Theorem 2.5: If κ(K), λ(L) and μ(M) are such that μ 
 (κ©
M λ) is defined, then

(μ 
 κ) 
 λ = μ 
 (κ ©
M λ).

2.2. Compositional models

By a compositional model, we understand a multidimensional probability distribution
assembled from low-dimensional distributions by a repetitive application of the operator
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of composition:

π = κ1 
 κ2 
 . . . 
 κm (2)

To understand this expression properly, we have to make three conventions, which were
also made in previously cited papers (Jiroušek 2011; Jiroušek and Kratochvíl 2015). All of
them are of technical nature and make the following exposition more lucid.

(1) To avoid the necessity to repeat it all the time, let us assume in the rest of the paper
that each distribution κi is defined for variables Ki: i.e. κi(Ki).

(2) Since the operator of composition is not generally associative, we should use paren-
theses to control the ordering, in which the operator is to be applied. It would lead
to rather intricate formulas, and therefore we omit the parentheses whenever the
operator is to be performed from left to right, i.e.

κ1 
 κ2 
 κ3 
 . . . 
 κm = (. . . ((κ1 
 κ2) 
 κ3) 
 . . .) 
 κm.

(3) The last convention is connected with the fact that the operator is not always defined.
To avoid repeating all the time that the respective statements are valid in the case that
the particular formulas are defined, let us assume in what follows that all the presented
formulas are defined.

Now, based on Property (1) of Theorem 2.3 (and the above-mentioned conventions),
we see that the compositional model π defined by formula (2) is a probability distribution
of variablesK1 ∪ K2 ∪ . . . ∪ Km. As shown in Jiroušek and Kratochvíl (2015), some impor-
tant properties of the compositional model κ1 
 κ2 
 . . . 
 κm are encoded in the sequence
of sets K1,K2, . . . ,Km. For example, from this sequence, one can read the system of con-
ditional independence relations holding for the model. Therefore, we usually refer to the
ordered sequence K1,K2, . . . ,Km as to the structure of the model.

In Jiroušek (2011), we considered the following special classes of compositional models.

Definition 2.6: Compositional model π = κ1 
 κ2 
 . . . 
 κm is called:

• perfect3 if for all i = 1, . . . ,m, π↓Ki = κi;
• flexible4 if for all u ∈ K1 ∪ . . . ∪ Km there exists a permutation j1, j2, . . . , jm of indices

1, 2, . . . ,m such that u ∈ Kj1 , and π = κj1 
 κj2 
 . . . 
 κjm ;
• decomposable5 if its structure K1,K2, . . . ,Km meets the running intersection property

(RIP), i.e. if

∀j = 3, . . . ,m ∃k ∈ {1, . . . , j − 1} : Kj ∩ (K1 ∪ . . . ∪ Kj−1) ⊆ Kk.

In the next sections, we will need the properties, which are summarized in the following
assertion. The proofs of Properties (1)–(4) can be found in Jiroušek (2011), the proof of
Property (5) is in Jiroušek (2017).

Theorem 2.7: For an arbitrary compositional model π = κ1 
 κ2 
 . . . 
 κm the following
statements hold true:

(1) (Prefix marginalization): For all j = 1, 2, . . . ,m π↓K1∪...∪Kj = π↓K1 
 . . . 
 π↓Kj .
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(2) (Perfectization): π = π↓K1 
 π↓K2 
 . . . 
 π↓Km, which means that π↓K1 
 π↓K2 

. . . 
 π↓Km is a perfect compositional model, which equals κ1 
 κ2 
 . . . 
 κm.

(3) (Strong flexibility): If κ1 
 κ2 
 . . . 
 κm is perfect and decomposable, then it is flexible.
(4) (Perfect model permutation): If κ1 
 κ2 
 . . . 
 κm and its permutation κj1 
 κj2 
 . . . 


κjm are both perfect, then κ1 
 κ2 
 . . . 
 κm = κj1 
 κj2 
 . . . 
 κjm .
(5) (Perfectization preserves flexibility): If κ1 
 κ2 
 . . . 
 κm is flexible, then π↓K1 
 π↓K2 


. . . 
 π↓Km is flexible, too.

Notice that property (2) says that each compositional model can be transformed into
a perfect compositional model. In other words, when considering perfect compositional
models only, we do not restrict the class of considered probability distributions. Both flex-
ibility and decomposability are useful for conditioning (see Section 3). This is because the
respective computational procedures become efficient if the conditioning variable appears
among the variables of the first probability distribution from the respective compositional
model. Nevertheless, it is also important to realize what generally does not hold for the
specified subclasses of models:

(a) Not all perfect models are flexible and not all flexible models are perfect.
(b) Though flexibility guarantees that a flexible model may be rearranged (permuted) in

many ways without changing the resulting multidimensional probability distribution,
Property (4) does not hold for flexible sequences. Example 12.6 from Jiroušek (2011)
presents a system of low-dimensional distributions, from which two different flexi-
ble models may be set up: all the permutations of these distributions split into two
groups, one part of permutations define one flexible model, permutations from the
other group define a different flexible model.

Remark 2.8: In this paper, we concentrate our attention on computations with composi-
tional models. A more general problem, marginalization of compositional expressions, is
solved byMalvestuto (2015, 2016), where the author considers compositional expressions.
In contrast to compositional models, compositional expressions are defined recursively6:

• any probability distribution π(K) is a compositional expression;
• if θ1 and θ2 are compositional expressions, then (θ1) 
 (θ2) is also a compositional

expression.

Thus one can immediately see that any compositional model, which is expressed in the
form of Expression (2), is a compositional expression, but not vice versa. For example,
(π(u, v) 
 κ(u, v,w)) 
 ((λ(v,w) 
 μ(u, v,w)) 
 ν(v,w, x)) is a compositional expression
but not a compositional model, because the parentheses cannot be removed without
changing the resulting distribution. The reason why we do not follow Malvestuto’s more
general approach is purely pragmatic. Having a compositional model composed from
low-dimensional distributions, we are sure that all the computations are tractable. When
computing the respective compositions, we need only the marginals of low-dimensional
distributions. For multidimensional compositional expression, the application of the oper-
ator of composition (whichmay need the computation of amarginal from a subexpression)
may easily become intractable.
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3. Marginalization

Recall that based on the conventions accepted in Section 2.2, we consider low-dimensional
probability distributions κ1(K1), κ2(K2), . . . , κm(Km). Using this, the goal of this section is
the following: Having a compositional model π = κ1 
 κ2 
 . . . 
 κm and a set of variables
N ⊂ K1 ∪ . . . ∪ Km, find a compositional model representing marginal distribution π↓N .

To describe the marginalization procedure, we have borrowed the style R. Shachter
used in Shachter (1986, 1988) to describe the marginalization in Bayesian networks. He
uses just two simple rules: node deletion and edge reversal. The rules presented below are
theoretically supported by the following two lemmas and the properties fromTheorem 2.7.

The first lemma enables us to decrease the dimensionality of a compositional model (i.e.
the number of variables) by one. It can be done only in situations when a variable appears
only in one Ki.

Lemma 3.1: Consider a compositional model π = κ1 
 κ2 
 . . . 
 κm, and denote K =
K1 ∪ . . . ∪ Km. If, for variable u, there exists index j such that u ∈ Kj, and u �∈ Ki for all
i ∈ {1, . . . ,m} \ {j}, then

π↓K\{u} = κ1 
 . . . 
 κj−1 
 κ
↓Kj\{u}
j 
 κj+1 
 . . . 
 κm.

Proof: The proof consists only in a repetitive application of Property (10) of Theorem 2.3:

π↓K\{u} = (κ1 
 κ2 
 . . . 
 κm)↓K\{u} = (κ1 
 κ2 
 . . . 
 κm−1)
↓(K1∪...∪Km−1)\{u} 
 κm

= (κ1 
 κ2 
 . . . 
 κm−2)
↓(K1∪...∪Km−2)\{u} 
 κm−1 
 κm = . . .

= (κ1 
 κ2 
 . . . 
 κj−1 
 κj)
↓(K1∪...∪Kj)\{u} 
 κj+1 
 . . . 
 κm

= (κ1 
 κ2 
 . . . 
 κj−1) 
 κ
↓Kj\{u}
j 
 κj+1 
 . . . 
 κm.

�

There is no direct way to delete a variable appearing among the arguments of more than
one κi. Therefore, we need a tool enabling us to decrease the number of appearances of a
variable among the arguments of distributions, from which the model is composed. This
is made possible by the following assertion.

Lemma 3.2: Consider a compositional model π = κ1 
 κ2 
 . . . 
 κm, and variable u. Let
j, k (j < k) be indices, for which u ∈ Kj ∩ Kk, and u �∈ Ki for all i ∈ {1, . . . , k − 1} \ {j} (i.e.
Kj,Kk are the first two sets from sequence K1, . . . ,Km containing u), then

π = κ1 
 . . . 
 κj−1 
 κ
↓Kj\{u}
j 
 κj+1 
 . . . 
 κk−1 
 (

κj ©
M κk
) 
 κk+1 
 . . . 
 κm,

where M = (K1 ∪ . . . ∪ Kk−1) \ {u}.

Proof: Due to Property (4) of Theorem 2.3 κj = κ
↓Kj\{u}
j 
 κj, and therefore

κ1 
 . . . 
 κj = (
κ1 
 . . . 
 κj−1

) 

(
κ

↓Kj\{u}
j 
 κj

)
= κ1 
 . . . 
 κj−1 
 κ

↓Kj\{u}
j 
 κj,

where the last equality follows fromProperty (7) of Theorem 2.3, becauseKj \ {u} ⊇ (K1 ∪
. . . ∪ Kj−1) ∩ Kj. The proof can be finished by a multiple application of Property (9) of
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Theorem 2.3 (it may be applied because (K1 ∪ . . . ∪ Kj−1 ∪ (Kj \ {u})) ⊇ Kj ∩ Ki for all
i = j + 1, . . . , k − 1) followed by the application of Theorem 2.5:

κ1 
 . . . 
 κk = κ1 
 . . . 
 κj−1 
 κ
↓Kj\{u}
j 
 κj 
 κj+1 
 . . . 
 κk−1 
 κk

= κ1 
 . . . 
 κj−1 
 κ
↓Kj\{u}
j 
 κj+1 
 κj 
 . . . 
 κk−1 
 κk

= . . . = κ1 
 . . . 
 κj−1 
 κ
↓Kj\{u}
j 
 κj+1 
 . . . 
 κk−1 
 κj 
 κk

= κ1 
 . . . 
 κj−1 
 κ
↓Kj\{u}
j 
 κj+1 
 . . . 
 κk−1 
 (

κj ©
M κk
)
.

�

As the reader can see, these two assertions guarantee that any variable can be marginal-
ized out of a compositional model. If the considered variable is among the arguments of
only one distribution κi, then its elimination is made possible by Lemma 3.1. If this vari-
able is among the arguments of several distributions forming the compositional model,
then one has first successively to decrease the number of occurrences of the variable in a
model until it appears among the arguments of only one κi. This decrease is made possible
by the application of Lemma 3.2. The final elimination of the variable from the model is,
again, realized using Lemma 3.1.

Thus from multiple applications of Lemma 3.2 one immediately gets the following
corollary, which was proved already in Jiroušek (2000).

Corollary 3.3: Consider a compositional model π = κ1 
 κ2 
 . . . 
 κm, and variable u ∈
Ki1 ∩ Ki2 ∩ . . . ∩ Kik , for which u /∈ Kj for all j ∈ {1, 2, . . . ,m} \ {i1, . . . , ik}. Assume i1 <

i2 < . . . < ik. Then

π↓(K1∪...∪Km)\{u} = λ1 
 λ2 
 . . . 
 λm,

where

λj = κj for all j ∈ {1, . . . ,m} \ {i1, . . . , ik},
λi1 = κ

↓Ki1\{u}
i1 ,

λi2 =
(
κi1 ©
Li2 κi2

)↓(Ki1∪Ki2 )\{u} ,

λi3 =
(
κi1 ©
Li2 κi2 ©
Li3 κi3

)↓(Ki1∪Ki2∪Ki3 )\{u} ,

...

λik =
(
κi1 ©
Li2 κi2 ©
Li3 . . . ©
Lik κik

)↓(Ki1∪...∪Kik )\{u} ,

where Lij = (K1 ∪ K2 ∪ . . . ∪ Kij−1) \ {u}.

3.1. Marginalization rules

The process of marginalization of a compositional model can be enhanced by the appli-
cation of two properties presented in previous theorems. Property (3) from Theorem 2.3
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advises to delete a distribution from a model if all its arguments appear among the argu-
ments of previous distributions, and Property (1) of Theorem 2.7 advises to cut off the tail
of the model if it is unnecessary. Thus the application of the following four rules enables
us to find a marginal to an arbitrary compositional model rather efficiently. The notation
corresponds to the computation of (κ1 
 . . . 
 κm)↓N for N ⊂ K1 ∪ . . . ∪ Km.

Tail cut off. If N ⊆ K1 ∪ . . . ∪ Kj then cut off the tail of the model with κj+1, . . . , κm, i.e.
redefinem: = j.
Model reduction. If there exists index j such that Kj ⊆ K1 ∪ . . . ∪ Kj−1 then delete κj from
the model, i.e. for all � = j, j + 1, . . . ,m − 1 redefine κ� := κ�+1; redefinem: = m − 1.
Variable deletion. If there exists variable u /∈ N and index j such that u ∈ Kj, and u �∈ Ki for all
i = 1, 2, . . . , j − 1, j + 1, . . . ,m, thenmarginalize variable u out of distribution κj, i.e. redefine
κj := κ

↓Kj\{u}
j .

Decrease of variable occurrences. For variable u ∈ (K1 ∪ . . . ∪ Km) \ N find indices j and
k such that u ∈ Kj ∩ Kk, and u �∈ Ki for all i = 1, 2, . . . , j − 1, j + 1, . . . , k − 1, then setM :=
(K1 ∪ . . . ∪ Kk−1) \ {u}, and redefine κj := κ

↓Kj\{u}
j ; redefine κk := κj ©
M κk.

The marginalization procedure consists of proper applications of the above-presented
rules. The simplest way is to start with the Tail-cut-off rule, and then check whether
Variable-deletion rule is applicable. The application of the latter rule may induce the appli-
cability of Model-reduction rule and vice versa. So, these two rules should be applied
in turns as long as one of them is applicable. The Decrease-of-variable-occurrences rule
should be applied only when all other rules are not applicable.When applying this last rule,
one should start with the variable with the lowest number of occurrences in themodel, and
apply it to this variable until the variable is among the argument of only one distribution
of the model, which means that it can be deleted using Variable-deletion rule.

Naturally, the above-presented sketch of a marginalization procedure just highlights
that one should start with the application of simple rules, and only if necessary one
should start applying the Decrease-of-variable-occurrences rule. When designing an effi-
cient algorithm one can employ other properties of the introduced rules as those described
in this section.

It is obvious that the application of the first three marginalization rules (i.e. Tail-cut-off,
Model-reduction and Variable-deletion) preserves perfectness of the model. This means
that if a model is perfect before these rules are applied, it is perfect also after the rules
are performed. This does not hold for Decrease-of-variable-occurrences rule. However,
thanks to Property (5) of Theorem 2.3, one can “easily” modify this rule to preserve the
perfectness of the models, too. It suffices to change the way how κk is redefined:

κk := (κ1 
 . . . 
 κk−1)
↓(K1∪...∪Kk−1)∩Kk\{u} 
 (κj ©
M κk).

The reason, why we put the word “easily” into quotation marks is that the computations of
the necessary marginal distribution may be computationally expensive.

Theorem 3.4: The application of any of the following three rules:

• Tail-cut-off rule,
• Model-reduction rule,
• Variable-deletion rule

preserves decomposability of the model.
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Proof: Tail-cut-off rule. This part of the proof is trivial because the definition of decom-
posable model κ1 
 . . . 
 κm (see Definition 2.6) guarantees that all its “prefix” models
κ1 
 . . . 
 κj, for j < m, are decomposable, too.

Model-reduction rule. Consider a model κ1 
 . . . 
 κj−1 
 κj+1 
 . . . 
 κm resulting by
the deletion of κj from the original decomposable model κ1 
 . . . 
 κm (the application of
the Model-reduction rule). This rule is applicable only if Kj ⊆ K1 ∪ . . . ∪ Kj−1. In combi-
nation with the assumption that the model is decomposable, it means that there must exist
i < j such that Kj ⊆ Ki.

To show that K1, . . . ,Kj−1,Kj+1, . . . ,Km meets RIP we have to show that for each � =
3, . . . , j − 1, j + 1, . . . ,m there exists k < �, k �= j, such that

K� ∩ (
K1 ∪ . . . ∪ K�−1

) ⊆ Kk. (3)

First, notice that because of Kj ⊆ K1 ∪ . . . ∪ Kj−1, for � > j (K1 ∪ . . . ∪ K�−1) = (K1 ∪
. . . ∪ Kj−1 ∪ Kj+1 ∪ . . . ∪ K�−1). Then realize that the decomposability of the original
model κ1 
 . . . 
 κm guarantees the existence of k < �, for which Equation (3) holds but
it may happen that for some � this k = j, which is from the sequence deleted. However, we
showed above that Kj ⊆ Ki, and therefore

K� ∩ (
K1 ∪ . . . ∪ K�−1

) ⊆ Ki,

for i < j, which finishes the proof that theModel-reduction rule preserves decomposability
of the model.

Variable-deletion rule. Assume that K1, . . . ,Km meets RIP, and u is the element of only
one Kj from this sequence. This assumption says that for any k > 1 (k ≤ m) there exists
� < k such that Kk ∩ (K1 ∪ . . . ∪ Kk−1) ⊆ K�. Since we assume that u is contained only
in one Kj, it is clear that for all k = 2, 3, . . . ,m it holds that u �∈ Kk ∩ (K1 ∪ . . . ∪ Kk−1).
Therefore, if for some K and � the inclusion Kk ∩ (K1 ∪ . . . ∪ Kk−1) ⊆ K� holds for the
sequence K1, . . . ,Km, the same inclusion holds with the same indices K and � also for
the sequence K1,K2, . . . ,Kj−1, (Kj \ {u}),Kj+1, . . . ,Km. Thus the latter sequence meets
RIP, too. �

3.2. Example

The goal of this section is to illustrate how the application of the above-presented rules
eliminates variables without damaging the mutual dependence of the remaining variables
(we do not care about the efficiency of the procedure). All the rules presented in the
preceding section are employed.

Consider 10 variables u1, u2, . . . , u10 and the following model composed from six
distributions

κ1(u1, u2, u3) 
 κ2(u1, u3, u4) 
 κ3(u4, u5, u6) 
 κ4(u1, u4, u7)


 κ5(u5, u6, u8, u9) 
 κ6(u6, u9, u10). (4)

Let us compute its marginal for variables N = {u3, u4, u7, u8}.
First, Cut-off-tail rule advises to delete the last distribution κ6. Then, one can notice that

variables u2 and u9 are among the arguments of only κ1, and κ5, respectively (the latter fact
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is true after κ6 is deleted), and therefore these two variables may be marginalized out using
theVariable-deletion rule. After these three steps, we get the followingmodel for 7 variables

κ1(u1, u3) 
 κ2(u1, u3, u4) 
 κ3(u4, u5, u6) 
 κ4(u1, u4, u7) 
 κ5(u5, u6, u8), (5)

which is marginal to the original model defined by Expression (4). With the given goal
(to compute marginal for variables N = {u3, u4, u7, u8}) only the Decrease-of-variable-
occurrences is applicable to the model from Expression (5). The application of this rule
to variable u5 yields (notice that ({u1, u3, u4, u6, u7} \ {u4, u6}) ∩ {u5, u6, u8} = ∅)

κ1(u1, u3) 
 κ2(u1, u3, u4) 
 κ3(u4, u6) 
 κ4(u1, u4, u7)


 (
κ3(u4, u5, u6) ©
{u1,u3,u4,u6,u7} κ5(u5, u6, u8)

)
= κ1(u1, u3) 
 κ2(u1, u3, u4) 
 κ3(u4, u6) 
 κ4(u1, u4, u7)

(κ3(u4, u5, u6) 
 κ5(u5, u6, u8)) .

In this model, variable u5 is among the arguments only for the last four-dimensional
distribution (κ3(u4, u5, u6) 
 κ5(u5, u6, u8)), and therefore it can be eliminated using the
Variable-deletion rule. Therefore, denoting

λ(u4, u6, u8) = (κ3(u4, u5, u6) 
 κ5(u5, u6, u8))↓{u4,u6,u8} ,

we got the following six-dimensional model:

κ1(u1, u3) 
 κ2(u1, u3, u4) 
 κ3(u4, u6) 
 κ4(u1, u4, u7) 
 λ(u4, u6, u8),

from which u6 can be eliminated in an analogous way:

κ1(u1, u3) 
 κ2(u1, u3, u4) 
 κ3(u4, u6) 
 κ4(u1, u4, u7) 
 λ(u4, u6, u8)

= κ1(u1, u3) 
 κ2(u1, u3, u4) 
 κ3(u4) 
 κ4(u1, u4, u7)


 (
κ3(u4, u6) ©
{u1,u3,u4,u7} λ(u4, u6, u8)

)
= κ1(u1, u3) 
 κ2(u1, u3, u4) 
 κ3(u4) 
 κ4(u1, u4, u7) 
 μ(u4, u6, u8),

the marginal of which is got by the application of Variable-deletion rule to variable u6,
which is an argument of the only distribution μ = (κ3(u4, u6) ©
{u1,u3,u4,u7} λ(u4, u6, u8)).
Thus we are getting the following model:

κ1(u1, u3) 
 κ2(u1, u3, u4) 
 κ3(u4) 
 κ4(u1, u4, u7) 
 μ(u4, u8).

Now, we can apply the so far unused Model-reduction rule that deletes κ3(u4) from the
model. The reader might also have a temptation to apply Property (4) of Theorem 2.3 to
κ1(u1, u3) 
 κ2(u1, u3, u4), but it is applicable only when we know that κ1 is a marginal
of κ2. Not assuming this, we have to proceed carefully and eliminate the last remaining
variable u1 using the Decrease-of-variable-occurrences rule twice:

κ1(u1, u3) 
 κ2(u1, u3, u4) 
 κ4(u1, u4, u7) 
 μ(u4, u8)

= κ1(u3) 
 (
κ1(u1, u3) ©
{u3} κ2(u1, u3, u4)

) 
 κ4(u1, u4, u7) 
 μ(u4, u8)
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= κ1(u3) 
 (
κ1(u1, u3) ©
{u3} κ2(u1, u3, u4)

)↓{u3,u4}



( (

κ1(u1, u3) ©
{u3} κ2(u1, u3, u4)
) ©
{u3,u4} κ4(u1, u4, u7)

)

 μ(u4, u8).

Thus the resulting model is composed from four distributions. Denoting

ν(u3, u4) = (
κ1(u1, u3) ©
{u3} κ2(u1, u3, u4)

)↓{u3,u4}

and

ρ(u1, u3, u4, u7) =
( (

κ1(u1, u3) ©
{u3} κ2(u1, u3, u4)
) ©
{u3,u4} κ4(u1, u4, u7)

)
,

it is

κ1(u3) 
 ν(u3, u4) 
 ρ(u1, u3, u4, u7) 
 μ(u4, u8),

from which u1 can easily be eliminated using Variable-deletion rule. Thus the resulting
compositional model κ1(u3) 
 ν(u3, u4) 
 ρ(u3, u4, u7) 
 μ(u4, u8) is the required four-
dimensional marginalπ↓{u3,u4,u7,u8} of the compositional model defined by Expression (4).

Remark 3.5: In this paper, only theoretical foundations of computational procedures are
presented. The reader interested in more sophisticated rules supporting the design of effi-
cient marginalization processes is referred to Bína and Jiroušek (2006); Malvestuto (2015).

4. Conditioning

The application of multidimensional probabilistic models to problems of inference can
hardly be realized without the possibility to compute conditional probability distributions.
For this purpose, we need a degenerate one-dimensional distribution expressing certainty.
Consider variable u and its value a ∈ Xu. The distribution δua expressing for certain that
variable u = a is defined for each e ∈ Xu as

δua (e) =
{
1, if e = a;
0, otherwise.

The following assertion shows that a conditional distribution can be computed using the
operation of composition.

Theorem 4.1: Consider a distribution κ(K), variable u ∈ K, its value a ∈ Xu, and
L ⊆ K \ {u}. If κ↓{u}(a) > 0, then the corresponding conditional distribution can be com-
puted

κL|u=a = (
δua 
 κ

)↓L .
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Proof: Due to Property (1) of Theorem 2.3, δua 
 κ is a probability distribution of K. Thus,
for any c ∈ XK

(
δua 
 κ

)
(c) =

⎧⎨
⎩

κ(c)
κ↓{u}(a)

, if c↓{u} = a;

0, otherwise,

and therefore, for any e ∈ XL

(
δua 
 κ

)↓L
(e) = κ↓L∪{u}(e, a)

κ↓{u}(a)
.

�

Theorem 4.1 shows that simple conditional probability distribution can be expressed in
a form of a compositional model. However, a computational problemmay arise, when one
wants to compute a conditional distribution from a multidimensional distribution repre-
sented in a form of a compositional model. To study this possibility, from now on, we keep
considering compositional model κ1(K1) 
 κ2(K2) 
 . . . 
 κm(Km).

Due to Theorem 4.1, the computation of a conditional distribution from a model κ1 

. . . 
 κm means to compute

δua 
 (κ1 
 κ2 
 . . . 
 κm),

which may be difficult. Nevertheless, the computation of the considered conditional dis-
tribution is an easy task if u ∈ K1 because, in this special case, the following assertion may
be used.

Theorem 4.2: Consider a compositional model κ1 
 κ2 
 . . . 
 κm, variable u ∈ K1 and its
value a ∈ Xu. Then,

δua 
 (κ1 
 κ2 
 . . . 
 κm) = (δua 
 κ1) 
 κ2 
 . . . 
 κm.

Proof: The proof is based on a multiple application of Property (7) (Associativity under
RIP) of Theorem 2.3. Namely,

δua 

(
(κ1 
 κ2 
 . . . 
 κm−1) 
 κm

)
= δua 
 (κ1 
 κ2 
 . . . 
 κm−1) 
 κm,

because (K1 ∪ . . . ∪ Km−1) ⊇ {u} ∩ Km, and therefore the mentioned Property (7) is
applicable. Since we assume that u ∈ K1, (K1 ∪ . . . ∪ Kj−1) ⊇ {u} ∩ Kj for all j = m − 1,
m − 2, . . . , 2, and we can repeat this idea getting

δua 
 (κ1 
 κ2 
 . . . 
 κm−1 
 κm) = δua 
 (κ1 
 κ2 
 . . . 
 κm−1) 
 κm

= δua 
 (κ1 
 κ2 
 . . . 
 κm−2) 
 κm−1 
 κm

= . . . = δua 
 κ1 
 κ2 
 . . . 
 κm−2 
 κm−1 
 κm.

�
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4.1. Conditioning in flexiblemodels

Theorem4.2 shows that ifu ∈ K1, all the necessary computations are local. In case that vari-
able u is not among the variables, for which κ1 is defined, one cannot employ Theorem 4.2,
and the computation of δua 
 (κ1 
 κ2 
 . . . 
 κn) may be space and time-demanding. It is
why we want the conditioning variable to be among the arguments of the first distribution.
It is why we are so much interested in models, in which the ordering of distributions in
a compositional model may be changed without modifying the represented distribution.
Recall, these are the flexible models (see Definition 2.6), for which there exist as many re-
orderings as necessary to get any variable at the very front part of the model. The reader
certainly noticed that it is the widest class of models possessing this property. As expressed
in Theorem 2.7, its proper subclass is formed by perfect decomposable models.

The flexible models do not allow only for the efficient computation of simple condi-
tionals but also for conditionals with a multiple condition like κL|u=a,v=c. This is possible
due to Theorem 4.5 presented below. It states that the computation of a conditional from a
flexible model does not spoil the flexibility of the model, and therefore one can repeat the
computations successively several times. To prove this important assertion, we need the
following Lemma and its Corollary.

Lemma 4.3: Consider κ(K), λ(L), and μ(M). If either M ⊆ K, or M ⊆ L, then

μ 
 (κ 
 λ) = (μ 
 (κ 
 λ))↓K 
 (μ 
 (κ 
 λ))↓L. (6)

Proof: Let us denote π(K ∪ L) = κ(K) 
 λ(L). First, assume that K ⊇ M. Then,

μ 
 π = (μ 
 π)↓K 
 (μ 
 π) Property (4), Th. 2.3
= (μ 
 π)↓K 
 μ 
 π Property (7), Th. 2.3
= (μ 
 π)↓K 
 μ 
 (

π↓K 
 π↓L) Properties (11) and (12), Th. 2.3
= (μ 
 π)↓K 
 μ 
 π↓K 
 π↓L Property (7), Th. 2.3
= (μ 
 π)↓K 
 μ 
 π↓L Property (3), Th. 2.3
= (μ 
 π)↓K 
 (

μ 
 π↓L) Property (7), Th. 2.3
= (μ 
 π)↓K 
 (μ 
 π)↓L. Property (10), Th. 2.3

In case thatM ⊆ L, using the same computations as above we get

μ 
 π = (μ 
 π)↓L 
 (μ 
 π)↓K = (μ 
 π)↓K 
 (μ 
 π)↓L,

where the last equality holds because of Property (6) of Theorem 2.3. �

Corollary 4.4: Let π(K ∪ L) = κ(K) 
 λ(L). Then for any u ∈ K ∪ L and a ∈ Xu such that
π↓{u}(a) > 0, the conditional ϑ(K ∪ L) = δua 
 π(K ∪ L) can be expressed in the form of a
composition

ϑ = ϑ↓K 
 ϑ↓L.

Theorem 4.5: Consider a flexible model κ1 
 κ2 
 . . . 
 κm, variable u ∈ K1, and its value
a ∈ Xu such that κ

↓{X}
1 (a) > 0. Denote π = δua 
 (κ1 
 κ2 
 . . . 
 κm). Then the perfect

model π↓K1 
 π↓K2 
 . . . 
 π↓Km is also flexible.
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Proof: We will show that for each permutation i1, i2, . . . , im for which

κi1 
 κi2 
 . . . 
 κim = κ1 
 κ2 
 . . . 
 κm,

and for each j = 1, . . . ,m, distribution π↓Ki1 
 π↓Ki2 
 . . . 
 π
↓Kij is marginal to π , which

means that

π↓Ki1 
 π↓Ki2 
 . . . 
 π
↓Kij = π

↓Ki1∪...∪Kij . (7)

For j = 1 Equality (7) is trivial. To conclude the induction wewill show that ifπ↓Ki1 
 . . . 

π

↓Kij−1 is the marginal of π , the same must hold also for

π↓Ki1 
 . . . 
 π
↓Kij = (π↓Ki1 
 . . . 
 π

↓Kij−1 ) 
 π
↓Kij .

Assume

π↓Ki1 
 . . . 
 π
↓Kij−1 = π

↓Ki1∪...∪Kij−1 . (8)

The considered permutation is selected in the way that (κi1 
 . . . 
 κij−1) 
 κij is marginal
to κ1 
 . . . 
 κm, and therefore, due to Property (11) of Theorem 2.3,

(Ki1 ∪ . . . ∪ Kij−1) \ Kij⊥⊥Kij \ (Ki1 ∪ . . . ∪ Kij−1) | Kij ∩ (Ki1 ∪ . . . ∪ Kij−1) [κ1 
 . . . 
 κm].

Due to Corollary 4.4, the same conditional independence relation holds also for distribu-
tion π , and therefore, due to Property (12) of Theorem 2.3,

π
↓Ki1∪...∪Kij = π

↓Ki1∪...∪Kij−1 
 π
↓Kij .

�

Perhaps, it is not necessary to highlight the importance of Theorem 4.5. It follows
from the fact that it makes conditioning by several variables possible. When comput-
ing πL|u=a,v=c for flexible compositional model π = κ1 
 . . . 
 κm, and some u, v ∈ K1 ∪
. . . ∪ Km, L ⊆ (K1 ∪ . . . ∪ Km) \ {u, v}, and a ∈ Xu, c ∈ Xv, one can proceed in two steps.
In the first step, one finds the ordering Ki1 , . . . ,Kim , for which the variable u ∈ Ki1 ,
and computes (δua 
 κi1) 
 . . . 
 κim (recall thatπL|u=a = ((δua 
 κi1) 
 . . . 
 κim)↓L). Before
performing the second step one has to become aware that Theorem 4.5 does not state that
(δua 
 κi1) 
 . . . 
 κim is flexible. It states that its perfectized form is flexible (all distribu-
tions must be marginals of the multidimensional model). Therefore, one has to compute
the perfect model (see Theorem 10.9 of (Jiroušek 2011)):

λi1 = (δua 
 κi1),

λi2 = (κi1)
↓Ki2∩Ki1 
 κi2 ,

λi3 = (κi1 
 κi2)
↓Ki3∩(Ki1∪Ki2 ) 
 κi3 ,

...

λim = (κi1 
 . . . 
 κim−1)
↓Kim∩(Ki1∪...∪Kim−1 ) 
 κim .
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Now, having a flexible model λi1 
 . . . 
 λim (keep in mind that πL|u=a = (λi1 
 . . . 

λim)↓L), one can find its permutation λj1 
 . . . 
 λjm , for which v ∈ Kj1 , and compute

πL|u=a,v=c = (
(δvc(v) 
 λi1) 
 λi2 
 . . . 
 λim

)↓L .

4.2. Decomposablemodels

In practical situations, it may be very difficult to verify the flexibility of a compositional
model. It is the widest class of models, in which all variables may be moved to the begin-
ning of the model, but because of computational problems, we usually have to restrict
our attention to its proper subclass, to perfect decomposable models. Namely, both the
perfectness and decomposability can be easily checked. Moreover, it is an old result of
Kellerer (1964a, 1964b) guaranteeing that if a decomposable model is composed from
pairwise consistent distributions, then it is also perfect. This simplifies the verification
procedure to pairwise consistency, which is for low-dimensional distributions a trivial task.

Another advantage of decomposable models resides in the fact that there is a sim-
ple way to find out whether a system of sets {K1, . . . ,Km} can be ordered to meet RIP.
If such a reordering exists, then one of such possible permutations (Kj1 , . . . ,Kjm) is
obtained by the following Maximum cardinality search (adapted for sets from Tarjan and
Yannakakis (1984)):

(1) Place any set Ki at the beginning of the sequence, i.e. Kj1 = Ki.
(2) For � > 1 assign Kj� = Kr for

r ∈
{
arg max

k∈{1,...,m}\{j1,...,j�−1}
|Kk ∩ (Kj1 ∪ . . . ∪ Kj�−1)|

}

arbitrarily. If the resulting ordering does not meet RIP, then {K1, . . . ,Km} cannot be
ordered to meet RIP.

As said in Theorem 2.7, all compositional models can be transformed into perfect
models without influencing the represented multidimensional distribution (see the per-
fectization procedure described at the end of the preceding section). Moreover, both the
models (before and after the transformation) are defined by the same number of param-
eters (probabilities). Unfortunately, no similar assertion holds for the transformation of
a compositional into a decomposable model. For this transformation, one has to pay by
the increase of necessary parameters, and simultaneously, by the loss of some information
encoded in the structure of the model. Let us now describe the process of such a transfor-
mation and its influence on the model structure in more detail. For this, we employ the
apparatus and results introduced in Jiroušek and Kratochvíl (2015).

First, recall the definition of non-trivial sets.

Definition 4.6: LetP = (K1, . . . ,Km) be the structure of a compositionalmodelπ = κ1 

. . . 
 κm.We say that set of variablesU is non-trivial with respect toP if there existsKi ∈ P
(we will say that Ki generatesU) such thatU ⊆ Ki andU \ (K1 ∪ . . . ∪ Ki−1) �= ∅. Denote

N (P) = {U is non-trivial with respect to P : 2 ≤ |U| ≤ 3}.
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It was shown in Kratochvíl (2013) that N (P) bears all the information about the
structural conditional independence relations holding for the respective model. Among
others, one special combination deserves our attention: a triplet {u, v,w} ∈ N (P) such
that {u, v} /∈ N (P). Note that the existence of such a triplet prevents P to meet running
intersection property. Therefore, a compositional model with such a triplet among its non-
trivial sets cannot be decomposable. This is the key property on which the transformation
process into a decomposable form is based. If there is triplet {u, v,w} ∈ N (P) such that
{u, v} /∈ N (P), we will add {u, v} intoN (P) using the following assertion. This modifica-
tion complies with our effort tominimize the changes in themodel structure, though other
non-trivial sets of cardinality 3 can simultaneously be added to N (P). For each variable
u ∈ K1 ∪ . . . ∪ Km, define �u� = min{i : u ∈ Ki}.
Lemma 4.7: Let P = (K1, . . . ,Km) be a compositional model structure, and a triplet
{u, v,w} ∈ N (P) such that {u, v} /∈ N (P) and �u� < �v�. Let R = K�v� \ (K1 ∪ . . . ∪
K�v�−1 ∪ {v}). Then,

N (P ′) = N (P) ∪ {{u, v}} ∪ {{u, v, x} : x ∈ K�v� \ R, x �= v},
for structure P ′ = (K1, . . . ,K�v�−1, (K�v� \ R) ∪ {u},K�v�, . . . ,Km).

Proof: Note that P ′ is created from P by inserting

L = (K�v� \ R) ∪ {u} = (
K�v� ∩ (K1 ∪ . . . ∪ K�v�−1)

) ∪ {u, v}
between K�v�−1 and K�v�. Therefore,

L \ (K1 ∪ . . . ∪ K�v�−1) = {v}. (9)

To prove this Lemma, realize that non-trivial sets generated by Ki, i �= �v� are the same
in both P and P ′. Indeed, this is clear for i < �v� and to show it for i > �v� it is enough
to realize that L ∪ K�v� ⊆ (K1 ∪ . . . ∪ K�v�). Thus one can concentrate on non-trivial sets
generated by K�v� in P and non-trivial sets generated by L and K�v� in P ′.

First, let us show that N (P ′) ⊇ N (P) ∪ {{u, v}} ∪ {{u, v, x} | x ∈ K�v� \ R, x �= v}.
Note that v ∈ L \ (K1 ∪ . . . ∪ K�v�−1), {u, v} ⊆ L, and therefore {u, v} ⊆ N (P ′), since it
is generated by L. Similarly, {u, v, x} for any x ∈ K�v� \ (R ∪ {v}) is also generated by L in
P ′.

Consider any U ∈ N (P) generated by K�v� in P .

• If U ⊆ L, then U \ (K1 ∪ . . . ∪ K�v�−1) = {v} because of U ∈ N (P) and Equation (9).
Hence, U is generated by L in P ′, and therefore U ∈ N (P ′).

• If U �⊆ L, then U ∩ R �= ∅ (because U is generated by K�v� in P), which means that U
is generated by K�v� also in P ′.

To finish the proof, we have also to show that the opposite inclusion holds. Assume
U ∈ N (P ′) generated either by L or K�v� in P ′.

• If U is generated by L in P ′, Equation (9) implies that v ∈ U. If u /∈ U, then U ⊆ K�v�
and U is generated by K�v� in P . If u ∈ U, then either U = {u, v}, or U = {u, v, x} for
some x ∈ (K�v� \ R) such that x �= v.
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• If U is generated by K�v� in P ′, then it has to be generated by K�v� in P as well, which
finishes the proof. �

Lemma4.7 constitutes a theoretical background, onwhich a simple heuristic7 procedure
is based, the procedure transforming a general compositional model into a decompos-
able one. This assertion gives instructions how to modify a structure P of a model if it
is non-decomposable. It is obvious that a subsequent application of this modification to a
general structure results in a decomposable structure. Namely, the process cannot cycle,
because the application of Lemma 4.7 increasesN (P) by one couple {u, v}, which cannot
be removed in subsequent steps. Therefore (considering finite models) one must reach a
situation that there is no triplet {u, v,w} ∈ N (P) such that {u, v} /∈ N (P). And the non-
existence of such a triplet characterizes decomposablemodels – see Lemma 7.6 in (Jiroušek
and Kratochvíl 2015).

4.3. Example

John does not use municipal transport regularly, and from time to time, he does not buy
a ticket. Thus if being caught by a ticket inspector as a fare-dodger, he has to pay a fine.
All possible situations are described with the help of five binary variables with values
{yes, no}. Their meaning is: pay a fine f , a day off (holiday) h, meet a ticket inspector i,
public transport t, and traveling to university u.

Consider the following compositional model:

π(f , h, i, t, u) = κ1(h, i) 
 κ2(h, u) 
 κ3(t, u) 
 κ4(f , i, t), (10)

where κ1(h, i) is a probability distribution describing the different activities of ticket inspec-
tors on working days and holidays. Similarly, κ2(h, u) expresses the fact that on working
days John’s destination is usually the university, whilst on holidays he quite often goes to
the countryside. The dependence of the destination and themean of transport is described
by κ3(t, u). The last probability distribution κ4(i, t, f ) represents how often he has to pay a
fine (naturally, for this he has to travel by means of public transport and he has to meet a
ticket inspector). The respective probability distributions are in the upper part of Table 1,
from which the reader can easily verify that the respective model is perfect. Let the goal be
to compute a conditional distribution of variable h under the assumption that John pays a
fine on his journey to the university, i.e. π {h}|f=yes,u=yes.

Not knowing anything about the flexibility of this model, let us first convert it into a
decomposable form (the reader can test its non-decomposability using Maximum cardi-
nality search algorithm described above). To apply the idea from Lemma 4.7 one has to
make a list of all non-trivial sets fromN (P) for the structure of the considered model. In
this example, the considered structure is P = ({h, i}, {h, u}, {t, u}, {f , i, t}).N (P) contains
all the sets from the considered structure (each of them contains a variable, which in not
among the preceding sets, and the cardinalities of all these sets are either two or three) plus
two more pairs:

N (P) = {{h, i}, {h, u}, {t, u}, {f , i, t}, {f , i}, {f , t}}.
From this, we immediately see that the model is not decomposable because {f , i, t} ∈
N (P) and {i, t} /∈ N (P). Thus Lemma 4.7 advises to consider a new structure P ′ =
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({h, i}, {h, u}, {i, t, u}, {t, u}, {f , i, t}) created from P by inserting set

L = ({t, u} \ ∅}) ∪ {i} = {i, t, u}

between {h, u} and {t, u}. For this new structure P ′,

N (P ′) = {{h, i}, {h, u}, {i, t, u}, {i, t}, {t, u}, {f , i, t}, {f , i}, {f , t}}.
Neither structure P ′ is decomposable; this is disproved by the existence of {i, t, u} ∈
N (P ′) and {i, u} /∈ N (P ′). Therefore, applying Lemma 4.7 once more, we consider a new
structure P ′′ = ({h, i}, {h, i, u}, {h, u}, {i, t, u}, {t, u}, {f , i, t}) created from P ′ by inserting
set

L′ = ({h, u} \ ∅}) ∪ {i} = {h, i, u}
between {h, i} and {h, u}. The decomposability of this new structure can be seen from the
fact that in the system

N (P ′′) = {{h, i}, {h, i, u}, {i, u}, {h, u}, {i, t, u}, {i, t}, {u, t}, {f , i, t}, {f , i}, {f , t}}
there is no a three-element set, two-element subset of which would not appeared in the
system.

To get a decomposable model corresponding to distribution π we have to compute
distributions corresponding to the received decomposable structure, i.e.

κ5(h, i, u) = κ1(h, i) 
 κ2(h, u),

κ6(i, t, u) = κ
↓{i,u}
5 (i, u) 
 κ3(t, u),

(see the lower part of Table 1) and the decomposable model corresponding to the original
model given in Equation (10) is

π(f , h, i, t, u) = κ1(h, i) 
 κ5(h, i, u) 
 κ2(h, u) 
 κ6(i, t, u) 
 κ3(t, u) 
 κ4(f , i, t)

= κ5(h, i, u) 
 κ6(i, t, u) 
 κ4(f , i, t). (11)

The realized simplification is made possible due to Properties (4) and (3) of Theorem 2.3.

Table 1. Probability distributions defining model from Expression (10).

a = yes a = no

b = yes b = no b = yes b = no

κ1(h = a, i = b) .04 .36 .16 .44
κ2(h = a, u = b) .10 .30 .45 .15
κ3(t = a, u = b) .40 .20 .15 .25
κ4(f = a, i = b, t = yes) .20 0 0 .40
κ4(f = a, i = b, t = no) 0 0 0 .40
κ5(h = a, i = b, u = yes) .01 .09 .12 .33
κ5(h = a, i = b, u = no) .03 .27 .04 .11
κ6(i = a, t = b, u = yes) .13 0 .27 .15
κ6(i = a, t = b, u = no) .07 0 .13 .25
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Table 2. Conditional probability distributions.

a = yes a = no

b = yes b = no b = yes b = no

λ1(h = a, i = b, u = yes) .018 .164 .218 .600
λ1(h = a, i = b, u = no) 0 0 0 0
λ2(i = a, t = b, u = yes) .236 0 .491 .273
λ2(i = a, t = b, u = no) 0 0 0 0
λ3(f = a, i = b, t = yes) .236 0 0 .491
λ3(f = a, i = b, t = no) 0 0 0 .273

Table 3. Resulting conditional probabil-
ity distribution.

a = yes a = no

π {h=a}|f=yes,u=yes .074 .924

Having a decomposable model defined by Expression (11), to compute the required
π {h}|f=yes,u=yes, proceed in the following two steps. First realize that even though the
compositional model in Equation (11) is perfect, its conditional form(

δuyes 
 κ5(h, i, u)
)


 κ6(i, t, u) 
 κ4(f , i, t)

is not perfect any more. Since decomposable models are flexible only when they are also
perfect, we have to perfectize it. Thus consider a perfect model λ1 
 λ2 
 λ3 with

λ1(h, i, u) = δuyes 
 κ5(h, i, u),

λ2(i, t, u) = λ
↓{i,u}
1 (i, u) 
 κ6(i, t, u),

λ3(f , i, t) = λ
↓{i,t}
2 (i, t) 
 κ4(f , i, t),

the values of which are in Table 2. This model, being perfect and decomposable, may be
reordered (keeping the RIP property), so that the required conditional distribution

π {h}|f=yes,u=yes = (
(δ

f
yes 
 λ3(f , i, t)) 
 λ2(i, t, u) 
 λ1(h, i, u)

)↓{h},

the values of which are in Table 3.

4.4. Conditioning and intervention in causal models

In this section, we briefly show how to handle compositional models when they are inter-
preted as Markovian causal models. Originally, Markovian causal models were introduced
in a graphical formbyPearl (2009). The results presented in this section are taken over from
Bína and Jiroušek (2015), where the interested reader can find a more detailed explanation
of the topic and some illustrative examples.

As in previous sections, we keep considering compositional model κ1(K1) 
 κ2(K2) 

. . . 
 κm(Km). For each variable u ∈ K1 ∪ . . . ∪ Km, define

C(u) = K�u� ∩ (K1 ∪ . . . ∪ K�u�−1),

(recall that �u� = min{i : u ∈ Ki}), which obviously means that C(u) = ∅ for all u ∈ K1.
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C(u) is interpreted as a set of causes of variable u, and the considered model κ1(K1) 

κ2(K2) 
 . . . 
 κm(Km) is called causal compositional model. Thus, as the reader certainly
noticed, we consider only causal models without feedback.

When using a causal compositional model for inference, we can take advantage of most
of the properties presented in previous sections. The only difference is that it is not possible
to use operations changing the ordering of distributions in a model, one cannot employ
Property (9) of Theorem 2.3. Namely, changing the ordering of distributions in a model
may result in swapping the roles of cause and effect. Thus the flexibility of a model cannot
be used, either.

As explained by Pearl (2009), in causal models one has an additional possibility that
does not have a sense in non-causal models. It, in a way, resembles conditioning but its
semantic is quite different. It is a possibility of intervention. Let us explain this notion with
the following simple example.

Example 4.8: Consider two binary variables: s indicatingwhether there is smoke in a room
(s = 1) or not (s = 0), and variable a, which equals 1 if the fire alarm is on, and equals 0
if it is off. The corresponding causal compositional model is π(a, s) = μ(s) 
 ν(a, s). We
can see that C(s) = ∅, and C(a) = {s}, which corresponds with our intuition. For illus-
tration, consider probabilities μ(0) = μ(1) = 0.5, and ν(0, 0) = ν(1, 1) = 0.45, ν(0, 1) =
ν(1, 0) = 0.05. From this, we can easily compute conditional distribution8

πa|s=0 =
(
δs0 
 (μ(s) 
 ν(a, s))

)↓{a} =
(
δs0 
 ν(a, s)

)↓{a}
, (12)

for whichπa|s=0(0) = 0.9, andπa|s=0(1) = 0.1. Analogously, we can computeπa|s=1(0) =
0.1, and πa|s=1(1) = 0.9. Naturally, the model also makes the computation of conditionals
π s|a=0 and π s|a=1 possible (notice, the simplification performed in Formula (12) cannot
be done, now):

π s|a=0 =
(
δa0 
 (μ(s) 
 ν(a, s))

)↓{s}
.

From this, we get π s|a=0(0) = 0.9, π s|a=0(1) = 0.1, and π s|a=1(0) = 0.1, π s|a=1(1) = 0.9.
In addition to the above-computed conditionals, causal models also enable us to com-

pute the effect of interventions. By (external) intervention, we understand a forced change
of the modeled system. In our example, we can realize an intervention to variable s, for
example, by smoking a cigar, which fills the room with smoke. An intervention to vari-
able a means that we disconnect the alarm from the smoke sensors and make it wail, for
example, by pushing a test button. It makes the alarmwailing regardless of whether there is
smoke in the room or not. In themathematical description, such interventions are denoted
using Perl’s do operator. Thus smoking a cigar in the room means that we set the value of
variable s to 1; in notation, do(s = 1). Analogously, an intervention that makes the alarm
wail is denoted do(a = 1).

In the rest of this section we show, how to compute the effect of intervention, i.e. how to
compute expressions like πa|do(s=1) and π s|do(a=1). We show that, while the intervention
do(s = 1) causes the alarm wail, the intervention to alarm, i.e. do(a = 1), does not fill the
room with smoke.
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An intervention realizes an external change. It changes forcefully the value of an inter-
vened variable regardless the causal relations encoded in the model. So, it breaks all the
links of the intervened variable with its causes. How does such intervention to variable
u influence a causal compositional model? As shown in Bína and Jiroušek (2015), the
interruption of all the respective links of u with its causes in the compositional model
representation means that the model π = κ1(K1) 
 κ2(K2) 
 . . . 
 κm(Km) changes to

κ�u�(u) 
 κ1(K1) 
 κ2(K2) 
 . . . 
 κm(Km). (13)

Thus the effect of intervention do(u = a) computed from a causalmodel κ1(K1) 
 κ2(K2) 

. . . 
 κm(Km) corresponds to the computation of a conditional distribution from themodel
represented by Formula (13). That is,

πL|do(u=a) =
(
δua 


(
κ�u�(u) 
 κ1(K1) 
 κ2(K2) 
 . . . 
 κm(Km)

))↓L

= (
δua 
 κ�u�(u) 
 κ1(K1) 
 κ2(K2) 
 . . . 
 κm(Km)

)↓L

= (
δua 
 κ1(K1) 
 κ2(K2) 
 . . . 
 κm(Km)

)↓L . (14)

Thus comparing Expression (14) with the statement of Theorem 4.1, one can see that the
computation of the conditional distribution and the computation of the effect of interven-
tion, when done in causal compositional models, differ from each other just in a pair of
parentheses:

πL|u=a =
(
δua 


(
κ1 
 κ2 
 . . . 
 κm

))↓L
, (15)

πL|do(u=a) =
(
δua 
 κ1 
 κ2 
 . . . 
 κm

)↓L
. (16)

Example 4.9 (continued): To finish this example, let us compute the effects of the
interventions do(s = 1) and do(a = 1). For the former case, we get

πa|do(s=1) =
(
δs1 
 μ(s) 
 ν(a, s)

)↓{a} =
(
δs1 
 ν(a, s)

)↓{a}
, (17)

for which πa|do(s=1)(0) = 0.1, and πa|do(s=1)(1) = 0.9. However, computing the effect of
the intervention do(a = 1) yields

π s|do(a=1) =
(
δa1 
 μ(s) 
 ν(a, s)

)↓{s} =
(
δa1 
 μ(s)

)↓{s}
,

and thus we get π s|a=1(0) = 0.5, π s|a=1(1) = 0.5.

When speaking about conditioning, we also paid attention to answering a question
about how to proceed when one wants to compute a conditional with multiple conditions.
An analogous question may be raised in connection to multiple interventions. But it turns
out it is an easy task. Consider a causal compositional model π = κ1(K1) 
 κ2(K2) 
 . . . 

κm(Km), and two variables u, v ∈ K1 ∪ . . . ∪ Km and their values a ∈ Xu, c ∈ Xv. Then for
L ⊆ (K1 ∪ . . . ∪ Km) \ {u, v}

πL|do(u=a),do(v=c) =
(
δua 
 δvc 
 κ1 
 . . . 
 κm

)↓L =
(
δ
(u,v)
(a,c) 
 κ1 
 . . . 
 κm

)↓L
.
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5. Conclusion

Compositional models provide a tool for efficient representation of multidimensional
probability distributions. This paper is the last from a series of three papers surveying the
theoretical background of this theory – the preceding ones are Jiroušek (2011); Jiroušek and
Kratochvíl (2015). As shown in this paper, the respective theory supports also the design
of computational procedures, the efficiency of which is comparable with those designed
for Bayesian network handling. The advantage of compositional models manifests best
when being applied to causal models (described in Section 4.4). When computing the
effect of an intervention, one need not change the model and gets the result simply using
Formula (16).

Another advantage follows from the fact that thesemodels can also be used in the frame-
work of other uncertainty theories. For example, within all those falling under the unifying
Shenoy’s theory of Valuation-based systems (i.e. a version of possibility theory where the
combination is the product t-norm, Spohn’s epistemic belief theory, Dempster–Shafer
belief function theory, and others) (Shenoy 1989; Jiroušek and Shenoy 2012). For the imple-
mentation of compositional model theory, it is enough to find a binary operator meeting
Properties (1), (2), (6) and (7) of Theorem 2.3. In this way, we partially answer the question
asked by the anonymous referee of Jiroušek (2011): what are the axioms that must be met
by a general operator of composition? The above-mentioned properties are sufficient, but
what is the minimum system is still an open problem. For example, it can be shown that
Property (7) may be substituted by Property (8) and a Simplified associativity rule (under
the assumption of Theorem 2.3): Let L ⊇ (K ∩ M) then, (κ 
 λ) 
 μ = κ 
 (λ 
 μ).

Notes

1. This and similar formulas could be more precisely expressed: for all a ∈ XK∩L, κ↓K∩L(a) =
λ↓K∩M(a). In what follows we prefer simpler, more lucid formulas like, e.g. (1).

2. In this paper, we consider 0·0
0 = 0.

3. In Jiroušek (2011), a different definition was introduced. The presented definition is equivalent
to the original one due to Theorem 10.3 of the cited paper.

4. In Jiroušek andKratochvíl (2015), there are two definitions of flexibility. The flexibility studied in
this paper correspond to Definition 7.2 of the cited paper. The other flexibility, called structural
flexibility (Definition 7.3 of the cited paper) is much stronger.

5. These models are equivalent to decomposable models known from Bayesian network theory
(Lauritzen, Speed, and Vijayan 1984).

6. Malvestuto considers a much more general framework, he does not restrict his consideration
only to probability distributions, so we are simplifying his general definition.

7. It is known (Arnborg, Corneil, and Proskurowski 1987; Kjærulff 1990) that optimal triangula-
tion of a general graph is an NP-hard problem. Thus, finding an optimal decomposable model
is an NP-hard problem, too. Nevertheless, similarly to Bayesian network theory, where several
heuristic algorithms for decomposable model construction were designed (see e.g. Cano and
Moral (1994)) other heuristics for this purpose may be applied.

8. The following simplification is possible due to Properties (7) and (3) of Theorem 2.3.
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