International Journal of Solids and Structures 221 (2021) 117-129

Contents lists available at ScienceDirget = SOLIDSAND
STRUCTURES

International Journal of Solids and Structures

journal homepage: www.elsevier.com/locate/ijsolstr

Thermomechanical model for NiTi-based shape memory alloys covering
macroscopic localization of martensitic transformation

Check for
updates

)

M. Frost >, B. BeneSova *¢, H. Seiner?, M. KruzZik 9, P. Sittner ©°, P. Sedlak "

2 Czech Academy of Sciences, Institute of Thermomechanics, DolejSkova 5, 18200 Prague, Czech Republic

b Czech Academy of Sciences, Nuclear Physics Institute, Husinec — ReZ 130, 250 68 ReZ, Czech Republic

¢ Department of Mathematical Analysis, Charles University, Sokolovskd 83, 18600 Prague, Czech Republic

dCzech Academy of Sciences, Institute of Information Theory and Automation, Pod Voddrenskou vézi 4, 18200 Prague, Czech Republic
€ Czech Academy of Sciences, Institute of Physics, Na Slovance 2, 18221 Prague, Czech Republic

ARTICLE INFO ABSTRACT

Article history:

Received 29 November 2019

Received in revised form 14 May 2020
Accepted 14 August 2020

Available online 25 August 2020

The work presents a thermomechanical model for polycrystalline NiTi-based shape memory alloys devel-
oped within the framework of generalized standard solids, which is able to cover loading-mode depen-
dent localization of the martensitic transformation. The key point is the introduction of a novel
austenite-martensite interaction term responsible for the strain-softening of the material.
Mathematical properties of the model are analyzed, and a suitable regularization and a time-discrete
approximation for numerical implementation to the finite-element method are proposed. Model perfor-
mance is illustrated on two numerical simulations: the tension of a superelastic NiTi ribbon and bending
of a superelastic NiTi tube.

Keywords:
NiTi shape memory alloys
Constitutive modeling

Localization
Mori-Tanaka method

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Having found many applications in medicine, civil engineering,
or aerospace industry (Jani et al., 2014), NiTi-based alloys are a
prominent class within shape memory alloys (SMAs) usually uti-
lized in the form of thin structures, e.g., wires, strips, tubes, or
plates. It is often experimentally observed that stress-induced
martensitic transformation (mainly when it is induced by uniaxial
tension) does not occur in a spatially homogeneous manner on a
macroscopic scale; instead, localized “martensitic bands” appear
within the austenitic sample and the transformation propagates
by their multiplication and/or by movement of their fronts. The
macroscopic picture is very similar to the localization of plastic
deformation in certain steels and alloys well-known as Liiders
bands: the onset of transformation is usually accompanied by a
stress overpeak followed by a stress plateau, and the material
rehardens after exhausting the available portion of transformation
strain.

The simplest example of localization can be found in NiTi wires
loaded in tension (Shaw and Kyriakides, 1995; Sedmak et al.,
2016). A wider range of localization patterns can be observed in
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tensile deformation on NiTi thin strips as thoroughly reported by
Shaw and Kyriakides (1997), Shaw and Kyriakides (1998). Their
works also documented the strong dependence of localization pat-
terns on the deformation rate. The dynamics of formation, propa-
gation, and coalescence of transformation bands on NiTi strips
and the relation to the strain-rate was further studied (e.g., by
Pieczyska et al. (2013), Zhang et al. (2010), Bian et al. (2018) and
many others).

A further sample shape that can be easily manufactured and
exhibits various localization patterns is the tube. Sun and Li
(2002) were the first to show spiral bands forming in tension on
the surface of thin-walled superelastic NiTi tubes. The develop-
ment of localized deformation in tension and the homogeneity of
deformation in compression were later documented by Mao et al.
(2010), Reedlunn et al. (2014), Bechle and Kyriakides (2014). Bent
tubes exhibit wedge-like localization patterns on the part of the
surface deformed predominantly in tension, whereas homoge-
neous deformation was detected on the part deformed predomi-
nantly in compression (Reedlunn et al., 2014; Bechle and
Kyriakides, 2014). Experiments were also performed in multiaxial
loading: propagating transformation fronts were observed in pure
tension, they were absent in pure torsion, and progressive behavior
in between these pure modes was observed in Sun and Li (2002),
Reedlunn et al. (2017); in proportional biaxial loading experiments
by Bechle and Kyriakides (2016), localized helical bands with incli-
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nations dependent on the stress ratio formed except for the loading
modes close to equibiaxial tension. A more detailed review on
experimental results on the localization and their relation to con-
stitutive modeling challenges can be found in Frost et al. (2018).

It is expected that the key for the understanding of the forma-
tion of macroscopic martensitic bands are interactions at the
mesoscopic level, i.e., the level of transforming grains (where the
martensitic transformation is always localized) and their aggre-
gates (Sittner and Novak, 2005). This motivated several in situ
microstructure studies focused on the characterization of stress
redistributions associated with martensite nucleation and growth
(Young et al., 2010; Sedmak et al., 2016). A detailed picture of
the martensitic band front in a loaded NiTi wire obtained by 3D
X-ray synchrotron diffraction (Sedmak et al., 2016) shows that
the internal stress states in grains massively change and redis-
tribute within the propagating front so that, at the onset of trans-
formation, austenitic grains were (in average) exposed to
equivalent stresses more than 200 MPa higher then externally
measured plateau stress. The observed stress heterogeneity was
rationalized with the help of a FEM simulation assuming consider-
able strain-softening during the progress of martensitic transfor-
mation. Since strain-softening is “invisible” in macroscopic
stress-strain curves with a plateau, dedicated experiments reveal-
ing the course of the strain-softening are needed. Quantitative
results have been reached by Hallai and Kyriakides (2013) via a
sophisticated measurement of a NiTi-stainless steel composite
and, recently, by Alarcon et al. (2017) via a special geometry of NiTi
bulk specimen.

Despite the abundance of constitutive models of SMAs in the lit-
erature - originating at different scales of description, see recent
reviews by Cisse et al. (2016), Cisse et al. (2016) — comprehensive
three-dimensional macroscopic (continuum) models incorporating
localization have been attempted rarely. Most frequently, simple
isotropic plasticity-based models with the strain-softening are
used to study localization in NiTi wires (Iadicola and Shaw, 2004;
Badnava et al., 2014), strips (Shaw and Kyriakides, 1998; Azadi
et al.,, 2007), or tubes deformed in tension (Jiang et al., 2017;
Rezaee-Hajidehi et al., 2020).

Involving the strain-softening into constitutive models brings
inevitably problems with their regularity, such as mesh-
dependence of solution or spurious concentration of strain to infi-
nitely small regions. These problems were already analyzed (moti-
vated by their practical impact mainly in simulations of damage)
and several regularization techniques were proposed (see, e.g.,
Bazant and Jirasek, 2002; Jirasek and Rolshoven, 2003). They are
based on so-called non-local continuum theories, in which the
response of a material point is not uniquely determined by values
of state and internal variables (fields) in that point only, but the
state of material points in its vicinity is also taken into account.
A useful tool for incorporating such information is the introduction
of so-called non-local variable(s). Then, two issues have to be
addressed: (a) defining how the non-local (“twin”) variable is
related to a local one(s), and (b) modifying the constitutive laws,
which involve both local and non-local variables. Concerning the
first point, two well-established approaches can be borrowed from
structural mechanics: the implicit non-local gradient approach
(iNGA) and the non-local integral approach (NIA). In iNGA, the
local and corresponding non-local variables are linked via an addi-
tional (elliptic) partial differential equation; in NIA, these variables
are linked via an integral relation - the non-local variable in a
material point is defined as a weighted integral average of the val-
ues of the local one gained in a close neighborhood of that point.
Corresponding general mathematical formulations are closely
related, since iNGA can be derived from NIA using particular
weighting functions (Peerlings et al., 2001). Both approaches
naturally incorporate an internal parameter related to some
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characteristic length scale associated with to the extent of the rel-
evant neighborhood. The examples of iNGA in SMA models can be
found in Duval et al. (2011), Armattoe et al. (2014), Badnava et al.
(2014), whereas NIA approach was employed, e.g., in Ahmadian
et al. (2015), Sedmak et al. (2016).

Recently, a few more elaborated models that tried to capture also
the loading mode-dependence of localization patterns observed in
experiments appeared (Pouya et al., 2017; Jiang et al., 2017; Jiang
et al., 2017). Namely, they attempt to capture the fact that whereas
the transformation in tension is usually localized, the transforma-
tion in compression is observed to be homogeneous (Elibol and
Wagner, 2015; Watkins et al., 2018) via heuristic modifications of
the “yield criterion” used in the plasticity-based models.

In this work, we present an extension of our original SMA model
formulated in the framework of generalized standard solids by
Sedlak et al. (2012). We introduce a novel austenite-martensite
interaction term and show the capability of the extended model
to reproduce the evolution of localized martensitic transformation
in NiTi SMAs. The original model (Sedlak et al., 2012) is briefly sum-
marized in Section 2. The derivation of the interaction term, which is
based on the elastic energy of a material with misfitting inclusions
by Mori and Tanaka (1973), is presented in Section 3. The derivation
of the interaction term is not limited to any particular loading mode
emphasizing the ambition of the model to be used in general loading
scenarios. Splitting the internal variables into local and non-local
ones, which is done heuristically in the definition of the interaction
energy, allows us to rigorously perform the regularization of the
complete model as presented in Section 4. Numerical implementa-
tion into the finite element method (FEM) is described, and illustrat-
ing simulations are performed in Section 5.

2. Local model

Within this work, we develop a phenomenological constitutive
model of the NiTi SMAs capable to capture the localization effects.
The term phenomenological here means that the model aims to
describe the polycrystalline material in some average sense and
underlying microscopic features are taken into account through in-
ternal variables of the model. Such models allows for an easy imple-
mentation, less time consuming simulations and have the potential
to be applied in industrial applications. Thus, a large number of
such models has been proposed so far (e.g. Auricchio et al., 2014;
Chatziathanasiou et al, 2016; Lagoudas et al., 2012; Mehrabi
et al., 2014; Stebner and Brinson, 2013; Stupkiewicz and Petryk,
2013 and many others).

Here, we adapt a three-dimensional macroscopic model for NiTi
SMA proposed in Sedlak et al. (2012) and further developed and
validated in Frost et al. (2014), Frost et al. (2016), Frost et al.
(2016), Sedmak et al. (2016), Frost et al. (2018), Frost et al.
(2020) that has been shown to perform well even for non-
proportional loading. We review the model here for the reader’s
convenience, as we will extend it later in Section 3 to capture the
localization.

The modelled specimen is assumed to occupy, at the reference
configuration, the domain Q c R3. As the primary state variable
we choose the displacement of the specimen u : @ — R>. The total
strain tensor, &(x), is related to the displacement via

_1
)

which is given locally in every material point x € Q. As it is frequent
in macroscopic modelling of SMAs (cf. Gu et al., 2015; Sadjadpour
and and Bhattacharya, 2007; Chemisky et al., 2011), we additionally
introduce two internal variables: the scalar ¢ : Q — R® representing
the volume fraction of martensite and satisfying ¢(x) € [0,1] in

&(x) =5 (Vu(x) + (Vu(x))"),
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every material point and a tensor variable, & : Q — R?, represent-
ing the transformation strain. With these two variables, we may
write the conventional small strain decomposition, assumed to be
valid for every x € Q, as

&(x) = g(x) — E(x)&"(x).

(1)

Here & is the elastic strain and & is a macroscopic variable
used for storing information about microscopic internal structure
of martensite. Later, particularly in the mathematical part, we will
also use the inelastic strain defined via

£M(x) = E(x)e" (x). (2)

Crystallographic considerations show (Otsuka and Wayman,
1998) that there exists a maximum value of strain that is attainable
due to phase transformation; so, the transformation strain is con-
sidered to lie in a bounded convex set. In addition, the austenite-
martensite transition is nearly volume preserving, so that it is jus-
tified to consider & (as well as &™) to be trace-free tensors. For the
model in hand, this means that for every material point x € Q, we
require

g"(x) € {A € R¥? : Ais symmetric, tr(A) =0, (A) <1}, (3)
where tr(A) denotes the trace of a tensor A and (-) : R*3 — R* is a
suitable positively 1-homogeneous convex function; by a particular
form of this function, tension—-compression asymmetry is captured
in the model.

It is convenient to formulate the model within the framework
of so-called generalized standard solids (see Halphen and Nguyen,
1975). That means that we need to prescribe two scalar functions,
the free energy f;(g,&", ¢), that depends on the state variables, as

well as dissipation function dr (s", g ev, é) that depends both on

the internal state variables and their rates. The free energy and
the dissipation function may depend on the temperature T that
we, however, consider prescribed in the whole specimen (qua-
sistatic approximation), which is indicated by the respective
index.

Within this section, the free energy and dissipation function are
understood to be given locally in each material point (so that all the
variables actually depend on x € Q), but for a better readability we
avoid indicating this from now on.

The free energy is given as the sum:

f (6,&,6") = % (6— &™) : C(&) : (& — &™) + AS™(T — To)¢, (4)
where C is the tensor of elastic constants, s* is the specific entropy
difference between the austenite and martensite phase and Ty is the
temperature at which austenite and martensite are (energetically)
at equilibrium. Let us note that the first and the second term on
the right-hand side represent the elastic and the chemical contribu-
tions to the energy, respectively.

Furthermore, we choose the dissipation function as

d'(e7,8,67,¢)
{ ASM[To — M + E(Ms — Mp)]|E| + 0™ (T) || + e

ASMIA; — To + E(As — An)]IE| + o7 (T) [l1€e| + e

where M, M; as well as As,A¢ are the temperature at which the
austenite-to-martensite (forward) as well as the martensite-to-
austenite (reverse) start or finish, respectively. Moreover, 6™ is a
constant (may depend on temperature) that characterizes the
amount of dissipated energy due to reorientation.

We refer the reader to Sedlak et al. (2012), Frost et al. (2016) for
a detailed derivation of the form of this dissipation function. Let us
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just mention at this point that the form is chosen in such a way
that it reflects the following ideas: during the forward transforma-
tion, the appearing martensite can reorient immediately and thus
the appearance of martensite and its reorientation are fully cou-
pled processes. On the other hand, the reverse transformation
can only happen if the martensite can reorient to a form that can
be coupled to austenite. Thus, a suitable reorientation of marten-
site must become favourable in order to allow the reverse phase
transformation to occur.

3. Non-local model

In this section, we introduce an energy term which allows cap-
turing localization into the constitutive model summarized in Sec-
tion 2. We use a micromechanics-inspired approach motivated by
available (experimental) knowledge. The basic observations on
localization of martensitic transformation in NiTi alloys can be
summarized in the following points:

e Localization of martensitic transformation appears only in some
loading modes. The localization was documented on NiTi wires,
strips or tubes loaded in tension, but most of the experiments
on loading in compression and shear reveal macroscopically
homogeneous transformation [see, e.g.,] (see, e.g., Bechle and
Kyriakides, 2014; Reedlunn et al., 2014; Elibol and Wagner,
2015; Watkins et al., 2018).!

o The localization of martensitic transformation in tension cannot
be explained as a sole result of the geometry (cross-section)
change associated with large deformation induced by transfor-
mation. Although the geometric changes, the decrease of the
integral force due to necking in the transformed zone as well
as the lack of material hardening contribute to the observed
asymmetry between the localized transformation in tension
and the homogeneous one in compression, several recent
experiments (Hallai and Kyriakides, 2013; Sedmak et al.,
2016; Alarcon et al., 2017) clearly documented a considerable
stress decrease in the material during progression of marten-
sitic transformation in tension. The decrease of stress depends
on the particular material microstructure, and in magnitude, it
could be even comparable with the transformation plateau
stress.

e The transformation stress in tension does not decrease linearly
with the extent of transformation (martensite volume fraction).
Experiments suggest the decrease is maximal at the beginning
of the transformation, and then it continuously attenuates dur-
ing further transformation (Hallai and Kyriakides, 2013; Alarcon
et al.,, 2017).

e On the level of single grains forming the polycrystalline mate-
rial, the martensitic transformation spreads heterogeneously.
Bands of martensite running through austenitic grains are
observed during stress-induced transformation (Otsuka and
Wayman, 1998). The reason for the strain-softening can be thus
sought in the interaction of fully martensitic regions with the
surrounding elastic austenite.

e On the other hand, temperature induced transformation in
polycrystalline samples does not occur at a single transforma-
tion temperature but in a broader temperature interval. This
suggests there is a distribution of transformation temperatures
within the polycrystalline material, and, consequently, also a
distribution of transformation stresses. Moreover, differently

! The situation in torsion of NiTi tubes is ambiguous. Observations by Sun and Li
(2002) suggest homogeneity of transformation, whereas detailed SEM analysis in
Peng et al. (2008) reveals mesoscopic heterogeneity in martensite distribution in the
form of microscopic martensitic lamellae. Nevertheless, the heterogeneities are on a
much finer scale compared to those occurring during tensile loading.
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oriented grains can fulfill transformation conditions at different
stresses due to orientation dependence of transformation strain
(Sittner and Novék, 2000). Thus, we can expect that the forward
transformation in polycrystalline samples induced by stress will
start in the most favorably oriented grains (with the highest
transformation temperature) and it will advance to other parts
only with increasing loading.

In the next paragraph, we will explain the loading mode-
dependence of localization of martensitic transformation in NiTi
as the result of an interplay of hardening-like effects given by finite
distributions of transformation strains and temperatures in a poly-
crystalline material and softening effects coming from the hetero-
geneous formation of martensite on the single-grain level and
interaction of highly deformed martensitic zone with surrounding
elastic austenite. The hardening during martensitic transformation
was already incorporated in the original model by Sedlak et al.
(2012) via the assumption of finite intervals of both forward and
reverse transformations defined by transformation temperatures
M, Mg, As and Af; the austenite-martensite interaction term is
derived in the next section.

Energy of austenite-martensite interaction

Derivation of austenite-martensite interaction term on macro-
scopic, phenomenological level is usually based on the Eshelby’s
solution of elastic field of ellipsoidal inclusion in elastic matrix
(Eshelby, 1957) and the derivation of average stress in material
with misfitting inclusions by Mori and Tanaka (1973).

The elastic energy per unit volume of the specimen containing
elliptical inclusions with transformation strain & reads as (Mori
and Tanaka, 1973):

int 1 2\ el tr
e LR (6)
where ¢ is the volume fraction of inclusions and ¢/ is stress within
a single inclusion existing in an infinitely extended body. Consider-
ing simple spherical inclusions, identical isotropic elasticity of both
austenite and martensite and the constraint tr(g") = 0, the energy
term condensates into a simple form:
2

Eint _ Cint£(1 _ &:)Hstr|

(7)

where C'™ is a positive constant depending only on material elastic
constants. The interaction energy given by (7) is maximal for
¢=0.5 and it symmetrically decreases towards ¢ =0 and ¢ =1,
see Fig. 1(b). As it is quadratic in &, the stress would decrease lin-
early with increasing ¢ due to this interaction term, which contra-
dicts experimental observations. The reason of the symmetry of
E™ with respect to the ¢ < (1 — ¢) is given by equality of the energy
of martensite inclusions with transformation strain & within
austenite matrix and (inversely) the energy of austenite inclusions
without transformation strain within &"-deformed martensite.
According to experimental observations, this symmetry does not
seem fulfilled in NiTi, most likely due to nonlinear martensite
behavior caused by its low reorientation stress. Indeed, if we split
E™ into two independent terms (notice that Eq. (7) is recovered

for Cift, — Cint — C'™):
(8)

we are able to successfully fit strain-softening material response
obtained in experiments. Fig. 1(a) shows two uniaxial stress—strain
relations extracted from dedicated experiments by Hallai and
Kyriakides (2013) and Alarcon et al. (2017) together with their best
fits obtained by our constitutive model. Note the exceptionally good
match in the (non-linear) strain-softening stage. Fig. 1(b) reveals
the asymmetric contributions of the first and second term on the

E™ = CUad(1 = [[&"|” + Ciy®(1 = )27,
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right-hand side of the relation (8) to the total E™ responsible for
the non-linear softening in E1 (the first term dominates). The result-
ing E™ in (8) can be simply considered as the energy of martensite
inclusions (with transformation strain &) and austenite inclusions
(without inelastic strain) within the average austenite-martensite
matrix with inelastic strain £gv.

As mentioned above, the softening/hardening mode is a result of
an interplay between loading-mode insensitive isotropic “transfor-
mation hardening” and transformation strain-dependent “transfor-
mation softening”. The hardening is imposed to the model via the
state-dependent dissipation function and its extent is related to
the difference of transformation temperatures (Ms— M) and
(As — A¢) in (5). The proposed non-convex interaction energy term
of the free energy function introduces the softening. Since the
extent of softening is related to the square of the norm of the trans-
formation strain, ||&||* in (8), a difference in maximum attainable
transformation strain implies a difference in the degree of soften-
ing. By this way, the tension/compression asymmetry carries over
to the softening asymmetry. Hence, if the maximum transformation
strain in tension is almost twice the maximum transformation
strain in compression (as suggested by experiments), the interac-
tion energy is almost four times larger in tension than in compres-
sion. If the softening prevails hardening in tension, but the reverse
is true in compression, the result is a softening response in tension
and a hardening one in compression as demonstrated in Fig. 1(a).

Finally, we can recast E™ into a form more suitable for model
regularization and implementation into FEM:

(1= o)l (&), I 9)

Here, variables ¢ and & describe local material properties,
whereas the product arrested in (-),, representing average matrix
inelastic strain is obtained by averaging the inelastic strain within
a certain neighborhood as specified below.

E" = Caclle” - (8),,I° + Ca

4. Global formulation and mathematical properties

In this section, we summarize the formulation of the extended
model and give the main mathematical properties.

As already mentioned in Section 2, we assume that the speci-
men occupies the domain Q in the reference configuration, on
which we define all variables. We will denote by 9Q the boundary
of the reference configuration and assume the following splitting
0Q = I'p U I'y with I'p, I'y disjoint. On the part I'y the surface force
Fsuf is acting on the specimen while on the part I'y Dirichlet
boundary conditions for the displacement are prescribed. For sim-
plicity, we restrict ourselves here to zero Dirichlet boundary condi-
tions; i.e.,, u(x) =0 on I'p.

Moreover, while even the elastic part of the free energy (4) is
not convex in ¢ nor &, we shall, for mathematical considerations,
rather switch variables and work with the volume fraction ¢ and
the inelastic strain ¢" defined in (2). In these variables then, at least
the local part of the energy, is indeed convex. For the readers con-
venience, let us recall the definition of the energy and dissipation
reformulated in the inelastic strain

fMe.&em) = 5 (E—e") €0 : (8- &™) + AT = To)e, (10)
 (&.2.60.¢)
AsM[To — M + &(Ms — My)]|<[ + o™ (T) &™) if £ >0,

ASMIAr — To + E(As — Ap))|E| + o™(T) [|| Sg| 4 ||&m —sen| | if & <.
(11)

|

Due to the non-local character of the newly added interaction
energy term, we will work with the total energy given by
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Fig. 1. (a) Experimental data on strain-softening in NiTi alloys by Alarcon et al. (2017) - denoted E1 - and Hallai and Kyriakides (2013) - denoted E2 - plotted together with
their best numerical fit reached by the non-local constitutive model introduced in the Section 3. (b) Character of the evolution of the internal elastic energy E™ with variation

of the volume fraction of martensite ¢. For Ciit, —

CR‘,\‘,, the classical Mori-Tanaka symmetric case is recovered (marked in green). The symmetry of E™ is lost in the best fit of E1

(red dashed line) since CiM“; =28 Ci,‘\“,f,,, see the respective contributions of corresponding energy terms (cyan and magenta dashed lines).

6(tu &.6%) = | 1 (60100), 00, £7600) + e (£,67) )

Fen(t,%) - () dx — [ Faur(6,%) - u(x)dS,

JTy

(12)

where F,, and Fg; is the prescribed volume force acting on the spe-
cimen. This force, as well as the surface force may depend on the
time variable t. As we will assume that the evolution of the tem-
perature in T is a given function of time, the dependence of the total
energy on the temperature is captured again through the time
variable.

Recall from Section 3 that energy contribution modelling locali-
zation is given by

Faonio (& 67) (X) = {Ciﬁk%l\ﬁ“’(@ &) (8‘")(,)(X)H;+Ci{‘&(1 —)lI(E™), )7 i;:g
and

) 1 .

&M (X)=—-— [ "(Y)%,(x —y)dy, 13
(&), fg,%,(x—y)dy/g (Y)%0(x —y)dy (13)

where %, is a smooth function that models the averaging through
the neighborhood. In particular, we assume that 0 < 4, (-) < 1 and
Jus %o(x)dx =1 and that %,, is smooth. The particular form of %,,
is specified in Section 5, but is not important from the mathematical
point of view.

Let us also notice that we use the weighting factor
1/ [o %»(x — y)dy in front of the averaging. In most cases, this fac-
tor will be just one, but it may play a role once the point x is near or
on the boundary. In this situation, we apply averaging only over
the available specimen.

Remark 4.1. In fact, it is unclear how exactly the averaging should
be designed near the boundary of the specimen Q. Here we choose
to restrict the area of averaging to Q (as common in non-local
models, see Peerlings et al., 2001), which essentially means that for
points very near to the boundary the volume over which the
averaging is performed gets smaller. Of course, from the physical
point of view, this does not take into account that near the
boundary the specimen experiences less geometric constrains and,
e.g., the martensitic transformation may initiate easier. Neverthe-
less, capturing these effects is challenging from the modelling
point of view and may have a little effect in practice. This is
because the physically justified radius of averaging kernel should
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involve several neighboring grains forming the microstructure; in
common NiTi components, this would be usually at the order of
few microns, i.e., far below the reasonable mesh size.

Similarly, we define the total dissipation which, however, has
only local contributions.
(8,8 Edm) = / d' (&"(x), £(x), 6" (), £0) ) dx (14)
JQ
notice that the overall dissipation depends explicitly on time which
is caused by the fact that the constants in the dissipation function
are dependent on the temperature, which may depend on time.
According to the generalized standard solids theory, the evolu-
tion of the specimen is given by balancing the conservative and
dissipative force at all times ¢ € [0, 7], where 7 is assumed to be
the final time of the evolution. Formally, we may write that

B(u,g’.si“)o@ + 8(55")9 50 forall t [07 ff], (15)

along with the constraint that the state variables remain in the
admissible space 2 := % x ¥~ with

U = {u e W (QR?): u=0 on FD},
7= {878 e W@ R x W(Q)
g is a traceless, symmetric matrix,

(&n(x)) < ¢(x) for a.a. x€ Q, and 0 < ¢(x) < 1 for a.a. x € Q},
(17)

(16)

for all times t € [0,.7]. Here, W'?(Q) denotes the Sobolev space of
functions having square integrable derivatives (equivalently termed
as Hilbert space H'(Q)).

Let us notice that (15) is indeed just a formal expression, which,
due to the non-local character, needs to be formulated in an inte-
gral form. It is beyond the scope of the present work to elaborate
on the mathematical properties of (15), instead we shall concen-
trate on time-discrete approximations of solutions of (15) that will
also be computed in the numerical part.

In the spirit of Francfort and Mielke (2006), Mielke and Theil
(2004) we design a time-discretization of (15) via the backward
Euler method. To be more specific, we introduce a partition of

the time-interval [0,7] via O=ty<t; <...typ =7 with
max;(ti,; — t;) < T and t being some small parameter. It is expected

(even if we do not give a formal proof here) that solutions of the
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proposed time-discrete problems will approximate solutions of
(15).

Then we call the triple (uy,&ll', &) € 2 a time-discrete solution of
evolution at time t, to (15) at time-level k = 1,...,N(7) if it solves

Minimize & (ty, u, 8", &) + D (tx, &1, 80 1, & — &1, 8" — &1 ,)
subject to (u,&", &) € 2 (TIP)

with (19, &M0, &%) = (uo, &, &) € 2 defined through the initial
condition.

We call the above minimization problem in (TIP) the time-
incremental problem. It is physically well-motivated by the idea
that upon a small change in the environment, i.e., during a small
time-step, the studied system will try to find the relaxed state by
minimizing the energy plus the dissipation needed to transit to
the new state. In other words, the state variables describing the
specimen will change if this yields a gain in the free energy larger
that the dissipation.

The model proposed in this paper is well defined in the sense
that (TIP) possesses a solution. This is shown in the next
proposition:

Proposition 4.2. Let (&1, ;) € L°(Q) x L (% R*>3) and that
Fyor € C°(Q x [0, 7)) as well as Fgy¢ € C°(I'y x [0, 77]). Then there
exists a triple (uy, &, &) € 2 that solves (TIP).

In this proposition we, as is standard, denoted L*(Q) the space
of measurable functions that are bounded almost everywhere and
C°(-) stands for the space of continuous functions.

We postpone the proof of Proposition 4.2 to the appendix and
make at this points only the following remark:

Remark 4.3 (Convexity). Let us note that, thanks to the localiza-
tion terms, the total energy & (t,u, ¢, si“) is not a convex function of
its variables. This is best seen if we replaced the averaged term
(Ei")w by its local counterpart & and rewrote (as in Section 3)

& = ¢et". Then, the localization energy would correspond to a
double-well potential in ¢ which is clearly non-convex. This
feature still persists if we allow for the averaged version (") .
However, without this averaging, it could happen that very fine
spatial oscillations between austenite and martensite appear
because the interface between them is allowed to be infinitely
(atomically) sharp. This is prohibited by the averaging term and
allows to show existence of minimizers.

Nevertheless, let us note that due to the non-convexity one can
expect several difficulties in calculations: solutions to (TIP) are not
necessarily unique and jumps in the temporal evolution of the
variables may appear. This is related to the fact that, if the material
would be completely homogeneous and there were no “localiza-
tion sites”, it could remain, e.g., in austenite much longer than it is
energetically favourable and then abruptly transform at some
random place (cf. Alessi and Bernardini, 2015). However, such an
“indeterminacy in response” could be easily removed by adding an
initial imperfection to the numerical model: either local variation
of geometry as in (Shaw and Kyriakides, 1998; Jiang et al., 2017) or
local variation of material properties as in (Armattoe et al., 2014;
Sedmak et al., 2016). As was already noted in Sedldk et al. (2012),
apart from the non-local term, the energy function is convex in its
variables, which can be seen by simply calculating the Hessian of
fT. Actually, one relies here on the fact that the functions
h(x,y)=x2/y and h(x,y)=x*/(1—y) are convex, provided
0 <y < 1. Moreover, the dissipation function is convex in the rate
variables for thermodynamic consistency. This carries over to the
discrete setting, as designed in (TIP).
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5. Numerical simulations

In the following, we perform finite element simulations to illus-
trate the ability of the proposed constitutive model to capture the
localization effect. The first simulation mimics the experimentally
well-examined situation of a NiTi ribbon loaded in uniaxial tension
(e.g., Shaw and Kyriakides, 1997; Zhang et al., 2010; Jiang et al.,
2017; Bian et al., 2018), the other one - bending of a tube -
involves also compression of the material. In both of them, we
employ generic material properties with pronounced strain soften-
ing in (uniaxial) tension and strain hardening in compression, see
Figs. 1 and Appendix B, and presume spatially- and temporally-
constant temperature corresponding to a quasistatic superelastic
loading scenario. Before presenting the results, we sketch how
the constitutive model can be incorporated into the finite element
method.

5.1. Implementation into the finite element method

We implemented the constitutive model into the finite element
software package Abaqus FEA via User MATerial subroutine inter-
face. The starting point is the time incremental problem (TIP),
which can be divided into two minimization subproblems (Frost
et al.,, 2016). The first one corresponds to finding displacement vec-
tor u(x) for fixed internal variables and prescribed boundary condi-
tions (and temperature), which is a standard task for any finite
element software package. In case of the local model (2), the second
subproblem shrinks into searching for optimal values of internal
variables in every single material point at given strain and temper-
ature, which is handled by the UMAT subroutine as outlined in
(Sedlak et al., 2012). The numerical solution of the complete prob-
lem (TIP) is then resolved by an iterative procedure managed by
Abaqus, see Sedlak et al. (2012), Frost et al. (2016) for details. In
the non-local model, the evolution of internal variables in a mate-
rial point inherently depends on the response of neighboring mate-
rial points, hence, the individual treatment is not possible anymore.

A possible way how to implement the non-local integral regu-
larization formulated in (13) was proposed by Bobinski and
Tejchman (2004); Bobinski and Tejchman, 2005. In their approach,
a virtual mesh of the computational domain is added (so that
nodes of the virtual mesh coincide with those of the original mesh
of the body) and non-local variables are treated within this mesh.
As described in our previous work (Frost et al., 2018), it is possible
to complement the UMAT subroutine by subroutine UEXTER-
NALDB, which is activated after each increment in order to update
the values of the non-local variable and pass them back to the
UMAT. The following numerical simplifications allow to reduce
computation costs (Frost et al., 2018): (i) the integration kernel
has a finite spatial coverage (cf. Peerlings et al., 2001; Jirasek and
Rolshoven, 2003; Bobinski and Tejchman, 2004); (ii) in each time
increment, the non-local variable is computed based on values of
internal variables obtained in the previous converged increment
(staggered computation method), (iii) only the scalar variable ¢ is
averaged in the superelastic loading regime. Although there are
more candidates for the averaging function %, appearing in (13),
homogeneous and isotropic ones are usually preferred in the liter-
ature mainly for practical reasons (Peerlings et al., 2001; Jirasek
and Rolshoven, 2003); a typical example is the (three-
dimensional) Gauss distribution defined as

| yq_

202 (18)

1
YGo(Xx—-Yy) = exp [—
(/J( ) (27[)3/2603 |:
This non-local integral averaging concept was successfully
implemented and employed for a numerical reconstruction of the
martensite band front in a thin NiTi wire under tension in our pre-
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vious work (Sedmak et al., 2016), where the element size was com-
parable with the mean grain size of the material used in the
experiment.

However, in finite element analysis of common NiTi compo-
nents, the physically justified radius of the averaging kernel would
be about few microns (to cover the neighboring grains), which is far
below a computationally reasonable mesh size. On the other hand,
the geometric reasons exclude formation of an infinitely fine
austenite-martensite interface in bulk specimens in many loading
regimes. Hence, as a computationally cost-saving approach, it
may be enough to do all FEM calculations using just the local vari-
ables and checking, at the same time, the size of the gradient of the
volume fraction of martensite.” If this does not get too large in com-
parison with the characteristic size of used elements of the mesh, the
local approach is sufficient (regularization due to geometrical effect
demonstrated in Maziére and Forest, 2015). Otherwise and in cases
when the analysis of the problem uses dimensional reduction (1D
or 2D approximation) allowing for infinitely fine interface, the non-
local approach must be employed; in such a situation, the resulting
interface dimensions depend on the size of the chosen “characteristic
length scale” of the non-local approach (cf. Duval et al., 2011;
Armattoe et al., 2014). Let us note that both computational examples
presented below are treated in full three-dimensional setting and the
computed phase interfaces spanned over several elements, so we did
not have to resort to the non-local approach.

5.2. Tension of a NiTi ribbon

We use a geometric model of a NiTi ribbon in the form of a rect-
angular prism with dimensions of the base 15mm and 1 mm and
with 120 mm in length. The body is partitioned into a uniform
mesh of 3200 (20 x 1 x 160) identical hexaedral (brick) elements
with linear interpolation (C3D8) to reduce any directional bias.
For an easy initiation of the localization pattern, a small geometric
imperfection in the form of a V-shaped indent is imposed on one
lateral side of the strip so that the width of the most reduced
cross-section is 14.7mm. The indent is located 1.5mm from one
of the bases.

The ribbon is loaded axially by prescribing displacement
boundary conditions at both bases; all other surfaces are stress
free. All displacement degrees of freedom are fixed at the base clo-
ser to the indent. At the other one, the axial displacement is incre-
mentally prescribed so that the maximum displacement-to-initial
length ratio is 7.5 %, whereas both lateral displacements are fixed.

Fig. 2 presents several snapshots of the distribution of volume
fraction of martensite within the ribbon during loading. The com-
mon features of this type of localization patterns can be observed:
nucleation event in the form of an inclined thin martensite band
crossing the sample (1), restoring the moment balance by nucle-
ation of additional bands with either the opposite inclination or
from the other end of the ribbon Q)-@), propagation of bands along
the sample either via movement of one inclined phase interface or
via alternating between the two of them producing the crisscross
(“finger-like”) pattern @-@®), and their coalescence at the final
stage of loading ©. The average angle of inclination of the maten-
site band front (obtained from several snapshots of the simulation)
is (58 +2)°, which is close both to experimental and modeling
results obtained in the literature (cf. Azadi et al., 2007; Grossman
et al,, 2010; Jiang et al., 2017; Rezaee-Hajidehi et al., 2020; Shaw
and Kyriakides, 1998) and not far from the idealized theoretical
two-dimensional analysis (e.g, in Shaw and Kyriakides, 1998) giving
the value 54.74°. Let us note that the particular form of the local-

2 Alternatively, the values of non-local variables can be computed after each
computational step and the difference between them and their local counterparts can
be assessed.
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ization patterns depends on the dimensions of the ribbon, its mate-
rial characteristics, or the way the ends are restrained, see, e.g., the
works (Shaw and Kyriakides, 1998; Grossman et al., 2010; Xiao
et al.,, 2017; Jiang et al., 2017; Zhang and He, 2018) and that a ded-
icated study on the regularization due to the geometrical effects for
NiTi ribbon was recently conducted in Rezaee-Hajidehi et al.
(2020).

5.3. Bending of a NiTi tube

We consider a tube of outer diameter D = 3.5mm, wall thick-
ness t=0.25mm and length 2L = 25mm under pure bending.
We assume symmetry about the mid-span, hence, a structural
model of the length L = 12.5mm was constructed and uniformly
meshed with equiaxed hexahedral elements (C3D8R), 4 elements
through the thickness, 96 along the circumference and 125 along
the half length, i.e. 48,000 elements in total. Whereas one end rep-
resenting the mid-span of the tube is imposed a symmetric dis-
placement boundary condition (XSYMM with x being the
longitudinal axis of the tube), the other end is rotated by prescrib-
ing the same angle of rotation (up to 25°) for all nodes on the annu-
lar surface via *COUPLING *KINETIC feature of Abaqus CAE, which
leads to the desired bending of the whole tube, and rigid body
motion is excluded.

The simulation is motivated by dedicated experiments pub-
lished in Bechle and Kyriakides (2014), Reedlunn et al. (2014),
Watkins et al. (2018), Jiang et al. (2017). Just as in the previous sec-
tion, we focus on demonstrating the capability of the proposed
model to capture the key features of the behavior rather than
attempting to reproduce the experiments quantitatively. In our
case, the diameter to thickness ratio is D/t = 14, the length to
diameter ratio is L/D = 3.6.

In Fig. 3 we present both strain and phase distributions to
emphasize the different values of maximum transformation strains
linked with full martensite in tension and compression, cf. Fig. 1(a).
The ¢, strain is the diagonal component of the total strain tensor in
the direction of the symmetry axis of the tube in the reference con-
figuration. Again, one can observe several localization patterning
features: initiation via X-shaped (see the top view) localization
bands (1,2 followed by appearance of further inclined finger-like
structures of high strain (3), their continuous growth and multipli-
cation @-(9. Crisscrossing and coalescence of these structures lead
to formation of wedge-shaped regions, see lateral views in @),3);
the explanation of the origin of that shape can be found in Jiang
et al. (2017). Prior to their interconnection, the initially isolated
highly strained regions lead to local variations of curvature on
the part of the surface undergoing predominantly tensile straining
(Jiang et al., 2017); this effect is not easily visible in the present
simulation since the modeled part of the tube is relatively short.
The shift of the neutral axis effectively increasing this part of the
surface can be observed in accordance with experimental observa-
tions in Watkins et al. (2018), Jiang et al. (2017). The tension-com-
pression asymmetry embodied in the constitutive law leads to
much lower (absolute) values of strain on the lower part of the
tube, and, foremost, to the relatively homogeneous distribution
of strain (and VFM) there. For comparison, we performed an iden-
tical simulation except for a modified constitutive law incorporat-
ing strain-softening also in compression. In that case, the wedge-
like localization pattern was observed (not presented here) also
on the lower part of the tube (where compression loading domi-
nates) (cf. Jiang et al., 2017). Let us finally note that although no
artificial stress concentrator was imposed (e.g., via geometric
imperfections), simultaneous appearance of multiple nucleation
sites similarly to Jiang et al. (2017) was observed, see (D.
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Fig. 2. Snapshots from a three-dimensional simulation of a NiTi ribbon in tension with distribution of volume fraction of martensite in color (for legend see the VFM colorbar
in Fig. 3). The average angle of inclination of the planar martensite band front with respect to the axis of the ribbon is marked in 7.

6. Discussion and conclusions

We extended a well-established constitutive model tailored for
NiTi-based shape memory alloys by an interaction energy term
allowing to capture the localization effects. The summary of exper-
imental observations in Section 3 provided hints for searching a
suitable form of such an energy term within the classical Mori-
Tanaka approach. The key features of the final form suggested in
Eq. (8) are: (i) it is a sum of two independent terms, (ii) both terms
are non-convex in ¢, (iii) both terms exhibit quadratic dependence
on [|&].

(i) Thanks to two independent constants appearing in the inter-
action energy, we gained more freedom to adjust the strain-
softening constitutive law to available experimental measure-
ments, as illustrated in Fig. 1; particularly, we were not limited
to the solely linear decrease of stress with strain.

(ii) Adopting the localization contribution energy E™ means
that the overall energy becomes non-convex. This is, of course,
the desired effect because, in this way, it prefers the pure states
of austenite as well as martensite; hence the material trans-
forms in a localized rather than a homogeneous manner. Never-
theless, non-convex energy contributions always present
possible difficulties from the mathematical as well as the com-
putational points of view.

First, it may happen that, because of the non-convexity,
solutions to the time-incremental problems (TIP) do not even
exist. This is typically caused by the appearance of spatial
oscillations that tend to be infinitely fine. Indeed, it could
happen that the material would develop “infinitely thin” stripes
of martensite as well as austenite, which would effectively
prohibit the existence of solutions. In numerical implementa-
tions, the width of such oscillations would be given
just by the mesh-size; this holds true even in the case one
interface would develop. We exclude such pathological
behavior by averaging some variables in the non-local term,
which introduces a final width of the austenite-martensite
interface.
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While introducing non-locality allows us to exclude possible
undesired effects, this reflects in more costly calculations.
Nonetheless, in many situations, it is justified to replace the
non-local averaged quantities by local ones. Particularly, in
the three-dimensional setting, for a large class of loading
regimes, an infinitely fine austenite-martensite interface can-
not be formed just by geometric reasons leading naturally to
the presence of a phase gradient region between the two
phases. In such situations, the computational costs can be
reduced by employing only the local approach and checking,
at the same time, the size of the phase interface with respect
to the used mesh.

Finally, let us notice that independently of whether we use the
averaging kernels or not, the non-convexity of the problem is
connected with the appearance of multiple local minimizers
in (TIP). As, in numerical implementations, we can always find
only local minimizers, this may lead to non-uniqueness of the
results. A typical situation is that, in calculations, the austen-
ite-martensite transformation happens too late. To avoid this,
an effective strategy is to add, e.g., stress concentrators into
the model.

Let us note that the above observations are also valid if we did
not solve the minimization problem (TIP) but instead the asso-
ciated variational inequalities.

(iii) The factor |&"||> in the interaction energy brings the
loading-mode dependency into the model: when transforma-
tion strain for a particular loading direction is large enough,
softening due to the interaction term prevails over the “trans-
formation hardening” imposed in the dissipation function. The
tension/compression asymmetry of (the maximum) transfor-
mation strain then may give rise to a strain-softening response
in tension and hardening-like in compression.

This observation emphasizes the need for an accurate descrip-
tion of the so-called transformation strain surface (i.e., the
boundary of the set of all available transformation strain ten-
sors), which is defined by a 1-homogeneous convex function
in our model, see the constraint in (3) and Appendix B. Our
particular form of the transformation strain surface allows to
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Fig. 3. Snapshots from a three-dimensional simulation of a NiTi tube in bending. The distribution of the axial component of strain (¢,,) and of the volume fraction of
martensite (VFM) are superimposed on the computed deformed configurations. Lateral view in the first two columns and top view in the last one.
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capture tension-compression asymmetry of the maximum
transformation strain (by involving the third invariant of the
strain tensor) but does not include possible material aniso-
tropy. The question of a suitable form of the transformation
strain surface appropriate for simulations of NiTi components
still remains open (Sedlak and Frost, 2018), and several exper-
imental works suggest different forms involving also material
anisotropy given by usually strong (111) texture in NiTi drawn
components (Reedlunn et al., 2012; Bechle and Kyriakides,
2016).

Involving effects of material texture and anisotropy by redefin-
ing the transformation strain surface could be done straightfor-
wardly in our model as we only assumed that the surface is
described by a 1-homogeneous convex function. However, it is
questionable whether all experimentally observed effects of
material anisotropy on the localization of martensitic transfor-
mation can be covered solely by a proper description of the
transformation strain surface. For example, microstructure
observations of martensitic transformation on NiTi twisted tube
by Peng et al. (2008) revealed that martensite appears in the
form of almost parallel lamellae with inclination about 26.5°
from the axial direction of the tube. Such a strong preferential
orientation of austenite-martensite habit planes can be
explained by (111) material texture. By calculating all possible
habit plane orientations - 24 Type II habit plane variants from
Matsumoto et al. (1987) were considered - using the mathemat-
ical theory of martensitic microstructures by Ball and James
(1987), it can be shown that there are several possible habit
planes nearly parallel to the [111], direction (there are at least
nine different habit planes making less than 10° with [111],
direction), while there are no habit planes nearly perpendicular
to this direction (the normal to the least favourable one is mak-
ing an angle of 16.5° with [111],). Among the nine habit planes
nearly parallel to [111],, three possible orientations correspond
to remarkably large resolved shear strains. Hence, it is plausible
that the first nuclei of stress-induced martensite can be encap-
sulated by such habit planes under the applied twisting. Such
a strong orientation of forming microstructure could alter not
only the expression of the interaction energy (derived in the Sec-
tion 3 with the assumption of spherical inclusions) but also the
way of calculation of non-local variables: the isotropic integra-
tion kernel in Eq. (18) could be replaced by an anisotropic one
to reflect the directional dependence of interaction between
inclusions. We plan to address these issues in future work.

Finally, in addition to the above discussed key features of the
definition (8), its motivation stemming from the Mori-Tanaka
method also provided a hint for the physically plausible regulariza-
tion of the non-convex model expressed by (9). Then, we could
proceed by performing its basic mathematical analysis, which pro-
vided a sound basis for a numerical implementation of the time-
discretized problem (TIP) into FEM excluding pathological behav-
ior in simulations.

The simulation of a NiTi tube subjected to bending showed that
the model is able to capture the difference between loading in ten-
sion - where characteristic patterns of localized deformation
appeared - and compression - where homogeneous deformation
persists. In our previous work (Frost et al., 2018), the model was
also employed in a study on the bending of a NiTi wire structure.
Thanks to the direct comparison of simulations with X-ray microd-
iffraction data, it was confirmed that localization strongly affects
the mechanical response also in such a case.

The computed localization patterns on the bent tube, as well as
those on the NiTi ribbon under tension, exhibited some features
commonly observed in experiments. As pointed out by many
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authors (e.g., Sittner and Novak, 2005; Grossman et al., 2010;
Xiao et al., 2017; Zhang and He, 2018), particular geometrical
forms and propagation modes of the localization bands - even
for the specific type of sample geometry and loading mode -
strongly depend on the material (composition, processing), dimen-
sions of the sample, and boundary conditions.’ Thus, the presented
FE model also provides a powerful tool for further exploration of
these issues.
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Appendix A. Mathematical analysis

In this section, we prove Proposition 4.2 by the direct method of
calculus of variations, cf. e.g., Dacorogna (2008). To do so, we rely
on the convexity of the minimized function in all terms except
the localization one, in the latter we benefit from the used averag-
ing. In fact, we first need to realize that the localization contribu-
tion to the energy is continuous, i.e. that ryoc(&,&") is a

continuous function on [0, 1] x R**3. The only thing we have to ver-
ify is that

. . 2
Hsm _ é(sm)w”

lim >
-0 ¢

=0.

We use that (-) is an equivalent norm on R*> meaning that
there exists a constant c such that ||¢|| < c(¢) for some constant ¢

and all ¢ € R**3, Owing to this

gin _ g(gin 2 gin _ £(gin 2 ) 2 gin 2 .
0 < ” éy( )w” < C< C( )w> < Cg +é <( )w> :))07
< ¢
where we also used that (&) < & Furthermore, rnonioc (¢, €™) is con-

vex function in (e, ¢), if we regard (&™), as a fixed independent
variable. This follows from the positive definiteness of the Hessian
and is related to the fact that "72 is a convex function for x,y > 0.
Let us now turn to proving existence of minimizers to (TIP). We
find a minimizing sequence (uf, [sin}j, éj)jEN C 2 so that (forj — o)

&(tou, [8,) + 2t & v, 80, & — G, [67 — 6y ) — inf

Due to the quadratic growth of the energy in the elastic part as
well as due to the bounds imposed in 2, we can assume that (at
least for a subsequence denoted by the same indices) we have
the following convergence results for j — oo:

3 And, beyond the quasistatic approximation, they also depend on the deformation
rate (Zhang et al., 2010).
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W inWP(QR?),
[en) Zen inL*(QR>3),
d-g  inl*(Q).
We now show that (U, &, &) € W (Q R3) %
L*(Q; R*3) x L*(Q) belongs to 2 is a solution of (TIP). Due to the

convexity of the constraints, we know that

(&%) < &(x), <& <1,

Moreover, due to the convexity of the local part of the energy as
well as the dissipation (in the rate variable) we see that

Jof" (6(u(x)), &%), &RX)) = Fuol(t) - u
+d (fk ],Fk 1~gk - ék*lvgin 78;?—1)dx
— fl' - U ds

< liminff” (5(w/(x)), (). [#"]'())
—fmm)w+d%gbqle—ql[ﬂﬂww)m
~Ji F -uids

So we only need to look at the non-local part. To this end, we
realize that, for any fixed w > 0, we have that, for all x € Q

(") 0= /Q [ ()%(x — y)dy — /Q &y
= (8}<n)w (X)’

and 0 a.e.on Q.

surf tk

surf tk

V90 (x —y)dy

pointwise in Q. Furthermore, since

(&),

([s‘“}j)w(x) is uniformly bounded, this extends to strong conver-

so that ([si"]j>w—>

gence in [P (Q; R**3) for all p € [1, c0). For the first term in the local-
ization energy we use the rewriting

] P (G D P O IR GO M Gl I GO

g g g

+2([e) =), ) - (), - @),) + (), -

@)%

we see that the first term in the second line is convex in (éj, [8‘"}’),
so that its integral is weakly lower semicontinuous, and the integral

of the latter two converges to 0 as j — co. For the second term in the
localization energy, we only need to look at

([)), 17 = &) I - 286, - (), - (@),,)
+ N[ - )0

where again the first term on the right hand side is even linear in &,
while the other two tend to zero as j — cc.

Combining the arguments above implies that
(ug, €, &) € W (Q:R®) x L™ (Q; R¥3) x L*(Q) is a solution of
(TIP).

Appendix B. Material parameters

The material parameters obtained as the best fit of experimen-
tal data E1 (Alarcon et al., 2017) in Fig. 1 are summarized in
Table 1.
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Table 1
Table of material parameters used in computations.

Parameter Value Unit Brief description

K 148 [GPa]  Bulk modulus common to both phases.

Gt cM 25,15 [GPa]  Shear moduli of austenite and martensite.

k 0.072 [1] Maximum transformation strain in tension.

a 0.99 [1] Tension-compression asymmetry
parameter.

As, As -30,-18 [°C] Martensite to austenite transformation
temperatures.

Ms, Mg —37,-47 [°C] Austenite to martensite transformation
temperatures.

To -35 [°C] Equilibrium austenite-martensite
temperature.

gree 85 [MPa] Martensite reorientation stress.

AsAM 0.36 [MPa/ Difference between specific entropies of

°C] martensite and austenite.

C;\r/};\ 80 [MPa] Parameter of the interaction energy in Eq.
(9).

cn 29 [MPa] Parameter of the interaction energy in Eq.

(9).

The particular form of the function confining the transforma-
tion strain (-) from constraints (3) and defining the transforma-
tion strain surface is (cf. Sedlak et al., 2012; Sedlak and Frost,
2018):

I (&™) cos (} arccos(1 — a(l3(&") + 1)))

(&) = k cos (1 arccos(1 - 2a)) ’ ®1
where
L(x) = \/?X;;’ L(x) (CIIZE(;E;Y))3 (8:2)

Appendix C. Macroscopic response

Fig. 4 provides the computed macroscopic mechanical
response for both case studies presented in Section 5. Particularly,
for tensile loading of the NiTi ribbon, we plot computed force, F,
normalized per initial cross-section area, Sp, as a function of dis-
placement, Al, normalized with respect to the initial length, l,. For
the bent tube, dependence of normalized moment, MC/I, on nor-
malized curvature, Ck, is shown. Here, M denotes the computed
moment, C = D/2 is the outer radius of the tube, I is the area
moment of inertia of the cross-section (annulus), and x is the
average curvature computed as the ratio between the angle of
rotated end and the initial length of the tube, see Reedlunn
et al. (2014).

Both responses exhibit an “overpeak” separating the initial (lin-
ear elastic) stage from the transformation stage with the character-
istic “plateau”. The ondulations superimposed on the relatively flat
plateaus are related to the localization instabilities, e.g., instances
of formation or coalescence of phase regions or phase interfaces,
as observed in Figs. 2 and 3. For more detailed analysis of this
effects, see, e.g., Shaw and Kyriakides (1998), Jiang et al. (2017),
Jiang et al. (2017), Watkins et al. (2018).
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Fig. 4. Computed macroscopic response of the NiTi ribbon in tension investigated in Section 5.2 (a) and of the NiTi tube in bending investigated in Section 5.3 (b), see text for

details.
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