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Abstract—A novel extension of Independent Component and
Independent Vector Analysis for blind extraction/separation of
one or several sources from time-varying mixtures is proposed.
The mixtures are assumed to be separable source-by-source in
series or in parallel based on a recently proposed mixing model
that allows for the movements of the desired source while the
separating beamformer is time-invariant. The popular FastICA
algorithm is extended for these mixtures in one-unit, symmetric
and block-deflation variants. The algorithms are derived within a
unified framework so that they are applicable in the real-valued as
well as complex-valued domains, and jointly to several mixtures,
similar to Independent Vector Analysis. Performance analysis of
the one-unit algorithm is provided; it shows its asymptotic effi-
ciency under the given mixing and statistical models. Numerical
simulations corroborate the validity of the analysis, confirm the
usefulness of the algorithms in separation of moving sources, and
show the superior speed of convergence and ability to separate
super-Gaussian as well as sub-Gaussian signals.

Index Terms—Blind Source Separation, Blind Source
Extraction, Independent Component Analysis, Independent
Vector Analysis, Dynamic Models, Moving Sources.

I. INTRODUCTION

INDEPENDENTComponent Analysis (ICA) is a popular
method proposed for Blind Source Separation (BSS) [1]–[3].

Signals observed on d sensors are assumed to be linear mixtures
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of d “original” signals, which are mutually independent in the
statistical sense. The linear mixing model is given by

xn = Ansn, (1)

where n = 1, . . . , N is the sample index, xn is a d× 1 vector of
the observed mixed signals at timen;An is a d× d non-singular
mixing matrix; and sn is a d× 1 vector of the original indepen-
dent signals. Since An are square and non-singular, the model
is referred to as determined. We speak about the static mixing
case when An is constant over n. ICA can be formulated as
to estimate (An)−1 through finding square de-mixing matrices
Wn such that the signals Wnxn are as independent as possible.
It is the indeterminacy of BSS (as well as of ICA) that the
order and scales of sn cannot be retrieved without additional
information.

The determined static formulation has become very popular
mainly due to its mathematical tractability and wide applicabil-
ity. The problem has been deeply studied and, currently, ICA
and its extension to joint separation of several mixtures (data
sets) such as Independent Vector Analysis (IVA), have matured
to a large extent [4]–[8]. For most recent contributions to the
area see, e.g., [9], [10].

In many applications, however, it is necessary to consider the
time-variant mixing model, which we will refer to as dynamic.
For example, in audio or biomedical applications it happens
that the mixing environment is changing in time, sources are
moving, some new sources can appear randomly in time and
some other may disappear. There is therefore a need to estimate
the mixing/de-mixing matrix in an adaptive manner, respecting
the dynamic nature of the data.

The determined mixing model (1) with An dependent on
n can capture a very wide class of dynamic mixtures. How-
ever, the lack of information (the number of samples N is
proportional to the number of unknown parameters Nd2) and
the random order of the separated signals at any time instant
pose crucial problems. Current extensions of ICA and IVA
towards the dynamic model are therefore based on more or less
strictly formulated assumptions that the changes of the mixing
parameters are somewhat slow and continuous. A standard way
is that estimation methods for the static case are converted into
adaptive algorithms along the lines of the least-mean-squares
(LMS) or recursive-least-squares (RLS) algorithms [11]. To this
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Fig. 1. LEFT: Five independent speech signals, each 50 000 samples long,
sampled at 16 kHz. RIGHT: Instantaneous mixture of the signals where the
first signal is linearly moving while signals 2 through 5 are static. Signal 1 is
dominating the mixture (multiplied by factor 5).

end, various sequential [12], recursive [13], [14], Bayesian [15]
or other online approaches have been proposed. Particularly
popular adaptive methods are based on the Natural Gradient
algorithm [16], [17]; see, e.g., [14], [18]–[21]. In biomedical
application, an Online Recursive Independent Component Anal-
ysis (ORICA) was proposed in [14], [22]. The latter paper is
remarkable because it presents a real-world application of the
algorithm in high-density (64 channel) EEG.

The approach that we present here is conceptually different.
Basically, it is off-line, despite it allows to handle time-varying
mixtures to certain extent. It comes from the recently proposed
blind source extraction (BSE) model denoted as CSV (Con-
stant Separating Vector) where the mixing parameters related
to the source of interest (SOI) can be varying in time while
the de-mixing parameters are time-invariant [23], [24]. CSV
allows for the SOI movements throughout the exposed data.
The Cramér-Rao analysis has been done in [25]. It points to
appealing properties of CSV in terms of the achievable extraction
accuracy compared to the sequentially applied ICA. On-line
version of the proposed approach is possible as well, because
we can think about allowing the “constant” separating vector to
be progressively updated in time.

This paper brings two major contributions. First, we ex-
tend CSV to separation of more than one source, by which
we introduce so-called CSV-separable mixtures. Briefly, the
CSV-separable mixtures are defined as such that can be sep-
arated source-by-source in series or in parallel based on the
CSV. In fact, the formulation of ICA/IVA on CSV-separable
mixtures is a natural extension of the static ICA/IVA to the
special class of dynamic mixtures. It provides a novel tool for
off-line exploratory data analysis and is also useful in online
data processing, as we demonstrate in the experimental section.
Second, we propose the FastDIVA algorithm (Fast Dynamic
Independent Vector Analysis) as a new method for ICA/IVA
on CSV-separable mixtures. In fact, FastDIVA is a successor of
the famous FastICA [26] and FastIVA [27] as it involves these
methods as special cases and is proposed in three variants: one-
unit, symmetric and block-deflation. To motivate, we provide
the following example.

Consider five speech signals shown in Fig. 1 (left). Their
instantaneous1 mixture, shown in Fig. 1 (right), is generated

1Note that this mixture is not convolutive as is typical to real-world acoustic
signal mixing; we consider the simpler instantaneous case for demonstration
purposes.

Fig. 2. Independent components extracted from the signal mixture shown in
the right part of Fig. 1 by symmetric FastICA.

Fig. 3. Independent components separated from the dynamic mixture in Fig. 1
(right) by block-deflation FastDIVA set to 5 blocks, each of length 104 samples.

so that signals 2 through 5 are static, mixed into 5 channels
with fixed random mixing coefficients, while signal 1 (i.e., its
virtual source) is moving: The first column of An, denoted
as an, is linearly progressing from a to b according to an =
(N − n+ 1)/Na+ (n− 1)/Nb; a and b are random column
vectors that make an angle of 20◦. The other columns of An

are constant over n. Signal 1 is amplified by factor 5 in order to
accentuate it in the mixture.

Fig. 2 shows typical components obtained by a conventional
ICA algorithm (symmetric FastICA [26]) when applied to this
mixture. The order of components is random, which is due to the
inherent ambiguity of BSS. By visual inspection, components
2 and 5 correspond to the original signals 5 and 2, respectively,
up to scales and signs. Component 3 corresponds to the original
signal 3 up to a certain more significant residual interference.
Components 4 and 1 consist of the beginning and end parts of the
original signal 1, respectively. This is caused by the movement
of the corresponding (virtual) source. The original signal 4 is
not extracted as a separated component; it appears as a residual
within component 4. Note that this situation cannot be improved
by extracting one more component because the static ICA (de-
)mixing model assumes square (de-)mixing matrix.

Fig. 3 shows components that have been separated by block-
deflation FastDIVA assuming CSV-separable mixing model with
5 blocks. The components correspond with the original signals
up to a random order, which is 1, 4, 3, 5, 2, and a reasonable
statistical error. Not only does the algorithm extract the moving
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signal as one component, that is, without the need for collecting
it from several components whose order is unknown. It also
separates original signal 4 with a high degree of precision, as
compared to symmetric FastICA.

This paper is organized as follows. The CSV mixing model
is revised and extended to the CSV-separable mixtures in Sec-
tion II. The FastDIVA algorithm is proposed in Section III
and its one-unit version is analyzed in Section IV. Numerical
experiments and comparisons with FastDIVA in off-line and
on-line tests are provided in Section V; and Section VI concludes
the article.

I. Nomenclature and conventions

Plain, bold, and bold capital letters denote scalars, vectors,
and matrices, respectively. Upper index ·T , ·H , or ·∗ denotes,
respectively, transposition, conjugate transpose, or complex con-
jugate. The Matlab convention for matrix/vector concatenation
will be used, e.g., [1; g] = [1, gT ]T . The statistical models of
signals considered in this paper assume that each sample is inde-
pendently drawn from a distribution; inter-sample dependencies
are not modeled. Therefore, we use symbolic notation where
samples having the same distribution are represented by random
(vector) variables. E[·] stands for the expectation value of the
argument, and Ê[·] is the average value of the argument taken
over all of its available samples. The letters k, t, and i are used
as integer indices of dataset, block, and source, respectively;
index omission will always be announced in the text. {·}k is a
short notation of the argument with all values of index k, e.g.,
{wk}k means w1, . . . ,wK . The average value of at taken over
all available blocks, i.e., 1

T

∑T
t=1 at, is denoted by 〈at〉t.

We will consider complex-valued signals and parameters;
however, the conclusions of this work are valid for the real-
valued case as well.

II. PROBLEM FORMULATION

For practical reasons, we turn from (1) to mixtures that are
block-wise static and, also, extend our considerations to multiple
datasets as in IVA and in other joint BSS problems [28]–[32].

Let N samples of signals be observed through d sensors in K
datasets, and let the samples be divided intoT ≥ 1 time-intervals
called blocks. For the sake of simplicity, let the blocks have
the same length Nb, and N = T ·Nb. From now on, we will
consider the block-wise varying mixing model

xk,t = Ak,tsk,t, (2)

where k = 1, . . . ,K is the dataset index; t = 1, . . . , T is the
block index; Ak,t is a d× d non-singular mixing matrix;
and by sk,t = [sk,t1 , . . . , sk,td ]T we denote independent random
variables representing unknown original signals. Without any
loss of generality, let all the signals have zero mean values.
Samples of signals within the blocks are assumed identically
and independently distributed (i.i.d.). For example, each sample
of the ith original signal within the tth block and thekth dataset is
assumed to be an independent realization of the random variable
sk,ti . By taking into account the ambiguities, the BSS task can
be, in general, formulated as follows.

Find de-mixing matrices Wk,t such that Wk,txk,t are equal to
sk,t up to their original scales and phase. The order of the separated
signals can be different from the original one; however, it is desirable
for it to be the same in all datasets and blocks.

For T = 1, we have the static case considered by the conven-
tional ICA and IVA. In ICA, the datasets are separated indepen-
dently; this approach, however, brings random permutation of
separated signals in the datasets, the permutation problem [33].
In IVA, components are separated as “vectors” where the ith vec-
tor component is defined as sti = [s1,ti , . . . , sK,t

i ]T , i = 1, . . . , d
[34].

We are mainly interested in the dynamic case ofT > 1, where
the mixing parameters (matrices) can be varying from block
to block. ICA and IVA can be used when T > 1 by applying
them separately on blocks. However, this approach does not
guarantee the same order, i.e., continuity of the separated signals
over the blocks, a phenomenon caused by the uncertainty of
signal order similar to the permutation problem; we refer to it as
the discontinuity problem. Also, there are too many parameters
to be estimated, which potentially leads to a loss in separation
accuracy.

What we basically do, in this paper, is applying a deflation
or symmetric manner of blind source separation as in deflation
or symmetric FastICA when T = 1 [26]. It means that we wish
to separate the signal components one by one or in parallel.
Therefore, the primary problem to be solved is the blind ex-
traction of one component. For T = 1, this is solved through
so-called Independent Component or Independent Vector Ex-
traction (ICE/IVE).

In ICE/IVE, it is reflected that if only the SOI should be
extracted, only the corresponding column of Ak,t and the cor-
responding row of (Ak,t)−1 need to be taken into account in
the mixing model parameterization. The other columns of Ak,t

need not be estimated, only their corresponding subspace should
be identified. The parameterization chosen in [35] ensures this.

Owing to the indeterminacy of order in BSS2, we can assume
that the SOI corresponds to sk,t1 . Hence, according to [35], Ak,t

in (2) can be parameterized by

Ak,t
BSE =

(
ak,t Qk,t

)
=

(
γk,t (hk,t)H

gk,t 1
γk,t (g

k,t(hk,t)H − Id−1)

)
(3)

where ak,t = [γk,t;gk,t] is called the mixing vector correspond-
ing to the first column of Ak,t; Id denotes the d× d identity
matrix; (wk,t)H denotes the first row of Wk,t

BSE = (Ak,t
BSE)

−1;
wk,t stands for the beamformer on which output is the extracted
signal, i.e., sk,11 = (wk,t)Hxk,t; we will call it the separating
vector. It holds that

Wk,t
BSE =

(
(wk,t)H

Bk,t

)
=

(
(βk,t)∗ (hk,t)H

gk,t −γk,tId−1

)
, (4)

where wk,t = [βk,t;hk,t], Bk,t = [gk,t, −γk,tId−1] satisfies
the condition Bk,tak,t = 0 (the blocking matrix [36]). Since

2In fact, any knowledge about the SOI (e.g., an initial guess) must be available
to determine it; see Section II.B in [35]
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Wk,t
BSEA

k,t
BSE = Id, ak,t and wk,t are linked through the so-

called distortionless constraint (wk,t)Hak,t = 1, which can also
be written as

(βk,t)∗γk,t = 1− (hk,t)Hgk,t. (5)

The subspace of the other signals, referred to as background,
is generated by zk,t = Bk,txk,t. The fact that Bk,tak,t = 0
guarantees that zk,t span the same subspace as sk,t2 , . . . , sk,td .

The approach where ICE/IVE is applied separately to each
block when T > 1 has the same drawbacks as mentioned above.
In [23], [25], we have distinguished two simplifications, or two
particular separation models.
� Constant mixing vector (CMV)

ak,1 = ak,2 = . . . = ak,T = ak (6)

� Constant separating vector (CSV)

wk,1 = wk,2 = . . . = wk,T = wk (7)

Each of the two models ensures that the components in
different blocks are not permuted randomly, thus, the discon-
tinuity problem is avoided. The former model might be more
suitable when the sources are not moving, but the background
is non-stationary, or that there is low signal-to-interference and
noise ratio. The latter models appears to be useful when the SOI
is moving, which is of a greater interest. Therefore, we deal with
the CSV model, in this paper, and generalize it to separation of
r ≥ 1 sources.

We introduce the notion of CSV-separable mixtures through
the following conditions:

C1) All r sources to be separated obey CSV, which means
that the first r rows of (Ak,1)−1, . . . , (Ak,T )−1 in (2)
are constant over t.

C2) For each i = 1, . . . , r, the ith source obeys CSV in a
reduced mixture where sources 1, . . . , i− 1 have been
subtracted.

Some properties readily follow. For r = d, all rows of the
inverse matrices are assumed constant in (C1), which means that
the mixtures obeying (C1) are static when r = d. For r = 1, (C1)
and (C2) coincide with the CSV model for one source.

Validity of the conditions (C1) and (C2) has to be assumed.
Their usefulness was already shown in Section I and will be
supported by additional examples in Section V. In Section III-
G, we propose the symmetric and block-deflation separation
schemes,3 which can be used to separate r sources from mixtures
obeying (C1) and (C2), respectively.

III. PROPOSED ALGORITHM

The detailed derivations of one-unit, symmetric and block-
deflation FastDIVA are provided in this Section. We begin with
the one-unit variant, which solves the BSE problem based on
the CSV mixing model.

3The symmetric, deflation and block-deflation separation schemes are here
applied together with the one-unit FastDIVA algorithm, however, they can be
applied with other BSE algorithms.

A. Statistical Model

To simplify notation, for now, we will omit the subscript “1”
in st1, i.e., st = [s1,t, . . . , sK,t]T . Let the probability density
function (pdf) of st be p(st). Note that this pdf is, in general,
dependent on t; we do not write this explicitly, for simplicity.
Next, let pzk,t(zk,t) denote the pdf of zk,t. Although there can
also be dependencies between background signals from different
datasets, we neglect them to simplify the statistical model of the
background4.

Considering the structure of the de-mixing matrix (4) with
the CSV assumption (7), using the independence between the
SOI and the background, and taking into account the fact that
samples are independently distributed, we get the joint pdf for
one sample of the observed signals in the tth block in the form

pxk,t({xk,t}k) = p({(wk)Hxk,t}k)×
K∏

k=1

pzk,t(Bk,txk,t)| detWk,t
BSE|2. (8)

Note that the square of the absolute value of determinant
is necessary due to the transformation of densities of the
complex-valued random variables (the exponent equals one
in the real-valued case). The determinant can be expressed
by using Eq. (15) in [35], which gives, together with (7),
| detWk,t

BSE|2 = |γk,t|2(d−2). The pdf of all N samples is equal
to
∏T

t=1 pxk,t({xk,t}k)Nb , so the log-likelihood function di-
vided by N can be expressed as

L ({wk,ak,t}k,t
)
=
〈
Ê
[
log p

({
(wk)Hxk,t

}
k

)]
+

K∑
k=1

Ê
[
p(Bk,txk,t)

]
+ (d− 2)

K∑
k=1

log |γk,t|2
〉

t

. (9)

B. Contrast Function

Finding the appropriate maximum of (9) provides the max-
imum likelihood estimate of the parameter vectors. However,
(9) must be replaced by a valid contrast function because of the
unknown pdfs p(st) and pzk,t(zk,t), which have to be replaced
by suitable model densities. In the static case, the model pdfs of
the SOI can be scaled to unit variance since there is the scaling
ambiguity [26]. However, in the dynamic case, the variance of
signals can be changing from block to block which must be
taken into account. Therefore, the appropriate surrogate for p(·)
is5 [38], [39]

p(st) ≈ f

({
sk,t

σ̂k,t

}
k

)( K∏
k=1

σ̂k,t

)−2
, (10)

where f(·) should be a suitable normalized non-Gaussian pdf,
and (σ̂k,t)2 is the sample-based variance of the estimate of sk,t.

4This simplification typically brings a suboptimal performance of BSE as
compared to BSS [25], [37]

5Note that the square power in (10) is necessary due to considering the
complex-valued problem; it would equal one in the real-valued case.
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It holds that

σ̂k,t =

√
(wk)HĈk,twk, (11)

where Ĉk,t = Ê[xk,t(xk,t)H ] is the sample-based covariance
matrix of xk,t; σ̂k,t is, in fact, a function of wk.

Note that f(·) could be dependent on t. However, since there
is usually little information about the true pdf, we simplify our
considerations by assuming that f(·) is independent of t.

The unknown pzk,t(zk,t) can be replaced by the zero
mean circular6 Gaussian pdf CN (0,Ck,t

z ), where Ck,t
z =

E[zk,t(zk,t)H ] is the covariance matrix of the background sig-
nals; see, e.g., [35] for the justification of this choice. Ck,t

z is an
unknown nuisance parameter, which will later be replaced by its
sample-based estimate. By putting the model densities into (9),
a practical contrast function for estimating the model parameters
takes on the form

C ({wk,ak,t}k,t
)
=

〈
Ê

[
log f

({
ŝk,t

σ̂k,t

}
k

)]

−
K∑

k=1

log(σ̂k,t)2 −
K∑

k=1

Ê
[
(ẑk,t)H(Ck,t

z )−1ẑk,t
]

+(d− 2)
K∑

k=1

log |γk,t|2
〉

t

+ const., (12)

where ŝk,t = (wk)Hxk,t, and ẑk,t = Bk,txk,t. The remaining
constant term is independent of the mixing model parameters.
For K = 1 and T = 1, the indices k and t can be omitted, and
(12) is simplified to7

C1,1 (w,a) = Ê

[
log f

(
ŝ

σ̂

)]
− log σ̂2 − Ê

[
ẑHC−1z ẑ

]
+ (d− 2) log |γ|2 + const. (13)

C. Orthogonal Constraints

The above contrast functions can have many spurious ex-
tremes. It may occur that the parameter vectors ak,t, t =
1, . . . , T , and wk do not correspond to the same signal. There-
fore, a reliable link between the separating and mixing vectors
has to be established. To this end, the orthogonal constraint
(OGC) appears to be convenient. Since sk,t and zk,t are in-
dependent and, therefore, also uncorrelated, the OGC requires
that subspace generated by samples of ŝk,t is orthogonal to the
subspace of ẑk,t. Also, (5) must be satisfied. The mixing vectors
are then linked with the separating vector through [35]

ak,t =
Ĉk,twk

(wk)HĈk,twk
. (14)

6Noncircular Gaussian pdf could be considered as well, especially, if the
background signals are assumed to involve noncircular sources. In Appendix
A, it will be shown that the assumption of circularity causes that the Hessian
matrix H1, defined later in (30), has rank 1, which significantly simplifies the
Newton-Raphson update given by (38).

7The reader can compare (13) with 19 in [35]. The contrast functions differ in
that (13) involves σ̂2; therefore, it contains the normalization inside the argument
of f(·) and an additional second term.

Equivalently, wk can be expressed as the dependent variable as

wk =
(Ĉk,t)−1ak,t

(ak,t)H(Ĉk,t)−1ak,t
. (15)

D. Relationship to Optimum Beamformers

The analytic expression (15) corresponds to the minimum
power distortionless beamformer (MPDR) steered in the direc-
tion determined by the mixing vector ak,t when the covariance
of data is given by Ĉk,t. MPDR is an optimum beamformer
known in array processing theory as the solution of [40]

wk = argmin
w

wHĈkw w.r.t. wHak,t = 1. (16)

The orthogonally constrained BSE algorithms can, in the static
case of T = 1, be viewed as blind MPDR beamformers seeking
in the direction of ak,t, for a fixed t, such that the MPDR output
is independent of the orthogonal (background) subspace [41].

In the CSV model, (15) and, thus, (16) should be satisfied si-
multaneously for all t = 1, . . . , T , which imposes T conditions
on one separating vector wk. It is therefore more practical to
impose the OGC through (14) rather than through (15) when
T > 1.

In order to interpret the block-independent separating vector
in CSV, note that the true mixing and separating vectors satisfy
(15) when Nb → +∞, that is, with Ĉk,t replaced by Ck,t.
Hence, the true parameter vectors satisfy

wk = argmin
w

wHCk,tw w.r.t. wHak,t = 1 (17)

for all t = 1, . . . , T . It follows that they also obey

wk = argmin
w

wHRkw w.r.t. wHΛk = 1, (18)

where Rk =
∑T

t=1 C
k,t, Λk = [ak,1 . . . ak,T ], and 1 is the

T × 1 vector of ones. The solution of (18) is known as the
linearly constrained minimum power beamformer (LCMP) [40].
We conclude the connection between CSV and LCMP as fol-
lows:

For Nb → +∞, the CSV mixing model ensures that the LCMP
beamformer steered in the directions given by the true mixing
vectors (determining locations of the SOI during its movement)
ak,1, . . . ,ak,T exists such that it extracts the SOI from the mixed
signals perfectly.

E. Approximate Newton-Raphson Algorithm

The algorithm proposed here aims at finding a maximum of
(12) subject to the parameter vectors wk, k = 1, . . . ,K, under
the OGC (14). For the sake of clarity, the contrast function to be
maximized is

COG

({
wk
}
k

)
= C

⎛⎝{wk,
Ĉk,twk

(wk)HĈk,twk

}
k,t

⎞⎠ . (19)

We follow the complex-valued Newton-Raphson optimization
approach using the Wirtinger calculus [42]. This entails the
computation of the gradient and the second-order derivatives
of COG. To simplify the exposition, the derivations here will
be done as if T = 1 and K = 1 (the indices t and k will be
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omitted); the result for T ≥ 1 and K ≥ 1 will readily follow.
Thus, we now compute the derivatives of the four terms in (13)

when a =
̂Cw

wH ̂Cw
.

To compute the gradient, we use results from [35] and the
following identities

∂

∂wH
ŝ =

∂

∂wH
wHx = x, (20)

∂

∂wH

1

σ̂
=

∂

∂wH

1√
wHĈw

= − a

2σ̂
, (21)

∂

∂wH
log σ̂2 =

∂

∂wH
log ŵHĈw = a. (22)

The derivative of the first term in (13) reads

∂

∂wH
Ê

[
log f

(
ŝ

σ̂

)]
= −Ê

[
φ

(
ŝ

σ̂

)
x

σ̂

]
+ 
{ν̂}a, (23)

where ν̂ is the sample-based estimate of

ν = E
[
φ
( s
σ

) s

σ

]
, (24)


{·} denotes the real part of the argument, and

φ(s) = − ∂

∂s∗
log f(s) (25)

is the score function corresponding to the model density f(·).
The derivative of the second term in (13) follows directly from
(22). The derivatives of the third and fourth terms are simplified
to

∂

∂wH

{
−Ê [ẑHC−1z ẑ

]
+ (d− 2) log |γ|2

}
= a, (26)

whenCz is (after taking the derivative) replaced by Ĉz as shown
in Appendix C in [35]. Hence, terms 2 through 4 in (13) do not
contribute to the gradient as their derivatives finally boil down
to zero,8. The gradient of (19) for T = K = 1 is thus equal to
(23), i.e.,

∂

∂wH
COG(w) = 
{ν̂}a− Ê

[
φ

(
ŝ

σ̂

)
x

σ̂

]
. (27)

Now, consider N → +∞ and w being the true separating
vector; if this is the case, (27) is equal to

∂

∂wH
COG(w) = (
{ν} − ν)a. (28)

It follows that the true separating vector is the stationary point
of COG(w) only if
{ν} = ν. If f(·) = p(·) then ν = 1, and the
condition
{ν} = ν is satisfied. However, this equality does not
hold for general f(·), so finding the stationary point of COG(w)
need not yield a consistent estimate of the separating vector.

To solve this problem, note that f(·) does not appear explicitly
in (27). We can therefore consider a replacement of f(·) by its
“normalized” variant such that the new score function is ν̂−1φ(·),

8It follows that BSE methods based on maximizing the non-Gaussianity of
the SOI [2], [26], [43] in fact, inherently assume that the background is circular
Gaussian with unknown covariance.

and the new ν is equal to one. Then, we introduce a modified
gradient (27) as

∇ = a− ν̂−1Ê
[
φ

(
ŝ

σ̂

)
x

σ̂

]
. (29)

After this modification, the w such that ∇ = 0 is a consistent
estimate of the true separating vector.

Now, we investigate the second-order derivatives of (19),
that is, the derivatives of (29) in the desired optimum point
when N → +∞. The result is summarized by the following
Proposition.

Proposition 1: Let z be distributed according to CN (0,Cz).
Let f(·) be a normalized model pdf so thatφ(·)← ν−1φ(·),w be
the true separating vector such that s = wHx, and N → +∞.
Then, the Hessian matrices of (19) defined asH1 = ∂2COG

∂wT ∂w
and

H2 = ∂2COG

∂wH∂w
are equal to

H1 = (c3aa
T )∗, (30)

H2 = (c1C+ c2aa
H)T , (31)

where

c1 =
1

σ2

(
ν − ρ

ν

)
, (32)

c2 = −σ2c1 − c3, (33)

c3 =
1

2ν
(ξ − η − ν), (34)

and

ρ = E

[
∂φ( s

σ )

∂s∗

]
, (35)

ξ = E

[
∂φ( s

σ )

∂s∗
|s|2
σ2

]
, (36)

η = E

[
∂φ( s

σ )

∂s

s2

σ2

]
. (37)

Proof: See Appendix A.
The proposed one-unit algorithm iterates in the direction

inspired by the Newton-Raphson update [42]

wnew = w − Ĥ−1(∇− Ĥ∗1Ĥ
−1
2 ∇∗), (38)

where Ĥ = Ĥ∗2 − Ĥ∗1Ĥ
−1
2 Ĥ1, ∇ is given by (29), and Ĥ1

and Ĥ2 are computed using the expressions (30) and (31),
respectively, where (35)–(37) are replaced by their sample-based
estimates. That means that the algorithm is not exactly the
Newton-Raphson one, because the Hessian matrix is replaced by
its analytic expression as if the currentw was the true separating
vector.

In Appendix B, it is shown that

Ĥ =

(
ν̂ − ρ̂

ν̂

)∗(
Ĉ

σ̂2
− aaH

)
, (39)

and Ĥ∗1Ĥ
−1
2 ∇∗ = 0, so (38) is simplified to

wnew = w − Ĥ−1∇. (40)
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However, the reader can notice that Ĥ is rank deficient, so Ĥ−1

actually does not exist. Indeed, for any value of w (and a linked
through the OGC), the observed signals are equal tox = aŝ+ ŷ
where ŷ = Qẑ. The OGC guarantees that Ê[ŝŷ] = 0, therefore,
Ĉ = σ̂2aaH + Ĉy, where Ĉy = Ê[ŷŷH ]. So finally Ĥ ∝ Ĉy,
whose rank isd− 1. This rank deficiency is caused by the scaling
ambiguity of w: There is a free scalar parameter with respect to
which the contrast function is invariant. Fortunately, it appears
that ∇ belongs to the column-space of Ĥ. After some algebra,
we receive the following Proposition.

Proposition 2: The update (40) can be re-written as

wnew = w −
(

ν̂

ν̂ − ρ̂

)∗
σ̂2Ĉ−1∇. (41)

Proof: See Appendix B.
Now, we get back to T ≥ 1 and K ≥ 1. By inspecting (12),

we can see that all terms with different t values are decoupled.
The decoupling also holds for the dataset index k up to the first
term in (12). However, since there is no coupling between the
arguments of f({·}k), we only need to generalize the definition
(25) to

φk

({
sk,t
}
k

)
= − ∂

∂s∗k
log f

({
sk,t
}
k

)
, (42)

and, then, write all the other model parameters and signals’
statistics with the superscript k, t. The gradient of (19) and the
counterpart of the second-order derivative matrix (39) are equal
to

∇k =

〈
ak,t − 1

ν̂k,t
Ê

[
φk

({
ŝk,t

σ̂k,t

}
k

)
xk,t

σ̂k,t

]〉
t

, (43)

Ĥk =

〈(
ν̂k,t − ρ̂k,t

ν̂k,t

)∗(
Ĉk,t

(σ̂k,t)2
− ak,t(ak,t)H

)〉
t

. (44)

Similar to (39), the scaling ambiguity causes the rank of (44)
to be exactly equal to d− 1. However, we can follow the same
approach as the one used in Proposition 2 to justify that the
update for T ≥ 1 and K ≥ 1 is

wk
new = wk −

〈(
ν̂k,t − ρ̂k,t

ν̂k,t

)∗
Ĉk,t

(σ̂k,t)2

〉−1
t

∇k. (45)

Given the initial value of wk, for all k = 1, . . . ,K,
the proposed algorithm proceeds by computing (14), ŝk,t =
(wk)Hxk,t, σ̂k,t by (11), ν̂k,t and ρ̂k,t according to (24) and
(35), respectively, and updates the separating vectors through
(43) and (45). The separating vectors can be normalized so that,
for example, the scale of the SOI over all blocks equals one.
The updates are repeated until the stopping rule from [26] is
satisfied for all k = 1, . . . ,K. The algorithm is referred to as
one-unit FastDIVA.

F. Relationship to One-Unit FastICA/FastIVA

One-unit FastICA is designed for BSE for the caseK = 1 and
T = 1 (the indices k and t can be omitted here). When the input
signals have been pre-whitened so that Ĉ = Id [5], the one-unit

FastICA update rule is

wnew = Ê[φ(ŝ)x]− ρw (46)

for the real-valued case [26], and

wnew = Ê[xg(|ŝ|2)]− Ê[g(|ŝ|2) + |ŝ|2 g′(|ŝ|2)]w (47)

for the complex-valued case [44], where g(·) is the derivative
of the contrast function, which is a real-valued smooth even
function of |ŝ|2. After each update, w is normalized, which is
equivalent to σ̂ = 1 since Ĉ = I.

We can compare (45) in a similar setting when σ̂ = 1 and
Ĉ = Id. The OGC (14) is then translated to a = w, and (45) is
simplified to

wnew = w −
(

ν̂

ν̂ − ρ̂

)∗
(w − ν̂−1Ê [φ (ŝ)x]), (48)

Since the scale of wnew can be arbitrary (the vector can be nor-
malized afterwards), the right-hand side of (48) can be multiplied
by the scalar factor (ν̂ − ρ̂)∗, which, after a few simplifications,
results in

wnew = Ê[φ(ŝ)x]− ρ∗w. (49)

It is worth noting here that ρ should be real-valued, provided that
the model density f(·) is a real-valued function. Once f(·) =
f(·)∗, it holds that ρ = ρ∗ [45]. By comparing (49) with (46), we
can see that the update rules of one-unit FastDIVA and one-unit
FastICA are the same in the real-valued case.

The complex-valued FastICA was derived in a different way,
assuming a constrained class of contrast functions suitable for
circular sources. The update rule (47) is different from (49).
The latter is actually simpler and valid for circular as well as
non-circular SOI (and a circular background).

For T = 1 and K ≥ 1, similar conclusions hold when com-
paring the update rules of FastIVA derived in [27] (Equation 58
in [27]), which are similar to (47), while (45) is simplified (when
T = 1, Ĉk = Id and σk = 1) to

wk
new = Ê[φk({ŝk}k)xk])− (ρk)∗wk. (50)

To conclude, one-unit FastDIVA is an extension of FastICA
and FastIVA for T > 1 under the CSV model, in the real-valued
case, and an extension and simplification involving non-circular
SOI, in the complex-valued case.

G. Separation of Several Signals

We now focus on the BSS problem when 1 ≤ r ≤ d indepen-
dent signals should be separated from each other and from the
remainder of the signal (i.e., the other components and the noise).
Following the idea of [26], [46], we propose to run r one-unit
algorithms successively or in parallel while preventing them
from extracting the same sources. To this end, the orthogonality
constraint is imposed [47].

Throughout this Subsection, we will omit the dataset index
k as the proposed approaches operate independently in each
dataset.
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1) Symmetric Approach: The approach presented here is
suitable for dynamic mixtures (2) satisfying condition (C1) as
defined in Section II. The deflation and symmetric approaches
can then be used as they were designed for the static case T = 1
[26]. Let us recall the symmetric approach here (the deflation
approach can be derived similarly [26]).

Consider r separating vectors w1, . . . ,wr each being up-
dated through (45). Since the output signals, denoted as ŝt1 =
wH

1 xt, . . . , ŝtr = wH
r xt, should be independent, it is reasonable

that their mutual correlations estimated over all available sam-
ples (and blocks) should be constrained to equal zero. Specifi-
cally, the condition is that

〈Ê[ŝti(ŝtj)∗]〉t = 〈wH
i Ĉtwj〉t = wH

i Rwj = δij , (51)

where R = 〈Ĉt〉t and δij denotes the Kronecker symbol, and
i, j = 1, . . . , r. Let W+ = [w1, . . . ,wr] involve the separating
vectors after they were updated through (45), which do not sat-
isfy (51), in general. The symmetric approach therefore proceeds
by

Wnew = W+
(
(W+)HRW+

)− 1
2 . (52)

Since WH
newRWnew = Ir, the columns of Wnew satisfy (51)

and, therefore, can be used as the orthogonalized counterparts
of W+.

Symmetric FastDIVA, as the proposed method to separate r
independent signals is called, alternates between the updates of
the separating vectors according to (50) and their subsequent
orthogonalizations (52), until convergence.

2) Block-Deflation Approach: This approach is tailored to
mixtures (2) satisfying condition (C2) as defined in Section II. It
imposes a stronger condition on the extracted signals by making
them orthogonal separately in each block. Specifically, it is
expected that

Ê[ŝti(ŝ
t
j)
∗] = δij(σ̂

k,t
i )2 (53)

for every t = 1, . . . , T and i, j = 1, . . . , r.
To this end, we propose an extended, so-called, block deflation

scheme, which proceeds as follows. The first signal is extracted
from the original data by one-unit FastDIVA. The extracted
signal is then subtracted from the original input signals (on each
block) using least-squares projections. Then, one-unit FastDIVA
is applied to the new data and extracts the second signal, whose
orthogonality is ensured due to the projection properties. This
process is repeated recursively until r signals are extracted.

Let xt
i denote the input signals on the tth block at the ith

stage of the block-deflation scheme, and let wi be the separating
vector obtained after one iteration by one-unit FastDIVA applied
to xt

i. For i = 1, xt
i = xt (the original input data). The new data

xt
i+1 are obtained by the least-squares subtraction of ŝti = wH

i xt
i

from xt
i. Owing to the OGC (14) imposed between the mixing

and separating vectors of the extracted source, the new data is
obtained through

xt
i+1 = Πt

ix
t
i, (54)

where Πt
i = Ei(Id−i+1 − ȧtiw

H
i ); ȧti is the estimated mixing

vector on the tth block corresponding to the ith extracted signal

with respect to data xt
i. Ei is a suitable (d− i)× (d− i+ 1)

matrix having the full row-rank; it reduces the dimension of
xt
i+1 as compared to xt

i by one (so that the new data is not rank
deficient); the dimension of xt

i is d− i+ 1.
The estimated vectors wi and ȧti operate on the data xt

i. In
order to derive their counterparts operating on the original data
xt, let us introduce the following definitions:

Pt
1 = Id, (55)

Pt
i = Πt

i−1Π
t
i−2 . . .Π

t
1, i > 1 (56)

Ĉt
i = Ê[xt

i(x
t
i)

H ], (57)

wt
i = (Pt

i)
Hwi, (58)

ati =
Ĉtwt

i

(wt
i)

HĈtwt
i

. (59)

It is then straightforward to verify that, for i = 1, . . . , r,

xt
i = Pt

ix
t, (60)

ŝti = wH
i xt

i = (wt
i)

Hxt, (61)

Ĉt
i = Pt

iĈ
t(Pt

i)
H , (62)

ȧti = Pt
ia

t
i. (63)

Note that wi and ȧti operate on xt
i and, since both have been

estimated by one-unit FastDIVA, they are coupled through the

OGC, i.e., ȧti =
̂Ct

iwi

(wi)H ̂Ct
iwi

. In addition, wi is independent of t

due to the CSV model assumed by one-unit FastDIVA.
The counterpart of wi and ȧti operating on xt is wt

i and ati,
respectively. Interestingly, unless i = 1 holds, wt

i is, in general,
no longer independent of t.

IV. PERFORMANCE ANALYSIS

The goal here is to analyze the accuracy of one-unit FastDIVA
considering the BSE problem under the CSV mixture model. The
accuracy is studied by analyzing the mean residual presence of
the jth original signal in the extracted signal j = 1, . . . , d, which
is characterized by the mean interference-to-signal ratio (ISR)
achieved by the algorithm.

To this end, we compute the asymptotic variance of the
estimated separating vector that is obtained by the algorithm
as the optimum point of the contrast function (19); it is assumed
that N →∞, which means, for a fixed value of T , that also
Nb →∞. Using the equivariance property of the BSE problem,
proven in [25], we consider the special case as if the true mixing
and separating vectors were ak,t = wk = [1;0], k = 1, . . . ,K
(in Section V, this analysis is verified for general mixing and sep-
arating vectors). Then, by (3) it follows thatxk,t = [sk,t;−zk,t].

Let ŵk, ŝk,t = (ŵk)Hxk,t, σ̂k,t
s and ẑk,t denote, respectively,

the estimates of wk, sk,t, of the sample-based variance estimate
of ŝk,t, and of the background signals. The following notation
will be used:

ν̂k,ts = Ê

[
φk

({
ŝk,t

σ̂k,t
s

}
k

)
ŝk,t

σ̂k,t
s

]
, (64)
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ρ̂k,ts = Ê

[
∂φk

∂s∗k

({
ŝk,t

σ̂k,t
s

}
k

)]
. (65)

Next, we introduce the random variables derived from the sam-
ples of sk,t and zk,t

χ̂k,t = Ê
[
zk,t(sk,t)H

]
(66)

ζ̂
k,t

= Ê

[
φk

({
sk,t

σk,t

}
k

)
zk,t

σk,t

]
(67)

ζ̂
k,t

s = Ê

[
φk

({
ŝk,t

σ̂k,t
s

}
k

)
zk,t

σ̂k,t
s

]
. (68)

Let the structure of ŵk be

ŵk = [1 + pk,qk]T (69)

where pk and qk are random variables of the stochastic order
Op(N

−1
b ) and Op(N

−1/2
b ), respectively; Op(·) represents the

stochastic order symbol; see Appendix C in [48]. The goal now
is to express pk and qk as functions of sk,t and zk,t and to
compute their asymptotic variances. Finally, only the asymptotic
covariance of qk will be needed.

Note that χ̂k,t and ζ̂
k,t

have the same stochastic order below.
We can write

Ĉk,t = Ê[xk,t(xk,t)H ] =

[
(σk,t)2 + ck,t −(χ̂k,t)H

−χ̂k,t Ck,t
z +Ξk,t

]
,

(70)
where

ck,t = Ê[sk,t(sk,t)H ]− (σk,t)2, (71)

Ξk,t = Ê[zk,t(zk,t)H ]−Ck,t
z . (72)

Define the difference between the sample-based variances as

bk,t = σ̂k,t − σ̂k,t
s = Ê[sk,t(sk,t)H ]− Ê[ŝk,t(ŝk,t)H ]

= Ê[(qk)Hzk,t(zk,t)Hqk]. (73)

The stochastic order of ck,t and Ξk,t is the same as that of χ̂k,t,
i.e., Op(N

−1/2
b ), while bk,t is of order Op(N

−1
b ). It holds that

ŝk,t

σ̂k,t
s

=
(ŵk)Hxk,t

σk,t + bk,t + ck,t
=

sk,t

σk,t
− (qk)Hzk,t

σk,t
+op(N

−1/2
b ).

(74)
Assuming the smoothness of φ and using the first-order Taylor
series expansion, we get

φk

({
ŝk,t

σ̂k,t
s

}
k

)
= φk

({
sk,t

σk,t

}
k

)

− 1

σk,t

K∑
k=1

(qk)Hzk,t
∂φk

∂sk

({
sk,t

σk,t

}
k

)

− 1

σk,t

K∑
k=1

(zk,t)Hqk ∂φ
∗
k

∂sk

({
sk,t

σk,t

}
k

)
+ op(N

−1/2
b ). (75)

From the uncorrelatedness of datasets, and assuming the circu-
larity of zk,t, i.e E[zk,t(zk,t)T ] = 0, we can write

ζ̂
k,t

s = Ê

[
φk

({
ŝk,t

σ̂k,t

}
k

)
zk,t

σ̂k,t

]
= Ê

[
φk

({
sk,t

σk,t

}
k

)
zk,t

σk,t

]
− 1

(σk,t)2
Ê

[
∂φk

∂sk

({
sk,t

σk,t

}
k

)
zk,t(zk,t)T (qk)∗

]
− 1

(σk,t)2
Ê

[
∂φk

∂s∗k

({
sk,t

σk,t

}
k

)
zk,t(zk,t)Hqk

]
]+op(N

−1/2
b )

= ζ̂
k,t − ρ̂k,tCk,t

z qk

(σk,t)2
+ op(N

−1/2
b ). (76)

Next,

Ĉk,twk =

[
(σk,t)2 + ck,t

−χ̂k,t +Ck,t
z qk

]
+ op(N

−1/2
b ) (77)

(wk)HĈk,twk = (σk,t)2 + ck,t + op(N
−1/2
b ). (78)

The mixing vector estimated by (14) and the gradient (43) can
be expressed, using (76)–(78), respectively, as

âk,t =
1

(σk,t)2

[
(σk,t)2

−χ̂k,t +Ck,t
z qk

]
+ op(N

−1/2
b ), (79)

∇̂k =

〈
ak,t −

[
1

−ζ̂k,t

s /ν̂k,ts

]〉
t

=

〈[
0

−χ̂k,t+Ck,t
z qk

(σk,t)2
+ ζ̂

k,t

s /ν̂k,ts

]〉
t

+ op(N
−1/2).

(80)

The stationary point of the algorithm is now sought as the
solution of ∇̂k = 0. This gives us

qk = Rk,t

〈
ν̂k,tχ̂k,t − ζ̂

k,t
(σk,t)2

(σk,t)2ν̂k,t

〉
t

+ op(N
−1/2), (81)

where

Rk,t =

〈
Ck,t

z

νk,t − ρk,t

(σk,t)2νk,t

〉−1
t

. (82)

Computation of the asymptotic covariance of qk remains to
be done. Straightforward computations give

E[χ̂k,t(χ̂k,t)H ] =
1

Nb
(σk,t)2Ck,t

z (83)

E[ζ̂
k,t

(ζ̂
k,t

)H ] =
1

Nb

ϕk,t

(σk,t)2
Ck,t

z (84)

E[χ̂k,t(ζ̂
k,t

)H ] =
νk,t

Nb
Ck,t

z , (85)

where we have introduced one more statistic related to the SOI

ϕk,t = E

[∣∣∣∣φk

({
sk,t

σk,t
s

}
k

)∣∣∣∣2
]
. (86)
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Using these expressions and (81), the asymptotic covariance of
qk is given by

cov[qk] = cov

[
Rk,t

〈
ν̂k,tχ̂k,t − ζ̂

k,t
(σk,t)2

(σk,t)2ν̂k,t

〉
t

]

=
1

N
Rk,t

〈
Ck,t

z

ϕk,t − |νk,t|2
(σk,t)2|νk,t|2

〉
t

(Rk,t)H + o(N−1).

(87)

The theoretical ISR reads

ISRk =

∑T
t=1 E

[∣∣(ŵk)Hyk,t
∣∣2]∑T

t=1 E
[
|(ŵk)Hak,tsk,t|2

]
=

∑T
t=1 tr

[
Ck,t

z cov[qk]
]∑T

t=1(σ
k,t)2

=
tr
[〈Ck,t

z 〉tcov[qk]
]

〈(σk,t)2〉t .

(88)

Hence, using (82) and (87), the asymptotic mean ISR achieved
by the algorithm is

E
[
ISRk

] ≈ 1

N
tr

[
〈Ck,t

z 〉t
〈(σk,t)2〉t

〈
Ck,t

z

νk,t − ρk,t

(σk,t)2νk,t

〉−1
t〈

Ck,t
z

ϕk,t − |νk,t|2
(σk,t)2|νk,t|2

〉
t

(〈
Ck,t

z

νk,t − ρk,t

(σk,t)2νk,t

〉−1
t

)H ]
. (89)

To compare this result with previous analyses, consider T =
K = 1. Then, (89) is simplified to

E
[
ISRk

] ≈ d− 1

N

ϕk − |νk|2
|νk − ρk|2 , (90)

which coincides with the results given in [17], [49], [50] (that
result is also confirmed in the present paper for the complex-
valued case and for K > 1).

Next, let the model density f(·) correspond to the normalized
true pdf of the SOI for all k and t; let us, for the moment, denote
this normalized true pdf by pk,t(·). Then the equalities νk,t = 1,
ρk,t = κk,t and ϕk,t = κk,t hold, where

κk,t = E

⎡⎣∣∣∣∣∣∂ log pk,t
({sk}k)

∂s∗k

∣∣∣∣∣
2
⎤⎦ . (91)

Formula (89) now takes on the form

E
[
ISRk

] ≈ 1

N
tr

[
〈Ck,t

z 〉t
〈(σk,t)2〉t

〈
Ck,t

z

κk,t − 1

(σk,t)2

〉−1
t

]
. (92)

For K = 1, (92) coincides with the Cramér-Rao Lower Bound
derived in [25] (70 in [25]), which points to the asymptotic effi-
ciency of one-unit FastDIVA under the corresponding statistical
(and mixing) model when the used nonlinearity corresponds
with the true normalized score function of the SOI.

V. NUMERICAL VALIDATION

In experiments, we simulate BSE and BSS on mixtures obey-
ing dynamic models discussed in this paper. In BSE, one-unit

Fig. 4. Average ISR over 1000 as a function of α, the shape parameter of the
pdf of the SOI; α = 1 corresponds to Gaussian SOI, which is not identifiable.
The pdf super-Gaussian and sub-Gaussian for α < 1 and α > 1, respectively.
“FastDIVA theo.” stands for the analytical prediction (89).

FastDIVA is compared with recent methods assuming CSV
mixing, namely, with the gradient-based BOGIVEw [23] and
with a more advanced QuickIVE [51]. FastICA/FastIVA are
compared in the BSS tasks, both implemented as FastDIVA
with a special setting (i.e., when T = 1 is assumed). All the
algorithms use the rational nonlinearity given by [52]

φk({sk}k) = s∗k
1 +
∑K

k=1 |sk|2
. (93)

The number of iterations is restricted to 100 in QuickIVE and in
FastDIVA and to 1000 in BOGIVEw. The step size in BOGIVEw

is set to 0.1.
The accuracy of separated signals is evaluated, after resolving

the unknown order, in terms of ISR, as defined by the first frac-
tion in (88) (the expectations are replaced by sample averages).

A. Dynamic Blind Source Extraction

The simulation here is focused on the BSE problem to ver-
ify the efficiency of one-unit FastDIVA, to verify its analysis
provided in Section IV, and to evaluate its speed. In a trial,
a mixture of dimension d = 6 is generated such that it obeys
CSV with T = 5 blocks of length Nb = 2000, i.e., N = 104.
The background signals are circular Gaussian while the SOI is
generated according to the complex-valued Generalized Gaus-
sian distribution [53] with the shape parameter α, denoted as
GG(α). The variance of SOI is block-dependent, namely, equal
to | cos(i/6 ∗ π)|+ 1−√3/2 on the ith block. The mixing
matrices are randomly generated so that the first rows of their
inverse matrices are the same in all blocks, that is, (7) is satisfied.

The experiment is realized in two variants with K = 1 and
K = 2. In the latter case, the SOIs are, in both mixtures, rotated
by a random unitary matrix (before they are mixed with the
background) in order to establish their higher-order dependence.
The compared methods are initialized by randomly perturbed
true separating vectors, where the elements of the perturbations
are CN (0, 0.1).
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Fig. 5. The number of iterations and computational time needed by the
compared methods to achieve convergence. Note that the maximum number
of iteration is 100 for FastDIVA and QuickIVE and 1000 for BOGIVEw;
simulations were done in Matlab R2020a on a server with Inter Xeon 12-core
2.6 GHz CPU, 64 GB RAM.

Fig. 4 shows ISR averaged9 over 1000 trials as a function of
α ∈ [0.1, 10]. Note that the SOI is super-Gaussian for α < 1,
Gaussian for α = 1, and sub-Gaussian for α > 1. For α = 1,
the SOI is not identifiable. The average ISR established by the
methods therefore tends to be close to or above 0 dB when α is
close to one, which means a poor extraction accuracy.

One-unit FastDIVA yields performance that is in good agree-
ment with the theoretical analysis given by (89). BOGIVEw

gives poor ISR compared to the other methods, because 1000 it-
erations is generally not sufficient to achieve the optimum point.
QuickIVE achieves results similar to FastDIVA for α < 0.3
and slightly worse for α ∈ [0.3, 1] (also because of the limited
number of iterations). For α > 1, BOGIVEw and QuickIVE
fail to extract the SOI since the algorithms are not stable with
respect to the SOI sub-Gaussianity and the nonlinearity (93).
Here, FastDIVA inherits the stability of FastICA and works well
also for α > 1.

ForK = 2, all methods achieve improved ISR as compared to
the case ofK = 1, which confirms the advantage following from
the joint source extraction [54]. Fig. 5 shows the computational
complexity in terms of the number of iterations and computa-
tional time. FastDIVA and QuickIVE show significantly faster
convergence as compared to BOGIVEw, and FastDIVA is faster
than QuickIVE.

B. Dynamic Separation of Several Sources

Now, we focus on the BSS problem of 1 ≤ r ≤ d signals
from mixtures of dimension d obeying condition (C1) or (C2),
as defined in Section II. In this scenario, d = 5, T = 5, K = 1,
Nb = 104, N = 5 · 104.

As for (C1), r complex-valued signals are generated according
to GG(0.1) with the same variance profiles as the SOI in the
previous experiment. The background is considered in two vari-
ants: Gaussian or GG(0.1). The mixing matrices are randomly
generated so that the first r rows of their inverse matrices are the
same in all blocks. For r = d, the entire matrices are the same
in all blocks, which corresponds to the static mixing model.

9One percent of minimum and maximum values of ISR were discarded in
order to eliminate the bias caused by the ambiguity of order (the algorithm
might, in a few trials, be attracted by a different extreme of the contrast function
corresponding to a signal different from the SOI.).

Fig. 6. Median ISR of 100 trials as a function of r, r = 1, . . . , d, d = 5,
achieved by separating dynamic mixtures obeying condition (C1). For r = d =
5, the mixtures are static; “s.” and “bd.” stand for symmetric and block-deflation,
respectively; “r” means that only r signals are being separated; “init” means a
controled initialization.

Fig. 7. Median ISR as a function of variability coefficient achieved in sepa-
ration of real-valued mixtures of speech signals from Fig. 1 obeying condition
(C2).

In the case of (C2), real-valued mixtures of the speech signals
from Fig. 1 are considered. The mixing matrices are generated as
follows. In the beginning, mixing and separating vectors ȧi and
wi of dimension i are generated at random, where i = 1, . . . , d
such that wH

i ȧi = 1; their values remain fixed during the rest
of the simulations. Then, in a trial, their values are perturbed by
random vectors of the same size whose elements are taken from
N (0, λ2). The mixing vector ȧi is perturbed differently on each
block, which simulates a random walk of the associated source;
λ thus plays the role of a variability coefficient of the mixture.
The rows of de-mixing matrices are then obtained successively
by using (55), (56) and (58). The mixing matrices are obtained
as the inverse matrices of the de-mixing ones for i = 1, . . . , d.
These steps guarantee that the mixtures obey (C2); for λ = 0,
there are no temporal changes in the mixing model parameters,
so the mixtures are static.

The results of these experiments are shown in Figures 6 and 7
in terms of median ISR computed over 100 trials for each r andλ,
respectively. The median is used instead of the average because,
in dynamic settings, the algorithms can fail in many more trials
than in the static case; the results indicate that such failures
mainly depend on the initializations. In legends, “s.” and “bd.”
are acronyms for the symmetric and block-deflation variants,
respectively; “r” means that only r signals are being separated;
“init” means that the algorithm is initialized in a vicinity of the
correct solution.
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Fig. 6 shows that, in both background settings, symmetric
FastDIVA yields excellent ISR on the mixtures obeying (C1)
provided that it is properly initialized and the true number of
signals that obey CSV is known. Without a proper initialization,
its performance is close to symmetric FastICA, i.e., when T = 1
blocks are assumed. In the static case r = d, the symmetric
algorithms achieve the same superior performance (median ISR
about −45 dB); it is worth pointing out that, when r = d,
FastDIVA assumes the overestimated number of blocks (T = 5),
nevertheless, this phenomenon does not deteriorate its perfor-
mance. Block-deflation FastDIVA performs well in the Gaussian
background setting and achieves a lower median ISR when r = d
as compared to the symmetric algorithms. The latter observation
agrees with the results of previous theoretical analyses of the
symmetric and deflation approaches [50] (the symmetric one is
usually more accurate; the accuracy of the deflation one depends
on the order in which the signals are being separated).

Fig. 7 shows results of the experiment with mixtures (C2),
which is, in fact, suitable for block-deflation FastDIVA. This
algorithm tends to yield a constant median ISR until λ ≈ 10−1.
This is indicative of the fact that the algorithm’s performance
is equivariant, i.e., independent of the mixing parameters, as
are the theoretical bounds (89) and Cramér-Rao bounds in [25].
For higher values of λ, the probability grows for the algorithm
getting stuck in a local extreme; this tendency deteriorates the
median ISR. Symmetric FastDIVA and FastICA yield similar
median ISR outputs in this scenario. For very smallλ values, i.e.,
when the mixture is almost static, they achieve a better ISR than
the block-deflation variant, which agrees with the observation
shown in Fig. 6 for r = d. With growing λ, the performance of
symmetric FastDIVA drops down because the mixture does not
meet the condition (C1).

C. Semi-Online Blind Source Extraction

Here, the application of CSV and one-unit FastDIVA is pre-
sented in an online BSE problem where a SOI is being extracted
sequentially batch-by-batch. The choice of batch length plays
an important role in such processing. It affects the key features
of the online system: extraction accuracy, adaptability, and sus-
ceptibility to the discontinuity problem.

The benefit of using CSV in online processing is that it allows
for dynamics within the batch by setting T > 1. Moreover, with
T > 1, the length of batch can be increased without reducing the
time-resolution of the on-line approach. We verify this feature in
a simulated example where online BSE with T = 1 and T > 1
are compared.

The data are generated as follows. In one trial, a random
instantaneous real-valued mixture (K = 1) of dimensiond = 10
involving one moving laplacean SOI and 8 static interfering
laplacean sources is generated. The sources have zero mean
and unit variance. The mixing vector related to the SOI is
continuously changing in a linear manner so that its value at
the nth sample, n = 1, . . . , N , is

an =

(
1− n− 1

N − 1

)
a1 +

(
n− 1

N − 1

)
aN , (94)

TABLE I
RESULTS OF THE SIMULATED ONLINE BSE IN TERMS OF SINR AND SDR [DB]

AVERAGED OVER 100 TRIALS

where a1 and aN are random vectors with unit norm. The
movement speed of the SOI is controlled through the angular
distance between a1 and aN . Gaussian additive noise with zero
mean and 0.1 variance is added to the mixture. The total length
of data is N = 60 000 samples.

The separating vector is initialized by the LCMP beam-
former [40] steered in the directions given by a1 and aN . The
data are then processed batch-by-batch with shift of a specific
length; a useful choice when T > 1 is Nb = L/T where L
corresponds to the length of batch. One one-unit FastDIVA
iteration per batch is performed, initialized by the separating
vector from the previous batch.

The extraction accuracy is evaluated in terms of Signal-to-
Interference-plus-Noise Ratio (SINR) and Signal-to-Distortion
Ratio (SDR) where the latter is defined as

SDR =
Ê[s̃2]

minα Ê[(s̃− αs)2]
, (95)

where s̃ is the SOI component within the extracted signal ŝ, and
s is the true SOI. Table I shows the results averaged over 100
trials as they depend on the batch length, shift, and the angle
between a1 and aN , denoted as ∠(a1,aN ).

When ∠(a1,aN ) = 0, the mixing vector remains constant
over time, so the mixture is static. Here, the SINR and SDR
are obviously increasing with the growing batch length. As
expected, T = 5 brings no advantage compared toT = 1, in this
case. By contrast, when the SOI is moving and ∠(a1,aN ) > 0,
the processing with T = 5 brings significantly better SINR as
well as SDR compared to T = 1.

Also, by detailed inspection of the values of SDR when
∠(a1,aN ) = 30◦, we can see that the optimum batch length
is different for T = 5 than for T = 1.

D. Blind Speech Extraction of a Moving Speaker: A Case
Study

To demonstrate the applicability of the proposed method,
we consider a speech enhancement task where the speaker is
moving. A six-channel recording of a speaker uttering in a
multi-source noisy environment is taken from the CHiME-4
challenge database.10 [55]. One-unit FastDIVA is applied in
the short-term Fourier transform domain (the window length
is 512 samples and the hop size is 128) in order to extract the

10The presented utterance is F04_053C010W_BUS.WAV
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Fig. 8. Extracted utterances from a noisy recording of a moving speaker. The
ground truth transcription is “Financial times thirty share index closed off seven
point four points at one thousand four hundred thirty point seven”; NOISY stands
for the automatic transcription from the original noisy recording by the first
microphone; T = 1 and T = 5 correspond to the One-unit FastDIVA outputs
considering, respectively, the static and the CSV mixing model.

speech. Fig. 8 shows the resulting signals and compares the
ground truth transcription with automatic transcriptions by the
Google Speech-to-Text system11.

Within this particular recording, the speaker moves out of its
initial position in the interval 3.3− 7.1 s. One-unit FastDIVA
with T = 1 (static mixing model) focuses only on the initial
speaker position. This causes that the extracted voice is vanish-
ing during the interval of the movement; the corresponding part
of the automatic transcription is therefore erroneous. When the
algorithm is used with T = 5, the whole utterance is success-
fully extracted, which results in a significantly more accurate
transcription.

VI. CONCLUSIONS

In this paper, we propose powerful BSS algorithms suit-
able for separating dynamic CSV-separable mixtures where the
avoidance of the discontinuity problem is guaranteed. Joint sepa-
ration similar to IVA, which helps us solve the permutation ambi-
guity, is considered as well. One-unit FastDIVA has been shown
as effective for the BSE when the SOI obeys the CSV mixing
model. The performance analysis has been derived for a general
model pdf of the SOI, and it has been proven that One-unit
FastDIVA attains the Cramér-Rao lower bound asymptotically
when the background is circular Gaussian and the model pdf
corresponds to the true one. Symmetric and block-deflation
FastDIVA have been validated in the problem of separating
several signals from CSV-separable mixtures obeying condition
(C1) and (C2), respectively. The results of experiments indicate
that the algorithms achieve superior interference-to-signal ratio
compared to methods assuming the conventional static mixing
model, especially, when the time-variability of the mixture is
mild. The reliability of the separation can be supported by a
proper initialization; other forms of partial knowledge about
the mixing parameters might be considered in future works, as
in [10].

11The transcriptions were performed by the system on December 8, 2020 at
https://cloud.google.com/speech-to-text

By generalizing the mixing model, we have touched on the
very basis of the problem that ICA and IVA solve. For this reason,
many theoretical and practical questions arise. In particular, the
question is what mixtures can be approximated well enough by
a CSV-separable model with T � N . Equivalently: Which of
the signals in (2) can be extracted based on the CSV model
and what does this mean in practice? The experiments here and
elsewhere [23], [24] show that the mixture can be dynamic only
to a limited extent. For example, it is better when only some
sources are moving. In addition, their movements (within the
processed batch of data) should be spatially limited so that a
separating vector that covers the entire motion space exists. That
space should not be intersected by the motion trajectories of the
other sources. A more specific analysis is the subject of further
research.

Finally, it is worth pointing to the fact that the static ICA/IVA
problem has the property that if at most one of the sources is
Gaussian and the others are non-Gaussian, then there are no false
solutions. That is, there are no independent components that do
not correspond to the original signals except for the scale and
order [56]. For T > 1, similar analysis does not exist yet.

APPENDIX A
PROOF OF PROPOSITION 1

By considering N = +∞, all estimated values and averages
are replaced by the true expectation values. Using the complex
derivative identities [45], it holds that COG is a real function, so

∂
∂wH COG = ( ∂

∂wT COG)
∗, and by definition (29)

H1 =
∂2COG

∂wT∂w
=

∂∇H

∂w
=

[
∂

∂wH

(
aT − ν−1E

[
φ
xT

σ

])]∗
(96)

H2 =
∂2COG

∂wH∂w
=

∂∇T

∂w
=

∂

∂w

(
aT − ν−1E

[
φ
xT

σ

])
,

(97)

where φ( s
σ ) is, for brevity, written without the argument (which

is always s
σ ). Note that the dependent variables on w are

s = wHx, a through the OGC, and σ through (11); ν is treated
as a constant in (96) and (97). Using the following auxiliary
expressions,

∂aT

∂w
=

C∗

σ2
− a∗aT

∂aT

∂wH
= −aaT , (98)

∂

∂w

1

σ
= − a∗

2σ

∂

∂wH

1

σ
= − a

2σ
, (99)

∂

∂w

s∗

σ
=

x∗

σ
− s∗a∗

2σ

∂

∂wH

s

σ
=

x

σ
− sa

2σ
, (100)

straightforward computations give

∂

∂wH
φ
xT

σ
=

∂φ

∂s

(x
σ
− sa

2σ

) xT

σ
− ∂φ

∂s∗
s∗a
2σ

xT

σ
− φ

axT

2σ
,

∂

∂w
φ
xT

σ
=

∂φ

∂s∗

(
x∗

σ
− s∗a∗

2σ

)
xT

σ
− ∂φ

∂s

sa∗

2σ

xT

σ
− φ

a∗xT

2σ
.
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By taking the expectation values of the latter expressions and
using the fact that x = as+ y where s and y have zero mean
values and are independent, we obtain

∂

∂wH
E

[
φ
xT

σ

]
=

1

2
(η − ξ − ν) aaT +

ρ

σ2
Py, (101)

∂

∂w
E

[
φ
xT

σ

]
=

1

2
(ξ − η − ν) a∗aT +

ρ

σ2
C∗y, (102)

where Py = E[yyT ] is the pseudo-covariance of y, which is
zero due to the assumption of circularity of the background sig-
nals. Putting (101) with Py = 0 and (98) into (96), we get (30).

Finally, note that C = aaHσ2 +Cy, so (102) is equal to
∂
∂wE[φxT

σ ] = (νc3 − ρ)a∗aT + ρ
σ2C

∗, where c3 is defined by
(34). Putting this and (98) into (97), and using definitions (32)
and (33), we get (31).

APPENDIX B
PROOF OF PROPOSITION 2

Applying the Woodbury identity to (31) gives

H−12 =
1

c1

(
C−1 −C−1a

(c1
c2

+ aHCa
)−1

aHC−1
)T

.

(103)
Using the following equalities due to the OGC imposed between
a and w,

Cw(aHC−1a) = a, wHa = 1, (104)

aHC−1a =
1

σ2
, C−1a =

w

σ2
, (105)

(103) can be written as

H−12 =
1

c1

(
C−1 − c2

σ2(σ2c1 + c2)
wwH

)T

, (106)

and since H∗1 = c3aa
T , after simplifications,

H∗1H
−1
2 = −awT (107)

H∗1H
−1
2 H1 = −c∗3aaH (108)

H∗2 −H∗1H
−1
2 H1 = c∗1(C− σ2aaH), (109)

from which, by the latter equation, (39) follows.
Next, we show that Ĥ∗1Ĥ

−1
2 ∇∗ = 0. Let us denote

f = Ê

[
φ

(
wHx

σ

)
x

σ

]
, (110)

which is the expression that appears in (29); so we can write that
∇ = a− ν̂−1f . From the definition of ν̂, it follows that wHf =
ν̂, and by using (107), Ĥ∗1Ĥ

−1
2 ∇∗ = 0. Thus, we receive the

update (40).
Let

Ĥε =

(
ν̂ − ρ̂

ν̂

)∗(
Ĉ

σ̂2
− εaaH

)
, (111)

so that limε→1 Ĥε = Ĥ, cf. (39). Using the Woodbury identity,
(104), and (105), we get

Ĥ−1ε =

(
ν̂

ν̂ − ρ̂

)∗(
σ̂2Ĉ−1 +

ε

σ̂2(1− ε)
wwH

)
. (112)

Using (110), ∇ = a− ν̂−1f , wHf = ν̂, and wH∇ = 0. Thus

Ĥ−1ε ∇ =

(
ν̂

ν̂ − ρ̂

)∗
σ̂2Ĉ−1∇. (113)

The update (41) readily follows.
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