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Abstract: The consensus problem of a multi-agent system with nonlinear agents is solved. It
is assumed only the outputs of the agents are measurable, in order to obtain the estimate of the
state, the nonlinear Luenberger observer is applied. The control of the agents is based on the
exact feedback linearization. The method is illustrated by an example.
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1. INTRODUCTION

Synchronization problem, also known as consensus prob-
lem in the recent terminology of control theory, see e.g.
Olfati-Saber and Murray (2004); Wen et al. (2013); Li
et al. (2010) is a problem that gains a strong attention
nowadays. Even if the pioneering works were written for
synchronization of linear multi-agent systems, the mathe-
matical models of the complex networks often demonstrate
the nonlinear behaviour. Several ways to handle this prob-
lem were derived, e.g. by estimating the nonlinearity via
the Young inequality, as in Cao et al. (1998). Application of
the exact feedback linearization, see Khalil (2001), allows
to match the nonlinearities more precisely. Cases of imple-
mentation of this method in control of complex systems are
numerous. Consensus of nonlinear agents using static out-
put feedback is solved in Wu et al. (2017). Synchronization
of complex networks with nontrivial zero dynamics, but,
without taking uncertainties into account, was derived in
Rehák et al. (2018). Later on, this method was applied
in Rehak and Lynnyk (2019) to synchronization of multi-
agent systems with nonlinear agents that exhibit time
delays.

Let us mention that theory of synchronization of large-
scale systems composed of identical subsystems is closely
related to the problem of large-scale systems stabilization.
Control algorithms for linear systems with interconnec-
tions “every subsystem with every other” can be found e.g.
in Bakule et al. (2016), which are applicable to systems
with delays in the control loop as well. Control of more
generally interconnected identical systems is described in
Demir and Lunze (2011). Similarly to the aforementioned
application of the exact feedback linearization, control
of nonlinear large-scale systems based on this approach
was presented in Rehák and Lynnyk (2019). Several ideas
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of these paper are adopted here for the synchronization
problem of multi-agent system with a dynamical feedback.

As shown in Kazantzis and Kravaris (1998), one can find a
nonlinear counterpart of the Luenberger observer derived
in the linear systems theory. The crucial part of the ob-
server design is to derive an equation corresponding to
the Sylvester equation that arises in the case of linear
Luenberger observers. This equation is a linear first-order
partial differential equation (PDE) with non-constant co-
efficients. An approximation of its solution based on the
Taylor polynomials is presented in the original paper
Kazantzis and Kravaris (1998).

To show existence of these approximations, the so-called
Lyapunov auxiliary theorem is applied. The drawback is
that this theorem has too restrictive assumptions to be
practically usable: all eigenvalues of the linearization of
the original observed system around the origin must have
the same sign of the real parts. In particular, systems
with purely imaginary eigenvalues are not admitted. This
assumption was relaxed in Sakamoto et al. (2014) by
proposing an iterative method to solve the PDE. This
method is based on an iterative method originally de-
veloped for computation of the stable, center-stable etc.
manifolds, see Sakamoto and Rehák (2011). This approach
was successfully applied in Tran et al. (2017).

The method for center-manifold computation exhibits
also analogies to the regulator equation known in the
nonlinear output regulation problem. This equation was
be numerically approximated by the finite-element method
(FEM) in Rehák and Čelikovský (2008); Rehák et al.
(2009), the FEM was used for the observer design as well.
An advantage of the FEM is possibility to prove existence
of an L2 solution of this PDE on a pre-defined domain, see
Rehák (2011). This approach was successfully extended to
the observer problem described in Kazantzis and Kravaris
(1998) in the paper Rehák (2019). This encouraged us to
apply this approach the presented paper as well.
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Purpose of this paper

The purpose of this paper is to combine the exact feed-
back linearization-based method for the solution of the
synchronization problem of nonlinear multi-agent systems
with the nonlinear observer developed by Kazantsis and
Kravaris. This yields an algorithm for synchronization of
a nonlinear multi-agent system with output measurements
fully employing the nonlinear structure. We believe this
problem has not been studied before.

2. GRAPH THEORY

In this section, the basic notions of the graph theory nec-
essary for developing the multi-agent control are repeated.
For a most thorough description, the reader is advised to
check e.g. Li et al. (2010). The network describing the
interconnected agents is composed of N nodes.

The nodes are denoted by integers, the set of all nodes is
N = {1, . . . , N}. Assume the set E ⊂ N ×N be defined
as follows: (i, j) ∈ E if and only if the node i sends
information to the node j.

Assumption 1. It is supposed (i, i) 6∈ E.

The graph describing the topology of the entire network
is given as G = (N,E). As evident from Assumption 1, it
contains no loops.

The N × N -dimensional adjacency matrix J = (eij) is
defined as Jij = 1 if and only if (i, j) ∈ E, otherwise
Jij = 0. Define also the Laplacian matrix L by L =

diag(
∑N
j=1 J1j , . . . ,

∑N
j=1 JNj)− J .

The graph G is said to contain a spanning tree if, for every
i, j ∈ N, there exists a directed path from the node i to j.

Assumption 2. The graph G is undirected: if (i, j) ∈ E
then also (j, i) ∈ E.

This assumption says that, if the control of the ith agent
uses information from the jth agent then also the informa-
tion about the state of the ith agent is required to compute
the control of the jth agent. This assumption is just to
simplify the computations; extension of the results to the
directed graphs will be a subject of a future publication.

For the proof of the following result see Chen et al. (2010):

Lemma 1. If the undirected graph G contains a spanning
tree then 0 is a simple eigenvalue of the Laplacian matrix
L corresponding to the eigenvector e = (1, . . . , 1)T ∈
RN . Moreover, there exist an orthogonal matrix T and
a diagonal matrix ∆ such that

TTLT = ∆. (1)

Corollary 1. Under the assumptions of Lemma 1, one has

Le = 0. (2)

Without loss of generality, it is possible to assume that
∆ = diag(0, d1, . . . , dN−1) where di are constants satisfy-
ing 0 < d1 ≤ · · · ≤ dN−1.

3. PROBLEM SETTING

Let f, g : Rn → Rn, h : Rn → R be smooth functions,
f(0) = 0, g(0) 6= 0.

Let A and C be Jacobi matrices of f and h, respectively,
evaluated at the origin.

Assumption 3. The pair (C,A) is observable.

The multi-agent system is composed of N identical agents

ẋi =f(xi) + g(xi)ui, (3)

yi =h(xi). (4)

The goal is to find a synchronizing control ui for every

agent so that, with x̄ = 1
N

∑N
i=1 xi, the following holds

lim
t→∞

‖xi(t)− x̄(t)‖ = 0. (5)

It is assumed the only measurable quantity is the output
y. Since the controller requires the state knowledge, an
estimate of the state must be provided by an observer.

Due to this, the control law of the ith agent is

ui = K
∑
j∈Ni

(T (x̂j)− T (x̂i)) (6)

where:

• x̂i is the state estimate of the ith agent provided by
a state observer (to be proposed).

• T : Rn → Rn is a diffeomorphism to be determined
later.

• K is the control gain to be also determined later.

The state observer is given by
˙̂xi = f(x̂i) + g(x̂i)ui + L(x̂i)(y−h(x̂i)). (7)

where the observer gain is proposed in the following
section.

4. LUENBERGER OBSERVER

The nonlinear Luenberger observer was introduced in
Kazantzis and Kravaris (1998), further generalized to
systems with delays in Kazantzis and Wright (2005). In
this paper, this observer is used.

At the beginning, matrix Ã ∈ Rn×n is chosen so that

max Re eig(Ã) < min
(

min Re eig(
∂f

∂x
(0)), 0

)
. (8)

Moreover, choose a vector b ∈ Rn so that the pair (Ã, b) is
controllable.

For each agent define function Φ : Rn → Rn that satisfies
equation

∂Φ

∂x
f(x) = Ãx+ bh(x), Φ(0) = 0. (9)

Then, the observer gain is defined for x′ ∈ Rn as

L(x′) =
(∂Φ

∂x
(x′)

)−1

b. (10)

With this definition, let the observer of the ith agent be
given as

x̂i = f(x̂i) + g(x̂i)ui + L(x̂i)
(
h(xi)− h(x̂i)

)
. (11)

As shown in Kazantzis and Kravaris (1998), if u = 0,
then limt→∞ ‖x(t) − x̂(t)‖ = 0. As will be evident from
the considerations below, this holds true even in presence
of the control but under the condition that function g is
constant.

Note also that there is a neighborhood of the origin where
function Φ has a non-singular Jacobi matrix, hence the
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observer gain is correctly defined there. This fact also
implies that the mapping Φ is a diffeomorphism.

If this condition is violated, some more thorough analysis
is necessary. It is conducted along the lines of the proof
given in Kazantzis and Kravaris (1998). Let zi = Φ(xi),
ẑi = Φ(x̂i). Then

żi − ˙̂zi

=
∂Φ

∂x
(xi)(f(xi) + g(xi)ui)

− ∂Φ

∂x
(x̂i)

(
f(x̂i) + g(x̂i)u+ L(x̂i)(h(xi)− h(x̂i))

)
=Ã(Φ(xi)− Φ(x̂i)) +

(∂Φ

∂x
(xi)g(xi)−

∂Φ

∂x
(x̂i)g(x̂i

)
ui.

Assumption 4. There exists a positive constant M > 0 so
that for every x′, x′′ ∈ Rn holds

‖∂Φ

∂x
(x′)g(x′)− ∂Φ

∂x
(x′′)g(x′′‖ ≤M‖x′ − x′′‖. (12)

Eq. 12 together with the fact that function Φ is a diffeo-
morphism imply existence of a constant M ′ > 0 so that

‖∂Φ

∂x
(xi)g(xi)−

∂Φ

∂x
(x̂i)g(x̂i)‖ ≤M ′‖zi − ẑi‖. (13)

Moreover, matrix Ã was chosen to be Hurwitz. Therefore,
for every c > 0 there exists matrix P ∈ Rn×n, P > 0
satisfying

ÃTP + PÃ = −cIn. (14)

Define for i = 1, . . . , n Lyapunov functions Vi = (zi −
ẑi)

TP (zi − ẑi). Then

V̇i ≤ −c(zi − ẑi)2 +M ′(zi − ẑi)2‖ui‖. (15)

Hence V̇i < 0 if c > M ′‖ui‖ for all t ≥ 0.

Remark 1. The pioneering work Kazantzis and Kravaris
(1998) proves existence of a solution of (9) under rather
restrictive assumptions. To be specific, it was required that
eigenvalues of the Jacobi matrix of f lie all in the left
complex half-plane or all lie in the right complex half-
plane. This was required as the original proof relied on
the Lyapunov auxiliary theorem. An alternative proof was
given in Sakamoto et al. (2014) where the requirement (8)
was introduced. A proof of existence of a solution of (9)
based on the finite element method was presented in Rehák
(2019), again under milder assumptions that the original
proof.

5. SYNCHRONIZATION OF THE MA SYSTEM

The exact feedback linerization is applied to every agent.

Assumption 5. The relative degree of system (3,4) is n.

Denote

ξ1,i =h(xi),

ξ2,i =(LFh)(xi),

...

ξn,i =(Ln−1
f h)(xi).

Let also ξi = (ξi,1, . . . , ξi,n)T . Then there exists a pair of
functions ϕ,ψ : Rn → R such that

ξ̇n,i = ϕ(ξi) + ψ(ξ)ui.

Let ϕ = ∂ϕ
∂ξi

(0), ϕ̃(ξi) = ϕ(ξi)−ϕξi and A ∈ Rn×n, B ∈ Rn
be defined as

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1

ϕ

 , B =


0
0
...
0
1

 . (16)

Moreover, let the transformation of the control be defined
as vi = ϕ̃(ξi) + ψ(ξi)ui. Then

ξ̇i = Aξi +Bvi. (17)

Let also ξ = (ξT1 , . . . , ξ
T
N )T and v = (v1, . . . , vN )T . More-

over, define the mapping T : Rn → Rn as T (x′) =
(h(x′), (Lfh)(x′), . . . , (Ln−1

f h)(x′))T . Due to Assumption
5, this mapping is well defined and is a diffeomorphism on
a neighborhood of the origin.

The goal is to synchronize the set of systems (17). As the
synchronized systems are linear, this does not pose any
particular problems.

Assume that there is a synchronizing control v = (I⊗K)ξ.
Then, the controlled system obeys the relation

ξ̇ = (IN ⊗A)ξ + (L⊗BK)ξ. (18)

This translates into the (x, u) coordinates as

ui =
1

ψ(T (xi))

(∑
j∈Ni

K(T (xj)−T (xi))−ϕ̃(T (xi))
)
. (19)

This control synchronizes the MA system composed of
agents (3), however, this control is not realizable as it
requires knowledge of the states. Hence the states xi
and xj are replaced by their estimates provided by the
observers (it is assumed the ith agent has access to these
estimates of its neighbors). Thus (19) is replaced by

ui =
1

ψ(T (x̂i))

(∑
j∈Ni

K(T (x̂j)−T (x̂i))−ϕ̃(T (x̂i))
)
. (20)

The goal now is to find the control gain K. With the
transformed system (17), define the disagreement vector
ε = ξ − 1⊗ ξ̄.
Let us assume that the state ξ is available to the controller
and, consequently, the state feedback can be implemented.
The disagreement dynamics obeys the following equation
in the case of the state feedback:

ε̇ = (IN ⊗A)ε+ (L⊗BK)ε. (21)

Using the well-known procedure (see e.g. Li et al. (2010)),
one can design the control gain K so that limt→∞ ‖ε‖ = 0.
Therefore there exists a matrix Q ∈ Rn×n, Q > 0 so that
there exists a constant cW > 0 so that

ATQ+QA = −cW IN . (22)

Hence, for function W = εT (IN ⊗Q)ε holds

Ẇ ≤ −cW ‖ε‖2. (23)

However, the state xi is not available to the controller.
Hence also the vectors ξi and ξ are not available as well,
hence the vector ξ must be replaced by some estimate

ξ̂ = T (x̂). Equation (18) is replaced by

ξ̇ = (IN ⊗A)ξ + (L⊗BK)ξ̂. (24)

This implies that (21) is replaced by

ε̇ = (IN ⊗A)ε+ (L⊗BK)ε+ (L⊗BK)(ξ̂ − ξ). (25)
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From this, one has using (23)

Ẇ ≤ −cW ‖ε‖2 + εT (L⊗QBK)(ξ̂ − ξ). (26)

Define now the Lyapunov function V(ξ) by

V =

N∑
i=1

V (zi − ẑi) +W (ε). (27)

Then its derivative obeys

V̇ ≤
n∑
i=1

V̇ (zi − ẑi) + Ẇ (ε)

≤
N∑
i=1

−c(zi − ẑi)2 +M ′(zi − ẑi)2‖ui‖

− cW ‖ε‖2 + εT (L⊗QBK)(ξ̂ − ξ).
First, note that, since ξ = T (x), zi = Φ(xi) and both
mappings Φ and T are diffeomorphisms, there exists a
constant κ > 0 so that, with z = (zT1 , . . . , z

T
N )T and

ẑ = (ẑT1 , . . . , ẑ
T
N )T

κ‖ξ − ξ̂‖ ≥ ‖z − ẑ‖. (28)

Then

V̇ ≤
N∑
i=1

−cκ2‖ξ − ξ̂‖2 +M ′κ2‖ξ − ξ̂‖2‖ui‖

− cW ‖ε‖2 + εT (L⊗QBK)(ξ̂ − ξ).
Moreover, there exists a constant c̄ > 0 so that

εT (L⊗QBK)(ξ̂ − ξ) ≤ c̄‖ε‖‖ξ − ξ̂‖.
Hence, for every α > 0 holds

εT (L⊗QBK)(ξ̂ − ξ) ≤ c̄α

2
‖ε‖+

c̄

2α
‖ξ − ξ̂‖.

Hence, with C = supt≥0 ‖ui(t)‖

V̇ ≤
N∑
i=1

−
(
cκ2 −M ′κ2C − c̄

2α

)
‖ξ − ξ̂‖2

− (cW −
c̄α

2
)‖ε‖2.

Theorem 5.1. The synchronization is achieved with con-
trol (20) if conditions

0 <cW −
c̄α

2
, (29)

0 <cκ2 −M ′κ2C − c̄

2α
, (30)

C > sup
t≥0
‖ui(t)‖ (31)

hold.

Remark 2. From the above considerations follows that one
has to assume boundedness of the control signals in all
agents. This is due to the presence of the term ∂Φ

∂x (x)g(x)−
∂Φ
∂x (x̂)g(x̂) in the dynamics of the difference z − ẑ.
Remark 3. The specific procedure how to design the syn-
chronizing the control for a nonlinear system admitting
the exact feedback linearization is presented e.g. in Rehak
and Lynnyk (2019) or Rehák and Lynnyk (2020), hence it
is not presented here in detail. The procedure presented in
Rehák and Lynnyk (2021) can be used to synchronize the
linearized multi-agent system in presence of time delays
and disturbances.

6. EXAMPLE

As an example system, five interconnected systems (agents)
interconnected into a ring topology are chosen. Each agent
system is governed by the following equations (the index
denoting the agent’s number is omitted in this introduc-
tory part):

ẋ1 =x2,

ẋ2 =− (x1 + x3
1)ex1 − 0.1x2,

y =x1

It is chosen

Ã =

(
−1 0
0 −2

)
, b =

(
1
1

)
.

From these definitions follows that function Φ is deter-
mined as

Φ(x1, x2) =



0.2368x1 − 0.2632x2 − 0.1657x2
1

+0.0975x1x2 − 0.1218x2
2 − 0.1590x3

1

+0.1383x2
1x2 − 0.0544x1x

2
2 + 0.0777x3

2

0.1979x1 − 0.1042x2 − 0.0391x2
1

+0.0260x1x2 − 0.0144x2
2 − 0.0467x3

1

+0.0368x2
1x2 − 0.0207x1x

2
2 + 0.0122x3

2


and finally, with x′ = (x′1, x

′
2)T ,

L(x′) =


0.0264 + 0.2339x′1 − 0.1461x′2 − 0.3387x′21

+0.1678x′1x
′
2 + 0.1787x′22

0.0937− 0.0522x′1 + 0.0548x′2 − 0.1033x′21
+0.0322x′1x

′
2 + 0.0159x′22

 .

The exact feedback linearization of an agent yields a linear
system

ξ̇ =

(
0 1
−1 −0.1

)
ξ +

(
0
1

)
v (32)

with ξ1 = x1, ξ2 = x2 and v = u+ (−x1 − x3
1)ex1 + x1.

Then, the LQ control design yields K = (0.414, −1.256).

Let us turn attention to the implementation the aforemen-
tioned observer design to the multi-agent synchronization.
The ith agent (whose state is denoted xi = (xi,1, xi,2)T ) is
endowed with an observer

˙̂xi,1 =x̂i,2 + L1(x̂i,1, x̂i,2)(xi,1 − x̂i,1),

˙̂xi,2 =− (x̂i,1 + x̂3
i,1)ex̂i,1 − 0.1x̂i,2

+ L2(x̂i,1, x̂i,2)(xi,1 − x̂i,1) + ui.

The control vi designed as the synchronizing control for a
linearized agents is (since ξi = xi):

vi =K(ξ̂i+1 + ξ̂i−1 − 2ξ̂i) = K(x̂i+1 + x̂i−1 − 2x̂i)

if i = 2, 3, 4

v1 =K(ξ̂2 + ξ̂5 − 2ξ̂1) = K(x̂2 + x̂5 − 2x̂1),

v5 =K(ξ̂1 + ξ̂4 − 2ξ̂5) = K(x̂1 + x̂4 − 2x̂5),

Then ui is given as

ui = vi − (−x̂i,1 − x̂3
i,1)ex̂i,1 − x̂i,1 (33)

The initial conditions of the states xi,1 were chosen as
(0.1, 0.2,−0.1, 0.01, 0.15), initial conditions in the states
xi,2 as well as all initial conditions of the observers were
set to zero.

The results can be seen in the following figures. In Fig.
1, the synchronization of the states xi,1 is depicted for
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all agents. The analogous phenomenon is shown in Fig. 2,
in this case, for the second states. One can see that the
synchronization is achieved.

The state estimate of the second part of the first and
third agents (the state x2,i and its estimate) can be seen
in Fig. 3. The blue line stands for the first agent: solid
line: state x1,2, dashed line: x̂1,2. The red lines represent
the analogous states for the third agent: x3,2, dashed line:
x̂3,2. One can see that the estimate converges to the state
of the system faster than the synchronization is achieved.

Fig. 1. Synchronization of the first state of the agents

Fig. 2. Synchronization of the second state of the agents

7. CONCLUSIONS

An algorithm for synchronization of a multi-agent system
with nonlinear agents is presented. The dynamic output
feedback is used, the observer is designed using the adap-
tation of the Luenberger approach. It was shown that the
synchronization is achieved if the synchronizing control as
well as the observer satisfy certain conditions that are
derived in the paper. The results are illustrated by an
example. In future, the case of delayed measurements of
the agent’s states will be investigated.

Fig. 3. Selected states and their estimates
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