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Moment Invariants of Vector and Tensor Fields
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Vector and tensor fields are multidimensional data, where in each pixel/voxel the
field is assigned to a vector or a matrix. The fields describe particle velocity, optical
flow, stress and conductivity tensors, and similar phenomena. One of the challenging
tasks is the invariant detection of patterns of interest. Invariants to total rotation
and affine transformation of the field are desirable to accomplish this task. In this
chapter, we review a recent development of this research area and show several practical
applications on real data.
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1.1 Introduction
Vector fields and tensor fields are a special kind of multidimensional data, which are in
a certain sense similar to digital images, but are distinct from them in several aspects.
In each pixel/voxel, a vector or a matrix is assigned to the field. The vector shows the
direction and the magnitude of the measured quantity, the matrix carries additional
directional information.
Vector fields appear in numerous scientific and engineering areas, such as in mechan-

ical engineering, fluid dynamics, medical imaging, computer vision, and meteorology.
They describe particle movement, wind velocity, optical/motion flow, image gradient,
and other phenomena. Vector fields may be used to represent and visualize flowing
water in a pipe, an air flow around an aircraft wing or around a coachwork, and a
meteorological wind velocity map (see Fig.(1.1) for an example).

Tensor fields appear for instance in diffusion tensor imaging, which is a modern MRI-
based technique for an examination of tissues with internal anisotropic structure, such
as neural axons of white matter in the brain and peripheral nerve fibres. In mechanical
engineering, a tensor field is obtained when measuring elastic deformations and stress
inside a material.

In fluid mechanics, flow fields and their mathematical models (mostly based on
the Navier–Stokes equations) have been studied for centuries. However, in connection
with new devices/techniques producing vector or even tensor field data, the tasks have
appeared which seem to be better resolved by signal-processing approach rather than
by traditional fluid mechanics techniques.

A typical example of such task is the detection of various patterns of interest. It com-
prises not only detection of singularities such as vortices, saddle points, vortex-saddle
combinations, and double vortices (these could be found by traditional techniques as
well), but also detection of arbitrary patterns, which are similar to the pattern stored
in the pattern-of-interest database (these patterns may be extracted from similar fields
or obtained as a result of simulations). Since the patterns of interest may not have any
special mathematical properties, their detection by traditional tools is questionable or
even impossible. For engineers and designers, it is very important to identify these
patterns of interest in the flow, because they may increase the friction, vary the pres-
sure, or decrease the speed of the medium, which consequently increases the power
and cost necessary to transport it through the pipe or to move an object through air
or water.

Pattern detection can be accomplished by template matching, which is a technique
widely applied in image processing but relatively new in vector field analysis. The search
algorithm evaluates the similarity between the template and a field patch and must
be primarily invariant with respect to all possible pattern deformations, which might
be present (for instance, the template stored in the database may depict a circular
vortex, but we want to find also all elliptic vortices of arbitrary size and orientation,
which may appear near obstacles and boundaries). Figure 1.2 schematically shows the
pattern matching problem in a vector field.
Due to the difference between “traditional” images and vector/tensor fields, special

matching methods have to be developed. In this chapter, we present an overview
of methods for the description and matching of vector/tensor field patterns under
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Figure 1.1: An example of 2D vector field – a wind velocity map of Europe (downloaded
from windfinder.com).

Figure 1.2: Vortex detection in a swirling fluid by template matching. The method
should detect all instances of the template regardless of their position and
deformation.
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an unknown rotation or affine transformation of the field. Unlike digital images, the
transformation of a field acts not only on the spatial coordinates but also on the field
values, which makes the detection different from the image case. To measure the
similarity between the template and the field patch, special invariants with respect to
a total affine transformation must be employed. As we show, they can be designed
from the field moments. Although the invariants can be generated by various methods,
in this chapter we present the method of complex moments for rotation invariants of
vector fields, the method of geometric primitives for affine invariants of vector fields,
and the tensor method for invariants of tensor fields.
The chapter is structured as follows. After giving a survey of relevant literature in

Section 1.2 and introducing the basic terms of a vector field theory in Section 1.3, we
present invariants to rotation of a vector field in Section 1.4. In Section 1.5, vector field
invariants w.r.t. total affine transformation are presented. Affine invariants of tensor
fields are introduced in Section 1.6. At the end of each section, template matching
experiments on real data are shown to illustrate the performance of the invariants.

1.2 Related Work

The problem of finding vector field invariants to total rotation was raised for the first
time relatively recently by Schlemmer et al. [24], who adapted the scalar moment in-
variants proposed by Mostafa and Psaltis [1] and Flusser [8, 9] and designed invariants
composed of geometric complex moments of the field. Schlemmer et al. used these in-
variants to detect specific patterns in a turbulent swirling jet flow. Rotation invariants
from geometric complex moments have found several applications. Liu and Ribeiro
[20] used them, along with a local approximation of the vector field by polynomials, to
detect singularities on meteorological satellite images showing wind velocity. Basically,
the same kind of rotation invariants were used by Liu and Yap [19] for the indexing
and recognition of fingerprint images. A generalization to more than two dimensions
using tensor contraction was proposed by Langbein and Hagen [18]. Bujack et al.
[6, 5] studied the invariants of complex moments thoroughly, generalized the previous
works, and showed that the invariants can be derived also by means of the field nor-
malization approach. Yang et al. improved the numerical stability of the invariants
by using orthogonal Gaussian–Hermite [36, 35] and Zernike [35] moments instead of
the geometric ones. Later on, Bujack [3] introduced so-called flexible basis of the
invariants to avoid moments that vanish on the given templates. In all these methods,
the authors did not go beyond a simple total rotation/scaling template deformation,
which is insufficient in many applications.

Affine invariants of 2D vector fields were firstly proposed by Kostková et al. in
[16], who later presented a theory of invariants and multi-layer graphs [17]. Their
theory was inspired by classical work on affine moment invariants of scalar and color
images [22, 23, 10, 27, 13, 21, 12]. Generalization to vector fields of more than two
dimensions and to tensor fields was theoretically proposed by Langbein and Hagen [18]
and Bujack et al. [4].
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1.3 Vector Fields and Their Transformations
In this section, we formally define a vector field, introduce the notion of its total
transformation and show how the transformations of “traditional” images and vector
fields differ from one another, even if both can be understood as particular cases of
total transformations.

Definition 1. Let x = (x1, . . . , xm). An n-D vector field f(x) is an ordered n-tuple
of scalar fields f(x) = (f1(x), f2(x), . . . , fn(x)).

At each point x, the value of f(x) shows the measured vector. The scalar field fi(x)
can be understood as a graylevel image, which may contain also negative values. In
this chapter, we consider only the case m = n = 2 since it is the most common in
practice.
By a total transformation we understand any transformation of the vector field,

which acts simultaneously in spatial and function domains. Even if this definition can
be used for arbitrary (non-linear) transformations, we consider only linear ones.

Definition 2. Let A and B be regular matrices and f be a vector field. The transfor-
mation f → f ′, where

f ′(x) = Bf(A−1x) (1.1)

is called total affine transformation (TAFT) of the field f . Matrix A is called inner
transformation matrix, while matrix B is called outer transformation matrix.

In reality, the transformation in Eq.(1.1) is often physically constrained such that
A = B. Such a model captures one of the basic properties of vector fields – if the
field is transformed in the space domain, the function domain (i.e. the vector values)
is transformed by the same transformation. This can be understood intuitively. Let
us imagine the vector field as an array of arrows. If we deform spatially the array,
the absolute orientation and length of the arrows must be changed accordingly such
that their relative orientation and length is preserved (see Fig.(1.3) for an example).
If A = B = Rα, where Rα is a rotation matrix, we speak about total rotation.

1.4 Invariants to Total Rotation of Vector Fields
Let us consider a total rotation of a vector field f

f ′(x) = Rαf(R−αx) , (1.2)

where

Rα =
(

cosα − sinα
sinα cosα

)
is a matrix of rotation by angle α.
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(a) (b)

(c) (d)

Figure 1.3: Vector field transformations: (a) an original vector field, (b) its inner affine
transformation, (c) its outer affine transformation, (d) its total affine trans-
formation. The green arrows in (c) and (d) show the vector field without
the outer transformation.

1.4.1 Rotation Invariants From Geometric Moments
A 2D vector field can be treated as a complex-valued function

f(x, y) = f1(x, y) + if2(x, y) , (1.3)

which allows us to use a standard definition of moments. Already in the theory of
moments of scalar images, it was shown [8] that the rotation invariants can be easily
constructed by using complex moments

cpq =
∞∫
−∞

∞∫
−∞

(x+ iy)p(x− iy)qf(x, y)dxdy , (1.4)

which are in fact linear combinations of geometric moments

mpq =
∞∫
−∞

∞∫
−∞

xpyqf(x, y)dxdy . (1.5)

Here, f(x, y) is scalar image. The scalar complex moments change under the inner
rotation by angle α simply as

c′pq = e−i(p−q)αcpq (1.6)
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(see [8] for the proof). Under a total rotation of a vector field, c(f)
pq = c

(f1)
pq + ic

(f2)
pq

fulfills

c(f ′)
pq = e−iαe−i(p−q)α · c(f)

pq = e−i(p−q+1)α · c(f)
pq . (1.7)

Now we can cancel the rotation parameter α by multiplication of any proper powers
of the cpq’s. Let ` ≥ 1 and further let ki, pi, and qi (i = 1, . . . , `) be non-negative
integers such that ∑`

i=1 ki(pi − qi + 1) = 0 .

Then

I =
∏̀
i=1

ckipiqi (1.8)

is invariant with respect to total rotation of a vector field.

1.4.2 Rotation Invariants From Gaussian–Hermite Moments
The monomials (x + iy)p(x − iy)q, when implemented numerically, lead to overflow
and, consequently, to unstable behavior of the moments. This is why Yang et al. [35]
proposed to design vector field invariants from orthogonal (OG) moments. They used
moments w.r.t. Gaussian–Hermite (GH) polynomials and Zernike polynomials.
1D Gaussian–Hermite polynomials are defined as

Hn(x, σ) = Hn(x/σ)e−
x2

2σ2 , (1.9)
where Hn(x) is the Hermite polynomial of the n-th degree

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
. (1.10)

Hermite polynomials are orthogonal on (−∞ , ∞) with the weight w(x) = e−x2 .
For numerical calculations, Hermite polynomials can be evaluated in a fast and stable
way by means of the three-term recurrence relation

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x) (1.11)
with the initialization H0(x) = 1 and H1(x) = 2x, which makes them convenient

for implementation.
2D Hermite polynomials are obtained as a product

Hnm(x, y) = Hn(x)Hm(y) . (1.12)
Under coordinate rotation, they are transformed exactly in the same way as the

monomials xnym [32, 37] (they are actually the only separable OG polynomials with
this property [33]). Thanks to this, Hermite polynomials form a convenient basis for
a construction of rotation invariants of scalar images [34] and can be easily used to
design vector field invariants analogous to Eq.(1.8) but numerically more stable (see
[35] for a detailed derivation).
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1.4.3 Rotation Invariants From Zernike Moments
Zernike polynomials are intrinsically 2D polynomials, which were originally proposed
to describe the diffracted wavefront in phase contrast imaging [38] and have found
numerous applications in mathematics, optics, and imaging. Zernike moments (ZMs)
[28] have become very popular in image analysis. Their main advantage comes from
the fact that they are orthogonal on a unit disk, they keep their magnitude constant
under an image rotation, and their phase change is simple and easy to eliminate. The
latter property ensures a straightforward construction of rotation invariants of scalar
images [29].
Zernike moment of order n with repetition ` of vector field f is defined as

An` = n+ 1
π

2π∫
0

1∫
0

V ∗n`(r, θ)f(r, θ)rdrdθ , (1.13)

where n = 0, 1, 2, . . . , ` = −n,−n+2, . . . , n, and Vn`(r, θ) is the respective Zernike
polynomial (see for instance [11] for its complete definition).
Under a total rotation of the field by α, ZMs are transformed as

A′n` = An` e−i(`−1)α . (1.14)

The rotation invariants of vector fields are then obtained by phase cancellation as

Zn` = An`(An0`0)−(`−1)/(`0−1) , (1.15)

where the normalizer should be chosen such that `0 6= 1 and An0`0 6= 0. If we choose
`0 = 0 or `0 = 2, we avoid the complex roots and end up with simpler invariants

Zn` = An`(An0`0)±(`−1) . (1.16)

Similarly to the GH moments, also the Zernike moments can be efficiently computed
by means of recurrent relations [11].

1.4.4 Experiment
The following template matching experiment illustrates the use of the GH invariants
of vector fields. As the test vector field, we used the gradient of the picture of hair
(see Fig.(1.4) for the original image). We chose this particular photograph to make
the matching challenging. On the one hand, the picture is rich in edges so there are
no large regions of a constant gradient; on the other hand there are many patches
similar to each other, which makes the matching non-trivial.
We randomly selected 9 circular templates of the gradient field, rotated them by 5◦,

and matched them against the original field. The matching was carried out by searching
for the minimum `2-distance in the space of the GH invariants of orders p + q ≤ 4
between the template and all field patches of the same size. Eight templates were
found in their exact location, one was matched with a localization error of 1 pixel (see
Fig.(1.5a)). We repeated this experiment with template rotations 23◦, 41◦, 59◦, and
77◦, respectively. The results were always exactly the same as depicted in Fig.(1.5a)



Moment Invariants of Vector and Tensor Fields 9

Figure 1.4: The original picture of hair.

(a) (b)

Figure 1.5: Gradient field of the hair picture (only the magnitudes are displayed). (a)
Ground-truth template positions and the positions localized by the GH
invariants (red). The ground-truth and the localized positions coincide.
(b) The results when only the field magnitudes and scalar GH invariants
were used. Eight templates were localized correctly, but one (white) was
totally mismatched.
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(including that single one-pixel error). We can conclude that the performance of the
GH invariants in template matching is very good, regardless of the actual template
content and of the template rotation.
To illustrate that the vector field template matching cannot be reduced to scalar

image matching, we repeated this experiment on the field magnitudes only. The field
magnitudes form a traditional scalar graylevel image. We used the same matching
algorithm as before but with scalar GH invariants [34] instead of the vector field
invariants. On the same set of the templates, eight of them were localized correctly,
but one was mismatched with a different area of the image (see Fig.(1.5b)). We
achieved the same results regardless of the template orientations and similar results
have been achieved for other settings. This demonstrates that both orientation and
magnitude of the vector field should be used together, and the task cannot be restricted
to the traditional scalar image matching.

1.5 Affine Invariants of Vector Fields
In this section, we describe vector field moment invariants w.r.t. total affine trans-
formation (VFAMIs). This theory was originally proposed in [17]. We first show how
to design invariants w.r.t. the inner transformation, then we consider solely the outer
transformation, and finally we combined both together to obtain invariants w.r.t. the
total affine transformation of the field.

1.5.1 Invariants to Inner Transformation
Let us first construct the VFAMIs for the particular case of the transformation Eq.(1.1),
where B = I (this is essentially the problem of AMIs for two-band images). We start
by constructing the AMIs for components f1 and f2 separately. To do so, we use the
method proposed in [25] and further elaborated in [27], which guarantees to produce
a complete set.
Let us consider two arbitrary points x1 = (x1, y1),x2 = (x2, y2) from the support

of f . Let us denote the “cross-product” of these points as C12:

C12 = x1y2 − x2y1 .

Geometric meaning of C12 is the oriented double area of the triangle, whose vertices
are (x1, y1), (x2, y2), and (0, 0). After an affine transformation x′ = Ax has been
applied, the cross-product is transformed as C ′12 = JA · C12, where JA = det(A) is
the Jacobian of the transformation. This proves that C12 is a relative invariant with
respect to inner transformation A. Now we consider various numbers of points (xi, yi)
and we integrate their cross-products (or some integer powers of their cross-products)
over the support of f . These integrals can be expressed in terms of moments and,
after eliminating the Jacobian by a proper normalization, they yield absolute affine
invariants.
More precisely, having r > 1 distinct points (x1, y1), . . . , (xr, yr), we define func-

tional I of scalar f depending on r and on non-negative integers nkj as
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I(f) =
∞∫
−∞

· · ·
∞∫
−∞

r∏
k,j=1

C
nkj
kj ·

r∏
i=1

f(xi, yi)dxidyi . (1.17)

Note that it is meaningful to consider only j > k, because Ckj = −Cjk and
Ckk = 0.
After an inner affine transformation we have f ′(x) = f(A−1x) and I(f ′) becomes

I(f ′) =
∞∫
−∞

· · ·
∞∫
−∞

r∏
k,j=1

C
nkj
kj ·

r∏
i=1

f
(
A−1xi

)
dxidyi (1.18)

=
∞∫
−∞

· · ·
∞∫
−∞

r∏
k,j=1

(Cnkjkj )′ ·
r∏
i=1

f(xi, yi)|JA|rdxidyi

= JwA |JA|r · I(f),

where w =
∑
k,j

nkj is the weight of the invariant and r is its degree. Hence, I(f) is a

relative affine invariant. If I(f) is normalized by mw+r
00 , we obtain a desirable absolute

affine invariant (
I(f)
mw+r

00

)′
=
(
I(f)
mw+r

00

)
(1.19)

(if w is odd and J < 0, the sign change occurs in Eq.(1.19). If we expand the
integrand in Eq.(1.17) and integrate term-wise, we obtain an expression of I in terms
of geometric moments of f . Varying r and nkj , we can generate infinitely many
invariants of all orders. Such a set is complete but highly redundant. The process of
eliminating reducible invariants is described in [27].
The invariants from Eq.(1.19) can be derived separately for both field components

f1 and f2. In addition to that, we can further employ the fact that the transformation
A is the same for both components, which brings a possibility of constructing joint
invariants (i.e. invariants containing the moments of both f1 and f2). This idea was
proposed in [26] in the context of invariants for color images and slightly increases the
number of independent invariants.

1.5.2 Invariants to Outer Transformation
Now let us consider an arbitrary regular B in the transformation Eq.(1.1), but assume
for simplicity that A = I, so only an outer transformation of the vector field is effective.
We proceed analogously to the previous section. The role of Ckj has been taken over
by “component cross-products” Fkj

Fkj = f1(xk, yk)f2(xj , yj)− f1(xj , yj)f2(xk, yk) .

Fkj is a relative invariant w.r.t. outer affine transformation as
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F ′kj = JB · Fkj ,

where JB = det(B). The simplest moment invariants are given as

Opqst(f) =
∞∫
−∞

· · ·
∞∫
−∞

xp1y
q
1x
s
2y
t
2F12dx1dx2dy1dy2 , (1.20)

which yields, after the term-wise integration, the moment form

Opqst(f) = m(1)
pq m

(2)
st −m

(1)
st m

(2)
pq , (1.21)

where

m(i)
pq =

∞∫
−∞

∞∫
−∞

xpyqfi(x, y)dxdy . (1.22)

The relative invariance of Opqst(f ′) = JB · Opqst(f) follows immediately from the
invariance of F12. Eq.(1.21) yields a non-trivial invariant for arbitrary combinations of
indices except (p, q) = (s, t) (note that Opqpq(f) = 0 for any p, q, and f). Swapping of
the indices (p, q)↔ (s, t) just changes the sign as Opqst(f) = −Ostpq(f) and does not
yield an independent invariant. Hence, using all non-trivial configurations of indices
p, q, s, t up to the given order R, we obtain R(R + 1)(R + 2)(R + 3)/8 invariants
of the form Eq.(1.21). They form a complete system, because we can recover all
moments of the field from its invariants, up to the four degrees of freedom due to the
transformation matrix B (see [17] for the proof). The above invariants are, however,
not independent, because there exist only (R+ 1)(R+ 2) moments.

Invariants to outer transformation of a field can also be obtained in a general form
analogous to Eq(1.17) as

O(f) =
∞∫
−∞

· · ·
∞∫
−∞

r∏
k,j=1

F
vkj
kj ·

r∏
i=1

xpii y
qi
i dxidyi , (1.23)

which leads to relative invariants given by

O(f ′) = JvB ·O(f) ,

where v =
∑
vkj . The invariants of the form Eq.(1.21) are just particular cases of

this general expression.

1.5.3 Invariants to Total Transformation
In this section, we go to the core of the problem. We show how to put the inner
and outer invariants together and we propose vector field invariants w.r.t. total affine
transformation. The key definition, analogous to Eq.(1.17) and Eq.(1.23), is now

V (f) =
∞∫
−∞

· · ·
∞∫
−∞

r∏
k,j=1

C
nkj
kj · F

vkj
kj ·

r∏
i=1

dxidyi . (1.24)



Moment Invariants of Vector and Tensor Fields 13

V (f) is a relative invariant as

V (f ′) = JvBJ
w
A |JA|rV (f) . (1.25)

To eliminate JA and JB and obtain an absolute invariant, we have to normalize the
relative invariant Eq.(1.24) by proper powers of other two relative invariants such that
both Jacobians get canceled.
If used extensively with many various parameters, Eq.(1.24) yields a huge number

of redundant invariants. The first step to eliminate the redundancy is to fulfill the
constraint that V (f) must be composed solely of moments of the field f (and not of
the moments of higher powers of f). This is equivalent to the constraints imposed
on the powers vkj . Considering all possible index pairs (k, j), each of the points
(x1, y1), . . . , (xr, yr) must be involved just once in all Fkj ’s used. Hence, any vkj can
only equal 0 or 1, v = r/2 (which immediately implies that r must be even), and
vkj = 0 for all k ≥ j (this constraint is because Fkj = −Fjk and Fkk = 0, so it would
be useless to include them into the invariant). If vkj = 1, then vmj = vjm = vkm =
vmk = 0 for all index pairs different from (k, j).
We may notice, that generating VFAMIs from Eq.(1.24), even if the choice of vkj has

been constrained as mentioned above, leads to many invariants, which are identically
zero or which are somehow dependent on the other invariants that have been obtained
from Eq.(1.24), with other settings of the parameters. Dependent invariants do not
contribute to the recognition power of the system and only increase the dimensionality
of the invariant set. It is highly desirable to identify them and exclude them from the
set. An algorithm for detection of dependent invariants is proposed in [17]. It is based
on representation of the invariants by multi-layer graphs and on sequential search of
the graph space.
As an example, we show four simple VFAMIs in explicit forms below; hundreds of

other invariants generated from Eq.(1.24) can be found on our webpage zoi.utia.c
as.cz/affine-vector-fields.
The simplest non-trivial choice is r = 2 and n12 = v12 = 1, which yields

Va = m
(1)
10 m

(2)
01 −m

(2)
10 m

(1)
01 .

The choice of r = 2, v12 = 1 and n12 = 3 yields

Vb = m
(1)
30 m

(2)
03 − 3m(1)

21 m
(2)
12 + 3m(1)

12 m
(2)
21 −m

(1)
03 m

(2)
30 .

The parameters r = 2, v12 = 1 and n12 = 5 lead to the invariant

Vc = m
(1)
50 m

(2)
05 − 5m(1)

41 m
(2)
14 + 10m(1)

32 m
(2)
23 − 10m(1)

23 m
(2)
32 + 5m(1)

14 m
(2)
41 −m

(1)
05 m

(2)
50 .

If we choose r = 4, v12 = v34 = 1 and n12 = n13 = n24 = n34 = 1, nkj = 0
otherwise, we obtain

Vd = −
(
m

(1)
20

)2 (
m

(2)
02

)2
+ 4m(1)

20 m
(1)
11 m

(2)
11 m

(2)
02 + 2m(1)

20 m
(1)
02 m

(2)
20 m

(2)
02

−4m(1)
20 m

(1)
02

(
m

(2)
11

)2
− 4

(
m

(1)
11

)2
m

(2)
20 m

(2)
02 + 4m(1)

11 m
(1)
02 m

(2)
20 m

(2)
11

−
(
m

(1)
02

)2 (
m

(2)
20

)2

zoi.utia.cas.cz/affine-vector-fields
zoi.utia.cas.cz/affine-vector-fields
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1.5.4 Invariants to Special Total Transformation
The inner and outer transformations of a vector field are often the same, i.e. A = B
and Eq.(1.25) is simplified to the form

V (f ′) = J
w+r/2
A |JA|rV (f) . (1.26)

The normalization can be accomplished just by one invariant, while the other one,
which was needed to cancel JB before, can be saved for recognition. This is, however,
not the only difference. Since the number of degrees of freedom of the transformation
has been reduced from eight to four, one may expect the existence of four additional
independent invariants.
For a special total transformation, there exists yet another possibility how to generate

invariants. We can replace the “intensity cross-product” Fkj by the “mixed cross-
product”

Dkj = yjf1(xk, yk)− xjf2(xk, yk) .

Dkj is a relative invariant w.r.t. special total transformation as

D′kj = JA ·Dkj .

Unlike the previous case, here generallyDkj andDjk are independent, andDkk 6= 0.
Similarly to Eq.(1.24), we define functional

W (f) =
∞∫
−∞

· · ·
∞∫
−∞

r∏
k,j=1

C
nkj
kj ·D

ukj
kj ·

r∏
i=1

dxidyi , (1.27)

which is a relative invariant because

W (f ′) = Jw+u
A |JA|rW (f) . (1.28)

Equation (1.27) leads to moments only under certain restrictions, imposed on ex-
ponents ukj . Each of the points (x1, y1), . . . , (xr, yr) must be involved just once
as a field argument in all Dkj ’s used. Hence, any ukj can only equal 0 or 1 and
u ≡

∑
ukj = r.

We may go even further and generate invariants of the form

Z(f) =
∞∫
−∞

· · ·
∞∫
−∞

r∏
k,j=1

C
nkj
kj · F

vkj
kj ·D

ukj
kj ·

r∏
i=1

dxidyi . (1.29)

In this case, however, the constraints on v and u are different from the previous
cases and are linked together. It still holds that each point (xi, yi) must appear just
once as a field argument in the integrand. Hence, 2v + u = r. Any vkj and ukj can
only equal 0 or 1 as before, but they are further constrained as follows. If vkj = 1, then
vmj = vjm = vkm = vmk = 0 for all index pairs except (k, j) and ukm = ujm = 0 for
any m. If ukj = 1, then ukm = 0 for any m 6= j and vkm = vmk = 0 for any m.
Z is again a relative invariant, since
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Z(f ′) = Jw+v+u
A |JA|rZ(f) . (1.30)

It should be, however, noted that each of the sets generated by Eqs.(1.24), (1.27),
and (1.29) is highly redundant even on its own, and this redundancy increases, if two
or all three sets are used together. Actually, the invariants obtained from Eq.(1.24),
and Eq.(1.27) are nothing but a subset of those obtained from Eq.(1.29). A careful
selection of independent (or at least irreducible) invariants is highly recommended for
practical applications.

1.5.5 Experiments
1.5.5.1 Template matching in a fluid flow field

In this experiment, we demonstrate the applicability of the proposed invariants in an
important problem from fluid dynamics engineering – vortex detection in a fluid flow
vector field. We used the field showing the Kármán vortex street, which is a repeating
pattern of swirling vortices caused by the flow of a fluid around blunt bodies. In the
Kármán pattern, we can see several vortices arranged into two rows. The orientation
of the “street” is given by the main flow direction and is generally not known a priori.
The data used in this experiment come from a computer simulation, not from a real
physical measurement. The simulation resulted in a 300-frame video, showing the
time-development of the Kármán street.
In the initial frame, we selected a template with a typical vortex, see Fig.(1.6). Then

we deformed the video by two different TAFTs, which comprised anisotropic scaling
with a factor of 5/4 and 7/4, respectively. The task is to find all vortices of a similar
shape modulo TAFT in each frame of the deformed video. The search is performed in
the space of invariants Zi. We search for all local minima of `2-distance below a user-
defined threshold. Such a task definition is rather “soft”, because it specifies neither
the significance of the vortices to be detected nor the required degree of similarity with
the template. The results may be controlled by the number/order of the invariants we
use and also by the choice of the threshold.
We matched the template to each frame individually. We repeated the experiment

for various maximum invariant order. So, we matched the templates in ten videos,
which means we processed 3000 frames altogether. The resulting videos showing the
vortex tracking can be found at zoi.utia.cas.cz/Experiment-with-Karman-Str
eet. Two sample frames, one for each deformation, can be seen in Fig.(1.7).

Since the ground truth is not known in this experiment, the matching accuracy
cannot be evaluated quantitatively. However, visual inspection of the videos provide a
good insight into the performance of the method. Most of the vortices were correctly
found, but we can also observe some gross errors. They arose most probably because
the neighborhood, the invariants were calculated from, was always circular and of the
same size as the original template.

1.5.5.2 Vortex detection in NOAA data

In this experiment, we show on real data how our method can be used for vortex
detection in weather satellite images. We used the world wind maps from the NOAA

zoi.utia.cas.cz/Experiment-with-Karman-Street
zoi.utia.cas.cz/Experiment-with-Karman-Street
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Figure 1.6: The Kármán vortex street with the selected template (the first frame of
the video).

(a)

(b)

Figure 1.7: The detected vortices in the deformed field when invariants Zi up to 7th
order were employed. The deformation comprised anisotropic scaling with
factors 5/4 (top) and 7/4 (bottom). The full videos can be found at
zoi.utia.cas.cz/Experiment-with-Karman-Street.
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(a)

(b)

Figure 1.8: Vortex detection in two NOAA images by means of the invariants. The
images display the wind magnitude only but the orientation is available as
well and was used for the detection.
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satellite [14], which are publicly available through www.esrl.noaa.gov/psd/. We
used 18 frames from different days. We extracted three typical circular templates of
a wind vortex of the same size (two from the northern and one from the southern
hemisphere). Then we tried to locate vortices of the same shape in the other frames.
The results achieved by the invariants in two sample frames are shown in Fig.(1.8).
For the template matching, we used 28 independent invariants up to the order six
(both types Vi and Zi were included). Since there is no measurable ground truth, we
are left to a visual evaluation. We can see the detection works quite well. Thanks to
the affine invariance, also some vortices that exhibit an elongated shape due to data
resampling in polar areas were detected (when searching the polar areas, the templates
were not resampled, only the underlaying patch in the image was taken elliptical rather
than circular). The method missed some vortices which look similar to the templates
in magnitudes but their structure is different.

1.6 Affine Invariants of Tensor Fields

1.6.1 Introduction to tensors
Tensor fields can be understood as a generalization of vector fields, where in each pixel
a matrix is stored. Tensors are used in description of anisotropic material properties,
in elasticity/deformation measurement, and in conductivity mapping.
Intuitively speaking, a tensor is an array of numbers and the rank of a tensor deter-

mines the dimensionality of this array. Special cases include scalars, which are tensors
of rank zero, vectors, which are tensors of rank one, and matrices, which are tensors
of rank two. The tensors have two types of indices, contravariant and covariant. They
differ from each other in behavior under an affine transformation of the space.
The dimensionality and the rank of tensor fields used in practice is limited. The most

common tensor fields in physics are Cauchy stress tensor, viscous stress tensor, diffusion
tensor, and Maxwell stress tensor. All of them have dimension three and contravariant
rank two, i.e. they look like a 3 × 3 matrix in each voxel. The Cauchy stress tensor
describes an internal stress at a point inside a solid material. It is symmetric, i.e.
σij = σji, so, it contains only six independent parameters. The diagonal elements
express magnitude and direction, while the off-diagonal elements express the transverse
components of the inner stress.

1.6.2 Covariant and contravariant indices
The difference between the covariant and contravariant indices manifests itself under
spatial transformations. The tensor is multiplied by the matrix of the direct transforma-
tion on behalf of each covariant index and by the matrix of the inverse transformation
on behalf of each contravariant index. The covariant indices are notated as subscripts,
e.g. νij , the contravariant indices are notated as superscripts, e.g. νij . The number
of covariant indices is called covariant rank of the tensor, the number of contravariant
indices is called contravariant rank. The sum of both ranks gives the total rank of the
tensor.

www.esrl.noaa.gov/psd/
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The range of indices equals the dimension of the space, i.e. i = 1, 2 in 2D and
i = 1, 2, 3 in 3D. Let A be a matrix representing an affine transformation. A tensor
of covariant rank two behaves under this transformation as

ν′ij =
d∑
k=1

d∑
`=1

Ak
i A`

jνk` , (1.31)

where d is the dimension of the space. Similarly, for a tensor of contravariant rank
two, we have

ν′ij =
d∑
k=1

d∑
`=1

(
A−1)i

k

(
A−1) j

`ν
k` . (1.32)

We may have even a tensor with both covariant and contravariant indices, which
behaves as

ν′ji =
d∑
k=1

d∑
`=1

Ak
i

(
A−1) j

`ν
`
k. (1.33)

1.6.3 Basic Operations With Tensors
Tensor multiplication is defined as

σp
ijk` = σ1

ijσ2
k`, i, j, k, ` = 1, . . . , 3, (1.34)

where σp ∈ R3×3×3×3, i.e. each component of the first tensor is multiplied by each
component of the second tensor. The tensor product is noted as

σp = σ1 ⊗ σ2 . (1.35)

Addition of two Cauchy stress tensors is defined as

σs
ij = σ1

ij + σ2
ij , i, j = 1, . . . , 3, (1.36)

i.e. only the corresponding components are added. The result σs = σ1 + σ2 is again
a Cauchy stress tensor.
The viscous stress tensor is an analogy of the Cauchy stress tensor in fluids. It

may have antisymmetric component. The Maxwell stress tensor is an analogy of
the Cauchy stress tensor for electromagnetic forces. In this paper, we work with the
diffusion tensor D ∈ R3×3. It is a second-rank three-dimensional symmetric tensor
similar to the Cauchy stress tensor.

1.6.4 Tensor Contraction
Tensor contraction is an important operation in tensor algebra. It is the sum over
two indices, one covariant and one contravariant. Let us consider a tensor νji . Its
contraction equals
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c =
d∑
i=1

νii . (1.37)

In the case of a second-rank tensor (matrix), the contraction is equivalent to the
trace of the matrix. In so-called Einstein notation, the symbol of sum is omitted and
we write just c = νii. The contraction is sometimes denoted as

c =
∑
(i,j)

νji , (1.38)

which means the summation goes over those components of νji , where i = j.
If we observe the contraction of νji under an affine transformation, we obtain

d∑
i=1

ν′ii =
d∑
i=1

d∑
k=1

d∑
`=1

Ak
i

(
A−1)i

`
ν`k = c . (1.39)

Thanks to the common index i, the matrices A and A−1 are multiplied as matrices,
the result is the identity matrix and the contraction remains unchanged regardless of
the transformation. Thanks to this property, affine invariants can be derived by means
of a tensor contraction. The total contraction (i.e. contraction over all indices) of any
tensor is an affine invariant.

1.6.5 Transformations of Tensor Fields
Let us consider a stress tensor field

σ(x) = σ
(
x1, x2, x3) ∈ R3×3 . (1.40)

Similarly to vector fields, tensor fields are transformed by a total transformation.
Let A and B be 3 × 3 regular matrices representing the inner and outer affine

transformations, respectively

x′ =
∑
(j,k)

(
A−1 ⊗ x

)ij
k

= A−1x (1.41)

and

σ′ = B(σ) =
∑

(i,m)
(j,n)

(B⊗B⊗ σ)k`mnij = Bk
i B`

jσ
ij . (1.42)

So, we have a total transformation

σ′ (x′) = B
(
σ
(
A−1x

))
. (1.43)
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1.6.6 Permutation Τensor
Most tensors in practice are purely contravariant and we cannot contract them directly.
In these cases, we can use permutation tensor ε. In 2D, it takes the form

εij =
(

0 1
−1 0

)
. (1.44)

In 3D, it is an analogous 3× 3× 3 cube. The permutation tensor has six non-zero
components at the positions where all three indices are different. If the index values
are a cyclic shift of 123, the value is 1; if they are a cyclic shift of 321, the value is
−1. In the remaining 21 positions, the value is 0. The permutation tensor can be used
both as covariant εi1...id and as contravariant εi1...id . We can compute contractions
of products of the covariant permutation tensors and contravariant tensors.

1.6.7 Moment Tensor
Geometric moments of a tensor field are defined as

m(ij)
pqr =

∞∫
−∞

∞∫
−∞

∞∫
−∞

xpyqzrσij(x, y, z)dxdydz . (1.45)

The moments of order o can be arranged to the moment tensor oM. For general
tensors we have

oMk1...koi1...in
j1...jm

=
∫
Rd
xk1 · · ·xkoσi1...inj1...jm

(
x1 · · ·xd

)
ddx , (1.46)

where m is the covariant rank of the tensor field and n is its contravariant rank.
For example, the moment tensor of Cauchy stress tensor is

oMk1...koij =
∞∫
−∞

∞∫
−∞

∞∫
−∞

xk1 · · ·xkoσij
(
x1, x2, x3) dx1dx2dx3 . (1.47)

The components of the moment tensor equal the geometric moments

oMk1...koi1...in
j1...jm

= m
(i1...in)
p1...pd(j1...jm) (1.48)

if and only if p` of the indices k1, . . . , ko equals ` for all ` = 1, . . . , d.
The moment tensor of a tensor field has generally three types of indices: the covari-

ant and contravariant indices of the original tensor field, and the contravariant indices
from the integration over the coordinates (coordinate indices).

1.6.8 Construction of TFAMI
Now we can proceed to construct the Tensor Field Affine Moment Invariants (TFAMI).
We can use the permutation tensors for the total contraction of a tensor product of
moment tensors of a tensor field with both contravariant and covariant ranks. For
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simplification, we limit ourselves only to contravariant tensor fields of the rank two.
An example of such an invariant is

I =
∑

(i1,i2)(j1,j2)
(k1,k2)(`1,`2)(m1,m2)

(n1,n2)(o1,o2)(p1,p2)(q1,q2)

2Mi1j1k1`1 ⊗ 1Mm1n1o1 ⊗ 0Mp1q1 ⊗ εi2k2n2 ⊗ εj2m2p2 ⊗ ε`2o2q2

= 2Mijk` 1Mmno 0Mpqεiknεjmpε`oq .
(1.49)

The invariant is computed as a total contraction of tensor product of moment
tensors and permutation tensors, the invariance is reached as in Eq.(1.39). According
to the Einstein notation in the last row, the sum symbols over all indices from 1 to d
are omitted.
If we want to generate all the affine invariants of a tensor field, we need to generate

all total contractions of the type Eq.(1.49), i.e. all tensor products of moment tensors
and permutation tensors, where each index is used exactly twice (once in the moment
tensor and once in the permutation tensor).

1.6.9 Experiments
1.6.9.1 Diffusion Tensor Imaging Data

An example of using tensors in medicine is a Diffusion Tensor Imaging (DTI). DTI is
a modern MRI-based technique for an examination of tissues with internal anisotropic
structure, such as neural axons of white matter in the brain and peripheral nerve
fibres. It basically maps the diffusion of water molecules in each voxel by measuring
their movement in several distinct directions. This measurement is accomplished via
several diffusion-weighted acquisitions, each obtained with a different orientation of the
diffusion sensitizing gradients. After obtaining a complete set of such measurements
(six diffusion-encoding gradient directions are the minimum needed to calculate the
diffusion tensor; usually 30, 64 or more gradient directions are used), a symmetric
second-rank 3×3 tensor is calculated in each voxel. This tensor image is an extremely
useful modality, because it offers a possibility to detect a subtle pathology in the
brain, to track neural tracts through the brain (this process is called tractography),
to examine the integrity of peripheral nerves, and to diagnose of many neurological
diseases [2, 30, 7].
In this experiments, we used real DTI scans of a human brain. The device used for

an examination was a 3T Siemens TrioTim MR scanner using spin-echo echo-planar
imaging (SE EPI) sequence. The acquisition parameters were the following: repetition
time (TR) of 8300 ms, echo time (TE) of 84 ms, voxel size of 2× 2× 2 mm, 68 axial
slices, two averages, field of view (FOV) of 256 mm, number of diffusion directions
30, two b-values: 0, and 900 s/mm2. The data were acquired and provided by the
Institute for Clinical and Experimental Medicine (IKEM) in Prague, Czech Republic.
The volumes of diffusion data were stacked together (as described in [15]) to produce

3D volume of a 3 × 3 symmetric diffusion tensor. Three sample slices are shown in
Fig.(1.9). Since the tensor field cannot be visualized entirely, we show fractional
anisotropy with color-encoded prevailing direction.
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(a) (b) (c)

Figure 1.9: The original diffusion tensor field. Slices in (a) axial, (b) sagittal and (c)
coronal plane. The colors show the prevailing diffusion direction (blue:
superior--inferior, green: anterior--posterior, and red: left--right).

(a) (b) (c)

Figure 1.10: Sample affine-transformed tensor field. Slices in (a) x-y plane, (b) x-z
plane, (c) y-z plane.

1.6.9.2 Invariance Verification

We generated ten random affine transformations of our diffusion tensor field (see
Fig.(1.10) for one of them) and calculated 197 invariants for every transformed data.
The values of four selected invariants are shown in Fig.(1.11), the behavior of the
others is essentially the same. The labels 1 − 10 on the horizontal axis denote the
individual affine transformations, while 0 stands for the original field.
The mean relative error over all invariants and all affine transformations is 1.04% and

is caused almost solely by resampling errors when the field was transformed. To prove
that, we calculated the moments of the transformed field directly from the original
field (we could do that thanks to the knowledge of the transformation parameters)
without any resampling and we substituted these moments into the invariants. The
mean relative error then decreased to 1.26 · 10−12% which shows that our descriptors
are actually invariant.

1.6.9.3 Template Matching

We randomly selected 10 spherical non-overlapping templates with the diameter 15
voxels (see Fig.(1.12) for an example). Then we deformed the entire tensor field by
an affine transformation and tried to localize the templates in the deformed field. We
repeated this experiment twice.
The last experiment demonstrates the added value, provided by the tensor invariants,

over “traditional” scalar image invariants. We repeated the same template matching
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Figure 1.11: The values of four selected TFAMIs over ten random affine transforma-
tions.

(a) (b) (c)

Figure 1.12: A sample spherical template extracted from the original tensor field. Slices
in (a) axial, (b) sagittal and (c) coronal plane.

but used only the fractional anisotropy data, calculated from the tensor field, that can
be viewed as a monochromatic 3D image. Instead of tensor invariants, we applied 3D
affine moment invariants for scalar images [31, 11] of the same order. We set the other
parameters the same as in Fig.(1.13). The localization errors are shown in Fig.(1.14).

We searched the tensor field voxel by voxel, computed 205 TFAMIs from the 2nd to
the 6th order, and evaluated the similarity between the template and the field patch
by `2-norm in the space of the TFAMIs. The patch with the minimum `2-distance
from the template was selected as the match.
Since the ground-truth positions are known in this simulated experiment, we mea-

sured the localization errors (Euclidean distance in voxels between the detected match
and the ground truth). The sorted errors can be seen in Fig.(1.13). We can see that
only one localization error (out of 20) is greater than 3 voxels, which is an acceptable
accuracy.
The last experiment demonstrates the added value, provided by the tensor invariants,

over “traditional” scalar image invariants. We repeated the same template matching
but used only the fractional anisotropy data, calculated from the tensor field, that can
be viewed as a monochromatic 3D image. Instead of tensor invariants, we applied 3D
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Figure 1.13: Localization errors in the template matching experiment -- first run (red
curve) and second run (blue curve) for the template diameter 15 voxels.
Tensor field invariants of order from 2 to 6 were used. The templates are
sorted according to their localization errors.
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Figure 1.14: Localization errors in the template matching experiment – first run (red
curve) and second run (blue curve) for the template diameter 15 voxels.
Scalar 3D affine invariants of order from 2 to 6 were used on fractional
anisotropy image.
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affine moment invariants for scalar images [31, 11] of the same order. We set the other
parameters the same as in Fig.(1.13). The localization errors are shown in Fig.(1.14).
In all runs, the accuracy was significantly worse than in the case of tensor field.

There are basically two reasons for such a performance drop. Scalar value of fractional
anisotropy does not capture directional information; two image patches may look
similar even if they differ substantially from one another in the original tensor field.
The second reason is that for the given moment order, we have much more tensor
invariants than scalar invariants, that results in different recognition abilities.

1.7 Conclusions
In this chapter, we reviewed invariants of vector and tensor fields with respect to
total affine transformation. We showed that the behavior of the fields under a total
affine transformation is significantly different from that of scalar and color images
under standard affine transformation and the traditional techniques cannot be used.
We demonstrated the performance of the invariants in various template matching
experiments.
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