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Pod Vodárenskou věžı́ 4, Prague, Czechia

Email: http://www.utia.cas.cz/people/sroubek

Abstract—Images acquired with standard digital cameras have
Bayer patterns and suffer from lens blur. A demosaicking step
is implemented in every digital camera, yet blur often remains
unattended due to computational cost and instability of deblur-
ring algorithms. Linear methods, which are computationally less
demanding, produce ringing artifacts in deblurred images. Com-
plex non-linear deblurring methods avoid artifacts, however their
complexity imply offline application after camera demosaicking,
which leads to sub-optimal performance. In this work, we propose
a joint demosaicking deblurring and deringing network with a
light-weight architecture inspired by the alternating direction
method of multipliers. The proposed network has a transparent
and clear interpretation compared to other black-box data driven
approaches. We experimentally validate its superiority over state-
of-the-art demosaicking methods with offline deblurring.

Index Terms—Demosaicking, deblurring, deringing, ADMM,
CNN

I. INTRODUCTION

Data acquired by modern digital camera sensors are subject
to various types of signal degradation, such as lens and sensor
blur, aberrations, color filter array (CFA) and noise. To convert
the raw data from the imaging sensor into an image suitable
for the human visual system, it is necessary to correctly
process the acquired data, particularly by applying demo-
saicking and deblurring procedures. Sequential demosaicking
and deblurring provides sub-optimal solutions [1], yet they
are still used for their simplicity. Joint demosaicking and
deblurring was studied earlier [1]–[4] using traditional model-
based optimization approaches. More recent learning-based
methods focus only on joint demosaicking and denoising [5]–
[8] and disregard blur, which is present in DSLR and mobile
phone cameras even if the lens is in focus, see Fig. 2.

An important, yet often neglected, property of restoration
algorithms is their ability to run in the camera with limited
computational capacity, such as pixel-wise operations and
basic filtering. In this regard, a computationally efficient al-
gorithm for deconvolution was proposed in [9]. The algorithm
is based on the alternating direction method of multipliers
(ADMM) [10] and performs deblurring by iterative Wiener
filtering and thresholding (IWFT). Removing blur with the
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Fig. 1. The proposed convolutional neural network joints three restoration
tasks: demosaicking, deblurring and deringing.

Wiener filter (ideal linear filter) produces mediocre results
in most of the cases due to ringing artifacts around edges
in the image. The IWFT algorithm instead uses two sets of
filters, one for the initial restoration (deblurring) and another
for the ringing artifact suppression (deringing). These filters
are precomputed offline for the given type of degradation, i.e.
blur and noise level.

Recent works have revealed that, with the aid of model-
based optimization methods, such as Primal-Dual or ADMM,
it is possible to design convolutional neural networks (CNN)
with clear interpretation [8], [11]. Inspired by these studies, we
design a light-weight CNN imitating the IWFT concept, which
is directly applicable to raw camera data (Fig. 1). The proposed
network – called D3Net – performs joint demosaicking, deblur-
ring and deringing. Network filters have clear interpretation
and they become learnable parameters, which is an important
advantage over the IWFT algorithm. A relatively small number
of training parameters allows us to efficiently train the network
by only a single pair of degraded and ground-truth images. We
perform quantitative and qualitative evaluation of D3Net and
compare it with state-of-the-art demosaicking methods with
and without offline deblurring.
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a) b)

Fig. 2. Intrinsic camera blur (combination of sensor blur and lens aberrations):
a) DSLR, b) mobile phone.

II. PROBLEM FORMULATION
To solve the joint demosaicking-deblurring problem, one of

the most frequently used approaches in the literature relies on
the following linear observation model

g = SHu+ n , (1)

where g ∈ Rp is the blurred, noisy raw image and u ∈ Rm

is the unknown high-resolution sharp image. Both u and g
correspond to the vectorized forms of the images. H(·) ≡ h∗·
denotes a degradation operator (matrix) performing convolu-
tion with some known point spread function (PSF) h. For
simplicity, we employ a stationary blur model. S represents
the down-sampling operator, which models the particular CFA
pattern. It corresponds to a binary matrix which excludes
the spatial and channel location in the image where color
information is missing. We consider additive white Gaussian
noise n ≈ N (0, σ2) with zero mean and variance σ2.

To solve the ill-posed inverse problem, we adopt the opti-
mization problem with total variation regularization [12]:

û = argmin
u

γ

2
‖SHu− g‖22 + φ1

(
{Dju}

)
, (2)

where the norm of the first term is the classical `2-norm.
φs ({Dju}) =

∑
i(
∑

j [Dju]
2
i )

s/2 represents the regulariza-
tion function. Dj(·) ≡ dj ∗· denotes the j-th feature extraction
operator implemented as a convolution with the filter dj . For
example, if the set {dj} comprises only vertical and horizontal
differences, {Dju} corresponds to the discrete image gradient
and φ1 (·) is the sum of gradient magnitudes. Pixels are
indexed as [u]i. Parameter γ is the weight between the data
term and regularization.

A popular choice for solving such non-smooth convex
problems is ADMM [10]. The method introduces auxiliary
variables vj ∈ Rm and equality constraints vj = Dju, and
rewrites (2) as a saddle-point problem for an ‘augmented
Lagrangian’:

min
u,{vj}

γ

2
‖SHu− g‖22 + φ1

(
{vj}

)
+
β

2
φ2
(
{Dju− vj − aj}

)
,

(3)
where aj ∈ Rm represents the Lagrange multiplier.

In order to solve joint demosaicking-deblurring minimiza-
tion problem (3) as well as to deal with ringing artifacts

Algorithm 1 Joint demosaicking, deblurring and deringing
Input: g – blurred image, N – number of iterations,
{rk} – set of restoration filters, {wj} – set of update filters
Output: u – sharp image

1: Initial estimation with restoration filter:
2: ur ← P ({rk ∗ g}) [rConv]
3: i← N , {aj} ← 0, β ← 10max(g),
u← ur

4: repeat
5: ṽj ← dj ∗ u ∀j [gConv]
6: Soft thresholding:

7: vj ← SoftThr

(
ṽj − aj ,

1

β

)
∀j [Soft]

8: Update the Lagrange multiplier:
9: aj ← aj + (vj − ṽj) ∀j [Add]

10: Improve the image with update filter:
11: u← ur +

∑
j

wj ∗ (vj + aj) [uConv]

12: i← i− 1
13: until i = 0

after deconvolution, we imitate IWFT concept and propose
computationally efficient algorithm summarized in Alg. 1.
See Algorithm 2 in [9] for more details.

ADMM sequentially performs alternating minimization
with respect to u and {vj}. Minimization over vj leads to
soft thresholding with the threshold 1/β (line 7). Parameter β
is set to 10-times the range of intensity values of the blurred
image g. In the case of minimization over u (line 11), the
update step can be written as

u = P ({rk ∗ g}) +
∑
j

wj ∗ (vj + aj) , (4)

where {rk} and {wj} are the sets of restoration and update
filters, respectively. Operator P performs pixel shuffling to
assemble the final RGB image. These filters are inputs to the
algorithm and they are precomputed offline, similarly as in
[9], for the given type of degradation, i.e. blur, CFA pattern
and noise level. The Lagrange multiplier aj is updated by the
term (vj − dj ∗ u) (line 9).

III. PROPOSED NETWORK ARCHITECTURE

Alg. 1 consists of only filtering and element-wise operations
and therefore can be used to design the architecture of the
light-weight convolutional neural network. As a result, all
convolutional filters in the algorithm become learnable param-
eters.

The architecture of our proposed network D3Net is shown
in Fig. 3. The first filtering step (Alg. 1 - line 2) provides the
initial estimator of reconstructed image u, which corresponds
to the demosaicking and deblurring tasks. The remaining steps
in Alg. 1 (line 5 - 12) are run iteratively and perform the
ringing artifact suppression (deringing task). Experimentally
we have validated that three iterations provide balanced results
between ringing artifact suppression and over-regularization.
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Fig. 3. Proposed network architecture of the D3Net. See Alg. 1 for the interpretation of individual blocks.

The restoration layer (rConv) is therefore followed by three
update layers consisting of four operations: gradient filtering
(gConv), soft thresholding with the threshold 1/β (Soft),
element-wise operation (Add) and update convolutional layer
(uConv).

The input to our network is the degraded blurred image
g (Fig. 1a) separated into four channels according to the
Bayer CFA pattern. The network can be modified to any other
CFA (e.g. X-Trans). The restoration layer (rConv) consists
of convolution with 12 four-channel filters {rk} followed by
pixel shuffling P which results in the restored RGB image
ur (Fig. 1b) with three times more data than g. An example
of one out of 48 restoration filters for demosaicking and
deconvolution is in Fig. 4. Filters are initialized using the
result of IWFT algorithm (Fig. 4a) and further improved
(Fig. 4b) by training with the traditional back-propagation
process. The difference between the restoration filter before
and after the training is demonstrated in Fig. 4c. Filter size is
the hyper parameter of the network and is set, in our example,
to 25×25. The human visual system is more sensitive to high
frequencies in the luminance channel, therefore restored RGB
image is transformed to a YCbCr color space and all update
layers are applied only on luminance channel of the restored
image ur. The complexity of update layers depends on the
number of gradient filters. In our implementation, we use 4
filters in the convolutional layers (gConv) which correspond
to horizontal, vertical and two diagonal difference operators
(Fig. 5a). Consequently, there are four update filters for each
update layer (Fig. 6a). Gradient and update filters are also
initialized by IWFT. Their modification through the learning
procedure is more significant than in the case of restoration
filters. The final output of the network (Fig. 1c) is the re-
constructed image u, which is the restored luminance channel
with chrominance channels transformed back to RGB color
space. In total, the proposed network contains 36 convolutions
in seven convolutional blocks.

a) b) c)

Fig. 4. An example of restoration filter (25x25) for demosaicking and
deblurring Bayer data distorted by out-of-focus blur. There are 48 restoration
filters in layer rConv. a) initialization from IWFT, b) learned by D3Net,
c) difference. Blue-white-red colormap represents numbers from -1 to 1.

a) b) c)

Fig. 5. An example of horizontal, vertical and two diagonal gradient filters
(3x3) in layer gConv for deringing images distorted by out-of-focus blur.
a) initialization from IWFT, b) learned by D3Net, c) difference. Blue-white-
red colormap represents numbers from -1 to 1.

a) b) c)

Fig. 6. An example of 4 update filters (25x25) in layer uConv for deringing
images distorted by out-of-focus blur. The update filters are related to gradient
filters. a) initialization from IWFT, b) learned by D3Net, c) difference. Blue-
white-red colormap represents numbers from -1 to 1.
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IV. EXPERIMENTS

We use Pytorch as our framework for implementing D3Net.
First, we demonstrate the improvement of results from our
network over augmented IWFT. In addition, we focus on
deringing effect of the proposed network as well as to show
the influence of different blurs on final reconstruction. Then
we compare our results with sequential demosaicking and
deconvolution methods. Finally, we test our network on real
images. Throughout the experiments, two objective quality
measures were used: Peak Signal to Noise Ratio (PSNR) and
the Structural Similarity Index Measure (SSIM).

A. IWFT vs. D3Net

For training and evaluation of the proposed network, we
used publicly available Kodak PhotoCD image dataset. One
image from the set was used as a training set and the remaining
23 images formed a validation set. In this experiment, input
images were randomly cropped into patches of size 200×200
pixels. We converted the Kodak images into blurred Bayer
images by performing an image degradation process (1).
Blurred Kodak images were down-sampled with the Bayer
pattern GRBG and finally Gaussian noise was added.

Batch size was set to 4. The network was optimized with
the mean-squared-error loss. All weights were initialized by
filters of the IWFT algorithm, computed similarly as in [9].
Optimization was carried out using the stochastic gradient
descent algorithm with learning rate 0.01 and momentum
0.9. Training was super fast with only one epoch, which
corresponds to approximately 3.5 minutes on a GeForce RTX
2080 Ti.

We tested both methods, IWFT and D3Net, on out-of-focus
blur represented by circular PSF with radius 5 and noise levels
30dB and 40dB. Size of the restoration and update filters were
the same and ranged from 5 × 5 to 35 × 35. Size of the
gradient filters was 3×3. Fig. 7 demonstrates the improvement
of the results using the learning-based approach. It can be
concluded that proposed network gives significantly better
PSNR results than IWFT for all filter sizes and noise levels.
For the given out-of-focus blur with radius 5, the performance
of both methods flattens out for filter sizes of 25 × 25 and
more.

B. Deringing effect

As discussed in Sec. III, update filters change through
training more than restoration filters. Therefore we analyzed
the performance of update layers, mainly their deringing
effect. To train our network, images from Kodak dataset were
degraded in the same way as in the Sec. IV-A. This time
we used two types of blur: out-of-focus blur with radius 5
and Gaussian blur with variance 3. To form training set with
582930 degraded and ground-truth image pairs, we used 18
images from Kodak dataset and cropped them into patches of
size 100 × 100. The remaining six Kodak images composed
validation set. We considered Gaussian noise 40dB and filter
sizes 25× 25. Other parameters remained the same as in the

Fig. 7. Average PSNR performance of the proposed D3Net (solid) and IWFT
(dashed) [9] with respect to the size (s) of the restoration and update filters
({rk}, {wj}). Out-of-focus blur and noise levels with 30dB and 40dB are
considered. Proposed network outperforms IWFT for all filter sizes.

previous case. Training of our network lasted approximately
9 hours on a GeForce RTX 2080 Ti.

Tabs. I and II) compare average PSNR and SSIM of
the reconstructed images for D3Net, standard demosaicking
method [13], Wiener filter and IWFT algorithm in the case of
out-of-focus blur and Gaussian blur, respectively.

TABLE I
OUT-OF-FOCUS BLUR: AVERAGE PSNR AND SSIM RESULTS FOR

DIFFERENT RECONSTRUCTION METHODS.

Method PSNR [dB] SSIM
Demosaicked [13] 24.69 0.757
Wiener 26.10 0.874
IWFT 25.82 0.823
D3Net (proposed) 29.94 0.926

TABLE II
GAUSSIAN BLUR: AVERAGE PSNR AND SSIM RESULTS FOR DIFFERENT

RECONSTRUCTION METHODS.

Method PSNR [dB] SSIM
Demosaicked [13] 24.53 0.752
Wiener 24.34 0.780
IWFT 25.27 0.856
D3Net (proposed) 26.89 0.870

8286



(a) Raw data (b) Demosaicked (c) Wiener (d) IWFT (e) D3Net (f) Ground-truth
[13] (proposed)

Fig. 8. Visual results from the Kodak dataset. (a) degraded data by out-of-focus blur, CFA Bayer pattern and Gaussian noise with 40dB, (b) applying only
demosaicking [13], (c) Wiener filtering, (d) joint demosaicking and deblurring using IWFT method [9], (e) joint demosaicking and deblurring using our
proposed network, (f) original sharp image. Our proposed method D3Net retain fine details as opposed to IWFT method that over-smooths highly textured
areas while suppresses ringing artifacts when only Wiener filtering is considered.

Wiener filter is equivalent to initial restoration in the IWFT
algorithm (i.e. layer rConv in D3Net without learning). It
is a popular deconvolution method, however, as a linear
filter, the estimated image exhibits ringing artifacts around
edges (Fig 8c). Non-linear update steps of IWFT algorithm
performed well in suppressing ringing artifacts, hence results
were visually better. However, such reconstructed images were
over-smoothed (Fig. 8d). This eventually led to lower PSNR
and SSIM values for IWFT than for Wiener filter when out-
of-focus blur was considered (Tab. I). It was not the case for
images blurred by Gaussian PSF, although images remained
too smoothed as can be seen in Fig. 9d. Images corrected by
D3Net did not suffer from these problems. In Fig. 8e details
of the wall are still recognizable as opposed to IWFT. Overall,
the proposed network was able to recover more realistic details
than the optimization-based IWFT as well as produce images
with less visually disturbing artifacts than Wiener-like filters.

C. Joint vs. sequential approach

This experiment presents the comparison of the proposed
joint approach with sequential demosaicking and deblurring
procedures and evaluates the effect of training the proposed
network on more than one image pair. The network trained
in Sec. IV-B using 18 Kodak images is denoted D3Net v2
and the network trained on a single pair of degraded and
ground-truth image is D3Net v1. We evaluated our networks
on the McMaster dataset [14] and compared them with re-
cent demosaicking methods FlexISP [3], DeepJoint [15] and
JointADMM [5] followed by robust non-blind deconvolution
method (non-blind deconvolution step in [16]). The kernel
part of those algorithms, including all parameters, remains the
same as their authors provided. Applying offline deblurring is
identified by the asterisk symbol *.

An interesting result is that the reconstructed image pro-
vided by standard IWFT as well as Wiener filter (Fig. 10e-
f) looks visually better and retain relatively fine details as
opposed to the other sequential demosaicking and deblurring
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(a) Raw data (b) Demosaicked (c) Wiener (d) IWFT (e) D3Net (f) Ground-truth
[13] (proposed)

Fig. 9. Visual results from the Kodak dataset. (a) degraded data by Gaussian blur, CFA Bayer pattern and Gaussian noise with 40dB, (b) applying only
demosaicking [13], (c) Wiener filtering, (d) joint demosaicking and deblurring using IWFT method [9], (e) joint demosaicking and deblurring using our
proposed network, (f) original sharp image.

methods, yet they received worse PSNR values (Tab. III).
From Tab. III we observe that D3Net yields substantially

better results than all other tested methods. Surprisingly, even
network trained on a single image pair (D3Net v1) outperforms
sequential demosaicking and deblurring. Our methods leads to
better and more visually pleasing results, as it can be seen in
Fig. 10l.

TABLE III
OUT-OF-FOCUS BLUR: AVERAGE PSNR AND SSIM RESULTS FOR THE

DIFFERENT RECONSTRUCTION METHODS.

Method PSNR [dB] SSIM
JointADMM 23.06 0.742
DeepJoint 23.40 0.751
FlexISP 23.37 0.763
Wiener 23.57 0.826
IWFT 24.07 0.843
JointADMM* 25.44 0.839
DeepJoint* 25.62 0.846
FlexISP* 26.48 0.882
D3Net v1 27.61 0.887
D3Net v2 28.91 0.912

D. Results on real image

We tested D3Net on real data captured by LG Nexus 5
mobile phone camera (8 MP, f/2.4, 4 mm, 1/6 sec, RGGB).
The mobile phone processed the raw data and stored the image
as JPEG. We analyzed cropped patch with the size of 449×433
which is shown in Fig 11a. In the inset of the figure, zoomed
minipatch of size 46×46 is presented. Notice the demosaicking
artifacts in the image.

Intrinsic camera blur kernels for different regions of the
input image can be estimated in advance according to [1].
To train our network we artificially blurred test images from
Kodak dataset with PSF (Fig. 2b) corresponding to the selected
patch of the captured image. We considered additive Gaussian
noise 35 dB. Eventually, blurred Kodak images were down-
sampled with the Bayer pattern RGGB. In order to prevent
over-fitting of the network, size of the restoration and update
filters were set to 3×3. To form training and validation set,
Kodak images were cropped into patches of size 210×310.
Other parameters were set as in IV-B. Training of our network
lasted approximately 5 minutes on a GeForce RTX 2080 Ti.

The raw image as returned by the camera API was processed
through D3Net and the output is seen in Fig 11b. By compar-
ison, the result of our method reveals greater detail, looks
visually more pleasing and does not suffer from disturbing
demosaicking artifacts. Over-shooting on sharp edges can be
adjusted by the fine tuning of the network hyper parameters
(especially by the number of the update layers). Small size
(3×3) of restoration and update filters makes it particularly
suitable for implementation in small embedded system like
digital cameras.
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(a) Raw data (b) JointADMM (c) DeepJoint (d) FlexISP (e) Wiener (f) IWFT

(g) Ground-truth (h) JointADMM* (i) DeepJoint* (j) FlexISP* (k) D3Net v1 (l) D3Net v2
(proposed) (proposed)

Fig. 10. Comparison of our joint demosaicking deblurring and deringing network D3Net with sequential demosaicking and deblurring methods (FlexISP [3],
DeepJoint [15] and JointADMM [5] followed by robust non-blind deconvolution method [16]). Evaluated on McMaster dataset [14]. Symbol * means that
offline deblurring was applied. D3Net v1 was trained using a single pair and D3Net v2 was trained on 18 pairs of degraded and ground-truth images from
Kodak dataset.

a)

b)

Fig. 11. Image reconstruction of real data captured by LG Nexus 5 phone
camera. a) Demosaicking processed by phone, b) D3Net.

V. CONCLUSIONS

In this work, we presented a novel portable CNN for
joint demosaicking, deblurring and deringing of raw image
data. The light-weight structure of the network makes it
particularly suitable for implementation in digital cameras.
Architecture of the proposed network is inspired by the
model-based optimization algorithm IWFT. We adopted the
IWFT idea, extended it to perform also demosaicking, and
designed it as a CNN. Results demonstrate that filters used
for image reconstruction can be further improved by adopting
the learning-based approach. We have shown, that our joint
approach outperforms state-of-the-art demosaicking methods
with offline deblurring.
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