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Pod vodárenskou věžı́ 4, 182 08 Prague 8, Czech Republic

Email: kostkova@utia.cas.cz,
flusser@utia.cas.cz

Matteo Pedone
Center for Machine Vision Research

Department of Computer Science and Engineering
University of Oulu

Oulu FI-90014, Finland
Email: matteo.pedone@oulu.fi

Abstract—The paper presents a new theory of combined
moment invariants to Gaussian blur and spatial affine transfor-
mation. The blur kernel may be arbitrary oriented, scaled and
elongated. No prior information about the kernel parameters and
about the underlaying affine transform is required. The main
idea, expressed by the Substitution Theorem, is to substitute
pure blur invariants into traditional affine moment invariants.
Potential applications of the new descriptors are in blur-invariant
image recognition and in robust template matching.

I. INTRODUCTION

Invariants to image blurring are an efficient alternative to an
ill-posed and time-consuming image restoration/deconvolution
whenever a complete restoration of the image is not necessary
and can be avoided. A typical example is a recognition of
objects in blurred images, where a blur-robust object descrip-
tion forms a sufficient input for the classifier. Roughly speak-
ing, blur invariant I is a functional fulfilling the constraint
I(f) = I(f ∗ h) for any h from a certain set S of admissible
blurring point-spread functions (PSF’s).

In this paper, we concentrate our attention to the case when
the PSF is a Gaussian function with unknown parameters and,
at the same time, the image has undergone an affine distortion.
So, our acquisition model is

g(x) = (f ∗ h)(Ax) , (1)

where f is an ideal image, h is a Gaussian PSF, A is
a regular matrix of spatial transformation, and g denotes the
observed image. This linear image formation model, even if
it is very simple, is a reasonably accurate approximation of
many imaging devices and acquisition scenarios.

The novel contribution of this paper is the design of the
combined invariants to Gaussian blur and spatial affine trans-
formation. This problem has not been tackled in the literature
so far. Our idea is based on the coupling of recent invariants
w.r.t. a general (anisotropic) Gaussian blur [1] with traditional
affine moment invariants. The way how to reach the combined
invariance is expressed in the Substitution Theorem, which
performs the main result of the paper.

II. RELATED WORK

Invariants w.r.t. blur were originally proposed in the work
by Flusser et al. [2], [3] and have been used and further

developed since then by many authors. Individual systems of
blur invariants differ from one another by the assumptions
imposed on the PSF, by the mathematical tools used for
invariant construction, by the domain in which the invariants
are defined, and by the application area which the invariants
were designed for (see [4], Chapter 6, for a survey of blur
invariants and other references).

Only few systems of invariants have been designed specif-
ically for Gaussian blur. Liu and Zhang [5] realized that the
complex moments of the image, one index of which is zero,
are invariant to Gaussian blur. Xiao [6] seemingly derived
invariants to Gaussian blur but in fact he only employed
symmetry of the Gaussian rather than its specific form. Höschl
proposed invariants to Gaussian convolution in 1D and applied
them to image histograms [7]. Flusser et al. [8] introduced
a complete set of moment-based Gaussian blur invariants.
Zhang et al. [9] proposed implicit invariants, which enable
a blur-invariant comparison of two images.

Serious weakness of all above mentioned Gaussian-blur
invariant methods is that they assume circularly symmetric
Gaussian blur only and cannot be extended to the general
case of an arbitrary shaped Gaussian blur. This generalization
is not trivial and requires new approaches. This is also the
reason why the above methods cannot combine the invariance
to blur with the invariance to affine transformation. Under
an affine transformation, a circular Gaussian becomes elliptic
and the blur invariance property is violated. Since the input
image is rarely captured in a spatially rectified position and
thus certain geometric deformation is present almost always,
this is a critical limitation for a practical usage.

Most recently, Kostková et al. [1] published the first paper
ever on invariants w.r.t. Gaussian blur with a non-diagonal
covariance matrix but the idea of the combined invariants
was not mentioned in that paper. In this paper, we adopt the
Gaussian blur invariants from [1] and show how to use them
as “building blocks” for the design of combined affine-blur
invariants.

III. GAUSSIAN BLUR

By an image function (or just image for short) f(x) we
understand any function from L1

(
R2
)
, the integral of which
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is nonzero. For the sake of generality, we do not constraint it
to be non-negative.

2D Gaussian function GΣ is given as

GΣ(x) =
1

2π
√
|Σ|

exp

(
−1

2
xT Σ−1x

)
, (2)

where x ≡ (x, y)T and Σ is a 2×2 regular covariance matrix.
Since the covariance matrix is positive definite, we have, for
its determinant, |Σ| > 0.

The set S of all Gaussian blurring kernels is

S = {aGΣ| a > 0, Σ positive definite} . (3)

The set S is closed under convolution, point-wise multi-
plication, and Fourier transform. This means that the result
of these operations, when applied on functions from S, is
again an element of S. In this paper, we particularly use the
coordinate transform closure under the transform x′ = Ax.

Proposition 1. Let A be a regular matrix and let h(x) ∈ S.
Then h′(x) ≡ h(Ax) ∈ S.

This proposition follows from the fact that

aGΣ(Ax) =
a

‖A‖
GA−1ΣA−T (x) ,

where ‖A‖ means the absolute value of the determinant of A
and A−T ≡ (AT )−1 = (A−1)T .

IV. RECALLING GAUSSIAN BLUR INVARIANTS

In this Section, we briefly recall the Gaussian blur invariants
from [1] up to the extent which is necessary for understanding
their use in the case of compound transformation.

Let us define the projection operator P such that it projects
image f onto the nearest un-normalized Gaussian, where the
term “nearest” means the Gaussian having the same integral
and covariance matrix as the image f itself. So, we define

Pf = m00GC , (4)

where
C =

1

m00

(
m20 m11

m11 m02

)
,

and mpq is the centralized image moment

mpq =

∫ ∫
(x− c1)p(y − c2)qf(x, y) dx dy (5)

with (c1, c2) being the image centroid.
Operator P commutes with convolution with a Gaussian

kernel as
P (f ∗GΣ) = Pf ∗GΣ . (6)

Thanks to this,

I(f) =
F(f)

F(Pf)
(7)

is an invariant to Gaussian blur, i.e. I(f) = I(f ∗ h) for any
h ∈ S (F(f) denotes Fourier transform of f ).

All three factors in Eq. (7) can be expanded into absolutely
convergent Taylor series. We recall that geometric moments

of an image are Taylor coefficients (up to a constant factor)
of its Fourier transform, so we obtain a relation between
the moments of f , Pf , and fr = F−1(I(f)). Note that fr
itself may not exist in L1 but working with its moments is
correct. If fr exists, it can be understood as the “maximally
possible” deconvolved non-Gaussian component of f by the
kernel Pf and in [1] it is called the primordial image of f .
Primordial image is obviously a blur invariant, as well as all its
moments Mpq . Comparing the coefficients of the same powers
and expressing the moments of Pf in terms of the moments
of f , we obtain the final recurrent relation for Gaussian blur
invariants Mpq in the moment domain

Mpq =
m

(f)
pq

m00
−

p∑
l=0

q∑
k=0

l+k 6=0 ,
l+k even

(
p

l

)(
q

k

) b k2 c∑
i=0

i∑
j=0

j≥ k−l
2

(−1)i−j
(
k

2i

)(
i

j

)
·

· (l + k − 2i− 1)!!(2i− 1)!!

(
m11

m00

)k−2j

·

·
(
m20

m00

) l−k
2 +j (

m02

m00

)j

Mp−l,q−k . (8)

Note that the blur invariants Mpq can be calculated directly
from the moments of f , without constructing the projection
Pf and computing any Fourier transform. Moreover, no prior
knowledge of the blurring kernel parameters is required.

The main idea behind the derivation of the blur invariants (8)
is depicted in Fig. 1. For the details and complete proofs, we
refer to [1].

Fig. 1. The main idea of the blur invariants: The image is projected onto
a set of Gaussians and this projection (i.e. the Gaussian part of the image) is
used to “deconvolve” the image in Fourier domain. Blur-invariant primordial
image is obtained as the result of this operation. Moments of the primordial
image are blur invariants introduced in Eq. (8).

V. COMBINED INVARIANTS

The design of the combined affine-blur invariants is only
possible because S is closed to both Gaussian blur and affine
transform, see Proposition 1. These two image degradations
are commutative since (f ∗ h)′ = 1/‖A‖(f ′ ∗ h′) and still
h′ ∈ S. If the covariance matrix of the blur was constrained
to be diagonal, such as in [8] and all other earlier papers,
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we could never combine the blur invariance and the affine
invariance together. This is why the combined invariants have
not been constructed yet.

The key idea of designing the combined invariants follows
from the fact that the blur invariants Mpq in Eq. (8) can be
interpreted as moments of the primordial image fr. So we
can simply substitute them into any affine or rotation moment
invariant and we end up with a combined invariant. This strong
result is summarized in the following Theorem.

Theorem 1 (Substitution Theorem). Let f be an image
function and let Mpq be invariants w.r.t. Gaussian blur defined
by Eq. (8). Let f ′(x) = f(Ax), A being a regular 2×2 matrix.
Let J(mpq|p, q = 0, . . . , r) be an absolute invariant of image
moments w.r.t. A, i.e. J(m′pq|p, q = 0, . . . , r) = J(mpq|p, q =
0, . . . , r). Then J(Mpq|p, q = 0, . . . , r) is a relative invariant
w.r.t. both A and Gaussian blur as

‖A‖wJ(M ′pq| p, q = 0, . . . , r) = J(Mpq|p, q = 0, . . . , r) ,

where w is the weight1 of invariant J(mpq).

Proof. The proof follows the scheme shown in Fig. 2. First we
show how the primordial image is transformed if the original
image has undergone an affine transform f ′(x) = f(Ax).
Using basic properties of Fourier transform, we have

I (f ′) (u) = I(f)
(
A−Tu

)
.

Applying inverse Fourier transform, we obtain

f ′r(x) = ‖A‖fr(Ax) ,

where f ′r is the primordial image of f ′. This relation tells
us that the primordial image is transformed by the same
coordinate transformation (up to a factor ‖A‖) as the original
image.

The moments M ′pq of f ′r(x) are related to the moments
M̃pq of fr(Ax) as M ′pq = ‖A‖M̃pq for any p and q. In
the theory of affine moment invariants [10], [4], it is well
known that any absolute invariant J(mpq| p, q = 0, . . . , r)
must have a form of a finite sum, where all terms are products
of K moments (K is called the degree of the invariant) divided
by the (K+w)-th power of m00. The statement of Theorem 1
follows immediately from this fact. Note that the invariance
of J(Mpq| p, q = 0, . . . , r) w.r.t. Gaussian blur is obvious and
does not depend on the order in which the blurring and the
coordinate transformation A have been applied.

Since A is usually unknown in practice, absolute invariants
are more convenient image descriptors than the relative ones.
An absolute combined invariant can be obtained as a ratio of
two relative invariants of the same weight or, more generally,
as a ratio of any two products of various relative invariants
such that the factor ‖A‖ is cancelled.

1The term weight of an invariant has been commonly used in the theory of
algebraic invariants, see for instance [10], [4] for the definition. For any given
invariant, its weight is known and follows from the way how the invariant
has been constructed.

Fig. 2. Visual explanation of the Substitution Theorem. In practice, the
combined invariant J(Mpq | p, q = 0, . . . , r) is computed directly from image
f without the intermediate steps.

VI. NUMERICAL EXPERIMENTS

In this Section, we examine the properties of two kinds
of the combined invariants, both designed according to Theo-
rem 1. First, the classical rotation moment invariants [11] up
to the 8th order were used as J(mpq). In the second case we
employed affine moment invariants (AMIs) [10] as J(mpq) to
get combined affine-blur invariants.

A. Verification of the invariance

To demonstrate the invariance property, we choose a tem-
plate shown in Figure 3. First, we generated 100 random
degradations (combination of rotation and Gaussian blur).
Relative errors of 16 invariants invariants up to the 7th order
are shown in Figure 4. Only small errors due to resampling and
the boundary effect (this occurs when the blurring mask goes
across the template border) can be observed, which clearly
demonstrates the invariance to rotation and blur.

We repeated the experiment using random affine transfor-
mations and 22 affine invariants up to the maximum weight 8.
Relative errors of the invariants are shown in Figure 5. The
errors are slightly higher than for the rotation invariants
because of higher influence of resampling errors. Still, the
majority of errors is bellow 1%.
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Fig. 3. The template used in the invariance test.

Fig. 4. Relative errors (vertical axis) of rotation invariants up to the 7th order
for 100 randomly generated rotations and blurs (horizontal axis).

B. Robustness test

In this experiment, we tested the robustness of the proposed
features w.r.t. additive white Gaussian noise. For each SNR
from -5 dB to 80 dB with the step of 1 dB, we generated 100
realizations of the noisy image. We computed the mean relative
errors of all invariants and the standard deviations. The results
are summarized in Figure 6. We can see that all invariants are
sufficiently stable. This can be expected because the moments,
as integral features, tend to average out the impact of the noise.
Slightly higher robustness of the affine invariants at low SNR

Fig. 5. Relative errors (vertical axis) of affine invariants up to maximal weight
8 for 100 randomly generated affine transformations and blurs (horizontal
axis).

Fig. 6. Mean relative error of rotation invariants (solid blue line) ±standard
deviation (dotdash blue line) and mean relative error of affine invariants (solid
red line) ±standard deviation (dotdash red line) for SNR from -5 dB to 80
dB.

is probably because these invariants are composed of several
terms and we witness an error cancellation effect.

C. Matching of blurred and rotated templates

In this experiment, we tested the use of the combined
blur-rotation invariants in template matching. As a reference
method for a comparison, we used blur invariants w.r.t. cir-
cular Gaussian blur from [8] substituted in the same rotation
invariants.
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Fig. 7. The picture of a living room with the selected templates.

Fig. 8. Blurred and rotated templates.

From the clear test image, we extracted 39 circular templates
which contain dominant structures such as edges or corners
(see Fig. 7). We rotated each template, blurred them by
an anisotropic Gaussian blur, and matched them against the
original ones (see Fig. 8 for the degraded templates). The
matching was performed by searching for the minimum `2-
distance in the space of the combined invariants. We run the
experiment six times with maximal order of the invariants
ranging from three to eight. The results are summarized in
Table I.

The proposed combined invariants perform well for the
maximum order greater than three (the 3rd-order invariants
apparently do not capture enough discriminative information
about the templates) and perform significantly better than the
competitor. This is because the invariants from [8] cannot
handle appropriately the anisotropic blur.

Maximum moment order 3 4 5 6 7 8
# of errors (proposed method) 9 1 0 0 0 1
# of errors (method from [8]) 33 19 14 16 16 16

TABLE I
MATCHING ERRORS (OUT OF 39 TRIALS) OF THE PROPOSED COMBINED

INVARIANTS AND OF ANALOGOUS COMBINED INVARIANTS FROM [8].

D. Classification of blurred and affinely deformed digits

The last experiment demonstrates the recognition power of
the proposed combined affine-blur invariants. For this test, we
used the popular MNIST dataset of handwritten digits [12].
For each digit 0, 1, . . . , 9 we randomly generated 50 blurred
and affinely deformed instances (see Fig. 9 for some examples)
and classified them against the original dataset.

Fig. 9. Examples of blurred and deformed digits.

To illustrate the advantage of the combined invariants, we
compared them both to “pure” AMIs [10] and to “pure”
Gaussian blur invariants (8). The combined invariants yielded
the overall recognition rate 98.4 %, while the AMIs only
20 % and the blur invariants performed even worse yielding
approximately 15 % success rate. This clearly shows that the
Substitution Theorem brings invariants of a new quality.

VII. GENERALIZATION

Possible extension of the theory presented in this paper
to images whose spatial coordinates are from 3D (or even
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higher) space depends basically on three factors. The first
is an extension of Gaussian blur invariants from (8), the
second one is the validity of the Substitution Theorem, and
the last requirement is the existence of appropriate geometric
invariants (affine or at least rotational) that could be used in
the Substitution Theorem as J . Although it was not discussed
in [1], the first requirement is relatively simply to fulfill.
The definition and all properties of I(f) do not depend on
the dimension. We can even repeat the Taylor expansion in
terms of moments. Transition to the form analogous to Eq. (8)
depends on our ability to compute d-dimensional moments of
a Gaussian. For d > 2, this is extremely laborious but possible.

The Substitution Theorem is formally valid for any d.
However, combined invariants are of practical interest only
for d = 2 and d = 3. We can use the sets of 3D rotation
moment invariants [13], [14] or 3D affine invariants [15], [16]
and substitute into them the 3D analogue of Eq. (8). For d > 3,
there have not been studied/published any moment invariants
w.r.t. A, so in fact we do not have formulas which we could
substitute in.

Finding blur invariants to parametric kernels other than
Gaussian is probably impossible in the moment domain. The
necessary (but not sufficient) condition for such kernels is
their closure w.r.t. convolution. Surprisingly, there are very
few parametric families of functions which are closed under
convolution. Even the class of 1D generalized Gaussian dis-
tributions [17], where one might intuitively expect the closure
property, is not closed under convolution for exponents other
than two.

The functions with the closure convolution property are
known as alpha-stable distributions. Only very few of them
have a closed-form formula expressible in terms of elementary
functions (Gaussian, Cauchy, and Lévy distributions). Among
all alpha-stable functions, only the Gaussian has finite mo-
ments of all orders. This leads to the conclusion that moment
invariants w.r.t. convolution with an alpha-stable parametric
kernel do not exist for other than Gaussian kernels. 2

VIII. CONCLUSION

We proposed new invariants w.r.t. anisotropic Gaussian
blur and affine transformation of the image. Although they
were derived by means of projection operators and Fourier
transform, they can be calculated directly in the image do-
main, without an explicit construction of the projections. The
invariance to an affine transform is achieved thanks to the
proposed Substitution Theorem, which is the main result of the
paper. Experimental evaluation showed a good performance
of the invariants. However, they are not suitable in all cases
and acquisition scenarios as they suffer from the common
limitations of all moment invariants. Being intrinsically global,
they are calculated from the entire image/template. Local
image deformations and partial occlusions would affect all
invariants and would make them unstable. This can be partially

2There is, however, still a possibility of finding blur invariants in the Fourier
domain using a parametric form of their characteristic functions.

overcame by weighting functions that emphasize the regions
of interest but it does not resolve the problem in principle.

In the future work, it would be interesting to couple the pro-
posed blur-invariant representation with the CNNs in order to
make the CNNs blur-invariant without any data augmentation
and/or geometric normalization.
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[4] J. Flusser, T. Suk, and B. Zitová, 2D and 3D Image Analysis by Moments.
Chichester, U.K.: Wiley, 2016.

[5] J. Liu and T. Zhang, “Recognition of the blurred image by complex
moment invariants,” Pattern Recognition Letters, vol. 26, no. 8, pp.
1128–1138, 2005.

[6] B. Xiao, J.-F. Ma, and J.-T. Cui, “Combined blur, translation, scale
and rotation invariant image recognition by Radon and pseudo-Fourier-
Mellin transforms,” Pattern Recognition, vol. 45, pp. 314–321, 2012.
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