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Abstract
Image forensic datasets need to accommodate a complex diversity of systematic noise and
intrinsic image artefacts to prevent any overfitting of learning methods to a small set of
camera types or manipulation techniques. Such artefacts are created during the image
acquisition as well as the manipulating process itself (e.g., noise due to sensors, inter-
polation artefacts, etc.). Here, the authors introduce three datasets. First, we identified the
majority of camera models on the market. Then, we collected a dataset of 35,000 real
images captured by these cameras. We also created the same number of digitally
manipulated images. Additionally, we also collected a dataset of 2,000 ‘real‐life’ (uncon-
trolled) manipulated images. They are made by unknown people and downloaded from
the Internet. The real versions of these images are also provided. We also manually
created binary masks localising the exact manipulated areas of these images. Moreover, we
captured a set of 2,759 real images formed by 32 unique cameras (19 different camera
models) in a controlled way by ourselves. Here, the processing history of all images is
guaranteed. This set includes categorised images of uniform areas as well as natural
images that can be used effectively for analysis of the sensor noise.

1 | INTRODUCTION

The histories of visual content manipulation and photography
run practically in parallel [1]. In modern times, we face a
plethora of manipulated images that create significant prob-
lems in our society. Advanced image editing techniques have
become increasingly accessible in the form of user‐friendly
editing software and have resulted in manipulated visual con-
tent that appears convincingly realistic. Both classic image
editing programs and an abundance of apps and software tools
now use the latest advances in computer vision, for example
generative adversarial networks (GAN) [2]. GAN methods can
be used to create a fake but realistic visual content in no time at
all. Deepfakes (artificial intelligence generated videos of people
doing and saying fictional) are a popular form of such
manipulations.

Clearly, we require technologies that permit us to assess the
integrity of digital visual media to a reliable degree, yet the lim-
itations of our current forensic technology result in low accuracy
in real‐life situations. The image forensic community seeks to
apply the successes of deep nets in computer vision problems to

the difficult problem of detecting manipulated imagery. But, we
face a few obstacles while achieving this objective.

A major obstacle is that deep nets require large‐scale
datasets for training. For image classification, the ImageNet
[2] released in 2009, yielded a large‐scale annotated dataset
containing 1,000 distinct object categories. Fei‐Fei Li et al. [3]
employed Google Image Search to pre‐filter large candidate
sets for each category, and Amazon Mechanical Turk
crowdsourcing pipeline [4] to manually validate that each
image belonged to its assigned category. This large dataset
has advanced computer vision and machine learning research
and improved the performance accuracy of classification
models in relation to earlier methods. Today, the computer
vision community benefits from several such publicly avail-
able datasets like: UCID [5] and ImageCLEF [6] for image
retrieval; PASCAL [7], ImageNet [3], and Microsoft COCO
[8] for tasks such as object detection, segmentation and
recognition.

The above‐mentioned datasets cannot serve the purposes
of the forensic image community directly because they were
not gathered with forensic research in mind and therefore
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lack the desired diversity and annotations. To date, most
image forensic authors have worked with small datasets that
failed to capture the wide, complex image artefacts that
appear in the lifecycle of real‐life images. As a result, these
methods fail in cross‐data testing and generalisation. Some
authors have tried to solve this problem by training their
methods using only real images (e.g. [9]); others have tried to
build internal limited datasets (e.g. [10]) and focus on domain
adaptation.

The aim of the authors is to introduce a large, annotated
dataset for detecting manipulated visual content. Inspired by
the semi‐automatic way that ImageNet has been built, we will
build in a semi‐automatic way a dataset that captures a large
diversity of image and manipulation artefacts. This is a chal-
lenging task. Each camera brings into the image different kinds
of artefacts. Some artefacts are unique to particular camera
device and some are unique to camera model. A range of
compression levels brings a range of quantization noise into
the visual content. Different manipulation techniques yield
different editing traces. In general, we can categorise intrinsic
artefacts in visual content into three groups: (i) acquisition
artefacts, see Figure 1 (e.g. sensor noise, demosaicking algo-
rithms or gamma correction); (ii) format artefacts (e.g. JPEG
and quantization noise); and (iii) manipulation artefacts (e.g.
artefacts left by GAN in the image).

The artefacts mentioned above are essential to create
image/video forensic methods. In fact, forensic methods that
are based on high‐pass filters and their resulting noise re-
siduals, often seek to eliminate the image content to
emphasise these intrinsic artefacts and so expose traces of
image manipulation. Although the above‐mentioned artefacts
are often invisible by naked eye, dataset with lack of a high
variety in them might result in overfitting of learning
methods to a narrow set of cameras or types of manipula-
tions causing those methods to perform poorly on new and
unseen manipulations (e.g. [10]).

1.1 | Contribution

Extended IMD2020 introduces three datasets. The first dataset
consists of 35,000 real images captured by 2,322 different
camera models. These camera models form the majority of
existing cameras in the market. The dataset provides a rich and
diverse set of sensor noise―artefacts that various imaging
software embedded in cameras bring into images―and
compression artefacts. Moreover, we also synthetically created
a set of manipulated images using a large variety of manipu-
lation operations including core image processing techniques
as well as advanced methods based on GAN or Inpanting. This

F I G U R E 1 Individual steps and components forming a typical digital image [11]
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resulted in 70,000 images in total. In addition to this dataset,
we also downloaded 2,000 ‘real‐life’ (uncontrolled) manipu-
lated images created by random people from Internet. Real
versions of these images also are also provided. Binary masks
localising the manipulated areas have been created manually.
The last part of the datasets consists of 2,759 real images
formed by 19 camera models in a controlled way by ourselves.
To this end, we used 32 different cameras. The processing
history of all images is guaranteed. This set also includes im-
ages of uniform areas that can be used for analysis of sensor
noise as well as other camera‐dependent artefacts.

The dataset contributes to facilitating future research in: (i)
classification of the manipulated image and localisation of the
manipulated area; (ii) source camera identification and sensor
noise (e.g. PRNU (photo response non‐uniformity) analysis;
and (iii) reverse search of visual content (the dataset includes
tens of thousands of near‐duplicates in the form of real and
manipulated versions of the same image that can serve for train
and test needs of image search engine).

In addition to the dataset, the authors study intrinsic ar-
tefacts in images and empirically demonstrate their presence.
Also it provides a comprehensive review of existing image
forensic datasets. Moreover, the authors bring a survey of
existing CNN (convolutional neural network)‐based methods
for detecting image manipulation.

The work of the authors is organised as follows. Section 2
breaks down digital manipulation into different categories. The
subsequent sections summarises artefacts brought into the
image during their lifecycle. After this, we introduce previously
published datasets and papers related to the topic discussed
here. In Section 5, the dataset is introduced in details. The
following section after Section 5 includes experimental results
and the last section summarises the work that has been per-
formed by the authors.

2 | TYPES OF MANIPULATION

Any kind of operation applied to an image or video that
cause the visual content differs from its authentic version is
a digital manipulation. However, there are types of image
processing methods, such as rotation, down‐sizing, applica-
tion of global filters on images that manipulate the infor-
mation represented by visual content in a very limited way.
Therefore, today image forensic methods are rather inter-
ested in detection of visual contents manipulated in a mali-
cious way.

There are three major types of malicious manipulation of
digital images: (i) copy‐paste (copying an area from the same
image and pasting it to a different area of the same image); (ii)
splicing (the manipulated image is created by combination of
two or more images.) and (iii) and re‐touching (locally editing
an area of the image). Different types of malicious manipula-
tions that can be applied to an image are shown in Figure 2.
Such manipulations can be achieved by using basic image
processing techniques, as well as advanced methods based, for
instance, on GAN.

3 | ARTEFACTS BROUGHT INTO
IMAGES IN THEIR LIFECYCLE

The journey of a digital image can be represented as a
composition of several steps: (i) acquisition; (ii) coding and
digital editing [11]. For the sake of simplicity, we model the
image acquisition process in the following way:

I i;j ¼ Ioi;j þ Ioi;j ⋅ Γi;j þ ϒi;j ð1Þ

Here, Ii,j denotes the image pixel at position (i, j) produced
by the camera, Ioi;j denotes the noise‐free image (perfect image
of the scene), Γi,j is the multiplicative noise, such as PRNU and
ϒi,j stands for all additive noise components.

The following sections briefly describe the major types of
artefacts brought into images during the acquisition process
and in their later stages of the lifecycle.

3.1 | Artefacts associated with acquisition
devices

Digital image acquisition devices introduce intrinsic artefacts
or fingerprints in the final visual content output through their
various components.

When an image is captured, the light from the actual scene is
focused through the camera's optical system onto its sensor
(usually CCDorCMOS). The sensor's pixels collect photons and
convert these into voltages that are then sampled by a digital
signal in anA/D converter. Before reaching the sensor, however,
the light is usually filtered by the colour filter array (CFA). The
CFA is a mosaic of tiny colour filters placed over pixels of the
image sensor to capture particular colour information. The CFA
is necessary because typical consumer cameras have a single
sensor which is not capable of separating colour information.
Each pixel captures only one main colour (red, green, or blue).
During the demosaicking process, the sensor output is interpo-
lated to produce the digital colour image [11]. The subsequent
signal is then processed again for colour correction and white
balance adjustment. Additional processing includes gamma
correction to adjust for the linear response of the imaging sensor,
noise reduction and filtering operations to visually enhance the
image.

Among the artefacts we havementioned, some are unique to
the specific camera sensor, and others are common to all cameras
sharing a model number or brand by virtue of the embedded
software they share. For example, a specific image sensor will
produce a unique pattern noise. As stated in [12], taking a photo
of a uniform scene will still produce a digital image that exhibits
variations in the intensity of the individual pixels, which is partly
due to the pattern, readout or shot noise. Authors have used
sensor pattern noise to identify the exact camera that captured an
image [13]. To this end, typically, PRNU , a unique part of the
sensor pattern noise has been used (the multiplicative compo-
nent of Equation (1)): Figure 3 shows sensor pattern noise of two
different cameras capturing the same scene, as apparent sensor
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noise of these two cameras differ. A light uniform scene with
minimal number of edges that enables amore accurate extraction
and modelling of the sensor noise have been used [13].

If we examine the demosaicking process on the other hand,
wewill find it is typically identical for all cameras belonging to the
same model (since they share common embedded software and
the same demosaicking algorithm). For example, Mahdian et al
[14] shows that these interpolation techniques often bring into
the image invisible periodic artefacts.

3.2 | Artefacts associated with lossy
compression

The output of the camera is typically compressed and stored
in JPEG which is the most commonly used image format.
In JPEG, the image is first converted from RGB to YCbCr,

consisting of one luminance component (Y) and two
chrominance components (Cb and Cr). Mostly, the resolu-
tion of the chroma components is reduced (usually by a
factor of two). Then each component is split into adjacent
blocks of 8 � 8 pixels. Each block of each of the Y, Cb and
Cr components undergoes a discrete cosine transform
(DCT). Let f(x, y) denote a pixel (x, y) of an 8 � 8 block.
Its DCT is:

Fðu; vÞ ¼
1
4
CðuÞCðvÞ

∑7
x¼0 ∑7

y¼0 f ðx; yÞcos
ð2xþ 1Þuπ

16
cos
ð2yþ 1Þvπ

16
;

where u, v ∈{0⋯7}; CðuÞ;CðvÞ ¼ 1=
ffiffiffi
2
p

for u; v¼ 0;
otherwise C(u), C(v) = 1.

F I G U R E 2 Types of image manipulation. On the left copy‐paste is shown, in the middle splicing is shown and on the right an example of a re‐touching
operation is demonstrated

F I G U R E 3 (a) The extracted sensor pattern noise of a Nikon Coolpix L23 device is shown and (b) shows the same for Canon Powershot A495. Note that
the apparent sensor noise of these two cameras differ
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In the next step, all 64 F(u, v) coefficients are quantized.
The quantization step is given by a 64‐element quantization
table (QT):

FQT ðu; vÞ ¼ round
Fðu; vÞ
QTðu; vÞ

� �

; u; v ∈ f0 ⋯ 7g

where QT(u, v) defines the quantization step for each DCT
frequency u and v. Commonly, there is one QT for Y and
another single QT for both Cb and Cr.

Quantization tables determine the quantization rate
(compression rate). They bring into the image quantization
noise and blocking artefacts that are typical for JPEG com-
pressed images. Therefore an image forensic dataset should
ideally cover a wide range of quantization tables (compression
rates) to avoid overfitting of learning methods to specific kinds
of JPEG artefacts and compression levels.

3.3 | Artefacts associated with various types
of manipulation

Different image editing can be applied to an image during its
life. This includes simple operations such as geometric trans-
formation (rotation, scaling etc.), blurring, sharpening or more
advanced and possibly malicious changes such as image
splicing or cloning (copy‐move), inpainting operations (e.g. [15,
16]), or GAN (e.g. Cycle‐GAN [17] or Style‐GAN [18]).
Obviously, image forensic community is mainly focused on
detecting malicious types of manipulations. There are three
major types such manipulation: (i) copy‐paste (copying an area
from the same image and pasting it to a different area of the
same image); (ii) splicing (the manipulated image is created by
combination of two or more images.); and (iii) and re‐touching
(locally editing an area of the image).

All such manipulations leave characteristic traces in the
image. For instance, authors have noticed that GAN‐based
methods also leave distinct invisible artefacts in the image (e.g.
[19]). There are two main components in GAN: discriminator
and generator. The discriminator tries to distinguish real

images of the target category from those generated by the
generator. On the other hand, the generator takes an image of
the source category as input and tries to generate an image
similar to images of the target category and making them
indistinguishable by the discriminator. Looking ar more details
to the GAN pipeline (e.g. Figure 4) we can notice that typically
generator contains two components: encoder and decoder.

The encoder contains a few down‐sampling layers which
aim to extract high‐level information from the input image and
generate a low‐resolution feature tensor. The decoder, on the
other hand contains a few up‐sampling layers which take the
low resolution feature tensor as the input and a high‐resolution
image as the output. According to Zhang et al. [19], although
the structures of the GAN models are quite diverse, the up‐
sampling modules used in different GAN models are consis-
tent. The up‐sampling bring into the image specific artefacts
(e.g. interpolation based [14]). Zhang et al. [19] addressed these
up‐sampling related artefacts and used them to detect GAN‐
based images. They showed that they are present in most of the
commonly used GAN methods.

To summarise the work performed till now, we can say that
a well‐designed forensic dataset should capture changes
brought into images by variety of acquisition devices,
compression levels and types of manipulations. As pointed out
some of these artefacts are unique per each particular camera
(i.e. sensor), and some of them are unique per camera brand or
model or software editor (e.g. demosaicking algorithm or
JPEG compression parameters).

4 | RELATED WORKS

This section focuses on reviewing existing datasets as well as
CNN‐based methods dealing with detection of image and
video manipulation.

4.1 | Related datasets

The work performed by authors here is an extended version
of [20]. In addition to [20], the authors are introducing an

F I G U R E 4 Typical pipeline of image2image translation [19]
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innovative part into the dataset consisting of 2,759 real
images formed by 32 unique cameras (19 different camera
models). They have been captured manually in a controlled
way by ourselves and so their processing history is guar-
anteed. Both images of uniform areas as well as natural
images have been captured. This enables effective analysis of
sensor noise as well as other camera‐dependent artefacts. In
the experimental part of our work, this resourceful part of
the dataset is used to demonstrate the presence of hidden
camera‐dependent artefacts in images.

The CoMoFoD dataset [21] has been designed for copy‐
move forgery detection. It consists of 260 forged images in two
categories of small (512�512 pixels), and large (3000 � 2000
pixels). Each set includes a forged image, mask of the manipu-
lated area and its original image. Images are divided into five
groups according to applied manipulation: translation, rotation,
scaling, combination and distortion etc. The MICC‐F220 and
MICC‐F2000 [22] are another dataset focused on copy‐paste.
MICC‐F220 is formed by 220 images: 110 are tampered images
and 110 are originals. The resolution varies from 722 � 480 to
800� 600 pixels. The Columbia spliced image database [23] has
two parts. First, a grayscale image dataset with 933 authentic and
912 spliced grayscale image blocks, and a colour image dataset
with 183 authentic uncompressed colour block images and 180
spliced uncompressed colour block images.

CASIA Image Tampering Detection Evaluation Database
[24] is an image forensics dataset that focused on splicing.
CASIAv1.0 has 800 authentic and 921 spliced 384�256 images.
CASIA v2.0 contains 7,491 authentic and 5,123 tampered im-
ages. The First Image Forensics Challenge [25] collected thou-
sands of images of various scenes, both indoors and outdoors.
The dataset served for an international competition organised by
the IEEE Information Forensics and Security Technical Com-
mittee and comprises of a total of 1,176 forged images.Wen et al.
[26] introduced a small dataset called Coverage designed for
copy‐paste detection. The REWIND (REVerse engineering of
audio‐VIsual coNtent Data) [27] dataset contains 142 hand‐
made manipulated images for the evaluation of image tampering
detectors. Half of the images are original; the other half is a set of
hand‐made forgeries. There are also 4800 automatically manip-
ulated images. Barni et al. [28] created a small dataset for
detecting cut and paste splicing (ISCAS). Zhou et al. created a
dataset of manipulated faces [29] by using FaceSwap [30] and
SwapMe [31]. There are 1005 tampered images for each
tampering technique (2010 tampered images in total) and 1400
authentic images for each subset. Realistic Tampering Dataset
[32] proposes a dataset of realistic forgeries created manually by
using editors such a GIMP and Affinity Photo. The National
Institute of Standards and Technology (NIST) was presented
with a large benchmark dataset—Nimble Challenge 2017 [33].
This dataset contains a total of 2,520 manipulated images.
Moreover, NIST also has published additional datasets
MFC2018 and MFC2019 [33] in subsequent years.

Most of the currently published datasets (see Table 1) are
limited in size, acquisition device variety, content, attacks type
and compression/post processing variety. Typically, they are
created in a controlled environment.

4.2 | State‐of‐the‐art methods

Early image forensic methods used hand‐crafted features to
detect individual types of manipulation. These traditional
methods typically aim to detect some targeted inconsistencies
among pixels. For example, Farid et al. [34] designed a method
to detect composites created from JPEG images of varying
quality. This method determines whether a section of the im-
age was initially compressed more, to produce a lower quality
than the rest of the image. In [35], Hany Farid described the
specific correlations brought by the CFA interpolation into the
image and proposed a method capable of detecting their
inconsistency across the image.

Mahdian et al. [36] used estimates of local noise variance
using wavelet transform to detect local image noise in-
consistencies. Weiqi Luo et al. [37] used JPEG blocking arte-
fact characteristics to detect recompressed image blocks. Wei
Wang et al. [38] utilised grey level co‐occurrence matrix
(GLCM) of thresholded edge image of image chroma as an
image splicing detection method. Sevinc Bayram et al. [39] used
Fourier‐Mellin transform to propose a clone detector. The
Fourier‐Mellin transform does not vary with respect to scale
and rotation which permits stronger performance of the
method when confronted with cloned areas that have been
resized and rotated. In [40] a range of classic image forensic
methods can be viewed.

4.2.1 | CNN‐based image forensic methods

Deep neural networks have shown to be very effective in
various image processing tasks and computer vision so there is
no surprise that the image forensic community also has shifted

TA B L E 1 Examples of datasets designed for image manipulation
detection

Dataset Size Binary mask

CoMoFoD dataset [21] 260 Yes

MICC‐F220, MICC‐F2000 [22] 2,200 No

Columbia [23] 1,845 No

CASIA [24] 1,721 No

CASIA v2.0 [24] 12,323 No

REWIND Real [27] 142 Yes

Zhou et al. [29] 3,410 No

Nimble Challenge 2017 (manipulated) [33] 2,520 Yes

ISCAS [28] 20 No

Realistic Tampering [32] 440 Yes

Coverage [26] 100 Yes

IMD2020 Synthetically Created (proposed) 70,000 Yes

IMD2020 Manually Created (proposed) 2,000 Yes

IMD2020 Guaranteed dataset 2,759 Yes
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its direction to utilise achievements of deep learning. In [41],
Ghosh et al., assume that the spliced and host regions come
from different camera‐models and segment these regions using
a Gaussian‐mixture model. They learn high pass rich filters
using constrained CNNs that compute residuals, highlighting
low‐level information over the semantics of the image. In [42],
Bunk et al. used resampling features computed on overlapping
image patches that are passed through a long short‐term
memory (LSTM) based network for classification and local-
isation of manipulation. In [43], Wu et al. introduced a novel
deep neural architecture for image copy‐move forgery detec-
tion. The method is based on a two‐branch architecture fol-
lowed by a fusion module. The two branches localise potential
manipulation areas using visual discontinuities and copy‐move
regions via visual similarities, respectively.

In [44], Zhang et al. used information of chrominance and
saturation channels to develop a shallow convolutional neural
network (SCNN) that learned to detect doctored areas in in
low‐resolution images. To this end, boundaries of modified
areas have been used. In [10], Cozzolino et al. demonstrate
limited generalisation capability of underlying CNN. They
showed that CNN learn features that are highly discriminatory
for the given dataset but lack of generalisation resulting in
inaccurate results of today's CNN‐based methods when per-
formed in cross‐dataset test scenarios. To avoid the underlying
CNN to overfit to manipulation‐specific, they introduced
forensic‐transfer (FT). They learn a forensic embedding based
on an auto‐encoder based architecture [45] that can be used to
distinguish between real and fake imagery. An unseen manip-
ulated image will be detected as fake if it gets mapped suffi-
ciently far away from the cluster of real images. The authors
show that only a few training samples of the target domain of
tampering enable to finetune their model to achieve high
accuracies.

In order to detect GAN generated images, in [46], Yu et al.
used GAN‐based fingerprints in order to use them to classify
an image as real or GAN‐generated. Their experiments show
that even a small difference in GAN training (e.g. the differ-
ence in initialisation) can leave a distinct fingerprint that
commonly exists over all its generated images. To avoid
learning the semantic information in the image, in [47], Kim
et al. used a deep learning approach that utilises a high‐pass
filter to acquire hidden features in the image. In [48], Mazaheri
et al. developed an encoder‐decoder based network. They as-
sume that manipulated images commonly leave some traces
near boundaries of manipulated areas such as blurred edges. In
order to detect forgeries, they use representations from early
layers in the encoder. In [49], Bappy et al. used manipulation
localisation architecture which utilises resampling features,
LSTM cells, and encoder‐decoder network to segment
manipulated areas of the image. Resampling features are used
to capture artefacts like JPEG quality loss, up‐sampling, down‐
sampling, rotation, and shearing. In another work [50], Bappy
et al. assumed manipulated areas often exhibit discriminative
features in boundaries shared with neighbouring non‐manip-
ulated pixels. They focused on these characteristics and
developed a unified framework for joint patch classification

and segmentation to localise manipulated regions from an
image. The proposed method learns the boundary discrepancy,
that is, the spatial structure, between manipulated and non‐
manipulated regions with the combination of LSTM and
convolution layers.

In [51], Zhou et al. realised that they can use multiple
modalities as the input to their CNN to increase the accuracy.
They proposed a network using the RGB information. In
addition to this, they also added a noise stream to the archi-
tecture. Authors observed that the fusion of the two streams
leads to learning effective and rich features and higher accu-
racy. In [52], Rao et al. focused on eliminating the complex
image content to detect manipulation. This enables them to
achieve a faster time to accuracy when training the underlying
CNN. Specifically, weights at the first layer of their network are
initialised with the 30 basic high‐pass filters used in spatial rich
model for image steganalysis. The results obtained are prom-
ising. In [53], Cun et al. instead of classifying the spliced region
by a local patch, authors leveraged the features from whole
image and local patch together, calling this structure a semi‐
global network. Furthernore, the work of Cozzolino et al.
focused on eliminating the image content as proposed in [54].
Here, authors proposed a deep learning method to extract a
noise residual, called noiseprint, where the image content is
removed. Results shown in the paper signify this direction is
promising in forgery localisation.

In [55], Bondi et al. proposed a method leveraging char-
acteristic footprints left on images by different camera models.
The rationale behind the method is that all pixels of pristine
images should be detected as being shot with a single device.
By contrast to such images, if a picture is obtained through
image composition, traces of multiple devices can be detected.
In [56], Bayar et al. have developed a new type of CNN layer
called a constrained convolutional layer that is able to jointly
suppress an image's content and adaptively learn manipulation
detection features. Through a series of experiments, they show
that the proposed constrained CNN is able to learn manipu-
lation detection features directly from data and outperforms
the existing state‐of‐the‐art general purpose manipulation de-
tectors. In [57], Liu et al. proposed to utilise CNNs and the
segmentation‐based multi‐scale analysis to locate tampered
areas in digital images. The authors observed that exploiting
the benefits of the small scale and large‐scale analyses, the
segmentation‐based multiscale analysis can lead to a perfor-
mance leap in forgery localisation of CNNs.

In [58], Salloum et al. proposed a method based on VGG‐
16 which is a fully convolutional network (FCN). The authors
introduced several modifications such as batch normalisation
layers and class weighting to train VGG‐19 to localise image‐
splicing attacks. They demonstrate improvement in compari-
son to the state‐of‐the‐art methods. In [9], Huh et al. proposed
an algorithm that uses the automatically recorded photo EXIF
metadata. EXIF stands for Exchangeable Image File Format
and typically it is embedded into JPEG files by the camera.
EXIF can include date, time, camera settings etc. The authors
used EXF to train a model to determine whether an image is
self‐consistent. In other words, whether its content could have
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been produced by a single imaging pipeline. The method
demonstrated superior results in comparison to other existing
ones.

In [59], Le‐Tien et al. proposed a low computational‐cost
and fully connected neural network to address the problem of
image forgery detection. In [60], Bayar et al. tried to prevent
the CNN from learning features that represent an image's
content. They proposed a new covolutuional form specifically
designed to suppress an image's content and learn manipula-
tion detection features. In [61], Wu et al. showed that both
image splicing detection as well as localisation can be jointly
solved using a multitask network in an end‐to‐end manner. In
[62], Marra et al. attempt to avoid downsizing of images before
analysing them by CNNs. They propose a CNN‐based image
forgery detection framework which makes decisions based on
full‐resolution information gathered from the whole image.

In [19], Zhang et al. proposed a GAN simulator, which
can simulate the artefacts produced by the common pipeline
shared by several popular GAN models. They identified a
unique artefact caused by the up‐sampling component
included in the common GAN pipeline. Without seeing the
fake images produced by the targeted GAN models during
training, the approach achieves a state‐of‐the‐art perfor-
mances on detecting fake images generated by the popular
GAN models. In [63], Marra et al. observed that Xception-
Net is capable to achieve superior accuracy in detecting image
manipulation. For instance, authors demonstrate that this
network accurately detects GAN‐generated fake images that
are published on social networks. To achieve this conclusion,
authors studied the performance of various image forgery
detectors against image‐to‐image translation, both in ideal
conditions, and in the presence of high compression,
routinely performed upon uploading on social networks. The
winning architecture was XceptionNet. Another promising
image manipulation detectors based on CNN was proposed
in [64] by Wu et al., called ManTra‐Net. ManTra‐Net per-
forms both detection and localisation. The network handles
images of arbitrary sizes and various types of manipulation
such as splicing, copy‐move, removal, enhancement etc. (they
learn robust image manipulation traces from 385 image
manipulation types). In [64], authors formulated the forgery
localisation problem as a local anomaly detection problem.
The method extracts image manipulation trace features for a
testing image, and identifies anomalous regions by assessing
how different a local feature is from its reference features.
They demonstrated a good improvement over the existing
methods.

5 | THE EXTENDED IMD2020 DATASET

Image forensic methods often eliminate the image content and
analyse the underlying (hidden) noise/artefacts component of
the image to find inconsistencies. As pointed out earlier, some
of the intrinsic artefacts are unique to sensor/camera and some
others shared by images captured by cameras of the same
brand/model.

5.1 | Flickr‐based images

To prevent possible overfitting to a narrow range of camera
models, we collected a list of the majority of camera models
existing in the market. Subsequently, we searched for images
captured by these devices on Flickr (Flickr enables a search
based on camera information included in metadata). If avail-
able, 30 real images per camera model have been downloaded.

Most Flickr users are unlikely to publish maliciously
manipulated visual content, but Flickr itself cannot guarantee
and exactly identify the source of its images. The processing
history of these images remains unknown. So, to reduce po-
tential risk, we manually reviewed (‘cleaned’) all the images and
eliminated those with obvious signs of digital manipulation. We
were left with a set of 35,000 real images, some of which are
shown in Figure 5. The top ten popular camera brands rep-
resented in Flickr were Apple (iPhone 7 etc.), Canon (EOS 5D
Mark III etc.), Nikon (D750 etc.), Sony (ILCE‐7M3 etc.),
Fujifilm (X‐T2 etc.), Samsung (Galaxy S etc.), Olympus (E‐
M1MiarkII etc.), Panasonic (DMC‐FZ1000 etc.), Google (Pixel
3 etc.), and Leica (Camera AG Q etc.).

We also generated a same number of synthetically manip-
ulated images using various methods. As pointed our earlier,
advanced techniques such as GAN often bring characteristic
artefacts into images [46]. Such kinds of artefacts might lead to
overfitting of learning methods. This has also been empirically
confirmed by Cozzolino et al. [10] where authors experimen-
tally demonstrated CNN‐based approaches for image forgery
detection tend to overfit to the source training data and
perform poorly on new and unseen manipulations. Therefore,
to manipulate images we also used a high variety of core image
processing techniques.

Specifically, a random area of a random shape of images
has been manipulated, using one of the following types of
manipulations: copy‐paste, splicing and re‐touching. Size of
the manipulated area has been randomly selected to be from
5% to 30% of the image. Additionally, a random combi-
nation of image processing operations has been applied on
the manipulated area. These operations are based on JPEG
(random compression level), blurring (various kernels),
contrast manipulation, various types of noise and resampling
and interpolation using bilinear and bicubic kernels. About
half of the images have been manipulated in this way. Some
examples of such manipulated images are shown in
Figure 6.

To synthetically manipulate the second half, we used
advanced methods such as GAN or Inpainting. Specifically, the
following methods have been used to manipulate images: built‐
in OpenCV inpainting function, inpainting method proposed
in [16], and FaceApp [65] which is currently one of the most
popular face manipulation mobile applications based on GAN
in iOS and Android. Some examples of such manipulated
images are shown in Figures 7 and 8.

To summarise, this dataset is formed by 70,000 images.
Half of them are real and the second half has been manipulated
in a controlled manner. Binary masks of all manipulated images
localising the manipulated areas are also provided.
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5.2 | Real‐life manipulated images

We also collected a large set of real‐life (uncontrolled)
manipulated images from the Internet (for example, see
Figure 9). Specifically, 2000 manipulated images created by
random people have been downloaded (URL of most images
were obtained from [66]). For all of the manipulated images,
we also downloaded their real versions. Binary masks localizing
the manipulated areas for all manipulated images have been
created manually. Some examples of this dataset are shown in
Figures 9 and 10.

5.3 | Guaranteed set of real images

In addition to above‐mentioned data, we also created a set of
real images captured by ourselves so their processing history is
guaranteed. To collect this set, we used 32 unique cameras (19
different camera models). Table 2 shows cameras used and
corresponding number of images acquired by each camera.

Using each camera, we captured images of natural scenes
(for example, see Figure 11 (a)) as well as images of a uniform

light scene with minimal number of edges (for example, see
Figure 11 (b)). Images of uniform scenes enable an easier and
more accurate estimation of the sensor noise and PRNU [13].

5.3.1 | Estimating camera sensor noise

As pointed out earlier, cameras bring into images different
kinds of artefacts. Some artefacts are unique to the particular
camera device and some are unique to camera model. For
example, the demosaicking process which brings into the im-
age specific hidden changes [14] is typically identical for all
cameras of the same model (assuming these cameras use the
same embedded software and demosaicking algorithm). On the
other hand, the sensor pattern noise has that been widely
studied by authors to identify the exact camera that captured
the image is unique per camera.

To design an experiment that will demonstrate the pres-
ence of artefacts unique per camera as well as unique per
camera model, let us to briefly point out the typical procedure
of examining whether a digital image under investigation has
been captured by an exact camera.

F I G U R E 5 Some examples of real pictures in our dataset
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F I G U R E 6 A few samples from the synthetically generated dataset. On left is shown the real image, in middle the manipulated image (JPEG and noise
used) and on right the binary mask localising the manipulated area. Sometimes the manipulated area is not visible by naked eye (e.g. (b))

F I G U R E 7 On the left the real image is shown, in the middle the manipulated image (using an inpainting method [16]) and on the right the binary mask
localising the manipulated area

F I G U R E 8 On the left he real image is shown, in the middle the manipulated image (using FaceApp [65]) and on the right the binary mask localizing the
manipulated area. It is interesting to note that although the visible area of manipulation of FaceApp is typically inside the face area, pixels of a larger rectangular
area around the face gets modified as a result of face transform
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To link a digital image to an exact camera, first the camera
sensor fingerprint is needed to be constructed. Specifically, for
a given camera, the corresponding sensor noise fingerprint is
estimated by averaging multiple camera reference images Ik, k
= 1, …, N. Camera reference images are photos captured by
the camera under examination. It is recommended to use
photos of an uniformly illuminated surface.

The process is often sped up by suppressing the scene
content from the image prior to averaging. This is achieved by
using a denoising filter F and averaging the noise residuals
instead. Io is approximated by denoising I that results in
mentioned residuals as stated here:

Io ≈ I − F ðIÞ ð2Þ

In the above equation, we omitted pixel indexes (i, j) in our
denotations. Now, Γ can be approximated in the following way:

ΓN ¼
1
N

∑N
k¼1 Ik − F ðIkÞ ð3Þ

Testing if an image has been captured by a particular
camera is typically carried out by performing a similarity
measure of two sensor fingerprints, Γs1;Γs2. Here, Γs1 is ob-
tained from the image under investigation and Γs2 corresponds
to the camera and obtained by using the set of camera refer-
ence images.

Typically, a normalised correlation (a black‐box method) is
used to compare two estimated sensor fingerprints. Having

available Γs1 and Γs2, we measure their similarity by employing a
normalised correlation:

corrðΓs1;Γs2Þ ¼ ðΓs1 − Γs1Þ⊙ ðΓs2 − Γs2Þ

ð‖Γs1 − Γs1‖Þ ⋅ ð‖Γs2 − Γs2‖Þ
ð4Þ

where X denotes mean of the vector X, ⊙ stands for dot
product of vectors defined as X ⊙ Y ¼∑N

k¼1XðkÞXðkÞ and
‖X‖ denotes L2 norm of X defined as ‖X‖¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ⊙ X
p

.
The estimated ΓN is the basic version of the camera sensor

fingerprint and is not usable in practice for identifying the
exact source camera. The reason is a strong presence of
components non‐unique to sensor in the estimated ΓN. They
are caused by operations performed by embedded software in
cameras such as gamma correction, CFA interpolation, colour
enhancement, geometric deformation corrections, JPEG
compression, invisible watermarks etc.

To minimise this problem, sensor fingerprint can be, for
example, enhanced by Wiener filtering in the frequency domain
to remove traces of periodic artefacts [13]. This is not used in
the experiments carries out in the next section.

6 | EXPERIMENTS

Here, we demonstrate results of a few popular image forensic
methods on the collected real‐life dataset.Moreover, we perform
an experiment using the guaranteed set of images to demonstrate
the presence of camera‐dependent artefacts.

F I G U R E 9 A real‐life manipulated image. On the left the real image is shown, in the middle the manipulated image, and on the right the binary mask
localising the manipulated area, are displayed

F I G U R E 1 0 A real‐life manipulated image. On left the real image is shown , in the middle the manipulated image and on the right the binary mask
localising the manipulated area, are observed. Binary masks of real‐life manipulated images have been created manually
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6.1 | Methods detecting manipulation

We applied the following methods on our dataset: NOI1
[36], CFA1 [67], BLK [68], ADQ1 [69] and ManTraNet [64].
To evaluate methods, all images have been first resized to
480 � 480 pixels. We computed false and true positive rates
(FPR and TPR) as a function of the detection threshold,
going from 0 to 1 and obtained the corresponding receiver
operating characteristic (ROC) curve. Moreover, we

calculated the area under the receiver operating characteristic
curve (AUC) [58]. Results are shown in Figure 12 and
Table 3.

As suggested by results, current methods have considerable
limitations in their accuracy when applied on real‐life (unseen)
image forgery. Typical undetected types of manipulations are
small manipulated areas, heavily compressed images, images
degraded with correlated noise, images with multiple areas
manipulated differently etc.

TA B L E 2 Cameras forming the guaranteed set of real images

Camera ID Camera make Camera model Sensor width Sensor height Images of uniform areas Images of natural scenes

1‐1 Apple iphone 5 3264 2448 40 40

2‐1 Canon 550d 2592 1728 30 60

2‐2 Canon 550d 2592 1728 30 60

2‐3 Canon 550d 2592 1728 30 60

3‐1 Canon 5d 2496 1664 30 60

4‐1 Canon ixus 145 2048 1536 30 40

4‐2 Canon ixus 145 2048 1536 30 40

5‐1 Canon powershot a495 3648 2736 50 100

6‐1 Canon powershot g11 1600 1200 30 35

7‐1 Lg l70 2240 1344 40 40

8‐1 Nikon coolpix l23 3648 2736 50 100

8‐2 nikon coolpix l23 3648 2736 50 100

8‐3 nikon coolpix l23 3648 2736 50 100

9‐1 nikon coolpix s2800 1600 1200 30 30

9‐2 nikon coolpix s2800 1600 1200 30 40

9‐3 nikon coolpix s2800 1600 1200 30 35

9‐4 nikon coolpix s2800 1600 1200 25 40

10‐1 nikon coolpix s3500 1600 1200 30 40

10‐2 nikon coolpix s3500 1600 1200 30 40

11‐1 nikon coolpix s4300 1600 1200 30 34

11‐2 nikon coolpix s4300 1600 1200 30 40

12‐1 nikon d40 1504 1000 30 60

13‐1 panasonic lumix dmc zs3 2048 1536 30 30

14‐1 ricoh cx5 3648 2736 30 30

14‐2 ricoh cx5 3648 2736 30 40

15‐1 samsung galaxy s4 mini 3264 1836 40 50

16‐1 samsung pl51 3648 2736 50 100

17‐1 samsung galaxy tablet s 10.5 3264 1836 30 50

18‐1 sony cybershot dsc wx80 4608 3456 30 40

18‐2 sony cybershot dsc wx80 4608 3456 30 40

18‐3 sony cybershot dsc wx80 4608 3456 30 40

19‐1 sony xperia z ultra 3104 1746 30 60
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6.2 | Camera‐dependent artefacts

Here, we will experimentally validate the presence of artefacts
unique to particular cameras and unique to each camera model.
To this end, camera sensor noise fingerprint, Γ, of all cameras
pointed out in Table 2 was estimated.

For the sake of simplicity, Γ was constructed by using re-
siduals based on a simple median de‐noise filter of size 3 � 3.
Only the central part of images of size 976� 976 has been used.
For each camera, two different fingerprints have been con-
structed: (i) by using images of uniform areas, Γuniform and (ii) by
using images of natural scenes captured by the camera, Γnatural.
Next, camera fingerprints have been compared to each other
using Equation (4). Specifically, for each camera, we first
measured the similarity of the fingerprint formed by images of
uniform areas and the fingerprint of the same camera formed by
images of the natural scenes, corr(Γuniform, Γnatural). Then, we
calculated similarity of all uniform area fingerprints of all cam-
eras with each other. Results are shown in Table 4. Figure 13
provides another view (a high‐level view) on results obtained.

As it is apparent, the highest correlation values are obtained
when comparing fingerprints of the same camera estimated us-
ing two different sets of images, Γuniform and Γnatural. This sig-
nifies a strong presence of artefacts unique to each camera sensor
in images. On the other hand, the lowest values correspond to
comparing fingerprints of totally different camera makes and
models. Also, it is interesting to note that comparing fingerprints
of different cameras of the same model results in higher corre-
lation values than comparing the same for cameras of different
models. This signifies the presence of artefacts unique to camera
model. Analogically, we can see that correlation values obtained
by comparing cameras of same manufacturer (without

considering camera models) are still slightly higher than
comparing cameras produced by different manufacturers.

7 | CONCLUSION

In order to make possible deep nets to learn discriminatory
features that well generalise to the unseen data, we need to

F I G U R E 1 1 (a) and (d) show two real‐life images captured by Nikon Coolpix L23 and Canon Powershot A495, respectively; In (b) and (e) two images of a
uniform scene captured by these cameras; and (c) and (f) show visualisation of sensor noise of these two cameras extracted from images shown in (b) and (e),
respectively. Note that the apparent sensor noise of these two cameras differ

F I G U R E 1 2 Obtained ROC and AUC

TA B L E 3 Obtained ROC and AUC

Method AUC (%)

NOI1 [36] 58.6

CFA1 [67] 48.7

BLK [68] 59.6

ADQ1 [69] 57.9

ManTraNet [64] 74.8
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have large and diverse datasets available. Such datasets need to
be designed to capture wide and complex types of systematic
noise and intrinsic artefacts of images in order to avoid over-
fitting of learning methods to just a narrow set of camera types
or types of manipulations. These artefacts are brought into
visual content by various components of the image acquisition

process as well as the manipulating process (e.g. sensor noise,
JPEG quantization noise, demosaicking and interpolation‐
related artefacts, image enhancement etc.). In the proposed and
performed work, we collected three large‐scale and diverse
datasets with a high variety of artefacts. We have demonstrated
results of a few popular methods of image forensics.

TA B L E 4 Similarity of camera fingerprints obtained by using Equation 4. Shown are (a) results of comparison of fingerprints obtained by using images
captured by the same camera (corr(Γuniform, Γnatural)); (b) comparison of uniform fingerprints (Γuniform) of cameras of the same make and model; (c) comparison
of uniform fingerprints of cameras of same make; and (d) and fingerprints of cameras of different make and model

Camera ID Make Camera model (a) Same camera
(b) Same make
and model

(c) Same make
and different model

(d) Different make
and model

1‐1 apple iphone 5 0.12205 — — −0.00042

2‐1 canon 550d 0.08801 0.01741 0.01575 −0.00206

2‐2 canon 550d 0.32634 0.01248 0.02209 −0.00191

2‐3 canon 550d 0.05191 0.00732 0.00403 0.00057

3‐1 canon 5d 0.20971 — 0.04415 −0.00547

4‐1 canon ixus 145 0.10322 0.04802 0.01619 −0.00580

4‐2 canon ixus 145 0.17284 0.04802 0.01517 −0.00584

5‐1 canon powershot a495 0.05238 — 0.00042 0.00012

6‐1 canon powershot g11 0.02130 — 0.01673 −0.00269

7‐1 lg l70 0.08707 — — −0.00228

8‐1 nikon coolpix l23 0.09164 0.00270 0.00069 −0.00010

8‐2 nikon coolpix l23 0.09770 0.00283 0.00101 −0.00051

8‐3 nikon coolpix l23 0.15717 0.00212 0.00113 −0.00070

9‐1 nikon coolpix s2800 0.01935 0.00789 0.00089 −0.00209

9‐2 nikon coolpix s2800 0.02303 0.00737 0.00205 −0.00294

9‐3 nikon coolpix s2800 0.02147 0.00789 0.00170 −0.00329

9‐4 nikon coolpix s2800 0.01546 0.00915 0.00178 −0.00197

10‐1 nikon coolpix s3500 0.05165 0.01127 0.00175 −0.00333

10‐2 nikon coolpix s3500 0.03884 0.01127 0.00189 −0.00389

11‐1 nikon coolpix s4300 0.02582 0.00729 0.00159 −0.00343

11‐2 nikon coolpix s4300 0.02983 0.00729 0.00278 −0.00466

12‐1 nikon d40 0.14646 — −0.00515 0.00985

13‐1 panasonic lumix dmc zs3 0.25236 — — −0.00110

14‐1 ricoh cx5 0.09227 0.10994 — 0.00046

14‐2 ricoh cx5 0.10039 0.10994 — 0.00042

15‐1 samsung galaxy s4 mini 0.15203 — 0.00386 −0.00256

16‐1 samsung pl51 0.09657 — 0.00187 −0.00031

17‐1 samsung galaxy tablet s 10.5 0.09081 — 0.00361 −0.00022

18‐1 sony cybershot dsc wx80 0.08886 0.18171 0.00005 −0.00120

18‐2 sony cybershot dsc wx80 0.08709 0.17243 −0.00047 −0.00098

18‐3 sony cybershot dsc wx80 0.15547 0.17715 −0.00083 −0.00049

19‐1 sony xperia z ultra 0.09899 — −0.00047 −0.00020
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Moreover, we empirically demonstrated the existence of
different types of artefacts in the dataset.

We hope that the dataset will contribute to facilitating
future research on training and testing methods for detecting
of manipulated visual content as well as source camera iden-
tification (PRNU and sensor noise analysis).
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