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Abstract—Tracking Fast Moving Objects (FMO), which appear
as blurred streaks in video sequences, is a difficult task for
standard trackers, as the object position does not overlap in
consecutive video frames and texture information of the objects
is blurred. Up-to-date approaches tuned for this task are based
on background subtraction with a static background and slow
deblurring algorithms. In this article, we present a tracking-by-
segmentation approach implemented using modern deep learning
methods that perform near real-time tracking on real-world
video sequences. We have developed a physically plausible FMO
sequence generator to be a robust foundation for our training
pipeline and demonstrate straightforward network adaptation for
different FMO scenarios with varying foreground.

I. INTRODUCTION

Object tracking is a well-explored field of computer vision.
The majority of object tracking algorithms starting from basic
correlation trackers up to state-of-the-art deep network trackers
utilize texture-based correlation or feature-based methods.
Modern video capturing devices with built-in processing al-
gorithms are capable of producing sharp images of moving
objects. Moreover, the person capturing the object in motion
typically tracks the moving object, hence it predominantly
stays in the center of the image and in-focus. For such tasks,
the correlation-based trackers are sufficient.

The situation changes dramatically when an object moves
so fast, that it appears blurry on individual video frames.
Such object in motion is called ’FMO’, short for Fast Moving
Object [1], and is loosely defined as an object traveling a
distance larger than its diameter within one frame of the
video sequence (Figure 1). The inter-frame object overlap
is negligible, which causes problems to many conventional
trackers.

A typical manifestation of the FMO in video frames is
a prolonged streak without any particular texture, colored
with the object prevailing color, or a combination of object
colors; see Figure 1. The lack of any sharp texture of the
object renders most of the texture-based correlation trackers
inapplicable. Situation is even worse for very small objects
moving fast relative to their sizes, such as ping-pong or squash
balls.

The first tracking algorithm specifically designed for FMOs
uses a method based on background subtraction [1]. This
technique requires a static background, static camera, and large
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prominent foregrounds. It is also prone to object miss-tracking,
which then requires a time-consuming object re-detection.

More recent approaches deal with the problem of FMO
tracking by running a de-blurring algorithm [2], [3], [4]. These
methods perform considerably better, but are extremely slow,
as they require a full-blown de-blurring optimization pipeline.
Therefore, they are not suitable for real-time video stream
processing.

Our primary goal is to provide a method operating in real-
world scenarios such as tracking of ping pong, squash balls,
badminton shuttlecocks, and similar objects. This problem
is very specific in sense, that the objects that need to be
detected are very small and move very fast. This means that
existing state-of-the-art tracking, object detection, or segmen-
tation methods can not be used directly. Figure 2 shows
the results from state-of-the-art semantic segmentation tool
DeepLab3+ [5].

In this work we demonstrate that FMO tracking can be
successfully solved with a machine learning approach. The
proposed method uses a segmentation convolutional neural
network (CNN) with real-time performance in videos with a
resolution around 320x240. Network architecture is based on
state-of-the-art tracking by segmentation methods rather than
on object detection networks. We experimentally prove that
tracking by segmentation outperforms tracking by correlation.
In addition, we propose an on-demand synthetic FMO data
generator to tackle the problem of producing annotated data
automatically. Even though the network is trained solely
on synthetic data, it can successfully be used in real-life
applications, like processing YouTube sport video sequences.
The proposed solution focuses predominantly on small bright
foregrounds, yet we demonstrate the possibility of fast model
fine-tuning for different foreground types.

Resulting segmentation can be further used for trajectory
prediction and down the pipeline even for the trajectory
estimation in de-blurring algorithms.

The method is evaluated on the FMO dataset [1] on which
it shows competitive results. and investigate cases where the
proposed algorithm outperforms or under-performs current
methods both in precision and execution time.
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Fig. 1: Examples of Fast Moving Objects in real-world videos.

II. RELATED WORK

Video Object Tracking

Object tracking is a well-established field of research in
computer vision. Many methods have been proposed for
tracking single or multiple objects in video sequences. Namely
tracking by detection [6], [7], tracking by features [8], [9]
tracking by correlation [10] and others. All of the approaches
mentioned are based on either object detection using texture
information of the tracked object or features extracted from it.
This assumes that the object image contains some minimum
level of details. Also, many of the conventional trackers
perform best when the tracked object bounding boxes largely
overlap in the consecutive frames. Both of the mentioned
assumptions do not hold in sequences containing a FMO.

FMO Tracking

FMO tracking has been attracting the attention of re-
searchers lately. Initial work in this field was done in [1],
where the authors introduced the theme and proposed the
first tracker based on background subtraction. In the heart of
the method lies a tracker capable of tracking the background
changes. When the tracker fails a time-consuming re-detection
is executed to resume tracking.

Recently, interesting work was done in [2] where the
tracking problem was defined as a de-blurring optimization
problem. In another similar approach [4], authors show intra-
frame tracking capability of the de-blurring approach. Albeit
the results are promising in both mentioned publications, these
methods focus on videos with static camera and background,
and additionally, their algorithm cannot be used in real-time
due to the high processor time demands of the optimization
algorithm.

Deep Semantic Segmentation

There are many deep segmentation methods currently avail-
able, mainly based on encoder-decoder architecture. In [11]

researchers introduced an interesting approach by using mul-
tiple stacked deconvolution blocks. Impressive results were
achieved in DeepLabv3+ [12], where authors use the depth-
wise separable convolution to both Atrous Spatial Pyramid
Pooling and decoder modules to achieve high scores in both
the PASCAL VOC 2012 and the Cityscapes datasets. Because
the solutions often incorporate very deep networks, many of
them have longer inference times [11] or are GPU memory
demanding [13].

III. METHOD

First we give a brief introduction to the overall framework
of the proposed method, then we investigate various strategies
and finally, we describe the proposed method in depth.

A. Overview

The work of [1] inspired us to tackle the problematic cases
on which the method performs poorly, namely tracking of
very small objects. Larger moving objects in sports videos
are often sharp because modern acquisition devices have short
exposure and the cameraman actively tracks the object of
interest. However for small objects that are moving very fast,
typically balls in sports such as tennis, softball, or badminton,
this is not true.

After some failed attempts to solve the tracking of small
FMOs by conventional means, we have turned our attention
towards deep learning methods. Learning-based approaches
achieve top results in many segmentation tasks in terms of both
computation time and precision. We researched several state-
of-the-art segmentation networks and we achieved the best
results with u-net-type architecture with inception bottleneck
modules called ENet [14]; refer to Figure 3 for more details.

We choose the publicly available FMO dataset as a bench-
mark, to be able to compare the performance of the proposed
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Fig. 2: Examples of FMO images evaluated on publicly available DeepLab3+ [5] semantic segmentation framework. State-of-
the-art segmentation methods are not trained for detecting FMOs.

approach with the original method [1]. We perform prepro-
cessing of the dataset in such a way that the size and color of
the foreground resembles the foreground used for training.

Since our ultimate goal is tracking in real-world sports
videos, we also include YouTube sports videos for perfor-
mance evaluation. However, they are not annotated and so we
provide only visual assessment.

Network | mAP mAR F1
Faster-RCNN with ResNet-50 332 15.5 21.2
ENet 36.5 52.7 41.2

TABLE I: Performance comparison between Enet segmentation and modified Faster-
RCNN network as measured on bounding boxes. Metrics used in the table are standard
Pascal mean Average Precision @0.5 and mean Average Recall @0.5

B. Network architecture

To decide the main direction of our research, we tested two
current machine learning approaches: Semantic Segmentation
and Object Detection.

After running performance and metric assessment tests
of several segmentation frameworks, we opted for U-Net
architecture called ENet [14] consisting of inception blocks
proposed in [15]. The initial choice of this network design
was based on the inference speed and performance on our
benchmark dataset.

The choice of Object Detection network was based on study
published in [16] revealing the Faster-RCNN [17] network

with ResNet-50 [18] feature extractor backbone as a well
balanced framework in terms of speed and accuracy.

ENet provide binary segmentation masks and RCNN bound-
ing boxes. Both networks were adjusted to facilitate 15-
channel input images to be able to process 5-frame sequences,
initialized with publicly available weights pre-trained on Im-
ageNet [19] and trained using our synthetic data generator.
The performance of both networks was evaluated on the FMO
dataset using mean Average Precision and mean Average
Recall with Intersection over Union (IoU) threshold set to
0.5. See the performance comparison Table I. To compare
both approaches, results of ENet were converted to bounding
boxes by calculating axis-aligned rectangles circumscribing
connected components in the segmentation masks.

Since ENet outperforms RCNN, we decided to base our
approach on semantic segmentation.

The basic idea behind the FMO trace segmentation is
training the network to recognize prolonged objects with no
apparent texture, typically of white color to resemble most
common sports balls. This represented in our opinion the
majority of the problematic sports videos.

Single image segmentation, which is the standard input
scenario for most of the segmentation methods, performs
poorly in detecting FMOs and produces a large number of false
positives. The overall measured Precision, Recall and F1 score
(as defined in Section IV-B) was 4.3, 4.3 and 3.6, respectively.
This is expected, as the proposed network learns to recognize
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Fig. 3: Processing pipeline: During the training phase (top section) the sequences are dynamically synthesized using pre-
processed video sequences, foregrounds, and path generator. Next, the frames are concatenated and input the network as a
15-channel image. During the inference phase (bottom part) the sequences are segmented by the network and Kalman based

tracker is used for path prediction.

bright smears and therefore falsely segment any bright spots or
lines in the image. In other cases, the model learns to ignore
white lines, if they are in scene backgrounds, and does not
detect FMOs at all. To overcome these limitations, we propose
to use a sequence of consecutive frames as a network input.
The idea is that image sequences improve trace consistency in
time. We tested several multi-frame approaches, namely three
and five frames either concatenated along color channels or as
a full 4D input to the 4D network. Even though this approach
is mathematically equivalent to the channel concatenation, it
can provide faster learning and less false positives. The best
results were achieved by using five consecutive video frames
concatenated along color channels, i.e. the input to the network
is a single 15-channel image; see Figure 3.

In our experiments, the original ENet architecture produced
segmentation images with insufficient segment border preci-
sion. To address this problem, we have replaced the stan-
dard max-pooling with max-pooling-with-argmax and used
the argmax values in corresponding upsampling unpooling
layers. From this modification, more detailed segmentations
were obtained.

The images used for training are synthetic FMO sequences
based on real-world sports background images. Because every
deep network is only as good as the dataset used for training,
we have created a tool for generating synthetic sequences.
This approach has proven to be very effective as the system is

able to successfully segment fast-moving objects in real-world
images, even though the network has never seen any during
the training.

The majority of the state-of-the-art deep learning methods
heavily depends on re-using the learned parameters from their
successful predecessors. In our case, transfer learning led to
worse performance. We hypothesize that this is due to the
specificity of our task, which cannot exploit learned convolu-
tion kernels from other problems based on the extraction of
texture features.

C. Dataset generator

Due to the nonexistence of a large annotated FMO dataset
for training, we propose our own FMO sequence generator that
obeys Newton’s laws of motion. First, we collected YouTube
sports videos which we used as a background. To eliminate any
false fast-moving object from the videos, we have generated
sequences of median images. Every frame of such a sequence
was calculated as a median of 5 consecutive frames. Next, we
created a foreground generator based upon selected ball im-
ages from a variety of sports. Finally, we designed a physically
plausible generator of trajectories, including random bounces
or occlusions; see examples in Figure 5.

In the core of the image synthesizer is a random motion
path generator that takes into account a fully simulated camera
(including CCD size resolution and aperture properties) as well
as motion of the simulated object in space. The generator
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Fig. 4: Generator pipeline of synthetic images. The motion is
generated in sub-frame steps, which are consequently split to
5 frames with shutter closure gap emulation. The trajectory for
a given frame is convolved with the foreground to form the
blurred motion and the resulting foreground image is alpha-
blended with the background according to (1).

begins from a random initial speed vector and then iterates
in time simulating the motion. For better plausibility, the
gravitational acceleration is taken into account too. Sudden
velocity changes (e.g. hit from a racket), bounces (from wall,
ground or table) occlusions and sudden motion stops are
simulated as well. The processing pipeline scheme is depicted
in Figure 4.

The generated trajectory is then convolved with the fore-
ground to create the motion trace and finally inserted as a
weighted sum into the sequence of background images using

the following formula.

Ii(xz) = [P, * bsF)(x) + (1 — [P, « M])B(z), (D)

where P; is the path PSF normalized to sum to 1, F(X)
is the random foreground image, by is the overexposure
brightness factor (described in next paragraph), M (z) is the
foreground indicator function and B(z) is the background
image. The used foreground image is created as a random
selection of real-world white ball images that are tinted in
random bright color and resized to a pre-defined range of
foreground sizes.

Another aspect that had been taken into account is fast-
moving object overexposure. This is due to the "HDR’ effect of
the moving object. The overall brightness of the object in one
frame can, and often is, brighter than the maximum brightness
point in the rest of the image. Typically what every camera
has to solve is the conversion of high brightness range of the
world to the quantized 255 brightness values. This is done
by several techniques that are out of the scope of this article.
This conversion usually includes some form of clipping of the
brightness levels which are too high to optimize overall image
brightness balance. In a typical image without any FMO the
overexposed parts of the image are clipped to the maximum
allowed brightness. But, in the case of a fast-moving object,
the true brightness of the object when stopped is an integration
of its brightness along the object trajectory. In other words, the
overall brightness of the object is spread out along the object
path so it does not exceed the maximum pixel brightness of
any point in the image. Therefore, it is often the case, that the
true brightness of the object, when aggregated along the path,
exceeds the maximum brightness of the image, especially with
the white ball. If this effect would not have be taken into the
consideration, the rendered object would seem very dim in
the resulting image. This led us to set the factor of absolute
brightness of the foreground between 0.8 - 1.4 of the maximum
brightness.

As the ground truth mask image used in the training
phase, we use the foreground path mask corresponding to
the middle frame of the sequence. It is calculated again as a
foreground mask convolved with the trajectory corresponding
to the middle frame ([P * M]); see Figure 3 for illustration.

D. Tracking

On top of the segmentation pipeline, we have implemented
a simple tracker. The tracker is responsible for final object tra-
jectory estimation. First, we select the blob which most likely
represents the tracking object. This is achieved by simply
selecting the largest connected component in the segmentation
image. For sequences containing many false positives, more
sophisticated logic should be applied. We used a weighted
composition of two measures: connected component size and
shape. Since we are looking for a prolonged object, we
use second central moments of the connected components to
estimate the prolongation.

Sequences of the bounding box positions are used by the
tracker to extrapolate the object trajectory. For frames with

10316



B

Fig. 5: Results of FMO synthetic data generator. The rightmost image shows example of small emulated bounce.

missing or too small blobs, we utilize a Kalman filter to
estimate the missing trajectory or predicting trajectories in
cases the object is lost or occluded. The output of the tracker
is a sequence of coordinates representing the estimated object
trajectory.

IV. EXPERIMENTS

In this section we present performance of the proposed
method and compare it to the original work [1]. We focus
our attention to real-world applications with both inference
speed and accuracy for small ball-like object detection.

A. Training

Initially, the network was trained on synthetic data with a
wide range of foreground parameters. We used the modified
ENet described in IIT using Adam optimizer, learning rate set
to 0.01 and exponential learning rate decay; weight decay set
to 2e —4; average cross-entropy loss function; 200k iterations.

During the second stage of the training, the model was fine-
tuned using the same architecture on a narrow size range of the
synthetic foregrounds. The initial learning rate was lowered to
0.001 and optimizer switched to SGD. The training session
ran for 50k iterations.

B. Evaluation

The proposed method was evaluated on the FMO dataset
[1], where it achieved comparable or better results than the
previously published method.

The performance criteria correspond to evaluation statistics
in the original paper. These are precision TP/(TP + FP), recall
TP/(TP + FN) and Fl-score 2TP/(2TP + FN + FP), where
TP, FP, FN is the number of true positives, false positive and
false negatives, respectively. A true positive detection has an
intersection over union (IoU) with the ground truth polygon
greater than 0.5 and an area larger than other detections. The
second condition ensures that multiple detections of the same
object generate only one TP. False negatives are FMOs in the
ground truth with no associated FP detection.

The results for both the original method and the proposed
approach are listed in Table II. We can conclude, that overall
mean Fl-score is slightly better for our method, as well as
mean recall. We avoid significant under-sizing of the resulted
segmentation of the FMO trace, which causes high precision
values over small recall value. Therefore, we argue that our
approach results are more balanced in terms of precision and
recall performance metrics.

The performance of the method reflects the purpose of our
algorithm. It performs well on sequences with small ball-
shaped objects moving fast relative to their size (ping-pong,
softball, tennis, and squash); see Figure 6. Poor performance
was recorded on sequences with foregrounds different from
balls (like darts or archery) and on sequences with low
background-foreground contrast (darts window and blue ball).
The method performs poorly on data with a larger size-
to-velocity ratio (frisbee and volleyball). Even though these
sequences are part of the FMO dataset, foregrounds on these
sequences are larger and are not moving faster than their
diameter, as per FMO definition in Section I.

Our approach is advantageous in the fact that the network
can be easily fine-tuned with image synthesizer setup for
another sequence type, such as particular background (i.e.
tennis tournament), particular foreground (i.e. yellow ball),
foregrounds of different sizes, etc. For comparison, we have
re-trained the network to detect foregrounds of bigger size and
slower motions. The results are in the most right section of
Table II. The segmentation network stopped to be sensitive to
smaller foregrounds, such as ping pong, squash, or tennis, and
starts to perform in cases with larger foregrounds, like frisbee
or volleyball.

C. Computational time

Another benefit of the ENet neural network is the short
inference time. The state-of-the-art approaches [2], [3], [4] are
based on foreground de-blurring and therefore are inherently
slow. In [4] authors state that the mean time is 4 seconds
per frame. Our method is capable of near real-time execution
while using a widely available graphics card, such as NVIDIA
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original work

Learning-based 1 Learning-based II

n Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1
volleyball 50 100 45.5 62.5 0 0 0 333 429 37.5
volleyball passing 66 21.8 10.4 14.1 20 16.2 17.9 85 98.1 91.1
darts 75 100 26.5 41.7 37 62.5 46.5 333 100 50
darts window 50 25 50 333 33.3 333 333 33.3 333 333
softball 96 66.7 154 25 83.3 83.3 83.3 54.5 66.7 60
archery 119 0 0 0 25 20 222 18.8 100 31.6
tennis serve side 68 100 58.8 74.1 66.7 76.9 71.4 353 85.7 50
tennis serve back 156 28.6 5.9 9.8 35.3 69.2 46.8 26.4 70 38.4
tennis court 128 0 0 0 333 40.8 36.7 25.5 58 35.5
hockey 350 100 16.1 277 24.1 86.7 37.7 20 91.7 32.8
squash 250 0 0 0 26 84.4 39.7 21.6 75.9 33.6
frisbee 100 100 100 100 0 0 0 94.7 94.7 94.7
blue ball 53 100 52.4 68.8 40 26.7 32 58.3 43.8 50
ping pong tampere 120 100 88.7 94 58.6 66.7 62.4 0 0 0
ping pong side 445 12.1 7.3 9.1 45.4 79.1 57.7 0 0 0
ping pong top 350 92.6 87.8 90.1 56 98.9 71.5 0 0 0
Average per frame 2476 53.7 31 35.5 38.3 68.5 47.2 21.7 49.7 27.8

TABLE II: Performance of the original CVPR2017 method [1] in comparison to the proposed method (method I - trained for smaller foregrounds; method II - trained for bigger
foregrounds). The results suggest the better overall performance of the trace segmentation in overall F1 performance score for method I.

Fig. 6: Examples of segmentation results on FMO dataset. Notice false positives caused by racket or players movements or

glass reflections.

video resolution average fps
864 x 1536 2
576 x 1024 4.7
430 x 768 8.6
324 x 576 11.8
216 x 384 23.1

TABLE III: Some examples of video inference times achieved using NVidia Tesla X
GPU.

GeForce 2080ti or similar. For more details refer to Table III,
where we summarize mean frame evaluation times for NVidia
Tesla P100 GPU with different image resolutions.

D. YouTube sport videos

We have created a tool that automatically downloaded more
than 900 000 YouTube sports videos to create a base of our
synthetic data generator backgrounds. Over 1800 of these
sequences contain ping-pong matches, which we used for
visual assessment of our framework. Although we measured
our performance on the FMO dataset, we also aim for good
performance on real wold sequences. Examples of ping-pong
sequence evaluation can be seen in Figure 7.
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Fig. 7: Images show evaluation examples of YouTube real-world ping pong sequences.

V. CONCLUSION

We have implemented a learning-based method that per-
forms near real-time detection and tracking of real-world fast
moving objects. The proposed approach overcomes limitations
of previous methods in this field, namely the long computation
time and difficulty to detect small and very fast objects. We
have introduced a synthetic physically plausible fast moving
object sequence generator, which we use for network training.
The simplicity of adapting the generator to another type of
foreground followed by network fine-tuning allows us to detect
foregrounds of different sizes and colors.

In the future work, we would like to focus on optimizing
the processing pipeline with respect to speed in order to
achieve true real-time performance in high-resolution videos
and automatically track all kinds of sports balls in video
streams. This can be further utilized in various applications
such as instantaneous ball speed detection, ball misses, or
detection of balls out of bounds.
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