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Abstract—A generic decision-making (DM) agent speci-
fies its preferences partially. The studied prescriptive DM theory,
called fully probabilistic design (FPD) of decision strategies,
has recently addressed this obstacle in a new way. The found
preference completion and quantification exploits that: IFPD
models the closed DM loop and the agent’s preferences by joint
probability densities (pds); I there is a preference-elicitation (PE)
principle, which maps the agent’s model of the state transitions
and its incompletely expressed wishes on an ideal pd quantifying
them. The gained algorithmic quantification provides ambitious
but potentially reachable DM aims. It suppresses demands
on the agent selecting the preference-expressing inputs. The
remaining PE options are: I a parameter balancing exploration
with exploitation; I a fine specification of the ideal (desired) sets
of states and actions; I relative importance of these ideal sets.
The current paper makes decisive steps towards a systematic
and realistic choice of such inputs by solving a meta-DM task.
The algorithmic “meta-agent” observes the user’s satisfaction,
expressed by school-type marks, and tunes the free PE inputs to
improve these marks. The solution requires a suitable formali-
sation of such a meta-task. This is done here. The proposed way
copes with the danger of infinite regress and the dimensionality
curse. Non-trivial simulations illustrate the results.

Index Terms—Preference elicitation, Adaptive, agent, Decision
making, Bayes’ rule

I. INTRODUCTION

An agent opting and using actions to meet its wishes1

solves decision making (DM) task. The choice of an optimal,
action-opting, strategy needs the quantification tailored to the
used DM theory. The adopted Bayesian paradigm [40] elicits
prior beliefs about relations in the closed-loop, formed by the
agent and its environment [13], [37], and updates them by
(extended) Bayes’ rule [4], [30], [38]. The minimum relative-
entropy principle [41] completes the probabilistic models.
The quantification of the agent’s wishes is a harder problem
as included humans: I poorly cope with multi-attribute DM
tasks [15]; I are prone to contradictions [18]; I spare the
deliberation effort on this DM subtask [20].

The paper continues in complementing the still-insufficient
support of the preference elicitation (PE). It deals with the
preference quantification for dynamic DM in the vein of [27]–
[29]. Similarly, as these works, it processes the state-transition
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1It means human, device or their group. “Preference” and “wish” serve us

as synonyms.

model and a semi-verbal expression of the agent’s wishes.
The processing delimits the ideal probability density (pd)
quantifying the agent’s wishes. It may initiate the usual PE
[12] and simplify the query-based PE [9], [14] as it reduces
the amount of tuned PE inputs.

The current paper additionally offers the user the opportu-
nity to express its satisfaction. This serves for adapting the
remaining wishes-quantifying inputs. The active querying and
processing of the agent’s answers [7] is here left aside.

The addressed PE serves to f ully probabilistic design
(FPD) of decision strategies [26]. FPD models preferences
by the ideal pd describing the desired pd of all thought
variables (called behaviour). The FPD-optimal strategy makes
the behaviour-modelling pd the closest one to its ideal twin.
Kullback-Leibler divergence (KLD) [32] expresses their close-
ness. Note that FPD has KL control [22], [44] as its particular
case. FPD also densely extends Bayesian DM [23] represented
by Markov decision process [11], [16], [19]. PE within FPD
consists of: I a translation of the agent’s wishes into a non-
empty set of imminent ideal pds; I a choice of the optimal
ideal pd that adds as little extra wishes or constraints as
possible; and I adaptation of inputs entering the previous
steps.

The last of the above PE steps is the main paper topic.
Layout: Sec. II recalls FPD, the used PE principle and its most
advanced elaboration. Core Sec. III describes meta-FPD with
this type PE applied to the tuning of free inputs quantifying
wishes. Sec. IV illustrates the theory by experiments. Sec. V
summarises the results and outlines open issues. The related
works are sampled throughout the text.
Notation: {{x}} marks the set of xs. It is a part of a real vector
space or of a set of pds. It is detailed if needed. := defines
by assigning. o marks optimum. i points to the ideal pd or set.
sansmath fonts mark mappings. ∝ is proportionality. ||f ||p :=[∫
{{x}} |f (x)|p dx

] 1
p

, p > 1, is Lp norm [39] of a real-valued
function f (x) on {{x}}. Integral notation also applies to discrete
x. x :=

∫
{{x}} dx is the volume (cardinality) of {{x}}. χ{{x}}(x)

is the indicator function of the set {{x}} at x. Arg min
x∈{{x}}

f (x) ⊂

{{x}} contains minimisers of f (x) (the existence is assumed).
A known initial state s0 is implicitly in all conditions. Small
letters concern the agent’s options. Their capital twins concern



the meta-DM task.

II. PRELIMINARIES

The material presented here should make the paper readable
without consulting papers [27]–[29] containing the used and
enriched theory.

A. DM via FPD

DM joins the agent and its environment into the closed-
loop. The agent uses actions at ∈ {{a}} 6= ∅ at time t ∈
{{t}} := {{1, . . . , t}}, t ≤ ∞. They influence transitions of the
(closed-loop) states st−1 ∈ {{s}} 6= ∅ to states st ∈ {{s}}. The
states and actions up to t form the (closed-loop) behaviour
b ∈ {{b}}. The agent selects actions via a randomised strategy
r ∈ {{r}} := {{(r(at|st−1), at ∈ {{a}}, st−1 ∈ {{s}})t∈{{t}}}}. The
pds r(at|st−1) (r -factors) are the decision rules forming the
strategy r . The r -dependent (closed-loop) model is the joint
pd cr (b) of behaviours b ∈ {{b}}. The chain rule for pds [35]
and the state meaning imply

cr (b) =
∏
t∈{{t}}

m(st|at, st−1)r(at|st−1), (1)

b ∈ {{b}} := {{b = (st, at)t∈{{t}}}}.

The model m ∈ {{m}} := {{(m(st|at, st−1), st, st−1 ∈
{{s}}, at ∈ {{a}})t∈{{t}}}}, consists of conditional pds
m(st|at, st−1) (m-factors) describing the state transitions.

The m-factors are known. Modelling [6] with Bayesian
learning [35] provide them. The state thus includes the used
statistic values [17].

FPD quantifies the agent’s wishes by an ideal (closed-loop)
model. It is a joint pd ci(b), b ∈ {{b}}, which has high values
on preferred behaviours, small on undesired ones and zero on
forbidden behaviours. It factorises as the pd (1)

ci(b) =
∏
t∈{{t}}

mi(st|at, st−1)r i(at|st−1), b ∈ {{b}}. (2)

The mi- and r i-factors model the desired state transitions and
ways of the action choices. The FPD-optimal strategy ro ∈ {{r}}
minimises KLD D(cr ||ci) of cr to ci

ro ∈ Arg min
r∈{{r}}

D(cr ||ci)

:= Arg min
r∈{{r}}

∫
{{b}}

cr (b) ln

(
cr (b)

ci(b)

)
db. (3)

The next proposition provides the FPD-optimal strategy (3).
Its general case is in [26].

Proposition 1 (FPD): The backward, t = t , t − 1, . . . , 1,
functional recursion on h(st) ∈ [0, 1] with h(s t ) := 1 and
st ∈ {{s}}, at ∈ {{a}},

h(st−1) :=

∫
{{a}}

r i(at|st−1) exp[−d(at|st−1)] dat (4)

d(at|st−1) :=

∫
{{s}}

m(st|at, st−1) ln
[ m(st|at, st−1)

h(st)mi(st|at, st−1)

]
dst

gives the optimal ro-factors and the value functions
− ln(h(st−1)), [5]. It holds

ro(at|st−1) =
r i(at|st−1) exp[−d(at|st−1)]

h(st−1)
, (5)

min
r∈{{r}}

D(cr ||ci) = − ln(h(s0)).

B. Optimal PE Principle and Its Use

The ideal pd ci (2) quantifies the agent’s wishes. Thus, PE
consists of the choice of the pd cio that expresses them in the
best way. The, generically incomplete, description of wishes
delimits the set {{ci}}

{{ci}} := {{ideal pds ci(b), b ∈ {{b}}, (6)
meeting the agent’s preferences}}.

The set (6) may be empty due to the agent’s inconsistencies or
may contain many pds. It may also depend on optional inputs.
Thus, PE consists of an amenable choice of:
I the non-empty set {{ci}} (6) that copes with inconsistencies
of the agent’s wishes;
I the optimal ideal pd cio from this set;
I the optional inputs.

The last choice is the main topic of this paper treated in Sec.
III. Here, we recall results solving the initial pair of steps. For
{{ci}} 6= ∅, which is guaranteed below, the PE principle [27]
recommends the choice

cio ∈ Arg min
ci∈{{ci}},see (6)

[
min
r∈{{r}}

D(cr ||ci)

]
. (7)

Obviously, it adds no extra wishes or constraints to those
expressed by the agent.

The minimisations over ci-factors (ci(st, at|st−1) =
mi(st|at, st−1)r i(at|st−1)) at any time t ∈ {{t}} and for any
state st−1 are formally identical. Thus, the description of
PE can hide t, st−1 and deal with m(s|a) := m(st =
s|at = a, st−1), mi(s|a) := mi(st = s|at = a, st−1),
r(a) := r(at = a|st−1), r i(a) := r i(at = a|st−1) and
h(s) := h(st = s), st−1, st, s ∈ {{s}}, at, a ∈ {{a}}. The optimal
cio-factor, see (4), (5), (7), is then

cio ∈Arg max
ri∈{{ri}}

[
max

mi∈{{mi}}

∫
{{a}}

r i(a) exp[−d(a)] da

]

d(a) =

∫
{{s}}
m(s|a) ln

(
m(s|a)

h(s)mi(s|a)

)
ds,

d(a) ∈

[
−
∫
{{s}}

m(s|a) ln[h(s)] ds,∞

]
(8)

with h : {{s}} → [0, 1] gained by the previous design step in
(4). The evaluation (8) runs over a cross-section {{mi-factors}}
of {{ci-factors}} given by an r i-factor. Then, it runs over
{{r i-factors}} for which ci = mir i-factor is a pd on {{s}} and
{{a}} in

{{ci-factors}} := {{mir i = ci-factor (9)
meeting the agent’s preferences}}.



The next proposition, proved in [29], provides the optimal
ideal mio.

Proposition 2 (Optimal mio-Factor): Let an r i ∈ {{r i}} define
a non-empty cross-section {{mi}} of (9). Let mi(s|a) ∈ {{mi}}
exist such that d(a) <∞, ∀a ∈ {{a}}. Then, the optimal ideal
mio-factor (8) minimises d(a), s ∈ {{s}}, a ∈ {{a}},

mio(s|a) ∈Arg max
mi∈{{mi}}

∫
{{a}}

r i(a) exp[−d(a)] da

=Arg min
mi∈{{mi}}

d(a). (10)

The next choice treats universally desirable r i-factors.
The support supp[ro] := {{a ∈ {{a}} : ro(a) > 0}} of the

opted ro-factor is to be included in the action set {{a}} allowed
by the agent. The formula (5) implies supp[ro] j supp[r i].
Thus, only the ideal r i-factors

r i ∈ {{r i}} := {{r i : supp[r i] = {{a}}}}, (11)

keep actions in {{a}} and exclude none. Thus, (11) is the generic
constraint on r i.

The next proposition, proved in [29], construct r io in a
subset of (11) that can approximate the optimum on (11)
arbitrarily well.

Proposition 3 (Optimal r io-Factor Meeting (11)): Let {{r i}}
be given by p > 1

{{r i}} := {{r i : supp[r i] = {{a}}
and ||r i||p <∞}}, while a <∞, (12)

and let the assumptions of Prop. 2. hold. Then, the optimal
ideal r io-factor reads

r io(a) ∝ χ{{a}}(a) exp[−νdo(a)], ν :=
1

p− 1
, (13)

do(a) :=

∫
{{s}}

m(s|a) ln

(
m(s|a)

h(s)mio(s|a)

)
ds

(10)︷︸︸︷
≤ d(a),

where χ denotes the set-indicator function.
The r io-factor (13) is in (12) and thus it meets (11). For

p→ 1+ ⇔ ν →∞, the set (12) fills arbitrarily tightly the set
(11). Thus, the ideal rule (13) can be arbitrarily close to the
optimum on (11).

The optimal ideal r io-factor is uniquely given by mio

(symbolically, r io = r io(mio)) and by the opted ν > 1, see
(13). This allows us to meet the specific agent’s wishes by
opting mio ∈ {{mi}} restricted by them. The following agent’s
generic wish

Reach ideal sets ∅ 6= {{si}} ⊆ {{s}}, ∅ 6= {{ai}} ⊆ {{a}} ! (14)

is supported. Its adopted quantification guarantees that
{{ci-factors}} 6= ∅: (14) is taken as the wish to assign high
probabilities to the given sets of ideal states {{si}} and of
ideal actions {{ai}} (14). The probabilities arise by closing the
loop of the given, un-mutable, state-transition model with the

optimal ideal decision rule r io = r io(mio). This determines
the optimum (13)

r io(mio) ∈ Arg max
mi∈{{mi}}

[∫
{{a}}
ρ(a)r i(a) da

]
(15)

:= Arg max
mi∈{{mi}}

[∫
{{a}}

[ ∫
{{s}}
χ{{si}}(s)m(s|a) ds+wχ{{ai}}(a)

]
r i(a) da

]
.

The weight w ∈ {{w ≥ 0}} assigns the importance of acting
in {{ai}} ⊂ {{a}} relatively to reaching {{si}} ⊂ {{s}}. The sets
{{si}}, {{ai}} is to be “reachable” on {{a}} so that

ρ(a) > 0 on {{a}}. (16)

A few propositions, proved in [29], lead to a generic solution
of (15) (and to the special “uniform” case, which is un-
presented, but covered by Alg. 1). The solution uses

ā ∈ Arg max
a∈{{a}},see (15)

[ρ(a)] (17)

do(ā) := max

[
0,max
a∈{{a}}

∫
{{s}}
m(s|a) ln

[
ρ(a)

ρ(ā)h(s)

]
ds

]
.

Proposition 4 (mio Meeting (15) for Generic m(s|a)): Let
m(s|a), a ∈ {{a}}, be a non-uniform pd on {{s}} and conditions
of Prop. 3 hold. Then, the mio-factor meeting (15) reads

mio(s|a) =
m(s|a) exp[−e(a)m(s|a)]∫

{{s}}m(s|a) exp[−e(a)m(s|a)] ds
(18)

well-defined for s <∞. (19)

The real valued e(a) in (18) is the existing solution of the
equation L(e(a)) = R(a), a ∈ {{a}}. The left- and right-hand
sides of this equation are, see (17),

L(e(a)) := e(a)Λ(a)+ln

[∫
{{s}}
m(s|a) exp[−e(a)m(s|a)] ds

]
,

Λ(a) :=

∫
{{s}}
m2(s|a) ds > 0 (20)

R(a) :=

∫
{{s}}
m(s|a) ln(h(s)) ds+ do(ā) + ln

[
ρ(ā)

ρ(a)

]
≥ 0.

C. Algorithm for Finite b

Alg. 1 summarises the theoretical results for closed-loops
with a finite amount of behaviours. It makes the past state
s̃ = st−1 explicit.

The algorithm is well-applicable when using Bayesian es-
timation of unknown but time-invariant values of transition
probabilities θ := (θs|a,s̃)s,s̃∈{{s}},a∈{{a}}. The parametric model
m(st|at, st−1, θ) := θst|at,st−1

belongs to exponential family
[2] and makes Dirichlet’s prior pd self-reproducing. Its degrees
of freedom counting the observed transitions st−1 = s̃ ∈ {{s}},
at = a ∈ {{a}} to st = s ∈ {{s}} form the sufficient statistic
[25]. The randomised FPD actions allow to use the certainty-
equivalent strategy that replaces unknown θ by its current point
estimate. With a forgetting [31], the agent becomes adaptive.
As usual, the certainty-equivalent strategy is implemented in



the moving-horizon set-up: the strategy is re-designed when-
ever the parameter estimate is updated. The design horizon
is to cover environment dynamics (length of its transients).
Extensive references in [33] are the good starter for an updated
insight into the used approximate strategy.

Algorithm 1 FPD with PE for Behaviours with a Finite
Amount of Realisations
Inputs

X Sets of states {{s}}, actions {{a}}, ideal states {{si}} ⊂ {{s}}
and ideal actions {{ai}} ⊂ {{a}}
X Relative weight w ≥ 0 of {{si}}, {{ai}} (15), Model
m(s|a, s̃), s, s̃ ∈ {{s}}, a ∈ {{a}}
X Design horizon t , exploration controlling ν > 0 & the
function h(s) = 1, ∀s ∈ {{s}} (4)

Evaluation of h-independent variables
For s̃ ∈ {{s}} do

For a ∈ {{a}} do
ρ(a|s̃) =

∑
s∈{{si}}m(s|a, s̃) + χ{{ai}}(a)w (15),

Λ(a|s̃) =
∑
s∈{{s}}m2(s|a, s̃) (20)

end a ∈ {{a}}
ā(s̃) ∈ Arg maxa∈{{a}} ρ(a|s̃), ρ̄(s̃) = ρ(ā(s̃)|s̃)

end s̃ ∈ {{s}}
Design cycle for t = t , t − 1, . . . , 1

For s̃ ∈ {{s}} do
do(ā(s̃)) = max

{
0,

maxa∈{{a}}

[∑
s∈{{s}}m(s|a, s̃) ln

[ ρ(a|s̃)
ρ̄(s̃)h(s)

]] }
For a ∈ {{a}} do

do(a|s̃) = do(ā(s̃)) + ln
(

ρ̄(s̃)
ρ̄(s̃)

)
If m(s|a, s̃) is not uniform

R(a|s̃) = do(a|s̃) +
∑
s∈{{s}}m(s|a, s̃) ln(h(s)) (20)

Find e(a|s̃) in R(a|s̃) = e(a|s̃)Λ(a|s̃)
+ ln

(∑
{{s}}m(s|a, s̃) exp[−e(a|s̃)m(s|a, s̃)]

)
Set mio(s|a, s̃) ∝ m(s|a, s̃) exp[−e(a|s̃)m(s|a, s̃)] (18)

else
Choose o(s) such that

∑
s∈{{s}} o(s) = 0 [29]

Find e(a|s̃) in ln
[∑

s∈{{s}}
exp[−e(a|s̃)o(s)]

s

]
=

do(ā(s̃) + 1
s

∑
s∈{{s}}ln

[
h(s)ρ̄(s̃)
ρ(a|s̃)

]
Set mio(s|a) ∝ exp[−e(a|s̃)o(s)].

end if on uniform m
r io(a|s̃) = exp

[
− νdo(a|s̃)

]
(13)

end a ∈ {{a}}
r io(a|s̃) = rio(a|s̃)∑

{{a}} rio(a|s̃) , a ∈ {{a}} (13)

n(s̃) =
∑
a∈{{a}} r io(a|s̃) exp[−do(a|s̃)],

ro(a|s̃) = exp[−(ν+1)do(a|s̃)]
n(s̃) , a ∈ {{a}} (4)

end s̃ ∈ {{s}}
h(s) = n(s), ∀s ∈ {{s}} (4)

end of the design cycle
Outputs All optimal ideal mio, r io and ro-factors

III. FEEDBACK VIA META-FPD WITH PE

The recalled DM with PE, referred as the basic DM, deals
with two types of inputs:
X those directly describing the basic DM, which include:

I state {{s}} and action {{a}} sets;
I wishes-expressing ideal sets {{si}} ⊂ {{s}}, {{ai}} ⊂ {{a}};

X more technical, strategy-influencing, inputs that include:
I the weight w ≥ 0 balancing the relative importance

of ideal sets, see (15);
I the scalar ν > 1 balancing exploitation with exploita-

tion (duality, [17], [33]).
Fine modifications of ideal sets {{si}}, {{ai}} or the design

horizon t are other potential inputs of Alg. 1. For simplicity,
the presentation focuses just on the pair w, ν. Its optimal
choice depends on: I the subjective agent’s preferences; I the
agent’s attitude to the basic DM; I emotions, etc., all together
on the agent’s mental state. The dependence is complex and the
mental state can hardly be directly measured and quantified.
Thus, it is necessary to relate the optional inputs to the
explicitly expressed user’s satisfaction. The agent, referred to
as the user in this case, is asked to judge the DM quality
reached for various choices of inputs. This is the domain
of classical PE [12] that often elicits preferences about a
static DM and interactively queries the agent. Even advanced
versions, represented by [7], become cumbersome in the
targeted basic dynamic DM. This makes us adopt the next
user-driven way that consists of formulating and solving an
appropriate FPD meta-task.

The user assigns (satisfaction) marks, serving as the (meta)
state ST ∈ {{S}}, to the behaviour caused by the strategy,
designed via Alg. 1 for trial values of the optional inputs
(here, (w, ν)). Their changes AT are as the (meta-)action.
The actions are generated by (meta-)strategy gained by Alg.
1. It runs more slowly than the basic DM, T ∈ {{T}} :=
{{T̄ , 2T̄ , . . . ,}} ⊂ {{t}} given by a step T̄ > 1. The applied zero-
order holder keeps the latest agent’s marking as the current
state. This makes the agent quite free and allows the agent to
stop the interactions according to its will.

This simple idea has to cope with the possible infinite
regress, i.e. Alg. 1 at meta-level needs meta-inputs opted via a
meta-PE, etc. Also, the curse of dimensionality [3] endangers
applicability as the opted inputs are multiple and continuous-
valued. The following way counteracts both obstacles.

The design horizon of the implemented certainty-equivalent
strategy is to cover dominating dynamics of the closed-loop.
This makes this horizon the natural smallest value of T̄ . Its
multiples can be used if this rate is too high for the agent’s
marking. The use of a zero-order holder copes with the ex-
pected irregularity of the agent’s responses. It makes realistic
the time-invariance of the model M(ST |AT ,ST−T̄ , Θ) :=
ΘST |AT ,ST−T̄

needed for learning this meta-model, cf. the
beginning of Sec. II-C.

The choice of the ordinal scale of marks {{S}} :=
{{1, . . . , S := 5}} suffices for expressing “satisfaction degree”.
A rich, cross-domain, experience, e.g. in marketing [8] or in



European Credit and Accumulation System, confirms this. The
mark S = 1 is taken as the best one, which unambiguously
defines the ideal set {{Si}} := {{1}}.

By construction, the outcomes of the basic DM depend
smoothly on the discussed inputs. Thus, changes A :=
(∆w, ∆ν) of inputs (w, ν) can be selected in a finite set
{{A}} := {{(∆w, ∆ν)}} of discrete values. The natural flexible
options are

∆w ∈ {{− w̄, 0, w̄}}, ∆ν ∈ {{− ν̄, 0, ν̄}}, w̄, ν̄ > 0. (21)

Alg. 1 is to guarantee that opted inputs stay within their
admissible ranges (w ≥ 0, ν > 0). The used simple clipping
at boundaries of (21) seems to suffice. No other demands exist
with respect to action. Thus, {{A}} = {{Ai}} and W = 0 (meta-
twin to w in (15)). The last input to the meta-use of Alg.
1 is the counterpart of ν. This input cares about exploration
that has to be stimulated at both levels. It makes no sense to
choose a different value at the meta-level. Thus, ν is common
at both levels: a slightly delayed value νT−1 is at disposal
when designing the new one.

The appearance of T̄ , w̄, ν̄ demonstrates the danger of
infinite regress. At present, it is cut by force and they are
chosen heuristically. They, however, cover, the first step in a
conceptual solution that: I lets appear only meta-inputs that
have a weak influence on results; I tunes them via a universal
adaptive minimisation of the mismodelling error [24].

IV. EXPERIMENTS

Experiments primarily illustrate the presented theory. An
extensive Monte Carlo study is under preparation and will be
published elsewhere.

A. Common Simulation and Evaluation Options

a) Simulated environment: was chosen to be 15×7×15
given by s = 15 and a = 7. It was created by learning the
transition pd p(st|at, st−1). 105 real values yt stimulated by
independently generated discrete actions in {{a}} := {{1, . . . , 7}}
were used. The states st ∈ {{s}} := {{1, . . . , 15}} were gained
via an affine mapping of discretised values of the real-valued
yt generated by (y0 = 0)

yt = 0.99yt−1 + 0.05at − 0.125 + 0.05εt.

There, εt is the white, zero-mean, normal noise. It has unit
variance. The stationary expected level s ≈ 8 for action a ≈ 4
is interpreted as the zero ”spent energy”.

b) Experiments:: DM results without and with the user’s
control were compared. DM without the user control was the
basic DM with no meta-level and wishes expressed by the ideal
sets {{si}}, {{ai}} and by fixed options w, ν. DM with the user’s
control solved the basic DM supported by the second-layer
implementing the solution of the meta-DM task as described
in Sec. III. The DM with user’s control gave the user the
chance to express its satisfaction every ten steps, T̄ = 10.
The satisfaction is quite subjective as it is demonstrated by
presenting selected results for two different users, referred,
1st and 2nd user, respectively. Experimental conditions (see

below) were set to make the results comparable. The users
were informed about the key common conditions, i.e. the price
paid for the respective action values, see Table I.

TABLE I
PRICE PAID FOR INDIVIDUAL ACTION VALUES

action 1 2 3 4 5 6 7
price 3 2 1 0 1 2 3

c) Experimental conditions:: Alg. 1 is used in the loop
closed with the above environment.

Fixed options in all experiments were:
• the initial state s0 = 1 and the seed of pseudo-random

generator were reset to a common value in each experi-
ments;

• the simulation length was 500 steps;
• sets of the ideal (desired) states {{si}} and actions {{ai}}

were fixed;
• the models (at both levels) were recursively estimated

and the certainty-equivalent strategies with the receding
horizon 100 were used;

• the prior statistics used in estimation determined uniform
pds;

• e = 1.2∗ones( a , s ) initiated the search for e(.), Prop.
4;

• p = 2⇔ ν = 1
p−1 = 1 was used in the cases without the

user’s control;
• the allowed changes of (w, ν) (21) were fixed to w̄ =
ν̄ = 0.1 in the cases with user’s control.

The options distinguishing experiments were:
• user’s control applied or not;
• the fixed values of w (15) in the cases without the user’s

control;
• the 1st or 2nd user expressed its satisfaction in the cases

with the user’s control.

B. Decision making without the user’s control

1) Experiment 1.:
a) Experimental conditions: The user’s wish is {{si}} =

{{7}} an no extra wish is expressed on actions, {{ai}} = {{a}}.
b) Discussed results: The results are in Fig. 1. The

desired state occurred the most often as we wanted and
expected. All action values were realised with no extreme
dominance of one value.

2) Experiment 2.:
a) Experimental conditions: The user’s wish is {{si}} =

{{7}} while requiring the actions to be in “zero energy” set
{{ai}} = {{4}}. The weight value w = 0.3 (15) was fixed to
express the latter wish.

b) Discussed results: The results are in Fig. 2. As it can
be seen, the desired state has not occurred as often as in Exp. 1
due to the additional wish on actions. For w = 0.3, the desired
action occurred the most often and the number of the desired
action is much higher than in Exp. 1. This shows exactly what
we wanted and expected.



(a) States for {{si}} = {{7}}, {{ai}} = {{a}}
w = 0

(b) Actions for {{si}} = {{7}}, {{ai}} = {{a}}
w = 0

Fig. 1. Exp. 1: states and actions in DM without user’s control and no wish
on actions.

(a) States for {{si}} = {{7}}, {{ai}} = {{a}}
w = 0.3

(b) Actions for {{si}} = {{7}}, {{ai}} = {{a}}
w = 0.3

Fig. 2. Exp. 2: states and actions in DM without user’s control and with a
wish on actions.

3) Experiment 3.:

a) Experimental conditions: The user’s wish is {{si}} =
{{7}} while requiring the actions to be in “zero energy” set
{{ai}} = {{4}} as in Exp. 2. The extreme weight w = 10 was
tried.

b) Discussed results: The results are in Fig. 3. As
expected the target state {{si}} = {{7}} is reached less often than
in the previous case. The “harmonised” state {{8}} is visited
more often than before. The stress on the desired actions is
surely too high. It is generally dangerous as the found strategy
lacks the explorative capability. The same dangerous behaviour
was observed for all w ≥ 1.

(a) States for {{si}} = {{8}}, {{ai}} = {{4}}
w = 10

(b) Actions for {{si}} = {{8}}, {{ai}} = {{4}}
w = 10

Fig. 3. Exp. 3: states and actions in DM without user’s control and with a
hard wish on actions

C. Decision making with the different user’s control

1) Experiment 4.:
a) Experimental conditions: The user’s wish was {{si}} =

{{7}}, {{ai}} = {{4}}. Neither the weight w nor ν were fixed and
the 1st user marked the seen closed-loop behaviour.

(a) States for {{si}} = {{7}}, {{ai}} = {{4}}

(b) Actions for {{si}} = {{7}}, {{ai}} = {{4}}

Fig. 4. Exp. 4: states and actions in DM with the 1st user control

b) Discussed results: The results are in Fig. 4. As it
can be seen the preferred state occurs most often. Compared
to Exp. 1. without user’s control, Experiment 4. gives better
results.

Time courses of states, actions, weights w, exploration pa-
rameter ν and user’s marks are in Figs. 6, 7. The corresponding
discussion is there.

2) Experiment 5.:
a) Experimental conditions: The user’s wish was {{si}} =

{{7}}, {{ai}} = {{4}}. Neither the weight w nor ν were fixed and
the 2nd user marked the seen closed-loop behaviour.

b) Discussed results: The results are in Fig. 5. They
show how subjective individual preferences influence them.



(a) States for {{si}} = {{7}}, {{ai}} = {{4}}

(b) Actions for {{si}} = {{7}}, {{ai}} = {{4}}

(c) States for {{si}} = {{7}}, {{ai}} = {{4}}

(d) Actions for {{si}} = {{7}}, {{ai}} = {{4}}

Fig. 5. Exp. 5: states and actions in DM with the 2nd user control

Objectively, this user paid a higher price, see Table II, but
it did not get the desired state {{si}} = {{7}} as often as
the 1st one. Time courses of states, actions, weights w,
exploration parameter ν and user’s marks are in Figs. 6, 7.
The corresponding discussion is there.

D. Comparison of costs and responses in different experiments

Table II shows the price paid for actions in all experiments.
It confirms expectations, including the desirable influence of
users. The 1st user paid less than the 2nd one and less when no
wish on actions is expressed. A (costly) expert’s effort leading
to a reasonable static compromise with w = 0.3 is possible.

a) Discussed results: Fig. 6 shows the evolution of the
parameters and marks for both users. The 1st user was more
consistent with his marking strategy. The marking by the 2nd

user was more volatile: it gave almost every time a different
mark. Fig. 6. Fig. 7 complements these trajectories by the
time evolution of the states and actions. It can be seen that
the marking strategy is more consistent for the 1st user. On
the other hand, the parameter w stabilized faster for the 2nd

user, but its paid price was higher, see Table II.

TABLE II
THE PRICE PAID FOR ACTIONS IN ALL EXPERIMENTS

Exp. no Opted Parameters Price
1 w = 0, ν = 1 576
2 w = 0.3, ν = 1 134
3 w = 10, ν = 1 0
4 1st user 350

5 2nd user 610

V. CONCLUDING REMARKS

The paper advances the completion and quantification of
preferences within the fully probabilistic design of decision
strategies. The paper adds feedback that optimises optional
inputs within the optimal ideal closed-loop model cio. It needs
as inputs: I the set of allowed actions; I specification of
the desired state and actions sets; I the on-line satisfaction
marking by the user that judges behaviour improvements
caused by changes of exploration option ν and of the scalar
weights w balancing importance the ideal states and actions;
I online learnt and adapting the state-transition model.

The solution approaches the dreamt learning of preference
[36]. It is worth stressing that the quantified preferences
are both ambitious and realistic. Globally, it contributes to
universal [21] and human-centric artificial intelligence [10].

The presented research is an open-ended story, which surely
requires to deal with:
X collecting experience with our solution, initially, via

extensive Monte Carlo studies;
X dimensionality curse connected with other wishes, say,

balancing importance of state entries as needed in multi-
attribute DM [1];

X counteracting the danger of infinite regress via [24] and
thus challenging the claim that the quest for an absolute
optimality is unrealistic [42];

X connection of the treated preference elicitation with an
inattention level [43];

X specific application cases like [34]; etc.
These are definitely hard tasks requiring substantial intellectual
effort. You are invited to expend yours.
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