
Applied Mathematics and Computation 424 (2022) 127048

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Fast MATLAB evaluation of nonlinear energies using FEM in

2D and 3D: Nodal elements

Alexej Moskovka

a , Jan Valdman

b , c , ∗

a Department of Mathematics, Faculty of Applied Sciences, University of West Bohemia, Technická 8, 30100 Plze ̌n, Czechia
b Institute of Information Theory and Automation, Czech Academy of Sciences, Pod vodárenskou v ̌eží 4, 18200 Praha 8, Czechia
c Department of Computer Science, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Bud ̌ejovice, Czechia

a r t i c l e i n f o

Article history:

Received 27 August 2021

Revised 27 January 2022

Accepted 23 February 2022

Keywords:

Finite element method

Nonlinear energy minimization

Hyperelasticity

Approximative gradient

Vectorization

MATLAB

a b s t r a c t

Nonlinear energy functionals appearing in the calculus of variations can be discretized by

the finite element (FE) method and formulated as a sum of energy contributions from local

elements. A fast evaluation of energy functionals containing the first order gradient terms

is a central part of this contribution. We describe a vectorized implementation using the

simplest linear nodal (P1) elements in which all energy contributions are evaluated all at

once without the loop over triangular or tetrahedral elements. Furthermore, in connection

to the first-order optimization methods, the discrete gradient of energy functional is as-

sembled in a way that the gradient components are evaluated over all degrees of freedom

all at once. The key ingredient is the vectorization of exact or approximate energy gradi-

ents over nodal patches. It leads to a time-efficient implementation at higher memory-cost.

Provided codes in MATLAB related to 2D/3D hyperelasticity and 2D p-Laplacian problem

are available for download and structured in a way it can be easily extended to other

types of vector or scalar forms of energies.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Given a domain � ∈ R

dim , where dim ∈ { 1 , 2 , 3 } is the space-dimension, we consider a minimization problem

J (u) = min

v ∈ V
J (v) , (1)

where V is a space of trial functions and J : V → R represents an energy functional in the form

J(v) = J grad (v) + J lin (v) , (2)

where J grad (v) denotes its first-gradient part and J lin (v) its linear part. Examples of such minimization problems are numer-

ous and their study is a general subject of the Calculus of variations. There are models with higher order derivatives (such

as plate problems with the second derivative in their formulation) available but not considered in this contribution.

As the main example we recall a class of vector nonlinear elasticity problems represented by minimizations of energies

of hyperelastic materials [10,12] . The trial space is chosen as

V = W

1 ,p
D

(�, R

dim)
∗ Corresponding author.

E-mail address: jvaldman@jcu.cz (J. Valdman) .

https://doi.org/10.1016/j.amc.2022.127048

0 096-30 03/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.amc.2022.127048
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2022.127048&domain=pdf
mailto:jvaldman@jcu.cz
https://doi.org/10.1016/j.amc.2022.127048

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

i.e., the (vector) Sobolev space of L p (�) integrable functions with the first weak derivative being also L p (�) integrable

and satisfying (in the sense of traces) Dirichlet boundary conditions v (x) = u D (x) at the domain boundary x ∈ ∂� for a

prescribed function u D : ∂� → R

dim . A primal variable is the deformation mapping v ∈ V describing the relocation of any

point x ∈ � during the deformation process.

Then the gradient deformation tensor F ∈ L p (�, R

dim ×dim) is defined as

F (v) = ∇ v =

⎡

⎢ ⎣

∂v (1)

∂x 1
. . . ∂v (1)

∂x dim

. . .
. . .

∂v (dim)

∂x 1
. . . ∂v (dim)

∂x dim

⎤

⎥ ⎦

. (3)

The first-gradient and the linear parts of the energy functional (2) read

J grad (v) =

∫
�

W

(
F (v (x))

)
d x , J lin (v) = −

∫
�

f (x) · v (x) d x ,

where W : R

dim ×dim → R defines a strain-energy density function and f : � → R

dim a loading functional. We assume the

compressible Neo-Hookean density

W (F) = C 1
(
I 1 (F) − dim − 2 log (det F)

)
+ D 1 (det F − 1) 2 , (4)

where I 1 (F) = | F | 2 uses the Frobenius norm | · | , and det (·) is the matrix determinant operator. An extension to other gradi-

ent densities as the St. Venant Kirchhoff is possible.

As the second example we recall a scalar p-Laplacian problem [7] with the energy functional defined as

J(v) =

1

p

∫
�

|∇v (x) | p d x −
∫
�

f (x) v (x) d x , (5)

where V = W

1 ,p
D

(�, R) . The functional J(v) is then known to be strictly convex in V for p ∈ (1 , ∞) and it has therefore a

unique minimizer u (x) ∈ V .

The main motivation of this contribution is to describe how nonlinear energy functionals can be efficiently and automat-

ically evaluated by the finite element method (FE). We provide vectorization concepts and MATLAB implementation for

• evaluations of the value J(v) ,
• evaluations of the gradient vector ∇J(v)

expressed for a trial function v ∈ V . These two objects can be passed to an external optimization method of the first order

to find a minima of the energy u ∈ V and the corresponding minimal energy value J(u) . We utilize the trust-region opti-

mization method [4] available in the MATLAB Optimization Toolbox [14] for benchmarking. Our implementation is built on

the top of our own vectorized codes [3,6,15] developed primarily for assemblies of finite element matrices. There are no

explicit loops over mesh elements in evaluations of J(v) and ∇J(v) , all necessary data such as gradients of basis functions

and energy densities are computed all at once. It leads to a significant computational speedup, but also it is memory in-

tensive. Practically, the user specifies the form of the energy J(v) and the corresponding gradient vector ∇J(v) is evaluated

approximately by a central difference scheme. Alternatively, if the user is willing to apply some differential calculus to a

particular form of the energy, then the exact gradient can be assembled. This exact gradient approach is not versatile, but

leads to the further performance speedup in our tests. We set up a set of six benchmarks as a base for future tests and

improvements:

• The mesh and the nodal patches data are preprocessed in Benchmark 1.
• Evaluations of J(v) and ∇J(v) for a given v ∈ V are provided in Benchmarks 2 and 3.
• The full minimizations of 2D/3D hyperelasticity and 2D p-Laplacian energies are shown in Benchmarks 4, 5 and 6.

Authors are not aware of any similar MATLAB implementation. This is also our first attempt in this direction apart from

our own contribution [13] focusing on p-Laplacian energy minimization. There is a growing number of MATLAB vectorized

implementations of the second order linear partial differential equations eg. [9,17] or particular nonlinear partial differential

equations [6,16] .

The paper is structured in the following way: Section 2 summarizes useful notation and Section 3 basics of FEM.

Section 4 includes implementation of two structures: mesh and (nodal) patches. Section 5 is focused on implementation

of energy evaluation and Section 6 on implementation of the gradient of energy. The final Section 7 reports on the solutions

of particular minimization problems.

2. Notation

Index mappings in the construction of FEM:

I LG : N → N - (local to global) mapping which for a local basis function on an element returns the index of the corre-

sponding global basis function
2

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

I DN : N → N - (degree to node) mapping which for the n -th degree of freedom returns the index i of the corresponding

node, see (22)

Domain triangulations are described by the following parameters:

T , N - a set of elements, a set of nodes

M ⊂ N - a set of (at least partially) free nodes

T i , T (n) - the i -th nodal patch, the
(
I DN (n)

)
-th nodal patch

|T | , |N | , |M| , |T i | , |T (n) | - the sizes of sets T , N , M , T i , T (n)

Both scalar and vector problems are treated together as a vector problem with d components, where d = 1 for scalar

problems, d = dim for vector problems and dim is the space dimension. The following indices are frequently used:

i - the index of a node (i ∈ { 1 , . . . , n b } , also i ∈ { 1 , . . . , |N |} or i ∈ { 1 , . . . , |M|})
j - the index of a vector component (j ∈ { 1 , . . . , d})
k - the index of an element (k ∈ { 1 , . . . , |T |}), also (k ∈ { 1 , . . . , |T i |) or (k ∈ { 1 , . . . , |T (n) |)
� - the index of a local basis function (� ∈ { 1 , . . . , dim + 1 })
m - the index of a spatial component (m ∈ { 1 , . . . , dim })
n - the index of a global degree of freedom (n ∈ { 1 , . . . , d|N |}) or an active degree of freedom (n ∈ { 1 , . . . , d|M|})
r - the index of a global patches matrix row (r ∈ { 1 , . . . , |M|})
Nodal basis functions are used in several ways:

ϕ i (x) , ϕ i (x) - a scalar global nodal basis function, a vector global nodal basis function

ϕ k,� (x) - the � −th local basis function on the k −th element

A trial vector function is addressed in several ways:

v (x) , v (j) (x) - a trial vector function and its j-th component

V - a matrix of the coefficients of v (x) in the nodal finite element basis

v i , v
(j) , v (j)

i
- the i -th row of V , the j-th column of V , the (i,j) element of V

v - a vector reshaped from V

ˆ v - the restriction of v to free nodes

Given matrices A , B ∈ R

p×q , the following operators are used:

tr (A) - the trace of matrix (for p = q)

det (A) - the determinant of matrix (for p = q)

A � B - the elementwise (Hadamard) product defined as a matrix C ∈ R

p×q , where c i, j = a i, j b i, j

A : B - the scalar product defined as A : B =

∑ p
i =1

∑ q
j=1

a i, j b i, j =

∑ p
i =1

∑ q
j=1

A � B

3. Finite element discretization

The finite element method [5] is applied for the discretization of (1) . We assume a trial function and a trial space of the

form

v (x) = (v (1) (x) , . . . , v (d) (x)) , V = V

(1) × . . . × V

(d)

and approximate v (x) ∈ V in the finite-dimensional subspace

V h = V

(1)
h

× . . . × V

(d)
h

⊂ V,

where V (1)
h

= . . . = V (d)
h

:= V s
h

and the scalar basis space V s
h

is generated from the scalar basis functions

ϕ i (x) ∈ V

s
h , i ∈ { 1 , . . . , n b } ,

where n b denotes their number. Hence, any component of v (x) is given by a linear combination

v (j) (x) =

n b ∑

i =1

v (j)
i

ϕ i (x) , x ∈ �, j ∈ { 1 , . . . , d} . (6)

The coefficients v (j)
i

from (6) are assembled in a matrix V ∈ R

n b ×d given as

V =

⎛

⎜ ⎜ ⎜ ⎜ ⎝

v (1)
1

. . . v (d)
1

. . .
. . .

. . .
. . .

v (1)
n . . . v (d)

n

⎞

⎟ ⎟ ⎟ ⎟ ⎠

=

⎛

⎜ ⎜ ⎜ ⎝

v 1
. . .
. . .

v n b

⎞

⎟ ⎟ ⎟ ⎠

=

(
v (1) . . . v (d)

)
(7)
b b

3

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

Fig. 1. Example of a scalar nodal basis function for dim = 2 .

and latter two equivalent forms assume a row vector v i = (v (1)
i

, . . . , v (d)
i

) , i ∈ { 1 , . . . , n b } , and a column vector v (j) =
(v (j)

1
, . . . , v (j)

n b
) T , j ∈ { 1 , . . . , d} . Using a row vector basis function

ϕ i (x) = (ϕ i (x) , . . . , ϕ i (x)) ︸ ︷︷ ︸
d − times

, i ∈ { 1 , . . . , n b }

one can rewrite (6) in a compact way for all components j ∈ { 1 , . . . , d} as

v (x) =

n b ∑

i =1

v i � ϕ i (x) , x ∈ �, (8)

where the symbol � represents an elementwise (or Hadamard) multiplication (here multiplication of components with

the same index j). Formula (8) is the key tool for a vectorized implementation, since MATLAB provides the elementwise

multiplication.

The domain � is then approximated by its triangulation T into closed elements in the sense of Ciarlet [5] . The simplest

possible elements are considered, i.e., triangles for dim = 2 and tetrahedra for dim = 3 . The elements are geometrically

specified by their nodes (or vertices) belonging to the set of nodes N . The nodes are also clustered into elements edges (for

dim ≥ 2) and faces (for dim = 3). The numbers of elements and nodes are denoted as |T | and |N | .
Given a node N i ∈ N , i ∈ { 1 , . . . , |N |} , we define a nodal patch T i by

T i = { T ∈ T : N i ∈ T }
and the number of its elements by |T i | . The nodal patch T i consists of elements denoted as T i

k
, k ∈ { 1 , . . . , |T i |} , which are

adjacent to the node N i . The same nodal patch T i can be alternatively denoted by T (n) , where i = I DN (n) and n is the index

of one of the corresponding degrees of freedom.

We consider only the case where V s
h

= P 1 (T) is the space of nodal, elementwise linear and globally continuous scalar

basis functions. Then the number of basis functions is equal to the number of nodes

n b = |N | ,
but some coefficients of the trial function v (x) are known due to the Dirichlet boundary conditions.

Example 1. One regular triangulation T of an L-shape domain � is shown in Fig. 1 . The triangulation is specified by |T | =
24 and |N | = 21 . The graph of the global scalar basis function ϕ 10 (x) is displayed. The function has a hexagonal pyramid

shape and the support on the nodal patch

T 10 = { T 1 , T 2 , T 7 , T 8 , T 19 , T 20 } .
The restrictions of ϕ 10 (x) to its six supporting triangles in T 10 are given as linear functions with values 1 at the node N 10

and values 0 at the two remaining nodes.

Additionally, for the scalar case (d = 1) the node N 10 has only one corresponding degree of freedom with index 10 and,

therefore, T (10) = T 10 as long as I DN (10) = 10 . For the vector case (d = 2) the same node N 10 has two corresponding degrees

of freedom with indices 19,20, hence, T (19) = T (20) = T 10 as long as I DN (19) = I DN (20) = 10 . This alternative notation is
essential in Section 6 .

4

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

3.1. The first-gradient energy term J grad (v)

Since the first gradient of any scalar basis function ϕ i (x) ∈ P 1 (T) , i ∈ { 1 , . . . , |N |} , is a piecewise constant function on

each element, the gradient part of the discrete energy can be written as a sum over the elements

J grad (v) =

∫
�

W (F (v (x))) d x =

| T | ∑

k =1

∫
T k

W (∇v (x)) d x =

| T | ∑

k =1

| T k | W

(∇v (x) | T k
)
, (9)

and | T k | denotes the size of the element T k , k ∈ { 1 , . . . , |T |} (equal to its length in 1D, its area in 2D or its volume in 3D).

In order to evaluate (9) , we need to assemble the gradient v (x) | T k on every element. To do it, we define a (local-global)

mapping I LG : N × N → N which for the k -th element and its � -th node returns the global index i of this node. Then a local

basis function is given as

ϕ k,� (x) = ϕ i

∣∣
T k
(x) , where i = I LG (k, �) (10)

for k ∈ { 1 , . . . , |T |} , � ∈ { 1 , . . . , dim + 1 } . Hence, any partial derivative of v (x) with respect to x m

reads

∂ v (x)

∂x m

∣∣∣
T k

=

dim +1 ∑

� =1

v k,� �
∂ ϕ k,� (x)

∂x m

, m ∈ { 1 , . . . , dim } , (11)

where v k,� = v I LG (k,�) represents the values of v in the � -th node of the k -th element.

3.2. The linear energy term J lin

Furthermore, if f (x) ∈ V h , then the linear term of the energy (2) rewrites as

J lin (v) =

∫
�

f (x) · v (x) d x =

d ∑

j=1

∫
�

f (j) (x) v (j) (x) d x =

=

d ∑

j=1

∫
�

(|N | ∑

i 1 =1

f (j)
i 1

ϕ i 1 (x)

|N | ∑

i 2 =1

v (j)
i 2

ϕ i 2 (x)
)

d x =

=

d ∑

j=1

|N | ∑

i 1 =1

|N | ∑

i 2 =1

f (j)
i 1

v (j)
i 2

∫
�

(
ϕ i 1 (x) ϕ i 2 (x)

)
d x . (12)

All integral terms in the formula above can be assembled in a sparse and symmetric mass matrix M ∈ R

|N |×|N | with entries

M i 1 ,i 2 =

∫
�

ϕ i 1 (x) ϕ i 2 (x) d x , i 1 , i 2 ∈ { 1 , 2 , . . . , |N |} . (13)

Then we can define vectors b

(j) = M f
(j) ∈ R

|N | , where f
(j) = (f

(j)
1

, . . . , f
(j)
|N |)

T ∈ R

|N | , j ∈ { 1 , . . . , d} and it is easy to check

the exact formula

J lin (v) =

∫
�

f (x) · v (x) d x =

d ∑

j=1

b

(j) · v (j) (14)

which allows us to represent the linear part of the discrete energy J(v) as a linear function.

4. Implementation: Mesh and nodal patches

We describe the typical properties of meshes and nodal patches needed in our computational techniques. Considered

finite element meshes consist of triangles (in 2D) and tetrahedra (in 3D), however detailed explanations of Sections 4 , 5 ,

6 address 3D version only.

4.1. The ’mesh’ structure

The topology and important attributes of the computational domain are stored in the structure-type data object ’ mesh ’.

For the example of a tetrahedral mesh displayed in Fig. 2 , a vector energy model and full Dirichlet boundary conditions

(specified in all three directions and indicated by the nodes in red circles) it provides the following information:
5

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

Fig. 2. Example: A tetrahedral mesh of a 3D bar domain with red boundary nodes. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Parameter dim represents the domain dimension (here dim = 3) of the problem and level the level of a uniform refine-

ment. Higher levels of refinement lead to finer uniformly refined meshes with more elements. The numbers of mesh nodes

and elements are provided in nn and ne . Mesh nodes belonging to each tetrahedron are collected in a matrix ’ elems2nodes ’

and the Cartesian coordinates of mesh nodes in a matrix ’ nodes2coord ’.

Once the last two matrices are given, the codes of [15] generate the ’ volumes ’ of all tetrahedra together with the restric-

tions of the partial derivatives (gradients) of all P1-basis functions to tetrahedra stored in a cell ’ dphi ’ whose components

are matrices corresponding to the partial derivates with respect to every x m

, m ∈ { 1 , . . . , dim } .
The indices of Dirichlet boundary nodes are stored in a vector ’ nodesDirichlet ’ and the remaining free nodes in a vec-

tor ’ nodesMinim ’. Vectors ’ dofsDirichlet ’ and ’ dofsMinim ’ denote the indices of the degrees of freedom corresponding to

Dirichlet and free nodes.

Remark 1. Vectors ’ dofsDirichlet ’ and ’ dofsMinim ’ are equal to vectors ’ nodesDirichlet ’ and ’ nodesMinim ’ in case of a

scalar energy formulation.

4.2. The ‘patches’ structure

This object is only relevant if the knowledge of gradient ∇J(v) is required, e.g. as an input of the trust-region method

of Section 7 . Then, the additional structure-type data object ’ patches ’ is constructed for the evaluation of its gradient part

given by (9) .

Remark 2. Only the components of ∇J(v) corresponding to free nodes are evaluated in our implementation, and the re-

maining components belonging to the full Dirichlet boundary conditions are omitted. Thus, the nodes with at least one free

degree of freedom also belong to the set of free nodes and the gradient is evaluated in all of their components and finally

restricted to free degrees of freedom.

We denote by M a set of all free nodes and by |M| their number. Then, the node index i, i ∈ { 1 , . . . , |M|} , goes exclu-

sively through the free nodes. A nodal patch T i , i ∈ { 1 , . . . , |M|} is implemented as a vector of elements indices ’ elems _ i ’, a

vector of their volumes ’ volumes _ i ’, a matrix of the corresponding elements nodes stored as ’ elems2nodes _ i ’, values of the

gradients of local basis functions stores as a cell ’ dphi _ i ’ with matrices components dphi _ i { 1 } , . . . , dphi _ i { dim } . All these

matrices and vectors are of size |T i | × (dim + 1) and |T i | × 1 , respectively.

The data of all nodal patches T i , i ∈ { 1 , . . . , |M|} are then collected in the corresponding long global matrices or vectors

with the number of rows equal to

‖T ‖ =

|M| ∑

i =1

|T i | .
6

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

Fig. 3. All data from nodal patches are stored in long matrices or vectors.

For i ∈ { 1 , . . . , |M|} we define the indices

p i =

i ∑

r=1

|T r | , (15)

and additionally p 0 = 0 . Then the submatrix or subvector extracted from rows (p i −1 + 1) , . . . , p i of the global matrices or

vector above corresponds to the i -th nodal patch. It is shown schematically in Fig. 3 .

Thus we obtain the global vectors ’ elems ’, ’ volumes ’ of size ‖T ‖ × 1 and the global matrices ’ elems2nodes ’, dphi { 1 } ,
. . . , dphi { dim } , of size ‖T ‖ × (dim + 1) .

Remark 3. For the gradient evaluation of Section 6 we will need to extend a set of p i , i ∈ { 0 , . . . , |M|} , indices up to

{ 0 , . . . , d|M|} . Thus, we additionally define

p n = p n −|M| + ‖T ‖ , n ∈ { |M| + 1 , . . . , 2 |M|}
p n = p n −2 |M| + 2 ‖T ‖ , n ∈ { 2 |M| + 1 , . . . , 3 |M|} . (16)

In order to maintain the right ordering of the local basis functions within each nodal patch, an additional logical-type

matrix of zeros and ones ’ logical ’ is provided. If the n -th row corresponds to the i -th patch, then logical (n, �) = 1 means

that elems2nodes (n, �) = i . Therefore, in every row of ’ logical ’ matrix the value ’1’ has exactly one single occurrence.

Below we provide an example of the ’ patches ’ structure along with the same ’ mesh ’ one introduced in Subsection 4.1 and

corresponding to the domain in Fig. 2 .

The first vector ’ lengths ’ is of size |M| × 1 with entries lengths (i) = |T i | , i ∈ { 1 , . . . , |M|} . Here, its size is equal to

711 = 729 − 18 , where |N | = 729 is the number of mesh nodes and 18 is the number of nodes with full Dirichlet boundary

conditions.

Benchmark 1. The script benchmark1_start.m generates a sequence of the structures mesh and patches correspond-

ing to each of the uniform mesh refinements. Table 1 provides the assembly times and the memory requirements of both

objects.
7

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

Table 1

Benchmark 1 - setup times and memory consumption in 3D.

mesh level

number of

nodes |N |
number of

elems. |T |
number of

free dofs

mesh setup

time [s]

patches setup

time [s]

mesh memory

size [MB]

patches memory

size [MB]

1 729 1920 2133 0.01 0.01 0.30 1.13

2 4025 15,360 11,925 0.02 0.02 2.32 9.07

3 26,001 122,880 77,517 0.06 0.13 18.17 72.73

4 185,249 983,040 554,013 0.51 0.98 144.07 582.53

5 1,395,009 7,864,320 4,178,493 5.56 10.62 1147.67 4663.18

Note that the most memory consuming part of both structures is given by substructures ’ dphi ’ containing the values of

the precomputed gradients of basis functions.

5. Implementation: Energy evaluation

The following matrix-vector transformation is frequently used: matrices B , V ∈ R

|N |×d are stretched to the isomorphic

vectors

b , v ∈ R

d|N | : b n = B i, j , v n = V i, j , n ∈ { 1 , . . . , d|N |} , (17)

where i = (n − 1) /d + 1 and j = (n − 1)% d + 1 . Here, / symbol is the integer division operator and % is the modulo operator.

Put simply, for any i ∈ { 1 , . . . , |N |} the elements of v with indices d(i − 1) + 1 , . . . , d(i − 1) + d corresponds to the values of

the trial function v (x) in the i -th node in the directions 1 , . . . , d.

5.1. The linear energy term J lin

The linear part of the energy (14) rewrites equivalently as

J lin (v) =

∫
�

f (x) · v (x) d x = B : V = b · v , (18)

where : denotes the scalar product of matrices.

5.2. The first-gradient energy term J grad

The gradient part of the discrete energy (9) is given as a sum of the energy contributions from every element T k , k ∈
{ 1 , . . . , |T |} and its evaluation in MATLAB is performed effectively by using operations with vectors and matrices only. The

energy evaluation for a trial vector v ∈ R

d|N | is performed by the main function:

The structure ’ mesh ’ is described in Section 5 and the ’ params ’ contains material parameters apart from some other

parameters (e.g. visualization parameters). The code above is vectorized and generates the objects:

A cell ’ v_elems ’ containing matrices v_elems { 1 } , v _ elems { 2 } , v_elems { 3 } of size |T | × 4 providing the restrictions of

nodal deformations to all elements.

A cell ’ F _ elems ’ of size dim × dim storing the deformation gradients (see (3)) in all elements. In particular,

F _elems { d}{ m } is then a vector of size |T | × 1 evaluating the partial derivatives of the d-th component of deformation

with respect to the m -th variable in all elements.
8

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

Fig. 4. A bar domain twisted by the prescribed deformation (19) .

A vector ’ densities.Gradient ’ of size |T | × 1 containing gradient densities in all elements.

The energy e is given as a sum of the gradient energy contributions over the elements (the gradient part J grad (v) given

by (9)) subtracted by the linear energy term J lin (v) (given by (14)).

The Neo-Hookean density function W = W (F) from (4) is implemented as

Benchmark 2. Assume a bar domain � = (0 , l x) × (− l y
2 ,

l y
2) × (− l z

2 ,
l z
2) , where l x = 0 . 4 , l y = l z = 0 . 01 , specified by the ma-

terial parameters E = 2 · 10 8 (Young’s modulus) and ν = 0 . 3 (Poisson’s ratio) and deformed by the prescribed deformation

v (x) = v (x, y, z) given by

v (1) (x, y, z) = x ,

v (2) (x, y, z) = cos (α x
l x
) y + sin (α x

l x
) z ,

v (3) (x, y, z) = − sin (α x
l x
) y + cos (α x

l x
) z ,

(19)

or, equivalently, using matrix operations (

v (1) (x, y, z)

v (2) (x, y, z)

v (3) (x, y, z)

)

=

(

1 0 0

0 cos (α x
l x
) sin (α x

l x
)

0 − sin (α x
l x
) cos (α x

l x
)

) (

x
y
z

)

. (20)

Here, α = 2 π means that the right Dirichlet wall is twisted once around the x-axes (Fig. 4).

Constants C 1 , D 1 are transformed according to the formulas C 1 =

μ
2 , D 1 =

K
2 , where μ =

E
2(1+ ν)

is the Shear modulus and

K =

E
3(1 −2 ν)

is the bulk modulus. The exact evaluation shows that the corresponding gradient energy using the Neo-Hookean

density function (4) reads

J grad (v) =

α2 C 1 l y l z (l 2 y + l 2 z)

12 l x
≈ 6 . 326670 .

The script benchmark2_start.m evaluates an approximation of J grad (v) on the sequence of the uniform mesh refine-

ments defined in Benchmark 1 . In order to provide higher accuracy of the evaluation times, the energies are recomputed 10

times. Table 2 provides evaluation times and values of the energy approximations (times for setting up the ’ mesh ’ structure

are not included).

6. Implementation: Energy gradient evaluation

Evaluation of the full gradient ∇J(v) , where v = (v 1 , . . . , v d|N |) ∈ R

d|N | , requires in general computation of all partial

derivatives ∂ J(v)
∂v n

, n ∈ { 1 , . . . , d|N |} . Some minimization methods (e.g. trust-region mentioned applied in Section 7) require

the knowledge of gradient, but only restricted to free degrees of freedom.
9

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

Table 2

Benchmark 2 - energy evaluation times in 3D.

mesh

level

number of free dofs evaluation (10x) of

J grad (v) : time [s]

value of J grad (v)

1 2133 0.01 12.6623

2 11,925 0.02 7.9083

3 77,517 0.08 6.7219

4 554,013 0.76 6.4255

5 4,178,493 12.82 6.3514

The gradient ∇J lin (v) easily reads using (18)

∇J lin (v) = b , (21)

where b is of size d|N | , given by (17) and its restriction to free degrees of freedom is then trivial.

The evaluation of ∇J grad (v) is technically more involved. Firstly, it is evaluated with respect to Remark 2 for all degrees

of freedom belonging to all (at least partially) free nodes. Secondly, it is restricted to free degrees of freedom only. In order

to determine to which node the n -th active degree of freedom belongs we define the index mapping

I DN : { 1 , . . . , d|M|} → { 1 , . . . , |M|} , I DN (n) = (n − 1) /d + 1 (22)

which for the n -th active degree of freedom returns the corresponding i -th free node (here / is an integer division operator).

By

T (n) , n ∈ { 1 , . . . , d|M|} ,
we denote the set of elements adjacent to node N I DN (n) belonging to the n -th active degree of freedom and by |T (n) | their

number. The gradient of the nonlinear part J grad (v) can be computed in two different ways:

1. numerically, where the partial derivatives are computed approximately by using a difference scheme.

2. exactly by taking the explicit partial derivatives.

Deriving the exact partial derivatives can be demanding and it depends on the particular problem. On the contrary, the

numerical approach is more general and is feasible regardless of the complexity of the function representing the corre-

sponding discrete energy. Hence, we first describe the numerical approach by using the central difference scheme and then

explain the gradient evaluation by deriving the explicit form of the partial derivatives.

6.1. Numerical approach to evaluate ∇J grad (v)

By using the central difference scheme, one can write

∂

∂v n
J grad (v) ≈

J grad (v + ε e n) − J grad (v − ε e n)

2 ε
, (23)

where e n is the n -th canonical vector in R

d|M| and ε is a small positive number. Both summands in the numerator above

can be directly evaluated by taking the energy evaluation procedure introduced in the previous subsection as

J grad (v + εe n) − J grad (v − εe n) =

| T | ∑

k =1

∫
T k

W (∇ (v + εe n)) d x −
| T | ∑

k =1

∫
T k

W (∇ (v − εe n)) d x .

However, this approach is ineffective as long as the step of the central difference scheme ε occurs only in a few summands

of the sums representing J grad (v + ε e n) and J grad (v − ε e n) given by (9) , while the remaining summands are the same and

therefore vanish. Hence, we can further simplify

J grad (v + ε e n) − J grad (v − ε e n) =

=

|T (n) | ∑

k =1

∫
T (n)

k

W (∇(v + ε e n)) d x −
|T (n) | ∑

k =1

∫
T (n)

k

W (∇(v − ε e n)) d x =

=

|T (n) | ∑

k =1

| T (n)
k

| W

(∇(v + ε e n)
∣∣

T (n)
k

)
−

|T (n) | ∑

k =1

| T (n)
k

| W

(∇(v − ε e n)
∣∣

T (n)
k

)
. (24)

By using the substitutions

J (n) , −
grad

(v) = | T (n)
k

| W

(∇(v − ε e n)
∣∣

T (n)

)
, J (n) , +

grad
(v) = | T (n)

k
| W

(∇(v + ε e n)
∣∣

T (n)

)
, (25)
k k

10

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

one can rewrite (24)

J grad (v + ε e n) − J grad (v − ε e n) =

|T (n) | ∑

k =1

J (n) , +
grad

(v) −
|T (n) | ∑

k =1

J (n) , −
grad

(v) (26)

and evaluate the whole ∇J grad (v) via the simple for-loop over its components.

Remark 4. The energy evaluation procedure has to be called in every loop over the vector components n ∈ { 1 , . . . , d|M|}
and it turned out to cause multiple self built-in times that slowed down performance. To avoid that, the original energy

evaluation procedure is modified so that the multiple input vectors can be processed simultaneously and the energy evalu-

ation procedure be called only once.

The outer gradient evaluation procedure is simple:

Here ’ es_minsplus ’ is a matrix of size 3 ‖T ‖ × 2 with the components given by (25) :

es_minsplus (n, 1) = J (n) , −
grad

(v) ,

es_minsplus (n, 2) = J (n) , +
grad

(v) .

The gradient vector g is then assembled by using the central difference scheme (23) with a constant central difference

step size ε for all n ∈ { 1 , . . . , d|M|} . Obviously, a generalization of the above code to higher accuracy difference schemes is

possible.

We recall a cell ’ v_elems ’ containing matrices

v_elems { 1 } , v_elems { 2 } , v_elems { 3 } of size |T | × 4 is assembled in the energy evaluation procedure energy from

Subsection 5.2 . For the evaluation of (23) by using (26) we need to assemble a cell-structure ’ v_patches ’ containing matrices

v_patches { 1 } , v_patches { 2 } , v_patches { 3 } of size ‖T ‖ × 4 that provide the restrictions of nodal deformations to all

patches. In fact, the structure ’ v_patches ’ copies parts of ’ v_elems ’ to the particular positions.

The extended procedure energies evaluates all ε-perturbed values of energies:
11

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

Fig. 5. The ’ GG ’ structure.

The cells ’ v_elems ’ and ’ F_elems ’ are the same as in the first-gradient energy evaluation procedure from Subsection 5.2 .

The cell ’ v_patches_eps ’ contains matrices

v_patches_eps { 1 } , v_patches_eps { 2 } , v_patches_eps { 3 } of size ‖T ‖ × 4 that provide the restrictions of nodal defor-

mations to all patches, but here these deformations are perturbed by the value of the central difference step ε. This cell is

used for the construction of the key cell ’ GG ’ of size dim × dim containing vectors

GG { j, m } of length dim ‖T ‖ storing the partial derivatives of deformations of the j-th component with respect to the

m -th variable. The structure of ’ GG ’ is in details displayed in Fig. 5 .

All three layers of vector indices have the same size of ‖T ‖ entries and the following meaning:

- the 1st layer corresponds to the ε-perturbation of the component v (1) ,

- the 2nd layer corresponds to the ε-perturbation of the component v (2) ,

- the 3rd layer corresponds to the ε-perturbation of the component v (3) .

The cell ’ G ’ has the same size as ’ F ’, but contains deformation gradient matrices corresponding to the deformations

perturbed by ε. The most important feature is using the values of the precomputed input cell ’ F ’ for the efficient construction

of the ’ GG ’ cell. Note that if the numeric difference step ε is added or subtracted from the first component of displacements,

the deformation gradients of the rest two components remain the same and their values are already stored in the ’ F ’ cell.

A vector ’ csep ’ of length d‖T ‖ contains the cumulative sums of ’ e_patches ’ with elements

csep (n) =

n ∑

r=1

e _ patches (r) .

An output matrix e of size 3 |M| × 2 contains all energy contributions and for any comp ∈ { 1 , 2 }

e (n, comp) =

p n ∑

r= p n −1 +1

e _ patches (r) = csep (p n) − csep (p n − 1) . (27)

Note that vector ’ e_patches ’ changes its value inside the loop over the components comp. Therefore, the whole vector e is

evaluated at once using the Matlab difference function diff with the input vector ’ indx ’ of length 3 |M| , where indx (n) =
p n , n ∈ { 1 , . . . , d|M|} , with p n defined in (15) and additionally in (16) .
12

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

The procedure for the construction of ’ GG ’ is listed below:

6.2. Exact approach to evaluate ∇J grad (v)

Evaluation of the exact ∇J(v) requires an explicit deriving of every ∂ J(v)
∂v n

, n ∈ { 1 , . . . , d|M|} . The gradient of the linear

part is trivial and is given by (18) . Using (9) one can write

∂ J grad (v)

∂v n
=

| T | ∑

k =1

| T k | ∂

∂v n
W

(
F (v) | T k

)
. (28)

Note that the only elements whose energy contributions depend on v n are those belonging to the i -th patch, where

i = I DN (n) . Therefore, we can simplify the equation above as

∂ J grad (v)

∂v n
=

| T (n) | ∑

k =1

| T k | ∂

∂v n
W

(
F (v) | T k

)
. (29)

By using the chain rule one can write

∂

∂v n
W

(
F (v)

)
=

d ∑

j=1

dim ∑

m =1

∂W

∂ F j,m

(
F (v)

)∂ F j,m

∂v n
(v) , (30)

where assuming the Neo-Hookean density from (4)

∂W (F)
∂ F j,m

= C 1

(
∂ I 1 (F)
∂ F j,m

− 2
det (F)

∂ det (F)
∂ F j,m

)
+ 2 D 1

(
det (F) − 1

)
∂ det (F)
∂ F j,m

. (31)

Using the row or the column expansion rule for calculating the determinant of a 3 × 3 matrix, one can express

∂ det (F)

∂ F j,m

= (−1) j+ m det (F sub
j,m

) , (32)

where F sub
j,m

is the 2 × 2 submatrix of F given by dropping the j-th row and the m -th column of F . Futhermore,
∂ I 1

∂ F j,m
can be

also simplified by

∂ I 1 (F)

∂ F j,m

= 2 F j,m

. (33)

From Subsection 6.1 we already know how to assemble v | T k and F (v) | T k . Here, in addition, we need to express
∂ I 1 (F)

∂ F
,

∂ det (F)
∂ F

and

∂ F
∂v n

.

Similarly to the numeric gradient evaluation, the exact gradient evaluation procedure uses the same precomputed struc-

tures ’ v_cell ’, ’ v_elems ’ and ’ F_elems ’.
13

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

Table 3

Benchmark 3 - energy gradient evaluation times in 3D.

mesh level number of free dofs evaluation (10x) of exact ∇J(v) : time [s] evaluation (10x) of num. ∇J(v) : time [s]

1 2133 0.12 0.08

2 11,925 0.14 0.15

3 77,517 1.18 1.51

4 554,013 12.47 15.64

5 4,178,493 487.34 533.24

The main procedure for the exact gradient evaluation is provided below:

Here, ’ D_densities_patches ’ is a vector of size 3 ‖T ‖ × 1 containing all ∂W (F (v))
∂v n

for every n ∈ { 1 , . . . , d|M|} given

by (30) . Note that the function density_D_GradientVector_3D uses the input 3 × 3 cell structure ’ D_F_patches ’, where

D_F_patches { j, m } (n) =

∂ F j,m
∂v n

.

Benchmark 3. The script benchmark3.m evaluates approximations of ∇J grad (v) on the sequence of the uniform mesh

refinements defined in Benchmark 2 . In order to provide higher accuracy of evaluation times, the energies are recomputed

10 times. Table 3 provide evaluation times of the gradient approximations both in the exact and numerical case (the times

for setting up ’mesh’ and ’patches’ structures are not included).

7. Application to practical energy minimizations

For a practical energy minimization, the trust-region method [4] available in the MATLAB Optimization Toolbox is uti-

lized. Standard stopping criteria (the first-order optimality, tolerance on the argument and tolerance on the function) equal

to 10 −6 are considered in all benchmarks. The method also allows to specify the sparsity pattern of the Hessian matrix

∇

2 J(v) in free degrees of freedom, i.e., only positions (indices) of nonzero entries. The sparsity pattern is directly given by

a finite element discretization.

Example 2. The sparsity pattern related to the 3D bar domain of Fig. 2 is displayed in Fig. 6 (left). It corresponds to the FEM

mesh not taking the Dirichlet boundary conditions into account. Therefore, it is of size 729 × 729 . In practical computations,

it is first extended from a scalar to a vector problem and then restricted to the ’ mesh.dofsMinim ’ indices (right). Since there

are 18 Dirichlet nodes fixed in all three directions, the corresponding number of rows and columns of the right hessian

sparsity pattern is (729 − 18) ∗ 3 = 2133 .

7.1. Benchmark 4: Time-dependent hyperelasticity in 3D

We consider the elastic bar specified in Benchmark 2 with a time-dependent nonhomogeneous Dirichlet boundary con-

ditions on the right wall (x = l x). The torsion of the right wall is described by the formula (19) for x = l x = 0 . 4 , where the

rotation angle is assumed to be a time dependent function α = α(t) = αmax t/T for a sequence of integer discrete times

t ∈ { 1 , 2 , . . . , T } . Here we assume the final time T = 24 and the maximal angle of rotation αmax = 8 π ensuring four full ro-

tations of the right Dirichlet wall around the x-axis. Altogether we solve a sequence of T minimization problems (1) with

the Neo-Hook energy density (4) and no loading (f = 0).

The trust-region method accepts an initial deformation approximation. For the first discrete time we run iterations from

the identity v (x) = x, x ∈ � and for the next discrete time the minimizer of the previous discrete time problem serves as

its initial approximation. We output the found energy minimizer for each minimization problem with some minimizers

shown in form of the deformed meshes in Fig. 7 . Additionally, we also provide the minimization time, the number of the

trust-region iterations and the value of the corresponding minimal energy.
14

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

Fig. 6. The sparsity pattern of the 3D bar domain based on nodes connectivity (left) and its extension to the vector problem (right).

Table 4

Benchmark 4 - performance of hyperelasticity minimizations in 3D.

level 1, 2133 free dofs level 2, 11,925 free dofs level 3, 77,517 free dofs

step time [s] iters J grad (u) time [s] iters J grad (u) time [s] iters J grad (u)

t = 3 6.65 40 3.1177 66.23 47 1.8244 2148.62 93 1.4631

t = 6 10.42 60 12.4423 117.74 76 7.2962 1404.68 68 5.8533

t = 9 10.33 60 27.8993 125.76 85 16.4079 1441.84 73 13.1735

t = 12 18.43 104 49.5506 102.11 68 29.1664 1277.04 65 23.4286

t = 15 15.51 81 77.3859 127.17 87 45.5677 1130.02 58 36.6236

t = 18 18.31 97 111.3369 110.65 75 65.5470 1540.90 76 52.7641

t = 21 15.74 82 151.4946 74.47 51 89.1672 5523.64 290 71.7883

t = 24 16.37 91 197.7577 91.79 63 116.3261 2660.44 131 93.7238

The overall performance is explained in Table 4 for separate computations on tetrahedral meshes of levels 1, 2, 3 applying

the numerical gradient evaluation of Subsection 6.1 only with the choice ε = 10 −6 . We notice that the minimizations of finer

meshes require only slightly higher number of iterations, which is acceptable. Comparison of the values J grad (u) in each line

of Table 4 indicates convergence in space of the energy minimizers.

7.2. Benchmarks 5 and 6: Hyperelasticity and p-Laplacian in 2D

Although our exposition is mainly focused on implementation details in 3D, a reduction to 2D (dim = 2) is straightfor-

ward.

As the first example we consider a square domain with lengths l x = l y = 2 perforated by a hole with radius r = 1 / 3 (Fig. 8

left) and whose center is located at the center of the square, subjected to zero Dirichlet boundary condition on the bottom

and left edges, a constant loading f (x) = (−3 . 5 · 10 7 , −3 . 5 · 10 7) and the elastic parameters specified in Benchmark 2. We

assume the choice ε = 10 −6 in the evaluation of the numerical gradient. The resulting deformation and the deformation

gradient densities are depicted in Fig. 8 (right).

As the second example we minimize the p-Laplacian energy functional (5) over the L-shape domain (Fig. 9 left). The

constant loading f = −10 is assumed together with zero Dirichlet boundary conditions on the full domain boundary. For the

numerical gradient we assume ε = 10 −5 . The solution is displayed in Fig. 9 (right). Table 6 depicts performance of all options

for the power p = 3 and confirms faster evaluation times in comparison to our former contribution [13] . This is mainly due

to the improved vectorization concepts here, due to the faster CPU and finally due to updates of the trust-region in-built

implementation in the latest version of Matlab.

7.3. Implementation remarks and outlooks

Assembly times in all benchmarks were obtained on a MacBook Air (M1 processor, 2020) with 16 GB memory running

MATLAB R2021a. Our implementation is available at https://www.mathworks.com/matlabcentral/fileexchange/97889
15

https://www.mathworks.com/matlabcentral/fileexchange/97889

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

Fig. 7. Benchmark 4 - deformation of the tetrahedal mesh subjected to the right time-rotating Dirichlet plane with the underlying Neo-Hookean density.

16

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

Fig. 8. Benchmark 5 - a triangulation of the square domain perforated by a hole (left) and its deformation with the underlying Neo-Hookean density

(right).

Fig. 9. Benchmark 6 - a triangulation of the L-shape domain (left) and the solution p-Laplacian for the power p = 3 and a constant loading f (x) = −10

(right).

Table 5

Benchmark 5 - performance of hyperelasticity minimizations in 2D. True values of the

energies are multiplied by the scale factor of 10 million.

exact gradient numerical gradient

level free dofs time [s] iters J(u) time [s] iters J(u)

1 278 0.36 4 24.5745 0.13 4 24.5745

2 1102 0.15 4 24.3558 0.16 4 24.3558

3 4382 0.54 4 24.2957 0.54 4 24.2957

4 17,470 2.35 5 24.2799 2.65 5 24.2799

5 69,758 11.27 5 24.2758 12.39 5 24.2758

6 278,782 83.27 6 24.2748 88.74 6 24.2748

17

A. Moskovka and J. Valdman Applied Mathematics and Computation 424 (2022) 127048

Table 6

Benchmark 6 - performance of p-Laplacian minimizations for p = 3 in 2D.

exact gradient numerical gradient

level free dofs time [s] iters J(u) time [s] iters J(u)

1 33 0.02 8 –7.5353 0.03 8 –7.5353

2 161 0.05 11 –7.9729 0.12 15 –7.9729

3 705 0.11 11 –8.1039 0.19 11 –8.1039

4 2945 0.30 11 –8.1445 0.56 12 –8.1445

5 12,033 1.50 11 –8.1578 2.08 12 –8.1578

6 48,641 6.30 12 –8.1625 9.48 12 –8.1625

7 195,585 48.61 13 –8.1642 60.62 12 –8.1642

8 784,385 617.92 22 –8.1649 672.04 16 –8.1649

for download and testing. It is based on own codes of [3,6,15] used primarily for assemblies of finite element matrices. It

also utilizes the function mcolon from the reservoir simulator [11] . The names of mesh attributes were initially motivated

by codes of [1] and further modified.

The 3D cuboid mesh is generated by the code of [6] and 2D meshes (the square with the hole and the L-shape) by our

own code. Vectorized evaluations of gradients of basis functions are taken from [3,15] . The general structure of the code

was initially taken from [13] and extended to the implementation of hyperelasticity in 2D and 3D. Many parts of this code

(mainly related to the gradient evaluation) have been significantly improved since then.

The code is designed in a modular way allowing to add different scalar (e.g. Ginzburg-Landau [1]) and vector (e.g. topol-

ogy optimization with elastoplasticity [2] , shape memory alloys [8]) problems involving the first gradient energy terms.

Acknowledgments

A. Moskovka was supported by the Strategy 21 of the CAS, program 23: City as a Laboratory of Change Historical Heritage

and Place for Safe and Quality Life and by the R & D project 8J21AT001 Model Reduction and Optimal Control in Thermome-

chanics. J. Valdman announces the support of the Czech Science Foundation (GACR) through the grant GF19-29646L Large

Strain Challenges in Materials Science.

References

[1] J. Alberty, C. Carstensen, S. Funken, Remarks around 50 lines of Matlab: short finite element implementation, Numer Algorithms 20 (1999) 117–137 .
[2] S. Almi, U. Stefanelli, Topology optimization for incremental elastoplasticity: a phase-field approach, SIAM J. Control Optim. 59 (1) (2021) 339–364 .

[3] I. Anjam, J. Valdman, Fast MATLAB assembly of FEM matrices in 2d and 3d: edge elements, Appl Math Comput 267 (2015) 252–263 .

[4] A.R. Conn, N.I.M. Gould, P.L. Toint, Trust-Region Methods, SIAM, Philadelphia, 20 0 0 .
[5] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, 2002 .

[6] M. Čermák, S. Sysala, J. Valdman, Efficient and flexible MATLAB implementation of 2d and 3d elastoplastic problems, Appl Math Comput 2019 (355)
(2019) 595–614 .

[7] P. Drábek, J. Milota, Methods of Nonlinear Analysis: Applications to Differential Equations, (second edition), Birkhauser, 2013 .
[8] M. Frost, B. Benešová, P. Sedlák, A microscopically motivated constitutive model for shape memory alloys: formulation, analysis and computations,

Math. Mech. Solids 21 (3) (2016) 358–382 .

[9] J. Koko, Fast MATLAB assembly of FEM matrices in 2D and 3D using cell-array approach, International Journal of Modeling, Simulation, and Scientific
Computing 7 (3) (2016) .

[10] M. Kružík, T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Springer, 2019 .
[11] K.A. Lie, An introduction to reservoir simulation using MATLAB: user guide for the Matlab reservoir simulation toolbox (MRST), Technical report,

SINTEF ICT, December, 2016 . http://www.sintef.no/projectweb/mrst/
[12] J.E. Marsden, T.J.R. Hughes, Mathematical foundations of elasticity, Dover Publications, 1994 .

[13] C. Matonoha, A. Moskovka, J. Valdman, Minimization of P-Laplacian via the finite element method in MATLAB, in: I. Lirkov, S. Margenov (Eds.), LSSC
2021, LNCS 13127, 2022, pp. 496–503 .

[14] MATLAB, documentation to minimization with gradient and hessian sparsity pattern, https://www.mathworks.com/help/optim/ug/

minimization- with- gradient- and- hessian- sparsity- pattern.html .
[15] T. Rahman, J. Valdman, Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements, Appl Math Comput 2013 (7151) (2013) 7151–7158 .

[16] G.K. Rose, Computational methods for nonlinear systems analysis with applications in mathematics and Engineering, Doctor of Philosophy (PhD),
Dissertation, Mechanical & Aerospace Engineering, Old Dominion University, 2017 .

[17] T. Weinberg, B. Sousedík, Fast implementation of mixed RT0 finite elements in MATLAB, SIAM Undergraduate Research Online 12 (2018) .
18

http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0001
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0002
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0003
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0004
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0005
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0006
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0007
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0008
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0009
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0010
http://www.sintef.no/projectweb/mrst/
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0012
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0013
https://www.mathworks.com/help/optim/ug/minimization-with-gradient-and-hessian-sparsity-pattern.html
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0015
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0016
http://refhub.elsevier.com/S0096-3003(22)00134-5/sbref0017

	Fast MATLAB evaluation of nonlinear energies using FEM in 2D and 3D: Nodal elements
	1 Introduction
	2 Notation
	3 Finite element discretization
	3.1 The first-gradient energy term Jgrad(v)
	3.2 The linear energy term

	4 Implementation: Mesh and nodal patches
	4.1 The ’mesh’ structure
	4.2 The ‘patches’ structure

	5 Implementation: Energy evaluation
	5.1 The linear energy term
	5.2 The first-gradient energy term

	6 Implementation: Energy gradient evaluation
	6.1 Numerical approach to evaluate
	6.2 Exact approach to evaluate

	7 Application to practical energy minimizations
	7.1 Benchmark 4: Time-dependent hyperelasticity in 3D
	7.2 Benchmarks 5 and 6: Hyperelasticity and p-Laplacian in 2D
	7.3 Implementation remarks and outlooks

	Acknowledgments
	References

