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Abstract

An authentic material’s surface reflectance function is a complex function of
over 16 physical variables, which are unfeasible both to measure and to mathe-
matically model. The best simplified measurable material texture representation
and approximation of this general surface reflectance function is the seven-
dimensional bidirectional texture function (BTF). BTF can be simultaneously
measured and modeled using state-of-the-art measurement devices and com-
puters and the most advanced mathematical models of visual data. However,
such an enormous amount of visual BTF data, measured on the single material
sample, inevitably requires state-of-the-art storage, compression, modeling,
visualization, and quality verification. Storage technology is still the weak part
of computer technology, which lags behind recent data sensing technologies;
thus, even for virtual reality correct materials modeling, it is infeasible to use
BTF measurements directly. Hence, for visual texture synthesis or analysis
applications, efficient mathematical BTF models cannot be avoided. The prob-
abilistic BTF models allow unlimited seamless material texture enlargement,
texture restoration, tremendous unbeatable appearance data compression (up
to 1:1000 000), and even editing or creating new material appearance data.
Simultaneously, they require neither storing actual measurements nor any pixel-
wise parametric representation. Unfortunately, there is no single universal BTF
model applicable for physically correct modeling of visual properties of all
possible BTF textures. Every presented model is better suited for some subspace
of possible BTF textures, either natural or artificial. In this contribution, we
intend to survey existing mathematical BTF models which allow physically
correct modeling and enlargement measured texture under any illumination
and viewing conditions while simultaneously offering huge compression ratio
relative to natural surface materials optical measurements. Exceptional 3D
Markovian or mixture models, which can be either solved analytically or
iteratively and quickly synthesized, are presented. Illumination invariants can be
derived from some of its recursive statistics and exploited in content-based image
retrieval, supervised or unsupervised image recognition. Although our primary
goal is physically correct texture synthesis of any unlimited size, the presented
models are equally helpful for various texture analytical applications. Their
modeling efficiency is demonstrated in several analytical and modeling image
applications, in particular, on a (un)supervised image segmentation, bidirectional
texture function (BTF) synthesis and compression, and adaptive multispectral
and multi-channel image and video restoration.

Keywords

Bidirectional texture function · Texture modeling · Markov random fields ·
Discrete distribution mixtures · Expectation-Maximization algorithm
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Introduction

Multidimensional data modeling or understanding (or set of spatially related
objects) is more accurate and efficient if we respect all interdependencies between
single objects. Objects to be processed, for example, multispectral pixels, in a
digitized image are often mutually dependent (e.g., correlated) with a dependency
degree related to a distance between two objects in their corresponding data space.
These relations can be incorporated into a pattern recognition or visualization
process through an appropriate multidimensional data model. If such a model is
probabilistic, we can benefit from a consistent Bayesian framework for solving
many related visual or pattern recognition tasks.

Features derived from multidimensional data models are information preserving
in the sense that they can be used to synthesize data spaces closely resembling
original measurement data space as can be illustrated on the recent best visual
representation of real material surfaces in the form of seven-dimensional bidirec-
tional texture function (Haindl and Filip 2007; Filip and Haindl 2009). Virtual
or augmented reality systems require object surfaces covered with physically
correct nature-like color textures to enhance realism in visual scenes applied in
computer games, CAD systems, or other computer graphics applications. Surface
material appearance modeling thus aims to generate and enlarge a synthetic texture
visually indiscernible from the visual properties of measured material, whatever the
observation conditions might be.

While simple color textures can be either digitized measured natural textures
or textures synthesized from an appropriate mathematical model, realistic 7D
BTF textures require mathematical modeling. Measured BTF textures are far
less convenient alternative, because of extreme virtual system memory demands,
limited size measurements, visible discontinuities (if we apply some usual computer
graphics sampling approach for texture enlargement (De Bonet 1997; Efros and
Freeman 2001; Praun et al. 2000; Xu et al. 2000; Wei and Levoy 2000, 2001; Liang
et al. 2001; Soler et al. 2002; Dong and Chantler 2002; Zelinka and Garland 2002;
Haindl and Hatka 2005a,b; Ngan and Durand 2006)), or several other drawbacks
(Haindl 1991). Some of these methods are based on per-pixel sampling (Wei and
Levoy 2001; Tong et al. 2002; Zelinka and Garland 2003; Zhang et al. 2003) while
other are patch-based sampling methods (Praun et al. 2000; Xu et al. 2000; Efros
and Freeman 2001; Liang et al. 2001; Soler et al. 2002; Kwatra et al. 2003; Dong
et al. 2010). Texture synthesis algorithms (Heeger and Bergen 1995; Liu and Picard
1996; Efros and Leung 1999; Portilla and Simoncelli 2000) view surface texture
as a stochastic process and aim to produce new realizations that resemble an input
exemplar by either copying pixels (non-parametric methods) or matching image
statistics (parametric techniques). Some of these simple gray scale/color texture
modeling methods, which also allow texture enlargement, could be formally applied
independently for each BTF material space. However, this is infeasible for all
about a thousand measurements for a single BTF material due to their enormous
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computing time and memory constraints. Furthermore, for example, a car interior
usually has about 20 different materials to synthesize.

Principle component analysis (PCA)-based BTF approximation (Müller et al.
2003; Sattler et al. 2003; Ruiters et al. 2013) allows BTF lossy compression
but not enlargement. Furthermore, projecting the measured data onto a linear
space constructed by statistical analysis such as PCA results in low-quality data
compression. Another compression method (Tsai and Shih 2012) is based on
K-clustered tensor approximation or the polynomial wavelet tree (Baril et al. 2008).

BTF data can be approximated using separate texel models, i.e., spatially varying
bidirectional reflectance distribution function (SVBRDF) models that combine
texture mapping and BRDF models but sacrifice some spatial dependency infor-
mation. A linear combination of multivariate spherical radial basis functions is
used to model BTF as a set of texelwise BRDFs (SVBRDF) in Tsai et al. (2011).
Another SVBRDF method (Wu et al. 2011) uses a parametric mixture model with
a basis analytical BRDF function for texel modeling. Several SVBRDF models
use multilayer perceptron neural networks (Aittala et al. 2016; Deschaintre et al.
2018; Rainer et al. 2020). A deep convolutional neural network VGG-19 is used
in Aittala et al. (2016), while the convolutional neural network recovers SVBRDF
from estimated normal, diffuse albedo, specular albedo, and specular roughness
from a single image lit by a handheld flash in Deschaintre et al. (2018). A learned
SVBRDF decoder in a multilayer perceptron neural model approximates BRDF
values in Rainer et al. (2020). The SVBRDF methods approximate BTF quality, are
computationally expensive due to the nonlinear optimization, allow only moderate
compression ratio, require several manually tuned parameters, and do not allow BTF
space enlargement.

Mathematical multidimensional data models are useful for describing many
of the multidimensional data types provided that we can assume some data
homogeneity, so some data characteristics are a translation invariant. While the
1D models like time series (Anderson 1971; Broemeling 1985) are relatively well
researched, and they have a rich application history in control theory, economet-
rics, medicine, meteorology, and many other data mining or machine learning
applications, multidimensional models are much less known (e.g., more than three-
dimensional MRF), and their applications are still limited. The reason is not only
unsolved theory difficulties but mainly their vast computing power demands, which
prevented their more extensive use until recently.

Visual data models need nonstandard multidimensional (three-dimensional for
static color textures, four-dimensional for videos, or even seven-dimensional for
static BTFs) models. However, if such a nD data space can be factorized, then these
data can also be approximated using a set of lower-dimensional probabilistic mod-
els. Although full visual nD models allow unrestricted spatial-spectral-temporal-
angular correlation modeling, their main drawback is many parameters to be
estimated, which require a correspondingly large learning set. In some models (e.g.,
Markov models), the necessity is to estimate all these parameters simultaneously.
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We introduced (Haindl and Havlíček 1998, 2000, 2010, 2016, 2017b, 2018a,b;
Haindl et al. 2012, 2015b), several efficient fast multiresolution Markov random
field (MRF)-based models which exploit BTF space factorization. Our methods
avoid the time-consuming Markov chain Monte Carlo simulation (MCMC) so
typical for Markov models applications with one exception of the Potts MRF. Our
models avoid some problems of alternative options (see Haindl 1991 for details), but
they are also easy to analyze as well as to synthesize, and last but not least, they are
still flexible enough to correctly imitate a broad set of natural and artificial textures
or other spatial data.

We can categorize the model’s applications into synthesis and analysis. Analyt-
ical applications include static or dynamic data un-/semi-/supervised recognition,
scene understanding, data space analysis, motion detection, and numerous others.
Typical synthesis applications are missing data reconstruction, restoration, image
compression, and static or dynamic texture synthesis.

Visual Texture

The visual texture notion is closely tied to the human semantic meaning of surface
material appearance, and texture analysis is an essential and frequently published
area of image processing. However, there is still no mathematically rigorous
definition of the texture that would be accepted throughout the computer vision
community.

We understand a textured image or the visual texture (Haindl and Filip 2013)
to be a realization of a random field, and our effort is to find its parameterizations
in such a way that the real texture representing the specific material appearance
measurements will be visually indiscernible from the corresponding random field’s
realization, whatever the observation conditions might be. Some work distinguishes
between texture and color. We regard such separation between spatial structure
and spectral information to be artificial and principally wrong because there is no
bijective mapping between gray scale and multispectral textures. Thus, our random
field model is always multispectral.

Bidirectional Texture Function

A natural material’s surface general reflectance function (GRF), representing
physically correct visual properties of surface materials and their variations under
any observation conditions, is a complex function of 16 physical variables. It is
currently unfeasible to measure or to model such a function mathematically. Prac-
tical applications thus require significant simplification, namely, using additional
assumptions. These approximative assumptions neglect the most less significant
variables to achieve a solvable problem, with the solution still far more realistic
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Fig. 1 BTF reflectance
model

than the traditional three-dimensional static color texture representation. BTF can
model complex lighting effects such as self-shadows, masking, foreshortening,
interreflections, and multiple subsurface light scattering due to material surface
microgeometry.

The seven-dimensional bidirectional texture function (BTF) reflectance model
Fig. 1 is the best recent visual texture representation, which can still be simul-
taneously measured and modeled using state-of-the-art measurement devices and
computers as well as the most advanced mathematical models of visual data. Thus, it
is the most important representation for the high-end and physically correct surface
materials appearance modeling. Nevertheless, BTF requires the most advanced
modeling as well as high-end hardware support. The BTF reflectance model

YBT F
r = BT F(λ, x, y, θi , ϕi, θv, ϕv), (1)

where YBT F
r is a random spectral reflectance vector at location r , r is a multiindex,

and YBT F
r accepts six simplifying assumptions from GRF – light transport in

material takes zero time (ti = tv (incident time is equal to the reflection time)
and tv = ∅), reflectance behavior of the surface is time invariant (tv = ti =
const., tv = ti = ∅); interaction with the material does not change wavelength
(λi = λv), i.e., λv = ∅), constant radiance along light rays (zi = zv = ∅), no
transmittance (θt = ϕt = ∅), and incident light leaves at the same point.

Multispectral BTF is a seven-dimensional random function, which considers
measurement dependency on color spectrum and planar material position, as well
as its dependence on illumination incident light (lower index i) and viewing
reflection light (lower index v) angles BT F(r, θi, φi, θv, φv), where the multiindex
r = [r1, r2, r3] specifies planar horizontal and vertical position in material sample
image, r3 is the spectral index, and θ, φ are elevation and azimuthal angles of
the illumination and view direction vectors. The BTF measurements comprise a
whole the hemisphere of light and camera positions in observed material sample
coordinates according to selected quantization steps, and this is the main difference
compared to the standard three-dimensional static color texture. This difference
significantly improves the visual quality and realism of BTF representation and
simultaneously complicates its measurement and modeling.



28 Bidirectional Texture Function Modeling 1029

BTFMeasurement

Accurate and reliable BTF acquisition is not a trivial task; only a few BTF measure-
ment systems currently exist (for details see Haindl and Filip 2013; Schwartz et al.
2014; Dana et al. 1997; Koudelka et al. 2003; Sattler et al. 2003; Han and Perlin
2003; Müller et al. 2004; Wang and Dana 2006; Ngan and Durand 2006; Debevec
et al. 2000; Marschner et al. 2005; Holroyd et al. 2010; Ren et al. 2011; Aittala
et al. 2013, 2015). However, their number increases every year in response to the
growing demand for photorealistic virtual representations of real-world materials.
These systems are (similar to bidirectional reflectance distribution function (BRDF)
measurement systems) based on the light source, video/still camera, and material
sample. The main difference between individual BTF measurement systems is in
the type of measurement setup allowing four degrees of freedom for camera/light,
the type of measurement sensor (CCD, video, and some other), and light.

In some systems, the camera is moving, and the light is fixed (Dana et al. 1997;
Sattler et al. 2003; Neubeck et al. 2005), while in others, e.g., Koudelka et al. (2003),
it is just the opposite. There are also systems where both camera and light source
remain fixed (Han and Perlin 2003; Müller et al. 2004).

The UTIA gonioreflectometer setup Fig. 2 consists of independently controlled
arms with a camera and light. Its parameters, such as angular precision 0.03
degree, spatial resolution 1000 DPI, or selective spatial measurement, classify this

Fig. 2 UTIA gonioreflectometer
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gonioreflectometer to the state-of-the-art devices. The typical resolution of the area
of interest is around 2000×2000 pixels, sample size 7×7 [cm], and sensor distance
≈2 [m] with a field of view angle of 8.25◦, and each of them is represented using
at least 16-bit floating-point value for a reasonable representation of high-dynamic-
range visual information. Illumination source is 11 LED arrays, each having a flux
of 280 lm at 0.7 A, spectral wavelength 450−700 [nm], and its optics. The memory
requirements for storage of a single material sample amount to 360 gigabytes per
color channel but can be much more for a more precise spectral measurement.

We measure each material sample mostly in 81 viewing positions nv and 81
illumination positions ni , resulting in 6561 images per sample (4 terabytes of data).

CompoundMarkovModel

BTF data space is seven-dimensional, and thus it also requires seven-dimensional
probabilistic models for physically correct BTF modeling, data compression, and
enlargement with all related problems needed for robust estimation of all their
numerous parameters. A practical alternative is to factorize a seven-dimensional
problem into a set of lower-dimensional models with fewer parameters dedicated to
model subparts of a BTF texture combined into a compound BTF model.

We exploit the compound Markov model for physically correct BTF modeling
for either synthesis or analytical applications. Let us denote a multiindex r =
(r1, r2), r ∈ I, where I is a discrete two-dimensional rectangular lattice and r1
is the row and r2 the column index, respectively. The principal field pixel Xr ∈ K
where K is the index set of K distinguished sub-models, i.e., Xr ∈ {1, 2, . . . , K}
is a random variable with natural number value (a positive integer). Yr is the
multispectral pixel at location r and Yr,j ∈ R is its j -th spectral plane component.
Both random fields (X, Y ) are indexed on the same M × N lattice I .

Let us assume that each multispectral observed texture Ỹ (composed of d spectral
planes, e.g., d = 3 for color textures) and indexed on the M̃ × Ñ lattice Ĩ (usually
Ĩ ⊆ I and M̃, Ñ are number of rows and columns of the measured BTF texture)
can be modeled by a compound Markov random field model (CMRF), where
the principal Markov random field (MRF) X controls switching to a regional local
MRF model iY where Y = ⋃K

i=1
iY . Single K regional random field sub-models

iY are defined on their corresponding lattice subsets iI, iI ∩ j I = ∅ ∀i 	= j, I =⋃K
i=1

iI (Xr = Xs ∀r, s ∈i I ) and they are of the same MRF type. These models
differ only in their contextual support set iIr and corresponding parameter sets iθ

(a set of all i-th local random field parameters). The same type of sub-models are
assumed only for simplicity and can be omitted without any problems if needed.
The BTF-CMRF model has a posterior probability

P(X, Y | Ỹ ) = P(Y | X, Ỹ )P (X | Ỹ ) (2)
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and the corresponding optimal maximum a posteriori (MAP) solution is

(X̂, Ŷ ) = arg max
X∈ΩX,Y∈ΩY

P (Y | X, Ỹ ) P (X | Ỹ ),

where ΩX,ΩY are the corresponding configuration spaces for both random fields
(X, Y ). To avoid an iterative MCMC MAP solution for parameter estimation, we
proposed the following two-step approximation X̆, Y̆ (Haindl and Havlíček 2010):

(X̆) = arg max
X∈ΩX

P (X | Ỹ ), (3)

(Y̆ ) = arg max
Y∈ΩY

P (Y | X̆, Ỹ ). (4)

This approximation significantly simplifies the BTF-CMRF estimation without
compromising random sampling for its synthesis because it allows us to take
advantage of the possible analytical estimation of all regional MRF models iY in
(4). We randomly sample the required enlarged texture in the same order, i.e., at
first (3) and, consequently, based on this principal random field realization, the
local random fields (4). Furthermore, there is no need to have a unique solution
of the (3), (4) approximation because the aim is to obtain a visually indiscernible
result or results from the target observation. The subsequent Markovian/mixture
compound models use the notation BTF-CMRFprincipal_model local_model where the
upper indices indicate the principal as well as the local model families.

Principal MarkovModel

The principal part (X) of the BTF compound Markov models (BTF-CMRF )
is assumed to be independent on illumination and observation angles, i.e., it
is identical for all possible combinations φi, φv, θi, θv azimuthal and elevation
illumination/viewing angles, respectively. This assumption does not compromise
the resulting BTF space quality because it influences only a material texture
macrostructure independent of these angles for static BTF textures.

The principal random field X̆ is estimated using simple K-means clustering of
Ỹ in the RGB color space into a predefined number of K classes, where cluster
indices are X̆r ∀r ∈ I estimates. We further use for simplicity the RGB color
space, but any other color space can be used as well. The number of classes K

can be estimated using the Kullback-Leibler divergence and considering a sufficient
amount of data necessary to estimate all local Markovian models reliably. If the
BTF texture contains subparts with distinct texture but similar colors, any more
sophisticated texture segmenter (e.g., Haindl and Mikeš 2007; Haindl et al. 2009a,b,
2015a) can be used.
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Principal Single Model Markov Random Field

The simplest principal model is a constant field that contains only one model BTF-
CMRFc... P (X | Ỹ ) = const., i.e., P(Xr | Ỹ ) = P(Xs | Ỹ ) ∀r, s. Then there is
no need to use the MAP approximation (3), (4), and the compound Markov model
simplifies into a single random field BTF-MRF model, and the BTF-MRF model
can be any of the following local MRF models.

Non-parametric Markov Random Field

If we do not assume any specific principal control field parametric model, but rather
we seamlessly and directly enlarge its realization from measured data (Fig. 3), we
get several non-parametric principal control field approaches. The non-parametric
principal field BTF-CMRFNProl... (NProl. . . – a non-parametric roller-based prin-
cipal field with any local random fields denoted as . . .; see Figs. 3, 4, 16) can
be modeled using the roller method (Haindl and Havlíček 2010) for optimal X̆

compression and speedy enlargement to any required field size. The roller method
(Haindl and Hatka 2005a,b) principle is the overlapping tiling and subsequent
minimum error boundary cut. One or several optimal double toroidal data patches
are seamlessly and randomly repeated during the synthesis step. This fully automatic
method starts with minimal tile size detection, which is limited by the size of the
principal field, the number of toroidal tiles we are looking for, and the sample spatial
frequency content.

Fig. 3 Measured brick principal field (upper left), its optimal double toroidal patch (bottom left),
and enlarged synthetic principal field (right, K = 8)
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Fig. 4 Synthetic BTF-CMRFNProl3DCAR enlarged color bark (right) estimated from their natural
measurements (left)

Non-parametric Markov Random Field with Iterative Synthesis

The non-parametric principal random field X̆ is estimated using simple K-means
clustering of Ỹ in the RGB color space into a predefined number of K classes, where
cluster indices ωi are X̆r ∀r ∈ I estimates. The clustering resulting thematic map is
used to compute region size histograms h̃i for all i = 1, . . . , K classes. Let us order
classes according to the decreasing number of pixels ñi belonging to each class, i.e.,
ñ1 ≥ ñ2 ≥ . . . ≥ ñK . Histograms h̃i are the only parameters required to store for
the principal field.

Iterative Principal Field Synthesis
The iterative algorithm (Haindl and Havlíček 2018b) (Figs. 5 and 6) uses a data
structure that describes membership in the region for each pixel. This data structure
for each region additionally contains the class membership, size of the region and
the requested number of regions of its size, all border pixels from both sides of
the border, possibility to decrease or increase the region, and, for all classes, the
histogram and regions, which can be increased or decreased. After any change in a
pixel class assignment, this structure has to be updated.

0. The synthesized M × N required principal field is initialized to the largest class,
and all histograms cells are rescaled using the scaling factor MN

M̃Ñ
, where M̃ × Ñ

is the target (measured) texture size, i.e., X
(0)
r = ω1 ∀r ∈ I and h̃i → hi

for i = 1, . . . , K . A lattice multiindex r is randomly generated starting from
the second-largest class ω2 till the smallest size class ωK . Class index Xr is
changed to new value Xr = ωi only if its previous value was Xr = ω1 and the
total number of principal field pixels with class indicator ωi is smaller than its
final value ni . After this initialization step, all classes have their correct required
number of pixels but not yet their correct region size histograms.
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010erutxettegrat 4

2 ·104 3 ·104 3, 3 ·104

Fig. 5 The granite (Fig. 6) principal field synthesis. The target texture principal field, initializa-
tion, and selected iteration steps rightwards

measurement synthesized enlarged granite K = 6

Fig. 6 The granite measurement and its synthetic enlargement (BTF-CMRFNPi3AR)

1. Pixels r and s are randomly selected with the following properties: The pixel r

from the class ωi is on the border between region ↓ ωA
i (a region A which can

be decreased) and region ↑ ωB
j (a region B which can be increased). The pixel s

from the class ωj is on the border between region ↓ ωC
j (a region C which can be

decreased) and region ↑ ωD
i (a region D which can be increased). These regions

have to be distinct, i.e., A ∩ D = ∅ and B ∩ C = ∅. If such pixels r, s exist, go
to step 5. If not repeat this step once more.



28 Bidirectional Texture Function Modeling 1035

2. Gradually check all class couples starting from ω1, ω2, . . . , ωK to find pixels r, s

which meet conditions in step 1. All regions corresponding to the chosen classes,
ωi and ωj , are selected randomly. If such pixels r, s exist, go to step 5.

3. Randomly select a region from class ωi , which has two neighboring regions of
class ωj such as one can be decreased and another increased. If there exist two
border pixels r, s in the region ωj , where r is a border pixel with a region to be
increased and s with a region to be decreased, go to step 5.

4. Gradually check all classes with incorrect histogram, starting from ω1, ω2, . . . ,

ωK ; for every class ωi gradually check all its regions ↑ ωA
i which can be

increased; for each region ↑ ωA
i , check every region neighboring border pixel

r from class ωj and region ↓ ωB
j (a region B which can be decreased), and find

pixel s with the following properties: pixel s is from the class ωi and region ↓ ωC
i

(a region C which can be decreased), and pixel s is on the boarder of the region
↑ ωD

j from class ωj (a region which can be increased). These regions have to be
distinct, i.e., A ∩ C = ∅ and B ∩ D = ∅. If such pixels do not exist, go to step 7.

5. Xr = ωj ,Xs = ωi update the data structure.
6. If the number of iterations is less than a selected limit, go to 1.
7. Store the resulting principal field and stop.

Steps 1 and 2 allow simultaneous improvement of four regions, while step 3
improves two regions only. The algorithm converges to the correct class histograms
hi i = 1, . . . , K .

Non-parametric Markov Random Field with Fast Iterative Synthesis

The non-parametric principal field (Haindl and Havlíček 2018a) BTF-CMRFNPf i...

is estimated as in the previous section, and its synthesis is modified to be signifi-
cantly faster at the cost of slightly compromised principal field variability. The fast
algorithm compromise is its preference for convex regions instead of their general
shapes but profits with faster convergency.

The median speed up between this method and the approach for the non-
parametric principal field synthesis in section “Non-parametric Markov Random
Field with Iterative Synthesis” is one-fifth of the required cycles to converge. Some
textures (e.g., granite; Fig. 7) have sufficiently similar statistics of the synthesized
regions with the principal target field already in the initialization step. Hence,
the principal field synthesis even does not need any iterations. The lichen Fig. 8
principal target field (512 × 512) requires 29 137 iterations, while the previous
iterative method needs nearly 5 times more (140 146) iterations to converge.

Iterative Principal Field Synthesis
The iterative algorithm is based on a similar data structure, which describes
membership in the region for each pixel, as in the previous section. Both iterative
algorithms differ only in their initialization steps.
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010erutxettegrat 4

Fig. 7 The granite principal field synthesis. The target texture principal field, initialization, and a
similar 104-th iteration step result

measurement synthesized enlarged lichen K = 6

Fig. 8 The lichen measurement and its synthetic enlargement (BTF-CMRFNPf i3DCAR)

0. The synthesized M × N required principal field is initialized to the value
ω0 it means that pixel was not assigned to any class ωi for i = 1, . . . , K .
All histogram cells are rescaled using the scaling factor MN

M̃Ñ
, i.e., X

(0)
r =

ω1 ∀r ∈ I and h̃i → hi for i = 1, . . . , K . All regions from all classes
i = 1, . . . , K are sorted by region size. Starting from the biggest region A1
till the smallest region AM , where M the is number of all regions, a lattice
multiindex r is randomly generated. The first pixel Xr of the region Aj where
j = 1, . . . ,M and class ωi is randomly selected and is changed to new value
Xr = ωi only if its previous value was Xr = ω0 Ȧll neighbors Xs of the pixel
Xr which fulfil conditions Xs = ω0 and pixel Xs that has no neighbor from
the class ωi are added to the queue Q. Till the size of region Aj is higher than
the number of actually added pixels, the next pixel Xr is randomly selected
from the queue Q, the values are changed to Xr = ωi and its neighbors are
added to the queue Q if they meet the mentioned conditions. If the queue Q

is empty and the size of the region Aj is higher than the number of actually
assigned pixels, the rest of the pixels is randomly assigned to the class ωi

after the initialization of the last region AM . After this initialization step,
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all classes have their correct required number of pixels but not their correct
region size histograms.

1.–7. Identical with the corresponding items in section “Iterative Principal Field
Synthesis”.

Steps 1 and 2 allow simultaneous improvement of four regions, while step 3
improves two regions only. The algorithm converges to the correct class histograms
hi i = 1, . . . , K .

Potts Markov Random Field

The resulting thematic principal map X̆ BTF-CMRF2P ... is represented by the
hierarchical two-scale Potts model (Haindl et al. 2012)

X̆(a) = 1

Z(a)
exp

⎧
⎨

⎩
−β(a)

∑

s∈Ir

δ
X

(a)
r X

(a)
s

⎫
⎬

⎭
(5)

where Z is the appropriate normalizing constant and δ() is the Kronecker delta
function. The rough-scale-upper- level Potts model (a = 1) regions are further
elaborated with the detailed fine-scale-level (a = 2) Potts model which models the
corresponding subregions in each upper-level region. The parameter β(a) for both
level models is estimated using an iterative estimator which starts from the upper
β limit (βmax) and adjusts (decreases or increases) its value until the Potts model
regions have similar parameters (average inscribed squared region size and/or the
region’s perimeter) with the target texture switching field. This iterative estimator
gives more resembling results with the target texture than the alternative maximum
pseudo-likelihood method (Levada et al. 2008). The corresponding Potts models
are synthesized (Fig. 9 – middle) using the fast Swendsen-Wang sampling method
(Swendsen and Wang 1987).

Fig. 9 The rusty plate texture measurement, its principal synthetic field, and the final synthetic
CMRFP 3AR model texture
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Potts-Voronoi Markov Random Field

The principal field (X) of the CMRF BTF-CMRFPV ... model (Haindl et al. 2015b)
is a mosaic represented as a Voronoi diagram (Aurenhammer 1991), and the
distribution of the particular colors (texture classes) of the mosaic is modeled as
a Potts random field which is built on top of the adjacency graph (G) of the mosaic.
Figure 10 illustrates this model applied to the floor mosaic, while Fig. 11 shows this
model applied to a glass mosaic synthesis in St. Vitus Cathedral in Prague Castle.
The algorithm requires input in the form of a segmented mosaic with distinguishable
regions of the same texture type.

After that follows the identification of the mosaic field centers and the estimation
of the parameters of the 2D discrete point process, which samples the control
points of the newly synthesized Voronoi mosaic. This sampling is done using a 2D
histogram, which has shown to be sufficient for the good quality estimate. The only
other parameter is the number of points to be sampled, which grows linearly
with the required area of the synthetic image in the case of texture enlargement
applications.

With the control points for the Voronoi mosaic cells having been sampled, we
compute the Voronoi diagram, and optionally mark the delimiting edges between
adjacent cells. The assignment of a regional texture model to each mosaic cell
(the principal MRF (P (X | Ỹ ))) is then mapped by the flexible K−state Potts
random field (Potts and Domb 1952; Wu 1982).

Let us denote G = (V ,E) the adjacency graph of the mosaic areas and

Nu = {∀v ∈ V : (u, v) ∈ E}, u ∈ V (6)

the 1st-order neighborhood, where V,E are the vertex and edge sets. Vertexes
correspond to the particular areas in the mosaic, and there is an edge between two
vertexes if their corresponding areas are directly next to each other.

The resulting thematic principal map X̆ is represented by the Potts model for a
general graph

measurement synthesized floor mosaic 

Fig. 10 The floor mosaic measurement and its synthesis (BTF-CMRFPV 3DCAR)
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Fig. 11 An example of St. Vitus Cathedral in Prague Castle stained glass window with two
original panels (yellow arrows) replaced with synthetic images (BTF-CMRFPV 3DCAR)

p(X̆|β) = 1

Z
exp

⎧
⎨

⎩
−β

∑

u∈V,v∈Nu

δ(Xu,Xv)

⎫
⎬

⎭
(7)

where Z is the appropriate normalizing constant and δ() is the Kronecker delta
function. The parameter β is estimated from the K-means clustered input mosaic
using the maximum pseudo-likelihood method described by Levada et al. (2008).
The local density of the Potts field can be expressed as

p(Xu = q|Xv∈Nu, β) =
exp

{
β

∑
s∈Nu

δ(q,Xv)
}

∑K
k=1 exp

{
β

∑
v∈Nu

δ(k,Xv)
} (8)

for which the pseudo-likelihood approximation is

PL(β) =
∏

u∈V

p(Xu = q|Xv∈Nu, β). (9)

Calculating the logarithm, differentiating, and setting the result equal to 0, we get
the maximum pseudo-likelihood equation (10) for the β estimate:
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Ψ (β) = −
∑

u∈V

∑K
k=1

(∑
v∈Nu

δ(Xu,Xv)
)

exp
{
β

∑
v∈Nu

δ(k,Xv)
}

∑K
k=1 exp

{
β

∑
v∈Nu

δ(k,Xv)
}

+
∑

u∈V

∑

v∈Nu

δ(Xu,Xv) = 0. (10)

The corresponding Potts models are synthesized using the fast Swendsen-Wang
sampling method (Swendsen and Wang 1987), although for smaller fields, which
the mosaics undoubtedly are, other sampling MCMC methods such as the Gibbs
sampler (Geman and Geman 1984) can be used. Alternatively, the Metropolis
algorithm (Metropolis et al. 1953) should also work sufficiently fast enough.

Bernoulli DistributionMixture Model

The distribution P(X{r}) is assumed to be multivariable Bernoulli mixture (BM)
(Haindl and Havlíček 2017b). The mixture distribution P(X{r}) has the form

P(X{r}) =
∑

m∈M

P(X{r} | m)p(m) =
∑

m∈M

∏

s∈Ir

ps(Ys | m)p(m), (11)

where M is set of all mixture components, m a mixture component index, {r} is a set
of indices from Ir , and the principal field BTF-CMRFBM... is further decomposed
into separate binary bit planes of binary variables ξ ∈ B, B = {0, 1} which are
separately modeled and can be learned from much smaller training texture than a
multi-level discrete mixture model (see examples in Fig. 14). We suppose that a
bit factor of a principal field can be fully characterized by a marginal probability
distribution of binary levels on pixels within the scope of a window centered around
the location r and specified by the index set Ir ⊂ I , i. e., X{r} ∈ Bη and P(X{r}) is
the corresponding marginal distribution of P(X | Ỹ ). The component distributions
P(· | m) are factorizable, and multivariable Bernoulli

P(X{r} | m) =
∏

s∈Ir

θ̇Xs
m,s(1 − θ̇m,s)

1−Xs Xs ∈ X{r}. (12)

The mixture model parameters (11), (12) include component weights p(m) and the
univariate discrete distributions of binary levels. They are defined by one parameter
θ̇m,s as a vector of probabilities:

ps(· | m) = (θ̇m,s, 1 − θ̇m,s). (13)

The EM solution is (14), (15):
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q(t)(m | X{r}) = p(t)(m) P (t)(X{r} | m)
∑

j∈M p(t)(j)P (t)(X{r} | j)
, (14)

p(t+1)(m) = 1

|S |
∑

X{r}∈S

q(t)(m | X{r}), (15)

and

p(t+1)
s (ξ | m) = 1

|S | p(t+1)(m)

∑

X{r}∈S

δ(ξ,Xs) q(t)(m | X{r}), ξ ∈ B. (16)

The total number of mixture (11), (13) parameters is thus Ṁ(1 + η) Ṁ ∈ M –
confined to the appropriate norming conditions. The advantage of the multivariable
Bernoulli model (13) is a simple switchover to any marginal distribution by deleting
superfluous terms in the products P(X{r} | m).

GaussianMixture Model

The discrete principal field can be alternatively modeled (Haindl and Havlíček
2017b) by a continuous RF BTF-CMRFGM... if we map single indices into
continuous random variables with uniformly separated mean values and small
variance. The synthesis results are subsequently inversely mapped back into a
corresponding synthetic discrete principal field. We assume the joint probability
distribution P(X{r}), X{r} ∈ K η in the form of a normal mixture, and the mixture
components are defined as products of univariate Gaussian densities

P(X{r} | μm, σm) =
∏

s∈Ir

ps(Xs | μms, σms), (17)

ps(Xs | μms, σms) = 1√
2πσms

exp

{

− (Xs − μms)
2

2σ 2
ms

}

,

i. e., the components are multivariate Gaussian densities with diagonal covariance
matrices. The maximum-likelihood estimates of the parameters p(m), μms, σms can
be computed by the expectation-maximization (EM) algorithm (Dempster et al.
1977; Grim and Haindl 2003). Anew we use a data set S obtained by pixel-
wise shifting the observation window within the original texture image S =
{X(1)

{r} , . . . , X
(K)
{r} }, X

(k)
{r} ⊂ X. The corresponding log-likelihood function is

maximized by the EM algorithm (m ∈ M, n ∈ N, X{r} ∈ S), and the iterations are
(14), (15) and
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μ(t+1)
m,n = 1

∑
X{r}∈S q(t)(m | X{r})

∑

X{r}∈S

Xn q(m | X{r}), (18)

(σ (t+1)
m,n )2 = −(μ(t+1)

m,n )2 +
∑

X{r}∈S X2
n q(t)(m | X{r})

∑
X{r}∈S q(m|X{r})

. (19)

Local Markov andMixture Models

While the principal models control the overall large-scale low-frequency textural
structure, the local models synthesize the detail, regional and fine-granularity
spatial-spectral BTF information. Once we have synthesized the required size’s
principal random field, using some of the previously described models, we use it
to synthesize the local random part (3) of the BTF compound random model Y .
This local model is a mosaic of K random field sub-models. These sub-models are
assumed to be of the same type, but they differ in parameters and contextual support
sets. This assumption is for simplicity only and is not restrictive because every sub-
model is estimated and synthesized independently; thus, the Y mosaic can be easily
composed of different types of random field models.

Local i-th texture region (not necessarily continuous) models are view and
illumination dependent; thus, they need to be ideally represented by models which
can be analytically estimated as well as easily non-iteratively synthesized (BTF-
CMRFNProl3DCAR (Haindl and Havlíček 2010), BTF-CMRF2P 3DCAR (Haindl
et al. 2012), BTF-CMRFPV 3DCAR (Haindl et al. 2015b), BTF-CMRFc3DGM

(Haindl and Havlíček 2016), BTF-CMRFBM3DCAR (Haindl and Havlíček 2017b),
BTF-CMRFGM3DCAR , BTF-CMRFNProl3DMA (Haindl and Havlíček 2017a), BTF-
CMRFNP i3DCAR (Haindl and Havlíček 2018b), BTF-CMRFNPf i3DCAR (Haindl
and Havlíček 2018a)).

3D Causal Simultaneous Autoregressive Model

The 3D causal simultaneous autoregressive model (3DCAR) is an exceptional
model because all its statistics can be solved analytically, and it can be utilized
to build much more complex nD data models. For example, the 7D BTF models
illustrated in Fig. 4 are composed from up to one hundred 3DCARs.

A digitized image Y is assumed to be defined on a finite rectangular N × M × d

lattice I , and r = (r1, r2, r3) ∈ I denotes a pixel multiindex with the row, columns,
and spectral indices, respectively. The notation I c

r ⊂ I is a causal or unilateral
neighborhood of pixel r , i.e.,

I c
r ⊂ IC

r = {s : 1 ≤ s1 ≤ r1, 1 ≤ s2 ≤ r2, s 	= r}.
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The 3D causal simultaneous autoregressive model (3DCAR) is the wide-sense
Markov model that can be written in the following regression equation form:

Ỹr =
∑

s∈I c
r

AsỸr−s + er ∀r ∈ I (20)

where As are matrices (21) and the zero mean white Gaussian noise vector er has
uncorrelated components with data indexed from I c

r but noise vector components
can be mutually correlated with a constant covariance matrix Σ .

As1,s2 =

⎛

⎜
⎜
⎝

a
s1,s2
1,1 , . . . , a

s1,s2
1,d

...,
. . . ,

...

a
s1,s2
d,1 , . . . , a

s1,s2
d,d

⎞

⎟
⎟
⎠ (21)

where d ×d are parameter matrices. The model can be expressed in the matrix form

Yr = γZr + er , (22)

where

Zr = [Ỹ T
r−s : ∀s ∈ I c

r ], (23)

Zr is a dη × 1 vector, η = card(I c
r ) and γ

γ = [A1, . . . , Aη] (24)

is a d × dη parameter matrix. To simplify notation the multiindexes r, s, . . . have
only two components further on in this section.

An optimal support can be selected as the most probable model given past data

Y (r−1) = {Yr−1, Yr−2, . . . , Y1, Zr , Zr−1, . . . , Z1},

i.e., maxj {p(Mj | Y (r−1))}. Simultaneous conditional density can be evaluated
analytically from

p(Y (r−1) | Mj ) =
∫ ∫

p(Y (r−1) | γ,Σ−1)p(γ,Σ−1 | Mj )dγ dΣ−1 (25)

, and for the implemented uniform priors start, we get a decision rule (Haindl and
Šimberová 1992):

The most probable AR model given past data Y (r−1), the normal-Wishart
parameter prior and the uniform model prior is the model Mi (Haindl 1983) for
which
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i = arg max
j

{Dj }

Dj = −d

2
ln |Vx(r−1)| − β(r) − dη + d + 1

2
ln |λ(r−1)| + d2η

2
ln π (26)

+
d∑

i=1

[

ln Γ

(
β(r) − dη + d + 2 − i

2

)

− ln Γ

(
β(0) − dη + d + 2 − i

2

)]

where Vz(r−1) = Ṽz(r−1) +Vz(0) with Ṽz(r−1) defined in (31), Vz(0) is an appropriate
part of V0 (31), β(r) is defined in (27), (28) and λ(r−1) is (29).

The statistics (26) uses the following notation (27), (28), (29), (30) and (31):

β(r) = β(0) + r − 1 = β(r − 1) + 1, (27)

β(0) > η − 2, (28)

and

λ(r) = Vy(r) − V T
zy(r)V

−1
z(r)Vzy(r). (29)

Vr−1 = Ṽr−1 + V0, (30)

Ṽr−1 =
⎛

⎝

∑r−1
k=1 ỸkỸ

T
k

∑r−1
k=1 ỸkZ̃

T
u

∑r−1
k=1 Z̃kỸ

T
k

∑r−1
k=1 Z̃kZ̃

T
k

⎞

⎠ =
⎛

⎝
Ṽy(r−1) Ṽ T

zy(r−1)

Ṽzy(r−1) Ṽz(r−1)

⎞

⎠ . (31)

Marginal densities p(γ | Y (r−1)) and p(Σ−1 | Y (r−1)) can be evaluated from
(32), (33), respectively.

p(γ | Y (r−1)) =
∫

p(γ,Σ−1 | Y (r−1))dΣ−1 (32)

p(Σ−1 | Y (r−1)) =
∫

p(γ,Σ−1 | Y (r−1))dγ (33)

The marginal density p(Σ−1 | Y (r−1)) is the Wishart distribution density (Haindl
1983)

p(Σ−1 | Y (r−1)) = π
d(1−d)

4 |Σ−1| β(r)−dη
2

2
d(β(r)−dη+d+1)

2
∏d

i=1 Γ (
β(r)−dη+2+d−i

2 )
|λ(r−1)|

β(r)−dη+d+1
2

exp

{

−1

2
tr{Σ−1λ(r−1)}

}

(34)
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with

E
{
Σ−1 | Y (r−1)

}
= (β(r) − dη + d + 1) λ−1

(r−1) (35)

E
{
(Σ−1 − E{Σ−1 | Y (r−1)})T (Σ−1 − E{Σ−1 | Y (r−1)}) | Y (r−1)

}
=

2(β(r) − dη + 1)

λ(r−1)λ
T
(r−1)

. (36)

The marginal density p(γ | Y (r−1)) is matrix t distribution density (Haindl 1983)

p(γ | Y (r−1)) =
∏d

i=1 Γ (
β(r)+d+2−i

2 )
∏d

i=1 Γ (
β(r)−dη+d+2−i

2 )
π− d2η

2 |λ(r−1)|− dη
2 |Vx(r−1)| d

2

∣
∣
∣I + λ−1

(r−1)(γ − γ̂r−1) Vz(r−1)(γ − γ̂r−1)
T
∣
∣
∣
− β(r)+d+1

2
(37)

with the mean value

E
{
γ | Y (r−1)

}
= γ̂r−1 (38)

and covariance matrix

E
{
(γ − γ̂r−1)

T (γ − γ̂r−1) | Y (r−1)
}

= V −1
z(r−1)λ(r−1)

β(r) − dη
. (39)

Similar statistics can be easily derived (Haindl 1983) for the alternative Jeffreys
non-informative parameter prior. Similar to other model statistics, also the predictive
density can be analytically derived.

The one-step-ahead predictive posterior density for the normal-Wishart parame-
ter prior has the form of d-dimensional Student’s probability density (40) (Haindl
1983)

p(Yr | Y (r−1)) = Γ (
β(r)−dη+d+2

2 )

Γ (
β(r)−dη+2

2 ) π
d
2 (1 + ZT

r V −1
z(r−1)Zr)

d
2 |λ(r−1)| 1

2

⎛

⎝1 + (Yr − γ̂r−1Zr)
T λ−1

(r−1)(Yr − γ̂r−1Zr)

1 + ZT
r V −1

z(r−1)Zr

⎞

⎠

− β(r)−dη+d+2
2

, (40)

with β(r) − dη + 2 degrees of freedom; if β(r) > dη then the conditional mean
value is
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E
{
Yr | Y (r−1)

}
= γ̂r−1Zr, (41)

and

E
{
(Yr − γ̂r−1Zr)(Yr − γ̂r−1Zr)

T | Y (r−1)
}

= 1 + ZrV
−1
z(r−1)Z

T
r

(β(r) − dη)
λ(r−1). (42)

The 3DCAR model can be made adaptive if we modify its recursive statistics
using an exponential forgetting factor, i.e., a constant ϕ ≈ 0.99. This forgetting
factor smaller than 1 is used to weigh the influence of older data. The numerical
stability of 3DCAR can be guaranteed if all its recursive statistics use the square
root factor updating applying either the Cholesky or LDLT decomposition (Haindl
2000), respectively.

The 3DCAR (analogously also the 2DCAR model) model has advantages in
analytical solutions (Bayes, ML, or LS estimates) for Ir , γ̂ , σ̂ 2, Ŷr statistics. It
allows straightforward, fast synthesis, adaptivity, and building efficient recursive
application algorithms.

3DMoving AverageModel

Single multispectral texture factors Y are modeled using the extended version
(3D MA) of the moving average model (Li et al. 1992; Haindl and Havlíček 2017a).
A stochastic multispectral texture can be considered to be a sample from a 3D
random field defined on an infinite 2D lattice. The model assumes that each factor
is the output of an underlying system, which completely characterizes it in response
to a 3D uncorrelated random input. This system can be represented by the impulse
response of a linear 3D filter. The intensity values of the most significant pixels,
together with their neighbors, are collected and averaged. The resultant 3D kernel is
used as an estimate of the impulse response of the underlying system. A synthetic
mono-spectral factor can be generated by convolving an uncorrelated 3D random
field with this estimate. Suppose a stochastic multispectral texture denoted by Y is
the response of an underlying linear system that completely characterizes the texture
in response to a 3D uncorrelated random input Er ; then, Yr is determined by the
difference equation

Yr =
∑

s∈Ir

BsEr−s (43)

where Bs are constant matrix coefficients and Ir ⊂ I .
Hence, Yr can be represented as Yr = h(r)∗Er where the convolution filter h(r)

contains all parameters Bs . In this equation, the underlying system behaves as a 3D
filter, where we restrict the system impulse response to have significant values only
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within a finite region. The geometry of Ir determines the causality or non-causality
of the model.

The parameter estimation can be based on the modified random decrement
technique (RDT) (Cole Jr 1973; Asmussen 1997). RDT assumes that the input is an
uncorrelated random field. If every pixel component is higher than its corresponding
threshold vector component and simultaneously at least one of its four neighbors is
less than this threshold, the pixel is saved in the data accumulator. The procedure
begins by selecting thresholds usually chosen as some percentage of the standard
deviation of each spectral plane’s intensities separately. In addition to that, a 3D
MA model also requires to estimate the noise spectral correlation, i.e.,

E{ErEs} = 0 ∀r1 	= s1 ∨ r2 	= s2,

E{Er1,r2,r3Er1,r2,r̄3} 	= 0 ∀r3 	= r̄3.

The synthetic factor can be generated simply by convolving an uncorrelated
3D RF E with the estimate of B according to (43). All generated factors form a
new Gaussian pyramid. Fine resolution synthetic smooth texture is obtained by the
collapse of the pyramid, i.e., an inverse procedure of that one creating the pyramid.
This model can be used for materials which consist of several types of relatively
small regions with fine-granular inner structure such as sand, grit, cork, lichen, or
plaster. Figure 12 illustrates the visual quality of this simple model if the regional
textures violate this fine-granularity assumption.

Spatial 3D GaussianMixture Model

A static homogeneous three-dimensional textural factor Y is assumed to be defined
on a finite rectangular M × N × d lattice I , r = (r1, r2) ∈ I denotes a pixel
multiindex with the row, columns, and indices, respectively. Let us suppose that Y

represents a realization of a random vector with a probability distribution P(Y ). The
statistical properties of interior pixels of the moving window on Y are translation
invariant due to assumed textural homogeneity. They can be represented by a joint
probability distribution, and the properties of the texture can be fully characterized

measurement synthesized texture

Fig. 12 The stone measurement and its synthesis (BTF-CMRFNP 3DMA)
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by statistical dependencies on a sub-field, i.e., by a marginal probability distribution
of spectral levels on pixels within the scope of a window centered around the
location r and specified by the index set:

Ir = {r + s : |r1 − s1| ≤ α ∧ |r2 − s2| ≤ β} ⊂ I. (44)

The index set Ir depends on modeled visual data and can have any other than this
rectangular shape. Y{r} denotes the corresponding matrix containing all d×1 vectors
Ys in some fixed order arrangement such that s ∈ Ir , Y{r} = [Ys ∀ s ∈ Ir ], Y{r} ⊂ Y ,
η = cardinality{Ir}, and P(Y{r}) is the corresponding marginal distribution of P(Y ).

If we assume the joint probability distribution P(Y{r}), in the form of a normal
mixture (Haindl and Havlíček 2016)

P(Y{r}) =
∑

m∈M

p(m)P (Y{r} | μm,Σm) Y{r} ⊂ Y,

=
∑

m∈M

p(m)
∏

s∈Ir

ps(Ys | μm,s,Σm,s) (45)

where Y{r} ∈ �d×η is d × η matrix, μm is d × η mean matrix, Σm is d × d × η

a covariance tensor, and p(m) are probability weights and the mixture components
are defined as products of multivariate Gaussian densities

P(Y{r} | μm,Σm) =
∏

s∈I{r}
ps(Ys | μms,Σms), (46)

ps(Ys | μms,Σms) = 1

(2π)
d
2 |Σm,s | 1

2

exp

{

−1

2
(Yr − μm,s)

T Σ−1
m,s(Yr − μm,s)

}

,

(47)

i. e., the components are multivariate Gaussian densities with covariance matrices
(53).

The underlying structural model of conditional independence is estimated from
a data set S obtained by the step-wise shifting of the contextual window Ir within
the original textural image, i. e., for each location r one realization of Y{r}.

S = {Y{r} ∀ r ∈ I, Ir ⊂ I } Y{r} ∈ �d×η. (48)

Parameter Estimation
The unknown parameters of the approximating mixture can be estimated using
the iterative EM algorithm (Dempster et al. 1977). In order to estimate the
unknown distributions ps(· | m) and the component weights p(m) we maximize
the likelihood function (49) corresponding to the training set (48):
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L = 1

|S |
∑

Y{r}∈S

log

⎡

⎣
∑

m∈M

P(Y{r} | μm,Σm)p(m)

⎤

⎦ . (49)

The likelihood is maximized using the iterative EM algorithm (with non-diagonal
covariance matrices):

E:

q(t)(m| Y{r}) = P̃ (t)(Y{r} | μm,Σm)p(t)(m)
∑

j∈M P (t)(Y{r} | μj ,Σj ) p(t)(j)
, (50)

M:

p(t+1)(m) = 1

|S |
∑

Y{r}∈S

q(t)(m | Y{r}), (51)

μ(t+1)
m,s = 1

∑
Y{r}∈S q(t)(m | Y{r})

∑

Y{r}∈S

Ysq
(t)(m | Y{r}). (52)

The covariance matrices are

Σ(t+1)
m,s =

∑
Y{r}∈S,Ys∈Y{r} q(t)(m | Y{r})
∑

Yr∈S q(t)(m | Y{r})
(Ys − μ(t+1)

m,s )(Ys − μ(t+1)
m,s )T (53)

=
∑

Y{r}∈S,Ys∈Y{r} q(t)(m | Y{r}) YsY
T
s

∑
Yr∈S q(t)(m | Y{r})

−
p(t+1)(m) |S| μ(t+1)

m,s

(
μ

(t+1)
m,s

)T

∑
Yr∈S q(t)(m | Y{r})

.

The iteration process stops when the criterion increments are sufficiently small.
The EM algorithm iteration scheme has the monotonic property L(t+1) ≥ L(t), t =
0, 1, 2, . . . which implies the convergence of the sequence {L(t)}∞0 to a stationary
point of the EM algorithm (local maximum or a saddle point of L). Figure 13 illus-
trates the usefulness of the BTF-CMRF3DGM model for textile material modeling,
while Fig. 18 shows this model applied to scratch restoration.

Applications

Numerous modeling applications can exploit the BTF models. The synthesis is
beneficial not only for physically correct appearance modeling of surface materials
under realistic and variable observation conditions (Figs. 15 and 17, upper row)
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measurement synthesized fabric

Fig. 13 The fabric measurement and its synthesis (BTF-CMRF3DGM )

measured synthesis measured synthesis

Fig. 14 Measured original cloth and corduroy materials and their synthesis using the
CRFBM−3CAR model

but also for texture editing (Fig. 16), texture compression, or texture inpainting
and restoration (Fig. 18). Various state-of-the-art unsupervised, semi-supervised, or
supervised visual scene classification and understanding under variable observation
conditions is the primary application for BTF analysis.

Texture Synthesis and Enlargement

Texture synthesis methods may be divided primarily into intelligent sampling and
model-based methods (Fig. 14). They differ in need to store (sampling) or not
(modeling) some actual texture measurements for new texture synthesis. Thus, even
some methods which view texture as a stochastic process (Heeger and Bergen 1995;
Efros and Leung 1999) still require to store an input exemplar. Sampling approaches
De Bonet (1997), Efros and Leung (1999), Efros and Freeman (2001), Heeger and
Bergen (1995), Xu et al. (2000), Dong and Chantler (2002), and Zelinka and Garland
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(2002) rely on sophisticated sampling from real texture measurements, while the
model-based techniques (Kashyap 1981; Haindl 1991; Haindl and Havlíček 1998,
2000; Bennett and Khotanzad 1998, 1999; Gimelfarb 1999; Paget and Longstaff
1998; Zhu et al. 2000) describe texture data using multidimensional mathematical
models, and their synthesis is based on the estimated model parameters only. The
mathematical model-based synthesis has an advantage in the possibility of seamless
texture enlargement to any size (e.g., Fig. 6). The enlargement of a restricted texture
measurement is always required in any application but cannot be achieved with
sampling approaches without visible seams or repetitions.

The BTF modeling’s ultimate aim is to create a visual impression of the same
material without a pixel-wise correspondence to the finding condition model of the
original measurements. Figure 15 shows the finding condition model of the beautiful
gothic style relief (around 1370) of the Christ in Gethsemane (Prague) in the right
and restored condition to a possible original appearance in the left.

The cornerstone of our BTF compression and modeling methods is the replace-
ment of a vast number of original BTF measurements by their efficient parametric
estimates derived from an underlying set of spatial probabilistic models and thus to
allow a huge BTF compression ratio unattainable by any alternative sampling-based
BTF synthesis method. Simultaneously these models can be used to reconstruct
missing parts of the BTF measurement space or the controlled BTF space editing
(Haindl and Havlíček 2009, 2012; Haindl et al. 2015b) by changing some of the
model’s parameters.

Textures without significant low frequencies such as Fig. 14-corduroy or Fig. 13-
fabric can be modeled using simple local models only, either Markovian or
mixtures such as 3DCAR, 3DMA, 3DBM, 3DGM, etc. Textures with substantial
low frequencies (Figs. 4, 9, 14-cloth) will benefit from a compound version of the
BTF model. Non-BTF textures can approximate low frequencies using a multiscale
version of these models, e.g., pyramidal model (Haindl and Filip 2013).

Fig. 15 3D model of the beautiful gothic style relief of the Christ in Gethsemane, Prague (finding
condition model right, restored condition to a possible original appearance left) mapped with the
BTF synthetic plaener using the CMRF 3CAR model
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Fig. 16 Synthetic
BTF-CMRFNProl3DCAR

edited and enlarged maple
bark texture (second and
fourth rows) with single
sub-models estimated from
their natural measurements
(maple bark first and flowers
third row)

measurement

violet texture grass texture

The 3DCAR model is synthesized directly from its predictor (41) and Gaussian
noise generator (22), (39). The advantage of a mixture model is its simple synthesis
based on the marginals:

pn | ρ(Yn | Y{ρ}) =
Ṁ∑

m=1

Wm(Y{ρ}) pn(Yn | m), (54)

where Wm(Y{{ρ}) are the a posterior component weights corresponding to the given
sub-matrix Y{ρ} ⊂ Y{r}:

Wm(Y{ρ}) = p(m)Pρ(Y{ρ} | m)
∑Ṁ

j=1 p(j)Pρ(Y{ρ} | j)
, (55)
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Pρ(Y{ρ} | m) =
∏

n∈ρ

pn(Yn | m). (56)

There are several alternatives for the 3DGM model synthesis (Haindl et al. 2011)
(Fig. 13). The unknown multivariate vector-levels Yn can be synthesized by random
sampling from the conditional density (54), or the mixture RF can be approximated
using the GM mixture prediction.

Texture Compression

BTF – the best current measurable representation of a material appearance –
requires tens of thousands of images using a sophisticated high-precision automatic
measuring device. Such measurements result in a massive amount of data that can
easily reach tens of terabytes for a single measured material. Nevertheless, these
data have still insufficient spatial extent for any real virtual reality applications and
have to be further enlarged using advanced modeling techniques. The resulting BTF
size excludes its direct rendering in graphical applications, and compression of these
huge BTF data spaces is inevitable. The usual car interior model requires more than
20 of such demanding BTF material measurements, and a similar problem holds for
other applications of the physically correct appearance modeling such as computer
games or film animations. A related problem is measurement data storage because
storage technology is still the weak link, lagging behind recent developments in
data sensing technologies. The apparent solution is mathematical modeling which
allows replacing massive measured data with few thousand parameters and thus to
reach tremendous unbeatable appearance data compression apart from unlimited
seamless material texture enlargement. For example, the compression ratio relative
to our BTF measurements is up to 1 : 1000000.

Texture Editing

Material-appearance editing is a practical approach with vast potential for sig-
nificant speedup and cost reduction in industrial virtual prototyping or various
design applications. An editing process can simulate materials for which no direct
measurements are available or not existing in Nature (Fig. 16). Another example of
the edited texture is two panels with the artificial but fitting glass mosaic synthesis
in St. Vitus Cathedral in Prague Castle stained glass window on Fig. 11. Such edited
artifacts allow an artist to test several possible design alternatives or model defunct
monuments.

Illumination Invariants

Textures are essential clues to specify objects present in a visual scene. However, the
appearance of natural textures is highly illumination and view angle-dependent. As a
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consequence, the most recent realistic texture-based classification or segmentation
methods require multiple training images (Varma and Zisserman 2005) captured
under all possible illumination and viewing conditions for each class. Such learning
is clumsy, probably expensive, and very often even impossible if required measure-
ments are not available.

If we assume fixed positions of viewpoint and illumination sources, uniform
illumination sources, and Lambertian surface reflectance, then two images Ỹ , Y

acquired with different illumination spectra can be linearly transformed to each
other:

Ỹr = B Yr ∀r. (57)

It is possible to show (Vacha and Haindl 2007) that assuming (57) the following
3DCAR model-derived features are illumination invariant:

1. trace: trace Am, m = 1, . . . , η K

2. eigenvalues: νm,j of Am, m = 1, . . . , η K, j = 1, . . . , C

3. 1 + XT
r V −1

x Xr,

4.
√

∑
r

(
Yr − γ̂ Xr

)T
λ−1

(
Yr − γ̂ Xr

)
,

5.
√

∑
r

(
Yr − μ

)T
λ−1

(
Yr − μ

)
,

where μ is the mean value of the vector Yr .
Above textural features derived from the 3DCAR model are robust to illumina-

tion direction changes, invariant to illumination brightness and spectrum changes,
and simultaneously also robust to Gaussian noise degradation. We extensively
verified this property on the BTF texture measurements, where illumination sources
are spanned over 75% of possible illumination half-sphere. Figure 17 illustrates
the application of 3DCAR model-derived features are illumination invariants to the
unsupervised wood mosaic segmentation.

(Un)supervised Image Recognition

Unsupervised or supervised texture segmentation is the prerequisite for successful
content-based image retrieval, scene analysis, automatic acquisition of virtual
models, quality control, security, medical applications, and many others.

Similarly, robust surface material recognition requires the BTF data learning set.
We classified 65 wood species measured in the BTF representation in the study
Mikeš and Haindl (2019) using the state-of-the-art convolutional neural network
(TensorFlow library (Google 2019; Krizhevsky 2009; Krizhevsky et al. 2012;
Pattanayak 2017)). We documented (Mikeš and Haindl 2019) sharp classification
accuracy decrease when using standard texture recognition approach, i.e., small
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Fig. 17 BTF wood mosaic and the MW3-AR8i model-based (Haindl et al. 2015a) unsupervised
segmentation results

learning set size and the vertical viewing and illumination angle, which is a very
inadequate representation of the enormous material appearance variability.

Although plentiful different methods were already published (Zhang 1997),
the image recognition problem is still far from being solved. This situation is
among others due to missing reliable performance comparison between different
techniques. Only limited results were published (Martin et al. 2001; Sharma and
Singh 2001; Ojala et al. 2002; Haindl and Mikeš 2008) on suitable quantitative
measures that allow us to evaluate and compare the quality of segmentation
algorithms.

Spatial interaction models and especially Markov random field-based models are
increasingly popular for texture representation (Kashyap 1986; Reed and du Buf
1993; Haindl 1991), etc. Several researchers dealt with the difficult problem of
unsupervised segmentation using these models, see for example Panjwani and
Healey (1995), Manjunath and Chellapa (1991), Andrey and Tarroux (1998), Haindl
(1999), and Matuszak and Schreiber (2009).

Our unsupervised segmenters (Haindl and Mikeš 2004, 2005, 2006; Haindl
et al. 2015a) assume the multispectral or multi-channel textures to be locally
represented by the parameters (Θr) of the multidimensional random field models
possibly recursively evaluated for each pixel and several scales. The segmentation
part of the algorithm is then based on the underlying Gaussian mixture model
(p(Θr) = ∑K

i=1 pi p(Θr | νi,Σi)) representing the Markovian parametric space
and starts with an over-segmented initial estimation, which is adaptively modified
until the optimal number of homogeneous mammogram segments is reached. The
corresponding mixture model equations (p(Θr), p(Θr | νi,Σi)) are solved using a
modified EM algorithm (Haindl and Mikeš 2007).
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The concept of decision fusion for high-performance pattern recognition is well
known and widely accepted in the area of supervised classification, where (often
very diverse) classification technologies, each providing complementary sources of
information about class membership, can be integrated to provide more accurate,
robust, and reliable classification decisions than single-classifier applications. Our
method (Haindl and Mikeš 2007) circumvents the problem of multiple unsupervised
segmenter combination by fusing multiple-processed measurements into a single
segmenter feature vector.

Multispectral/Multi-channel Image Restoration

Physical imaging, processing or transmission systems, and a recording medium are
imperfect, and thus a recorded image represents a degraded version of the original
scene.

The image restoration task is to recover an unobservable image given the
observed corrupted image Ÿ with respect to some statistical criterion. Image
restoration is a busy research area for already several decades, and many restoration
algorithms have been proposed (Andrews and Hunt 1977; Geman and Geman 1984;
Acton and Bovik 1999; Loubes and Rochet 2009; Felsberg 2009; Burgeth et al.
2009; Polzehl and Tabelow 2009).

The image degradation is often supposed to be approximated by the linear
degradation model:

Ÿr =
∑

s∈Ir

fs Yr−s + er (58)

where f is a discrete representation of the unknown point-spread function. The
point-spread function can be non-homogeneous, but we assume its slow changes
relative to the size of an image. Ir is some contextual support set, and the
degradation noise e is uncorrelated with the unobservable image. The point-spread
function is unknown but such that we can assume the unobservable image Y to be
reasonably well approximated by the expectation of the corrupted image

Ŷ = E{Ÿ } (59)

in regions with gradual pixel value changes.
Let us approximate after having observed Ÿ (j−1) = {Ÿj−1, . . . , Ÿ1} the mean

value Ŷj = E{Ÿj } by the E{Ÿj | Ÿ (j−1) = ÿ(j−1)) where ÿ(j−1) are known
past realization for j . Thus, we suppose that all other possible realizations ÿ(j−1)

than the true past pixel values have negligible probabilities. This assumption implies
conditional expectations approximately equal to unconditional ones, i.e.,

E{Ÿj } ≈ E{Ÿj | Ÿ (j−1)}, (60)
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cobra skin measurement scratches 3DGMM restoration

Fig. 18 Cobra skin scratch restoration using the spatial 3D Gaussian mixture model

and assuming the noisy image Ÿ can be represented by a 3DCAR model, then
the restoration model as well as the local estimation of the point-spread function
leads to a fast analytical solution (Haindl 2002). A similar restoration approach can
also be derived for a multi-channel (Haindl and Šimberová 2002) or multitemporal
(Haindl and Šimberová 2005) image restoration problems typically caused by
random fluctuations originating mostly in the Earth’s atmosphere during ground-
based telescope observations.

A difficult restoration problem is to restore missing parts of an image or a
spatially correlated data field. For example, every movie deteriorates with usage and
time irrespective of any care it gets. Movies (on both optical and magnetic materials)
suffer from blotches, dirt, sparkles, noise, scratches (Fig. 18), missing or heavily
corrupted frames, mold, flickering, jittering, image vibrations, and other problems.
For each kind of defect, usually a different kind of restoration algorithm is needed.
The scratch notion means every coherent region with missing data (simultaneously
in all spectral bands) in a color movie frame (Haindl and Filip 2002), static image,
range map, radio-spectrograph (Haindl and Šimberová 1996), radar observation,
color textures (Haindl and Havlíček 2015), etc. These missing data restoration
methods (inpainting) exploit correlations in the spatial/spectral/temporal data space
and benefit from the discussed Markovian or mixture (Fig. 18) random field models.

Conclusion

There is no single universal BTF model applicable for physically correct modeling
of visual properties of all possible BTF textures. Every presented model is better
suited for some subspace of possible BTF textures, either natural or artificial. Their
selection depends primarily on their spectral and spatial frequency content as well
as on available learning data. We present exceptional adaptive 3D Markovian or
mixture models, either solved analytically or iteratively and quickly synthesized.

The presented compound Markovian models are rare exceptions in the Marko-
vian model family that allow deriving extraordinarily efficient and fast data process-
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ing algorithms. All their statistics can be either evaluated recursively, and they either
do not need any Monte Carlo sampling typical for other Markovian models or can
use a fast form of such sampling (Potts random field). The 3DCAR models have
an advantage over non-causal (3DAR) in their analytical treatment. It is possible
to find the analytical solution of model parameters, optimal model support, model
predictor, etc. Similarly, the 3DCAR model synthesis is straightforward, and this
model can be directly generated from the model equation.

The mixture models are capable of reducing additive noise and restore missing
textural parts simultaneously. They produce high-quality results, especially of
regular or near-regular color textures. Their typical drawback the extensive learning
date set requirement is lessened by the ample available BTF measurement space
using a transfer learning approach.

The BTF-CMRF models offer a large data compression ratio (only tens of
parameters per BTF), easy simulation, and fast, seamless synthesis of any required
texture size. The methods have no restriction to the number of spectral channels;
thus, they can be easily applied to hyperspectral BTFs. The methods can be easily
generalized for color or BTF texture editing by estimating some local models from
different target materials or for image restoration or inpainting.

The Markovian models can be used for image enhancement, e.g., utterly
automatic mammogram enhancement, multispectral and multiresolution texture
qualitative measures development, or image or video segmentation. Some of these
models also allow robust textural features for texture classification when learning
and classified textures differ in scale. The classifiers based on Markovian features
can exploit illumination or geometric invariance properties and often outperform
the state-of-the-art alternative methods on tested public databases (e.g., eye, bark,
needles, textures).

Acknowledgments The Czech Science Foundation Project GAČR 19-12340S supported this
research.
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Haindl, M., Havlíček, V.: BTF compound texture model with fast iterative non-parametric control
field synthesis. In: di Baja, G.S., Gallo, L., Yetongnon, K., Dipanda, A., Castrillon-Santana, M.,
Chbeir, R. (eds.) Proceedings of the 14th International Conference on Signal-Image Technology
& Internet-Based Systems (SITIS 2018), pp. 98–105. IEEE Computer Society CPS, Los
Alamitos (2018a). https://doi.org/10.1109/SITIS.2018.00025

Haindl, M., Havlíček, V.: BTF compound texture model with non-parametric control field. In:
The 24th International Conference on Pattern Recognition (ICPR 2018), pp. 1151–1156. IEEE
(2018b). http://www.icpr2018.org/

Haindl, M., Mikeš, S.: Model-based texture segmentation. Lect. Notes Comput. Sci. (3212), 306–
313 (2004)

Haindl, M., Mikeš, S.: Colour texture segmentation using modelling approach. Lect. Notes
Comput. Sci. (3687), 484–491 (2005)

Haindl, M., Mikeš, S.: Unsupervised texture segmentation using multispectral modelling approach.
In: Tang, Y., Wang, S., Yeung, D., Yan, H., Lorette, G. (eds.) Proceedings of the 18th
International Conference on Pattern Recognition, ICPR 2006, vol. II, pp. 203–206. IEEE
Computer Society, Los Alamitos (2006). https://doi.org/10.1109/ICPR.2006.1148

Haindl, M., Mikeš, S.: Unsupervised texture segmentation using multiple segmenters strategy. In:
Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. Lecture Notes in Computer Science, vol. 4472,
pp. 210–219. Springer (2007). https://doi.org/10.1007/978-3-540-72523-7_22

Haindl, M., Mikeš, S.: Texture segmentation benchmark. In: Lovell, B., Laurendeau, D., Duin, R.
(eds.) Proceedings of the 19th International Conference on Pattern Recognition, ICPR 2008,
pp. 1–4. IEEE Computer Society, Los Alamitos (2008). https://doi.org/10.1109/ICPR.2008.
4761118

Haindl, M., Šimberová, S.: A multispectral image line reconstruction method. In: Theory &
Applications of Image Analysis. Series in Machine Perception and Artificial Intelligence,
pp. 306–315. World Scientific, Singapore (1992). https://doi.org/10.1142/9789812797896_
0028

Haindl, M., Šimberová, S.: A high – resolution radiospectrograph image reconstruction method.
Astron. Astrophys. 115(1), 189–193 (1996)

Haindl, M., Šimberová, S.: Model-based restoration of short-exposure solar images. In: Abraham,
A., Ruiz-del Solar, J., Koppen, M. (eds.) Soft Computing Systems Design, Management and
Applications, pp. 697–706. IOS Press, Amsterdam (2002)

Haindl, M., Šimberová, S.: Restoration of multitemporal short-exposure astronomical images.
Lect. Notes Comput. Sci. (3540), 1037–1046 (2005)

Haindl, M., Mikeš, S., Pudil, P.: Unsupervised hierarchical weighted multi-segmenter. In: Benedik-
tsson, J., Kittler, J., Roli, F. (eds.) Lecture Notes in Computer Science. MCS 2009, vol. 5519,
pp. 272–282. Springer (2009a). https://doi.org/10.1007/978-3-642-02326-2_28

Haindl, M., Mikeš, S., Vácha, P.: Illumination invariant unsupervised segmenter. In: Bayoumi, M.
(ed.) IEEE 16th International Conference on Image Processing – ICIP 2009, pp. 4025–4028.
IEEE (2009b). https://doi.org/10.1109/ICIP.2009.5413753
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