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Ondřej Straka, and Jindřich Dunı́k
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ABSTRACT
The paper deals with the state estimation of nonlinear stochas-
tic dynamic systems with special attention on a grid-based nu-
merical solution to the Bayesian recursive relations, the point-
mass filter (PMF). In the paper, a novel functional decomposi-
tion of the transient density describing the system dynamics is
proposed. The decomposition is based on a non-negative ma-
trix factorization and separates the density into functions of
the future and current states. Such decomposition facilitates a
thrifty calculation of the convolution, which is a bottleneck of
the PMF performance. The PMF estimate quality and compu-
tational costs can be efficiently controlled by choosing an ap-
propriate rank of the decomposition. The performance of the
PMF with the transient density decomposition is illustrated in
a terrain-aided navigation scenario.

Index Terms— State estimation, filtering, nonlinear sys-
tems, point-mass method, non-negative matrix factorization

1. INTRODUCTION

State estimation of nonlinear discrete-time stochastic dy-
namic systems from noisy measurements has been a subject
of considerable research interest for many decades and plays
an indispensable role in fields such as navigation, speech and
image processing, fault diagnosis, and adaptive control.

Within the Bayesian framework, a general solution to the
state estimation problem is given by the Bayesian recursive
relations (BRRs) inferring the probability density functions
(PDFs) of the state conditioned on the measurements. The
PDFs fully describe the immeasurable state of a possibly non-
linear or non-Gaussian stochastic dynamic system. The rela-
tions are analytically tractable for a limited set of models such
as linear Gaussian models. In other cases, approximate solu-
tions to the BRRs have to be employed, which offer various
levels of approximation. The Gaussian filters assuming the
joint state and measurement prediction PDF being Gaussian
are attractive for mildly nonlinear models, for which they of-
fer computational efficiency and reasonable estimate quality.

The work was supported by the Czech Science Foundation under grant
22-11101S

For strongly nonlinear or non-Gaussian models one usually
resorts to more complex (and thus computationally demand-
ing) filters such as the particle filter [1] or the point-mass filter
(PMF) [2].

This paper considers the PMF [3], [4], [5]. It is based on
a numerical solution to the BRRs using deterministic grid-
based numerical integration rules and computes the condi-
tional PDFs at the grid points only. A suitable selection of
the grid points is critical as it affects the PMF estimate ac-
curacy and computational complexity. The bottleneck of the
PMF limiting the number of the grid points (and thus hinder-
ing the PMF application for higher dimensional states) is the
predictive step. This step involves an evaluation of a convo-
lution called the Chapman-Kolmogorov equation, where the
grids for two consecutive time instants are combined through
the transient PDF, which is the essence of the bottleneck.

In this paper, we propose to handle the transient PDF in
the form of its decomposition. The decomposition is based
on the non-negative matrix factorization1 (NNMF) and sym-
metric NNMF, see [8] and references therein. It is specific for
the given grid and has to be done once, prior to the estimation
itself. In this way, it is possible to handle larger grids while
maintaining affordable computational complexity.

The paper is organized as follows. Section 2 deals with
introduction of the PMF-based Bayesian state estimation. In
Section 3, the decomposition of the transient PDF is pro-
posed. Performance analysis of the decomposition itself and
the PMF with the decomposition are provided in Section 4
and, in Section 5, the conclusion remarks are drawn.

2. POINT-MASS FILTER

Consider the following discrete-time state-space model of a
nonlinear stochastic dynamic system with additive noises

xk+1 = fk(xk,uk) + wk, k = 0, 1, 2, . . . , T, (1)
zk = hk(xk) + vk, k = 0, 1, 2, . . . , T, (2)

1The NNMF originally known as non-negative rank factorization or posi-
tive matrix factorization has been subject to intensive research for more than
three decades [6], [7].
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where xk ∈ Rnx , uk ∈ Rnu , and zk ∈ Rnz represent the un-
known state of the system and the known input and measure-
ment at time instant k, respectively. The state and measure-
ment functions fk : Rnx×nu → Rnx and hk : Rnx → Rnz

are supposed to be known vector transformations. Particular
realizations of the state and measurement noises wk and vk
are unknown, but their PDFs, i.e., the state noise PDF p(wk)
and the measurement noise PDF p(vk), are supposed to be
known and independent of the known initial state PDF p(x0).

2.1. Bayesian State Estimation and Recursive Relations

The goal of the state estimation is to find the conditional
PDF p(xk|zk),∀k conditioned on all measurements zk =
[z0, z1, . . . , zk] up to the time instant k, called filtering PDF.
The general solution to the state estimation is given by the
BRRs for the conditional PDFs2 computation [9]

p(xk|zk) =
p(xk|zk−1)p(zk|xk)

p(zk|zk−1)
, (3)

p(xk+1|zk) =

∫
p(xk+1|xk)p(xk|zk)dxk, (4)

where p(xk+1|zk) is the one-step predictive PDF com-
puted by the Chapman-Kolmogorov (CK) equation (4) and
p(xk|zk) is the filtering PDF computed by the Bayes’ rule (3).
The transient PDF p(xk+1|xk) = pwk

(xk+1 − fk(xk,uk))
and the measurement PDF p(zk|xk) = pvk

(zk − hk(xk))
are the state transient PDF obtained from (1) and the mea-
surement PDF obtained from (2), respectively. The PDF
p(zk|zk−1) =

∫
p(xk|zk−1)p(zk|xk)dxk is the one-step

predictive PDF of the measurement. The estimate of the
state is given by the filtering and the predictive PDFs. The
recursion (3), (4) starts from p(x0|z−1) = p(x0).

2.2. Point-Mass Density Approximation

Assume for convenience a scalar state xk ∈ R. The PMF is
based on an approximation of a conditional PDF p(xk|zm),
where m = k for the filtering PDF and m = k − 1 for
the predictive PDF, by a piece-wise constant point-mass den-
sity Ξk|m defined at the set of the discrete grid points ξk =

{ξ(i)
k }Ni=1, ξ

(i)
k ∈ R, as follows

Ξk|m ,
N∑
i=1

P
(i)
k|mS{xk; ξ

(i)
k ,∆k}, (5)

with

2Considering the model (1), (2), the BRRs (3), (4) should be conditioned
also on available sequence of the input uk, ∀k. However, for the sake of no-
tation simplicity, the input signal is assumed to be implicitly part of the con-
dition and it is not explicitly stated, i.e., p(xk+1|xk) = p(xk+1|xk;uk),
p(xk|zk) = p(xk|zk;uk−1), and p(xk+1|zk) = p(xk+1|zk;uk).

• P
(i)
k|m = ckP̃

(i)
k|m, where P̃ (i)

k|m = p(ξ
(i)
k |zm) is the condi-

tional PDF p(xk|zm) evaluated at the i-th grid point ξ(i)
k ,

ck = ∆k

∑N
i=1 P̃

(i)
k|m is a normalization constant.

• ∆k is a neighborhood of a grid point ξ(i)
k , where the PDF

p(xk|zm) is assumed to be constant and has value P (i)
k|m,

• S{xk; ξ
(i)
k ,∆k} is the selection function defined as

S{xk; ξ
(i)
k ,∆k} =

{
1, if |xk − ξ(i)

k (j)| ≤ ∆k

2 ,

0, otherwise.
(6)

2.3. Point-Mass Filter Summary

The basic algorithm of the PMF can be summarized as [4]:

Algorithm 1: Point-Mass Filter

1. Initialization: Set k = 0, construct the initial grid of
points {ξ(i)

0 }Ni=1, and define the initial point-mass PDF
Ξ0|−1 of form (5) approximating the initial PDF.

2. Meas. update: Compute the filtering point-mass PDF
Ξk|k of the form (5) where the PDF value at i-th grid point

is P (i)
k|k =

p(zk|xk=ξ
(i)
k )P

(i)

k|k−1∑N
i=1 p(zk|xk=ξ

(i)
k )P

(i)

k|k−1
∆k

.

3. Grid construction: Construct the new3 grid {ξ(j)
k+1}Nj=0.

4. Time update: Compute the predictive point-mass PDF
Ξk+1|k of the form (5) at the new grid of points, where
the value of the predictive PDF at j-th grid point is
P

(j)
k+1|k =

∑N
i=1 pxk+1|xk

(ξ
(j)
k+1|xk = ξ

(i)
k )P

(i)
k|k∆k.

5. Set k = k + 1 and go to the step 2.

The PMF provides estimates in the form of the point-mass
density p̂(xk|zm; ξk) approximating p(xk|zm). The point es-
timate, i.e., the mean x̂k|m = E[xk|zm] of the conditional
PDF is not required for the run of the PMF. However, it can
readily be computed if required [10].

The solution to the CK equation (4) represents a PMF
bottleneck as it requires evaluation of the transient PDF
p(xk+1|xk) for all combinations of the grid points {ξ(j)

k+1}Nj=1

and {ξ(i)
k }Ni=1. Therefore, a transient PDF decomposition is

proposed to reduce the computational costs of the PMF.

3. TRANSIENT DENSITY DECOMPOSITION

Assume that the state transient PDF can be decomposed as

p(xk+1|xk) ≈
R∑
r=1

F1r(xk+1)F2r(xk) (7)

where F1r(·),F2r(·), r = 1, . . . , R are suitable (non-
negative) functions, known in advance, and R is the order
of the approximation called rank.

3Usually, the number of grid points N is kept constant ∀k to ensure con-
stant (and predictable) computational complexity of the PMF.
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Now, the CK equation (4) can be written as

p(xk+1|zk) ≈
R∑
r=1

F1r(xk+1)

∫
F2r(xk)p(xk|zk)dxk . (8)

The simplification is thatR integrals in (8) can be computed at
the grid points {ξ(i)

k }Ni=1 only, without the need of considering
the Kronecker product of the grid points {ξ(j)

k+1}Nj=1 for xk+1

and grid points {ξ(i)
k }Ni=1 for xk.

Relation (7) can be seen as a special case of the functional
tensor decomposition [11] where the functions F1r and F2r

are not decomposed further to functions of single elements
of xk+1 and xk. The decomposition in (7) can be found in
advance, if the grid for xk+1 and the grid for xk are fixed.
The task is equivalent to the well known task of NNMF or
non-negative tensor factorization.

The decomposition (7) should be constructed prior to
the estimation itself. This can be done if the grid points
{ξ(j)
k+1}Nj=1 and {ξ(i)

k }Ni=1 are fixed, which seldom holds. An
attractive option is to interpret the transient PDF p(xk+1|xk) =
pwk

(xk+1 − fk(xk,uk)) as a function of xk+1 and fk,
where fk = fk(xk,uk) denotes the value of the func-
tion fk for convenience. Then, the value of the transient
PDF only depends on the distance of xk+1 and fk, i.e.
p(xk+1|xk) = pwk

(xk+1 − fk). Subsequently, the decom-
position (7) in the form

pwk
(xk+1 − fk) ≈

R∑
r=1

F1r(xk+1)F2r(fk) (9)

needs to be computed only over a region of differences
xk+1 − fk. If the function pwk

(xk+1 − fk) is symmetric
(invariant) with respect to permutation of its arguments xk+1

and fk, we may assume that the decomposition (9) is sym-
metric as well, i.e., F1r = F2r for r = 1, . . . , R.

3.1. Gaussian Transient PDF

This section demonstrates the decomposition for the Gaussian
transient PDF. For convenience, consider first the scalar case,
i.e, nx = 1, and process noise variance var[wk] = σ2 = 1

p(xk+1|xk) = 1√
2π
e−

1
2 (xk+1−fk)2 . (10)

Consider a region Ω for the decomposition computation
be given by the ranges xk+1 ∈ [−L,L], fk ∈ [−L,L], L =
10, with granularity 1/10 to obtain aD×D grid Ψ for the re-
gion Ω quantization, D = 201. Then, the transient PDF (10)
is evaluated at the grid Ψ points, which results in the matrix
M ∈ RD×D. This matrix is subject to a NNMF M = WH
or, better, a symmetric NNMF M = WWT , where W ∈
RD×R and H ∈ RR×D are matrices with non-negative ele-
ments and R is the rank. Here, due to the symmetricity, the
algorithm of [8] is utilized.

A suitable rank R of the approximation WWT can be
deduced from the number of leading eigenvalues of M. Note
that the matrix rank is a lower bound on the non-negative rank
of the matrix, in general (the non-negative rank can be some-
times higher). For (10), the original matrix M and 40 of its
largest eigenvalues are plotted in Fig. 1. The eigenvalues sug-
gest that a good approximation could be obtained forR ≥ 20.

Fig. 1. Original transient PDF, leading eigenvalues of M, an
approximate transient PDF for R = 20, and columns of W
for R = 20 obtained by NNMF.

The curves depicting columns of W have the Gaussian
bell-curve shapes, roughly uniformly distributed4 within the
interval [−L,L]. Hence, the columns of W will be modeled
by the functions F1r = F2r = Fr as

Fr(x) = h · e− 1
2 (x−mr)2/w2

(11)

parameterized by the peak position mr, width w, and height
h. Given the range 2L, rank R, and uniformity of the peak
distribution, the distance of the adjacent peak positions will
be fixed to mr − mr−1 = d, r = 2, . . . , R. The other two
parametersw and hwill be obtained by a numerical optimiza-
tion to minimize the average absolute error between the true
transient PDF and its approximation (10). The results of the
optimization are listed in Table 1. From the table it follows

4A minor difference can be spotted in the middle, and close to the mar-
gins. The margins are rather unimportant in this problem; they are related to
the ranges of xk+1 and fk , which can be easily adjusted to make sure that
the values xk+1 and fk will remain in this range.
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R d w h E

10 2 0.8701 0.6411 1.72× 10−2

15 1.33 0.7326 0.6266 4.70× 10−3

20 1.05 0.7088 0.5768 9.6077× 10−4

25 0.82 0.7071 0.5109 5.5380× 10−5

30 0.68 0.7071 0.4653 3.8459× 10−6

35 0.58 0.7071 0.4297 3.9440× 10−6

40 0.52 0.7071 0.4068 4.2067× 10−6

Table 1. Rank, peak distances, widths, heights, and the mean
absolute error of the true and approximate transient PDF de-
composition obtained by numerical optimization.

that the error E decreases with increasing rank. However, for
R > 30 the shape of the curves deviates significantly from the
Gaussian bell-curve shape, and the error does not decrease
any more. The result (11) can be generalized for arbitrary
variance σ2 and arbitrary range L. Then, the appropriate rank
R′, distance of the adjacent peak positions d′, and the height
h′ and width w′ of the terms in (11) would be

R′ =

⌊
2L

σ

⌋
, d′ = dσ, h′ =

h√
σ
, w′ = wσ. (12)

3.2. Gaussian Transient PDF in higher dimension

In this section, the assumption of a scalar state is dropped and
nx > 1 is assumed. Then, for a zero-mean noise wk with
covariance matrix cov[wk] = Q

p(xk+1|xk) = 1√
(2π)nx |Q|

e−
1
2 (xk+1−fk)TQ−1(xk+1−fk),

where fk = fk(xk,uk). Now, if Q is a diagonal matrix with
elements Qi, i = 1, . . . , nx on its diagonal, then

p(xk+1|xk) =

nx∏
i=1

1√
(2π)Qi

e−
1
2 (xi

k+1−f
i
k)2/Qi

, (13)

where xik+1 and f ik are i-th elements of xk+1 and fk, respec-
tively. From (13) it follows that for the Gaussian process noise
wk with uncorrelated elements it is possible obtain the de-
composition of the transient PDF as a product of the decom-
positions introduced in the previous section for the scalar case
applied to each element xik+1 and f ik, i = 1, . . . , nx.

For the process noise with generally correlated elements,
one could resort to finding a decomposition of the form (9).
Alternatively the variables xk+1 and fk can be transformed to
achieve diagonal covariance matrix.

4. NUMERICAL ILLUSTRATION

Performance of the PMF with the proposed transient PDF
decomposition is illustrated using a terrain-aided naviga-
tion scenario [12]. Let a state-space model (1), (2) be con-
sidered where T = 200, fk(xk,uk) = xk + uk, xk is a

Table 2. PMF estimation performance.

N PMFSTD PMFD

R = 10 R = 20 R = 25

202 IE 30× 10−3 130× 10−3 31× 10−3 30× 10−3

τ 96× 10−4 12× 10−4 13× 10−4 14× 10−4

502 IE 49× 10−4 1147× 10−4 62× 10−4 56× 10−4

τ 229× 10−3 31× 10−3 33× 10−3 33× 10−3

two-dimensional state vector describing the vehicle horizon-
tal position in north and east directions, uk = [300, 300]T

is an available shift vector provided, e.g., by the inertial
navigation system or odometer, and the state noise char-
acterizing uncertainty in the shift vector is described as5

p(wk) = N{wk; [0 0]T , 102I2}. The measurement zk is
the terrain altitude below the vehicle6 and hk(·) denotes a
terrain map connecting the sought horizontal position and
the available altitude. The measurement noise vk includes
sensor reading uncertainty and map error and is described by
p(vk) = N{vk; 0, 82}. Performance of the following PMF
algorithms was analyzed:

• PMFTRUE with a high number of grid points N = 1502

providing “almost true” state estimate p(xk|zk),
• PMFST with the standard convolution computation N =

202 and N = 502 providing an approximate conditional
PDF p̂ST(xk|zk; ξk),

• PMFD with the convolution involving the proposed tran-
sient PDF decomposition with N = 202 and N = 502

providing the approximate conditional PDF p̂D(xk|zk; ξk),
using (i) the normalized filtering PDF integral error7 IE =

1
T+1

∑T
k=0

∫
1
2 |p(xk|z

k)− p̂(xk|zk; ξk)|dxk and (ii) convo-
lution execution time (τ ). The results can be found in Ta-
ble 2. They indicate that for R = 20, the estimation quality
of the PMFD with the proposed convolution computation is
very close to that of the PMFST with the standard convolu-
tion computation, while the computational costs are almost
by an order of magnitude lower.

5. CONCLUDING REMARKS

The state estimation of nonlinear stochastic dynamic systems
by the point-mass filter was treated. The paper proposed a
non-negative functional decomposition of the transient den-
sity, through which the convolution in the PMF can efficiently
be calculated. With an appropriate rank of the decomposition,
significant computational costs savings can be achieved with
only negligible loss of PMF estimate quality.

5Notation I2 stands for the identity matrix of the indicated dimension.
6Terrain altitude can be based on the barometric altimeter, radar altimeter,

or their combination depending on the type of vehicle.
7The PDF integral error is normalized so that IE∈ [0, 1].
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