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1. Introduction

Pattern matching is a classical task on scalar data in image pro-
cessing. Its generalization to higher dimensions enables application
scientists working, for example, in hydrodynamics, continuum me-
chanics, plasma physics, environmental or space sciences, to detect
patterns in their vector- and matrix-valued data, too. We treat all
three of them simultaneously using the combined notion of tensor
fields in 2D and 3D.

In many pattern detection applications, users want to find a
pattern independent of the specific alignment of the provided tem-
plate, but searching for every possible orientation of the template
would cause a significant computational overhead and impair per-
formance. In this paper we address this problem providing an op-
timal set of rotation-invariant descriptors, namely moment invari-
ants. Moment invariants are capable of determining the degree of
similarity between a given pattern template and its potentially ro-
tated occurrence in the data by comparing only a single instance
of the template [1]. Their building blocks, the moments, are the
projections of a function to a function space basis. The similarity
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between a pattern and a field is inversely proportional to the Eu-
clidean distance of their moments.

The moments themselves are not invariant w.r.t. rotation. There
are two main approaches that turn them into moment invariants,
i.e. that equip them with the power of orientation independence.
First, normalization can be imagined as applying a transformation
to the input pattern that places it into a predefined standard posi-
tion. Second, the generator approach makes use of relations from
algebra to find the right products, sums or other operations be-
tween the moments that result in invariants. The state of the art
of both approaches makes use of tensor algebra, especially of ten-
sor contractions to low ranks, because their transformations under
rotations are simple.

Three properties are necessary to make an optimal set of de-
scriptors: completeness, independence, and flexibility, Section 3.3.
Theoretically the generator approach and normalization are equally
powerful. Used optimally, they should be able to construct an op-
timal set of descriptors, but they each have their disadvantages.
For example, to work optimally, the normalization requires con-
tractions to first rank, which do not exist if all non-zero tensors
happen to have even rank [2]. The currently best available gener-
ator approach [3] on the other hand requires the input pattern to
have a non-zero first rank component, see Sections 4.1 and 4.2.

Long story short, there is currently no algorithm that produces
a single flexible basis of 3D rotation-invariant descriptors even if
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the data is only scalar-valued, let alone for vector- or matrix-fields.
In this paper, we close this gap by presenting an algorithm that in
precomputation generates an overcomplete set, which is complete
for every possible pattern, together with a fast selection method
that removes the superfluous, dependent elements for a given in-
put pattern during runtime.

In the 2D case using complex moments, it has been shown that
the optimal generator approach coincides with the optimal nor-
malization approach [4]. It has been hypothesized that striving for
these three criteria might also lead to the goal of unifying the gen-
erator and normalization approaches in 3D. That would result in a
basis that combines the strengths of both approaches and beauti-
fully tie the theory of moment invariant together.

The main contribution of this paper is the proof that it is pos-
sible to generate a basis of 2D and 3D moment invariants by only
using tensor products with one or two different types of factors,
contingent upon the conjecture of the set of all tensor contractions
being complete, Section 5.1. This is a big step toward a unifying
theory because a similar property is already known to be true for
the 2D generator approach based on complex numbers [4] and the
2D and 3D normalization approaches [2].

This theoretical result has two advantages in practice, because
on one hand it allows us to focus the search for bases to the small
subgroup of products with only two factors and on the other hand
it shows that and how a flexible basis can be generated for every
possible pattern in 2D or 3D scalar-, vector-, or matrix-fields.

2. Related work

The first moment invariants were introduced to the image pro-
cessing society by Hu [5]. Flusser [6] introduced the concept of a
basis of moment invariants as a complete and independent set and
presented a rule to generate a basis for any order for 2D scalar
functions. Later, he proved that his basis also solves the inverse
problem |[7].

Schlemmer et al. [8,9] were the first to generalize the notion
of moment invariants to 2D vector fields using the generator ap-
proach. Bujack et al. [10] followed the normalization approach and
derived the first flexible basis of moment invariants for vector
fields. Later, they unified the two approaches in 2D by showing
that the flexible generator basis coincides with the flexible normal-
ization basis.

For 3D functions, the task is much more challenging. One re-
search path goes in the direction of the spherical harmonics. Lo
and Don [11], Burel and Henocq [12], Kazhdan et al. [13], Canter-
akis [14], and Suk et al. [15] use them to construct moment invari-
ants for 3D scalar functions. The resulting descriptors are usually
not complete.

A second research path makes use of the tensor contraction
method, as first used by Dirilten and Newman [16]. Pinjo, Cyganski,
and Orr [17-19] use moment tensors to determine the orientation
of scalar functions and to normalize with respect to linear trans-
formations. All tensor contractions to zeroth rank are rotationally
invariant, but there are infinitely many of them and it is difficult
to find an independent set. Suk and Flusser [20] propose to calcu-
late all possible zeroth rank contractions from moment tensors up
to a given order and then skip the linearly dependent ones. Higher
order dependencies still remain in their set.

Langbein and Hagen [3] also treat tensor fields of higher rank.
They showed that the tensor contraction method can be general-
ized to arbitrary tensor fields and dimensions. They suggested an
algorithm that is able to detect dependent invariants by means of
linearly dependent derivatives. Independently, Hickman [21] sug-
gests to use the derivatives, too. Gur and Johnson [22] contract
tensors of the tensor field directly to derive invariants to outer ro-
tation.
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Table 1
State of the art of moment invariants for scalar, vector, and tensor fields. The paren-
theses indicate that this property is not proven, but a conjecture.

Approach Dim. Authors Complete Indep. Flexible
Normalization 2D Bujack, Hagen [2] v v v
Normalization 3D Bujack, Hagen [2] v v v
Generator 2D Bujack, Flusser [4] v v v
Generator 3D Langbein, Hagen [3] (V) v -

Bujack and Hagen follow the normalization approach, which
provides the first complete and independent set that is also flexible
w.r.t. vanishing moments for 3D tensor fields of arbitrary rank [2].

Please note that invariants can be constructed not only from
moments of integer-valued orders, but also from fractional order
moments [23,24] or from derivatives [25,26]. The fundamental the-
orem of moment invariants [27] guarantees that every algebraic in-
variant has a moment invariant counterpart.

The state of the art of the capabilities of moment invariant
bases with respect to each of the two approaches and dimensions
is summarized in Table 1. The definitions of complete, indepen-
dent, and flexible can be found in Section 3.3.

In this paper, we will present the first algorithm to produce an
independent and flexible basis for 3D functions using the generator
approach. Like the algorithm by Langbein [3], it is complete if the
Conjecture 1 holds.

3. Foundations

In this section, we will recap the theoretical underpinnings and
notations of moment tensors. For both the normalization and the
generator approaches, the most systematic and general framework
to generate moment invariants of higher orders and for fields of
higher field ranks, e.g., vector and matrix fields, is based on tensor
calculus and makes use of the fact that contractions of high rank
tensors are low rank tensors that are easy to handle.

3.1. Tensors and transformations

Tensors represent physical quantities that follow specific rules
under transformations of the coordinate system. For a given basis,
they can be represented as arrays of numbers. The rank of a tensor
is the number of its indices with scalars having rank zero, vectors
rank one, and matrices rank two. We refer the reader to introduc-
tions to tensor analysis [28,29].

Definition 1. A multidimensional array Tl'll]"r; that, under an active
transformation by the invertible matrix A; e R9xd, behaves as:

155, = |detA DAL AL A @ DT (1)

is called a (relative, axial) tensor of covariant rank m, contravariant
rank n, and weight w. An (absolute) tensor has weight zero.

Lemma 1. Let T and T be two relative tensors of covariant rank m,

contravariant rank n, and weight w and m, i, W respectively. Then

the product T ® T (also called outer product or tensor product):
SNty o peitedn 07

T& D) i = T in 5 g )

is a relative tensor of covariant rank m + m, contravariant rank n + fi,

and weight w + W.

Lemma 2. Let T be a relative tensor of covariant rank m, contravari-
ant rank n, and weight w. Then the contraction T(ik, in of a covariant
index i, and a contravariant index j

i1 dg_q g1 oedn _ i1 dpq Uiy odn (3)

Jedicdisadm G gy T 5 Jredicatiizrem
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is a relative tensor of covariant rank m — 1, contravariant rank n — 1,
and weight w.

3.2. Moment tensors

Dirilten and Newman [16] arranged the moments of each order
such that they obey the tensor transformation property (1) and use
the contractions to generate moment invariants with respect to or-
thogonal transformations. Langbein et al. [3]| generalized the defi-
nition of the moment tensor to tensor valued functions.

Definition 2. For a tensor field T :R? — R4"*d" with compact
support, the moment tensor °M of order o € N takes the shape

iy..inky..ko K Ko iy..0n d
OM}‘l__"jm‘ o= fpa XKLL XK Tj‘l‘_'_]'.m (x) d%x. (4)

The following theorem and corrolary are the foundation of the
generator approach in 3D because they show that all zeroth rank
contractions are moment invariants. Proofs can be found in the
work by Bujack and Hagen [2].

Theorem 1. The moment tensor of order o of a tensor field of co-
variant rank m, contravariant rank n, and weight w is a tensor of
covariant rank m, contravariant rank n + o and weight w — 1.

Corollary 1. The rank zero contractions of any product of the mo-
ment tensors are moment invariants with respect to rotation and re-
flection.

We will distinguish between homogeneous invariants, which
are constructed from only a single moment tensor M and its pow-
ers, and simultaneous invariants, or mixed invariants, which con-
tain more than one kind of moment tensors.

3.3. Desirable properties of a set of descriptors

Corollary 1 provides an infinite number of invariants, with most
of them containing redundant information. In order to optimally
describe a function, a set of moment invariants should have the
following three desirable qualities [4]:

Completeness: The set is called complete if any moment in-
variant can be constructed from it. This property guarantees that
any two objects that differ by something other than a rota-
tion/reflection can be discriminated.

Independence: The set is independent if none of its elements
can be constructed from the other elements. This property makes
sure that the number of descriptors is minimal.

Flexibility: The set is flexible, also called existent, if it is gener-
ally defined and complete without requiring any specific moments
to be non-zero. This property ensures that the set can detect and
discriminate any pattern independent of its specific form.

4. Langbein’s algorithm

Removing dependent contractions has long been a difficult
task until independently Langbein and Hagen [3] and Hick-
man [21] suggested to test the derivatives of the invariants for lin-
ear dependence in order to find polynomial dependencies in the
invariants themselves.

The former suggest this seminal algorithm to test the depen-
dence, which we will call Langbein’s algorithm in this paper. We
provide a short overview. Details can be found in the original pa-
per [3].

1. Initiate all moment tensors up to a given order omax with ran-
dom numbers.

2. Compute all zeroth rank contractions of all their products up to
a given maximum number of factors pmax.
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3. Compute their derivatives w.r.t. all moments up to omax.

4, Build a matrix with as many rows as moments.

5. Until the number of maximally possible invariants is achieved:
add the next derivative to the matrix if it increases the matrix’s
rank.

Langbein and Hagen [3] state that the order in which the in-
variants are tested is with increasing number of factors p < pmax,
but not how the order is within each group of equal factors. We
assume that within each group, we sort alphabetically first by mo-
ment order in the product, e.g., 2M%3M comes before 2M3>M?2, and
then by contraction index, e.g., (0,1),(2,3) comes before (0,2),(1,3).
Because of commutativity, we only consider products of increas-
ing moment order and contractions of increasing indices. When
invariance w.r.t. translation and scaling is needed in an applica-
tion, typically the zeroth and first moments are normalized and do
no longer contain information that can be used to construct rota-
tion invariants[1]. Please note that we include them in this paper
for brevity even though Langbein and Hagen originally excluded
them in their work. All treated algorithms function with and with-
out them.

4.1. 2D Example of non-flexibility

Langbein’s Algorithm generates a basis of moment invariants,
but it is not flexible. We will show this using a 2D scalar pattern.
Up to order 3, Langbein’s algorithm returns the following basis.

OM,2Mg.1). TM? (g 1), 'M*M0 1), 2.3). *M?(0.2).(1,3). 'M?2M02) (1.3):

3M? 0.1y, 2.3).45) "M% (0.3),(1.4),2.5), 'MPM3M g 3) (1.4).2.5)-
(5)
For purely quadratic and cubic patterns, the only non-vanishing in-
variants are
2M(0.1y = Moo + Mn
2072 2 2 2
M*0.2),(1,3) = Mg, + 2Mg; + M7,
M2 0.1),23).4.5) = Moo + Moy + Mgy + M3y, + 2MoooMon  (6)
+2Moo1 M1
3072 2 2 2 2
M* (0.3),(1.4).2.5) = Mggo + 3Mgo; + 3Mgy, + My,

This basis is not complete for the function shown in Fig. 1

f(x,y) = (80x3 + 48xy? — 48x + 18x%> + 6y? — 6) /T x (X2 +y> < 1),
(7)

with x corresponding to the characteristic function. It has the mo-
ments

Mpy =1, My =1, (8)
and all other moments up to order 3 are zero. Especially, there is
no linear component. The values of the non-vanishing invariants of
Langbein’s basis are

2M(0_1) = ],

302 M 0209 =1 (9)
M?0.1y,23),45 =1,

M2 (03).1.4).25) = 1.

We can determine that the zeroth and first order moments are all
zero from the vanishing invariants, but then we have four equa-
tions left to reconstruct 3 +4 — 1 =6 remaining degrees of free-
dom, which consist of the moments of orders 2 and 3 minus one
DoF for the rotational invariance. Clearly we cannot reconstruct
them, which shows that the set (5) is not complete for this pat-
tern (7).
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The function (80z® + 48zy? — Tts quadratic part (18z2+6y? — Tts cubic part (80z% + 48zy? —

48z + 1822 + 6y — 6) /7. 6)/.

48z) /.

Fig. 1. The function from Eq. (7) and its components visualized using colormapping. Langbein’s basis is not complete for this pattern.

L

Quadratic part (18y% + 622 — Cubic part (80z® + 48zy? — The function (80z® + 48zy? —

6)/m. 48z) /.

48z + 18y? + 622 — 6) /7.

Fig. 2. The function (10) and its components visualized using colormapping. Even though the function differs clearly from Eq. (7), the Langbein invariants are identical (9).

This lack of completeness can especially lead to false positives.
For example, the function

f(x,y) = (80x3 + 48xy? — 48x + 18y% +6x% — 6) /T x (X2 +y*> < 1),
(10)

shown in Fig. 2, has the moments

Mgy =1, Moo =1 (11)

All other moments up to order 3 are zero. The values of the in-
variants are identical to the ones (9) of the first function (7), and
therefore the Langbein basis cannot distinguish between them and
would produce false positives.

4.2. 3D Example of non-flexibility

Langbein’s basis for 3D scalar functions up to order 3 contains
the elements

oM, 2M 0.1y, 'M? (0.1), 'MPM (0 1.2:3), “M?(0.2).(1.3), *M? (0.1).2.3).(4.5)»

3M2 0.3).(1.4).2.5), "M**M(0.2).(1.3), "M*M*M0.1),2.3).(4.5)>

IMEMBM (0.3),(1.4).2.5)» *M> (0.2).(1.4).3.5)» MM (0.2).(1.3).(4.5).(6.7)-
IMBM2 (03).1.5).G.4).6.7)> “MPPM2 (03 (1.5).3.6).4.7), 'M**M(03).(1.4).2.5)-

TMBM? (0.2),1.3),5).6.7) ' MPM?2) (15).3.6).4.7)
(12)

Especially, for a purely cubic function, all invariants are zero ex-
cept for

*M? (01,2345 = Moo + Moy + Mgy + Miyy + Mg, + My, + Mgy,
+ M3y, + M3y, + 2MogoMon + 2MoooMozz
+ 2Moo1 M111+2Moo1 M122-+2Mo11 Moz +2M111 M2z
+2Moo2Mi12 + 2Moo2M222 + 2M112 M2
*M?(03).(1.4).2.5) = Mgoo + 3Mg; + 3Mgy, + Miyy + 3Mg,
+6Mgy, + 3Miy, + 3MGy, + 3Mip, + M3y, (13)

We can deduce that the moments up to rank 2 are all zero, but
then we are left with only two equations to reconstruct 10 —3 =7
degrees of freedom corresponding to the independent moments of
order 3 minus the 3 DoF for the 3D rotation, which shows that
Langbein’s basis is not flexible.

Especially, the two functions

fik.y.2) = (24—5943 + %xzy + %xzz+ %Sxy2 +xyz+ %szz + Zy3 + Zyzz

Jr%yz2 + %z3 - ?xf %yf %z))((x2 +y+22 < 1) fa(x.y.2)
= (24—5)(3 + %xzy + %xzz+ %xy2 —xyz+ %xz2 + %y3
+%y22+ %yz2 + 223 - §X— %y— %Z)x(xz +y +22<1)
(14)

in Fig. 3 have the moments

Moo =1, Mom =1, Moz =1 Moz =1, (15)

Moo =1, Moor =1, Moz =1, Moz =-1,
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The function f; from (14).

Pattern Recognition 123 (2022) 108313

— 5.0e+00
L 4

8
2
1
0

(
\ [

-5.0e+00

The function fs from (14).

Fig. 3. The two functions from (14) cannot be distinguished by Langbein’s basis.

with all other moments up to order 3 being zero. They cannot be
discriminated by Langbein’s basis because they both satisfy

3M201).23).45 =3, M g3y 405 =13 (16)

with all other invariants being zero.
4.3. Analysis of the problem with flexibility

The origin of the problem lies in the fact that independence
and completeness are properties that do not fully translate from
their theoretical, analytic forms to their evaluations using certain
random numbers. A set of invariants can be independent for one
configuration while being dependent for another.

Our first idea was to run Langbein’s algorithm with the mo-
ments of the input pattern instead of random numbers, but that
did not work.

For example, run with the moments of the input function (7),
Langbein’s algorithm would classify the simultaneous invariants of
orders 2 and 3 as dependent w.r.t. the previously added homoge-
neous invariants of orders 2 and 3. That means it is discarded even
though we will see that one of them contains new information in
Section 5.5.

Also, it would make the method computationally prohibitive if
the whole algorithm would have to be run every single time a pat-
tern is searched. We have to find a method to precompute inde-
pendent invariants.

The examples in Sections 4.1 and 4.2 highlight that the problem
of non-flexibility comes from the simultaneous invariants, because
they lose their information content if one of the involved tensors
vanishes. The more different factors appear in the invariant, the
larger the set of patterns becomes for which it becomes useless. In
the next section, we will analyze how we can reduce the number
of factors and specifically select the kind of factors in the simulta-
neous invariants to avoid this problem.

5. Systematic generation of bases of moment invariants

In this section, we will systematically analyze the numbers of
degrees of freedom and invariants and show that it is possible to
generate bases that consist of homogeneous invariants and simul-
taneous invariants with no more than two different factors. A sum-
mary can be found in Tables 2 and 3.

One result is that for each pattern, there exists a complete set of
rotation invariants if the set of all tensor contractions is complete
in the first place and we will show how to derive it.

Table 2

Summary of the numbers of independent moments of
order o and field rank r; from Lemmata 3 and 7 and
independent invariants of that order from Lemmata 4
and 8. The values are correct for ranks r =r; +0 > 1. For
low rank exceptions, please refer to the lemmata.

Dim. ry ind. moments ind. invariants

2D 0 o+1 (4]
1 2(0+1) 20+1
2 4(0+1) 40+3

3D 0 Lo+D+2) lo+1+2)-3
1 3(0+1D+2) 3(0+1(0+2)-3
2 S(0+1D(+2) 3J(0+1(0+2)-3

We have seen in the motivating examples in
Sections 4.1 and 4.2 that products of moment tensors lose
their information if one of the factors is zero. We therefore want
to construct bases from products that have the least amount of
factors. The structures of Sections 5.2 and 5.3 are identical. We
will first compute the number of independent invariants up to a
given order, i.e. the number of descriptors we have to find (column
3 in Table 3). Then we start filling these slots with homogeneous
invariants (column 4 in Table 3). Since they have only one factor,
they never lose their information through a multiplication with
zero. The difference is the number of simultaneous invariants
that are needed to complete the set (column 5 in Table 3). Every
pattern that is not identically zero has one non-zero moment
tensor. If we can fill these remaining slots with products pairing
only this non-zero tensor with each other tensor, then we can
avoid the information loss that comes from multiplications with
zero altogether. Exactly this is the result of Theorem 3 in 2D and
Theorem 5 in 3D.

5.1. Conjecture

Like all tensor contraction-based algorithms, our algorithm is
based on the following conjecture.

Conjecture 1. The set of all contractions of a moment tensor to ze-
roth order are a complete set of rotation/reflection invariants of the
corresponding moments.

We are not able to prove this property, but we could show that
it holds up to rank 6 in 2D and rank 4 in 3D, which can be seen
in the appendix.
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Table 3
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Summary of the numbers of independent invariants up to order o,, and of field rank ry
from Lemmata 5 and 9, the number of independent homogenous invariants up to that
order and their difference, i.e. the number of simultaneous invariants that need to be
added from Lemmata 6 and 10. The values are correct for ranks r =17 + 0, > 1. For low

rank exceptions, please refer to the lemmata.

Dim.  r;  ind. invariants ind. hom. invariants diff.

2D 0 lom+D(om+2)-1 Lom(om+1) om —1
1 (om+1o(om+2)—1 (om +1)? Om
2 2(om +1)o(om +2) -1 (0+1)(20+3) Om

3D 0 Lom+1)(om+2)0(0m+3) =3 10}, +60% —70m)+2 30, —4
1 Lom+1)(om+2)0(0m +3) =3 1(03 +60% +50m +2) 30, —1
2 3(0m+1D)(0m+2)0(0m+3) =3 3 (0m+ D20 +4) 30m

5.2. Number of independent invariants in 2D

We will first look at tensor fields of arbitrary rank in 2D and
show that up to a maximal order o, € N a basis can be formed
from the homogeneous invariants plus one simultaneous invariant
for each combination of one designated order oy with all other or-
ders 0; < om.

Lemma 3 (Independent moments). The number of independent mo-
ments of a moment tensor of order o > 0 of a two-dimensional func-
tion with field-rank 1 > 0 is 2'7 (0 + 1).

Proof. A two-dimensional order o moment tensor Tki--ko of a
function with field-rank zero ry =0, i.e,, a scalar field, is symmet-
ric. We can see from (4) that the number of independent entries
is identical to the different ways of assigning 0 or 1 in ascending
order to the indices kq, ..., ko. This can be encoded as the first ap-
pearance of 1, for which there are o+ 1 options, i.e., any of the
indices plus the option of it not appearing at all, i.e.,

o]
1+) 1=0+1. (17)
i=1
For any dimension d > 0, functions with higher field-rank, e.g.,
a vector field with ry =1 or a matrix field with r; =2, have d’s
components. Multiplication with the degrees of freedom in each of
their components completes the proof. O

Lemma 4 (Independent hom. invariants). The number of indepen-

dent homogeneous invariants of a 2D moment tensor of rank r =

041y > 0 with order 0 > 0 and field-rank r; > 0 is 2F(0+1) -1
For r=o+r; =0, there is 1 homogeneous invariant.

Proof. The generation of any kind of invariance discards the num-
ber of degrees of freedom of the transformation w.r.t. which the
invariance is achieved. Therefore, the number of possible indepen-
dent invariants is the number of independent moments minus the
degrees of freedom of a rotation.

Now the assertion follows from Lemma 3 and the fact that a
two-dimensional rotation has one degree of freedom.

The exception r = 0 comes from the fact that a zeroth rank ten-
sor is invariant to orthogonal transformations. O

Lemma 5 (Independent invariants). The number of independent in-
variants of all 2D moments up to order o, >0 of a function with
field-rank 1 > 0 is 2'7 (0 + 1) (0 +2)/2 — 1.

For order oy = 0, there is 1 independent invariant.

Proof. Analogous to the proof of Lemma 4, the number of possi-
ble independent invariants is the number of independent moments
minus the degrees of freedom of a rotation.

We can see from Lemma 3 and straight calculation that the
number of independent moments up to order on, is

Y 270+ 1) = 27 0n + 1)(0m +2)/2. (18)

0=0

Again the main assertion follows from Lemma 3 and the fact
that a two-dimensional rotation has one degree of freedom.

Finally the exception o, =0 follows again because a zeroth
rank tensor is invariant. O

Lemma 6 (Simultaneous invariants). If we use all homogeneous in-
variants for a 2D function with field-rank ry > 0, we need to add om
simultaneous invariants to get to the total number of independent in-
variants.

For ry =0, i.e., scalar fields, we need to add o, — 1 simultaneous
invariants.

Proof. It follows from Lemma 4 that for 2D fields with r; > 0, the
number of independent homogeneous invariants up to order o, is

Om

Y 27(0+1) = 1= (0m+ 1)(27 (0m +2) —2)/2. (19)
0=0

Lemma 5 shows that the difference between independent invari-
ants and independent homogeneous invariants is

(om+1)(0m+2)/2—1—(0m+1)2" (0 +2)—2)/2 = 0.
(20)

For 2D scalar fields, i.e., ry =0, Lemma 4 shows that the num-
ber of independent homogeneous invariants up to order oy, is com-
posed of adding up 2°(o+1) — 1 for all 0 > 0 plus 1 for 0 =0, i.e.,

1+io=om(om+1)/2+l. (21)

o=1

From Lemma 5, we can then see that the difference between in-
dependent invariants and independent homogeneous invariants is

(om+1)(om+2)/2—1—(om(0m+1)/2+1)=0m — 1. (22)
O

Theorem 2 (Overcomplete set). For 2D and the maximum order
om > 0, the smallest set that is always able to discriminate two
functions that differ by more than an orthogonal transformation has
(0m +1)(2T0m + 0 + 2771 —2)/2 elements if ry>0.

For ry =0, i.e., scalar fields, the smallest set has 0%, + 1 elements.

Proof. For r; > 0, taking the 27 (0+1) — 1 homogeneous invari-
ants from Lemma 4 plus the one simultaneous invariant for all
combinations of orders o;, 0; results in

Om Om

zm:(sz(o+ D=+ > 1=(0n+1)Q70m+0n+27"-2)/2.
0=0

0;=00;=01+1

(23)
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For r; =0, taking the 2"f(0+1) — 1 homogeneous invariants
from Lemma 4 for r = 0+ 1 > 1 plus the one simultaneous invari-
ant for all combinations of orders o;,0; > 1 results in

Om Om Om
Do+ -1 +> > 1=04+1. (24)
o=1 0;=10;=01+1

O

Theorem 3 (Flexible basis). For 2D and any given order og < om
with 17 + 09 > 0, we can find a complete and independent basis us-
ing all homogeneous invariants up to order oy and one simultaneous
invariant for each combination of og and o with r =17 +0> 0.

Proof. We know from Lemma 3 that the number of independent
moments between order oy plus o is 2f(0g+1) +27(0+1) =
2" (0g + 0+ 2) and from Lemma 4 for r = 0+ r¢ > 1 that the num-
ber of homogeneous invariants between these orders is 2'f (09 +
1) =142 (0+1)—1=2f(0g +0+2) — 2. Considering that the
degrees of freedom of a rotation in 2D is one, there exists
one independent simultaneous invariant because 2/ (0g + 0+ 2) —
2"f(0g+0+2)—-2)—1=1.
Therefore the number of simultaneous invariants that contain

0g are

Om

> 1=on-1. (25)

0p7#0=1

which coincides with the number needed from Lemma 6. O
5.3. Number of independent invariants in 3D

Now we will analyze the independent invariants of tensor fields
of arbitrary rank in 3D and show that up to a maximal order oy, a
basis can be formed from the homogeneous invariants plus three
simultaneous invariants for each combination of one designated or-
der og with all other orders o; < op. This section follows the same
structure as the previous one.

Lemma 7 (Independent moments). The number of independent mo-
ments of a moment tensor of order o > 0 of a 3D function with field-
rank 1y > 0 is 37 (0+ 1) (0 + 2)/2.

Proof. A 3D order o moment tensor TXi-—ko of a function with
field-rank zero ry =0, i.e, a scalar field, is symmetric. We can see
from (4) that the number of independent entries is identical to the
different ways of assigning 0, 1, or 2 in ascending order to the in-
dices kq, ..., ko. This can be encoded through the first appearance
of 1 and the first appearance of 2. Let the first appearance of 1 oc-
cur at index k; withi=1,..., o, then the possible locations for the
first appearance of 2 range from i+ 1 to o. This results in

0 (0] 02_0
X2 1=— (26)

i=1 j=i+1

degrees of freedom if both appear, plus
o]
2) 1=20 (27)
j=1

if only one of them appears, plus 1 if neither appear. From straight
calculation follows that we have (02 —0)/2+20+1=(0+1)(0o+
2)/2 independent moments.

For any dimension d > 0, functions with higher field-rank, e.g.,
a vector field with ry =1 or a matrix field with r; =2, have d's
components. Multiplication with the degrees of freedom in each of
their components completes the proof. O

Lemma 8 (Independent hom. invariants). The number of 3D inde-
pendent homogeneous invariants of a moment tensor of rank r =
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0415 > 1 with order o> 0 and field-rank re> 0is 37(0o+1)(o+
2)/2 3.
For each 0 <r=o0+r; <1, there is 1 homogeneous invariant.

Proof. The generation of any kind of invariance discards the num-
ber of degrees of freedom of the transformation w.r.t. which the
invariance is achieved. Therefore, the number of possible indepen-
dent invariants is the number of independent moments minus the
degrees of freedom of a rotation.

Now the assertion follows from Lemma 7 and the fact that a 3D
rotation has three degrees of freedom.

The exceptions 0 < r <1 come from the fact that a zeroth rank
tensor and the Euclidean norm of a first rank tensor are invariants
to orthogonal transformations. O

Lemma 9 (Independent invariants). The number of independent in-
variants of all moments up to order oy, > 0 of a function with field-
rank 1y > 0 is 3'7 (0 + 1) (0m + 2) (0 + 3)/6 — 3.

Up to order oy =0, there is 1 and for oy, = 1, there are 2 inde-
pendent invariants.

Proof. Analogous to the proof of Lemma 8, the number of possi-
ble independent invariants is the number of independent moments
minus the three degrees of freedom of a rotation.

For 0 > 1, Lemma 7 shows that the number of independent mo-
ments up to order oy is

Om
> 3 (0m + 1) (0m +2)/2 = 3" (0m + 1) (0m + 2) (0m + 3)/6.
0=0
(28)
The exceptions 0 <o <1 follow again because a zeroth rank

tensor and the Euclidean norm of a first rank tensor are
invariants. [

Lemma 10 (Simultaneous invariants). If we use all homogeneous in-
variants for a 3D function with field-rank r¢ > 1, we need to add 3om
simultaneous ones to get to the total number of independent invari-
ants.

For 1y = 1, we need 30, — 1 and for rp= 0, we need 30, — 4 si-
multaneous invariants.

Proof. For > 1, the exception r <1 in Lemma 8 cannot occur
and the number of independent moments up to order oy, is

azm3ff(o+ 1)(0+2)/2 -3 = ((0m + 1) (37 (0%, + 50,) + 6) — 18) /6.

0=0

(29)

The difference to the total number of invariants from Lemma 9 re-
sults in
3% (om+1)(0m +2)(0m +3)/6 -3
—((0m 4+ 1)(37 (02, + 50%,) + 6) — 18)/6 = 30p. (30)
For ry =1, ie., vector fields, we know from Lemma 8 that the
number of independent homogeneous invariants up to order op >

0 is given through summing over 1 for 0,; =0 and 3'(0+1)(0+
2)/2 -3 for oy > 0, ie,,

1+ Zm3(o+ 1)(0+2)/2 -3 = (03, + 602, +50m +2)/2.  (31)

o=1
The difference to the total number of invariants from Lemma 9 re-

sults in
3 (0m +1)(0m +2) (0 +3)/6 —3 — (o?11 + 602, + 50 +2)/2 =30, — 1
(32)

and for o, = 0, we do not need any simultaneous invariants.
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For ry =0, ie, scalar fields using Lemma 8, we know that the
number of independent homogeneous invariants up to order op >
1 is given through summing over 1 for o,; <1 and 3%+ 1)(0+
2)/2 -3 for oy > 1, ie,,

Om

141+ 370+ 1)(0+2)/2 — 3 = 0m(0m — 1)(0m +7)/6 + 2.

0=2
(33)
Trivially for o, = 0, we have 1 and for o, = 1, we have 2. Again

Lemma 9 shows that the difference between independent invari-
ants and independent homogeneous invariants up to o, > 1 is

(om+1)(om +2)(0m +3)/6 — (0 (0 — 1) (0 +7)/6 +2) =30, — 4
(34)

and for o, < 1, we do not need any simultaneous invariants. O

Theorem 4 (Overcomplete set). For 2D and the maximum order
om > 0 the smallest set that is always able to discriminate two func-
tions that differ by more than an orthogonal transformation has
(03, + 150% — 220, + 18) /6 elements if r; =0, (03, + 90% + 60m +
2)/2 elements if ry = 1, and 3/2(om + 1)) (0%, + 60m +4) elements if
Tf > 1.

Proof. For r; > 1, the number of simultaneous invariants is given
through

Om Om
> > 3=3/20m0n+1). (35)
0;=00;=0;+1

Adding the number of independent homogeneous invariants from
the proof of Lemma 10 leads to

3/20m(0m + 1) + (0m + 1) (377 (0%,) + 50%,) +6) — 18)/6
=3/2(0m + 1)) (02, + 605 + 4). (36)

For ry = 1, i.e,, vector fields, the number of simultaneous invari-
ants is given through

Om Om Om

d>2+) Y 3=1/20m(Bon +1). (37)

0=1 0j=10j=0;+1

Adding the number of independent homogeneous invariants from

the proof of Lemma 10 leads to

1/20m (30m + 1) + (03, + 60%, 4 501 + 2)/2 = (03, + 90%, + 601 + 2) /2.
(38)

For r; = 0, i.e, scalar fields, the number of simultaneous invari-
ants is given through

Y>24) > 3=(om—1)(Bom—2)/2. (39)
0=2 0;=20;=0;+1

Adding the number of independent homogeneous invariants from
the proof of Lemma 10 leads to

(0m —1)(30m —2)/2 4 0 (0 — 1) (0m + 7) /6 + 2
= (03, + 1502, — 220, + 18) /6. (40)
O

Theorem 5 (Flexible basis). For 3D and any given order o9 < op
with rg =rf+0g > 1, we can find a complete and independent basis
using all homogeneous invariants up to order oy and three simulta-
neous invariants for each combination of o9 and o withr =r;+0> 1
and two simultaneous invariants for the combination of oq and o with
r=ry+o=1

Proof. We know from Lemma 7 that the number of independent
moments of order oy is 3'f(0g + 1)(0g +2)/2 and of order o is
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37 (0+1)(0+2)/2 and from Lemma 8 that the numbers of cor-
responding homogeneous invariants are 3"/ (0g+ 1)(0g +2)/2 -3
and 3" (0+1)(0+2)/2-3 forr=0+ r¢ > 1. Considering that the
degrees of freedom of a rotation in 3D is three, we know that
there exist three independent simultaneous invariants because
37 (09 + 1) (09 +2)/2+ 3" (0+ 1) (0+2)/2 — (3" (0g + 1) (00 +
2)/2-3+37(0+1)(04+2)/2-3)-3=3.

If ry>1,all r=0+rf>1 and therefore the number of simul-
taneous invariants that contain oq are

Om
> 3=30pm, (41)

09#0=0

If r; =1, we have r = 0 +r¢ =1 for 0 =0 and therefore the number
of simultaneous invariants that contain oy are

Om
> 3+2=30n—-1)+2=30,-1 (42)
0p#0=1

If =0, we have r = 0+ ry =1 for 0 =1 and therefore the number
of simultaneous invariants that contain o, are

Om
> 3+2=3(0m—2)+2=30m -4 (43)
00#0=2

All three cases coincide with the number needed from Lemma 10,
which completes the proof. O

5.4. Algorithm

Our algorithm follows the main idea from Bujack et al. [4]. In
a nutshell, we will first use all possible independent homogeneous
invariants and then add simultaneous invariants between the low-
est order tensor that is significantly different from zero M >> 0
paired with all other tensors.

Explicitly for a given maximum order oy, we precompute the
overcomplete set of invariants from Theorems 2 and 4 that con-
tains all homogeneous invariants and for each pair of moments
0;,0j < 0m the simultaneous invariants that are independent of the
homogeneous moments and to each other using the algorithm by
Langbein and Hagen [3]. We provide the overcomplete set in the
appendix up to rank 6 in 2D and up to rank 4 in 3D.

Please remember that the overcomplete set is not a basis
because the simultaneous invariants are not mutually indepen-
dent but only independent within each pair o;,0;. Comparing
Theorems 2 and 4 to Lemmata 5 and 9 shows that the number
of elements of the overcomplete set is larger than the number of
elements of a basis.

Then, to compose the flexible bases, we start with the
overcomplete set and kick out all simultaneous invariants that
do not contain the chosen non-zero moments of order og.
Theorems 3 and 5 prove that this method indeed produces the cor-
rect number of independent invariants.

Now we will discuss how to select oy for a given pattern. To
make the basis robust, it should use low order moments rather
than higher order moments and avoid moments that are close to
zero. We measure the magnitude of a moment tensor through the
average magnitude of its entries

|0Mi'1“,i,‘|k1“.ko| (44)

3
_ 1
Ml = os X Jieim

i1 i, 1o Jmo Ky . ko=1
and during runtime, we select oy as the lowest order moment ten-
sor satisfying o+ ry > 1 whose norm is above average, i.e,

Om
I°MI| > 51 ZO||°M||- (45)
0=

argmin
0<0p,r=0+T7>1

Op =
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Then, the basis is given through all precomputed homgeneous plus
simultaneous invariants of orders og, 0, where oy #0=0,..., Oom.

For the actual pattern matching, we compute the moments of
the pattern and the field, select the significantly non-zero moment
0 of the pattern, evaluate the corresponding basis, take the r-th
root of each element with r being the rank of the tensor product
it consists of to balance the contribution between different ranks,
and use the reciprocal of the Euclidean distance of the descriptor
vector as similarity. Please note that the Euclidean distance is not
necessarily the optimal measures of similarity, but many others are
possible, for example the Mahalanobis distance [30].

5.5. 2D Example of flexibility

In this section, we will demonstrate that our algorithm applied
to the example pattern from Section 4.1 is complete. Up to order 3
in 2D, the homogeneous invariants are:
‘M=M
M2 0.1 = Mg + M}
*M(0.1) = Moo + Mn
M2 0,2),1.3) = Mgo + 2Mg; + M3,
M2 0.1),2:3).4.5) = Moo + Moy + Mgy + My,
+ 2MoooMo11 + 2Moo1 Min
31\/12(0,3)(1,4)-(2,5) = M(zJoo + 3M%m + 3M%n + M%n
M (03).(1.6).(4.7).2.9).(5.10).8.11) = Mg + 3Mgo; +3Mgy, + My,
+ 4M000M311 + 6M(2)00M(2)o1
+12Mgo, Mg, + 4Mgo; M
+ GM(Z)HM%H + 121\/10001\/13011\”011
+ 12Myoy M[%“Mm.
(46)
Since the non-zero moments are M;; and Mg, the algorithm se-

lects the lower rank og = 2. The simultaneous invariants that re-
main after removing all that do not contain order 2 are as follows.

IM22M (0 2, 1,3) = M3Moo + M2M1; + 2MoM1 My
PMPM2 0,2),(1.3).4.5).6.7) = MooMgog + MooMgo; + MMy,
+ M1 M2, + MooMoooMor
+ MooMoo1M111 + 2Mo1 MoooMoo
+4Mo1Moo1Mon1 + 2Mo1 Mot M1y
+ M11MoooMo11 + M1 Moot Mi.-
(47)

The basis comprises the homogeneous (46) and simultaneous in-
variants (47). They take the values

0 2n 12 3n g2
M =0, M(O.Z),(1,3) =1, M(o,1).(2.3).(4,5) =1,

a2 32 1pg22

M(O,l) =0, M(O.l),(2,3),(4,5) =1, M M(O,Z),(LB) =0,

2 3ng2 2a113 02

Moy =1 "Mg3 aa.05=1 MMy, 13 @us).67) =0

(48)

Analogous to Flusser [6], we remove the one degree of freedom
that refers to the rotational invariance by fixing one moment’s
degree of freedom. Without loss of generality, we select to set
Mopgo = 1 so that we can keep the calculation simple. All correct
values follow from straight calculation solving for 10 — 1 =9 un-
knowns in 9 equations. We will provide a sketch. With Mygg = 1,
it follows from the three 3rd order homogeneous invariants that
Mopo1 = Mp11 = My1; = 0. Inserting these values into the simultane-
ous invariant of orders 2 and 3 immediately gives Myg = 0, which
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leads to My; = 1, My; = 0 using the two 2nd order homogeneous
invariants. Finally My = 0 follows from the simultaneous invariant
of orders 1 and 2, M; = 0 from 1st order homogeneous invariant,
and M = 0 was clear from the start.

Especially, the flexible basis is able to discriminate the func-
tions (7) and (10) from Fig. 2, because the simultaneous in-
variant of orders 2 and 3 differs with the prior sufficing
IMI3M2 9 9).(1.3).4.5).6.7) = 0 and the latter being 1.

5.6. 3D Example of flexibility

Analogously, the flexible basis is able to discriminate the two
patterns from Section 4.2. For example, it contains the higher fac-
tor homogeneous invariant 3M* g 1) (2.3) (4.6).(5.7).(8.9).(10.11» Which
takes the value 27 for f; from Equation (14), but the value 11 for
f>. The full basis can be found in the appendix.

5.7. Exceptions

In all of our experiments using real data, we have never en-
countered a case where no such og different from zero could be
found. In theory, it can happen for two possible reasons though.
(1) The pattern does not differ from zero for all moments up to
om. In this case, we consider the function to be zero and there-
fore fully rotationally invariant. (2) We have the case of a 3D scalar
field, ry = 0, and the only non-zero tensor is IT. This function is ro-
tationally symmetric along one axis. The degrees of freedom of a
rotation of this type of function are only two and either choice of
0p works just fine.

In both cases, we can choose oq arbitrarily or use the full pre-
computed, overcomplete set to ensure that every function can be
distinguished from the pattern.

Please note that the overcomplete set will always work and can
be used for simplicity if performance is not an issue.

5.8. Size of the problem

The algorithm by Langbein and Hagen [3] is still a crucial com-
ponent inside our algorithm to check for the independence of the
invariants, but the systematic approach reduces the size of the
problem in theory.

The original algorithm required triangulating matrices of size
n; x Ny with the number of moments ny, = 2'f (om + 1) (0 + 2)/2
in 2D and n+m = 3" (om + 1)(0m + 2) (0m + 3)/6 in 3D. Now we
know that we can decompose the problem into many smaller ones
of sizes np =2"f(0+1) in 2D and nyp =3 (0+1)(0+2)/2 in 3D
for the homogeneous invariants. In 2D, the problem for the si-
multaneous invariants disappears completely, because we know
we need only one. In 3D, the matrices reduce to ny, = 3"/ ((0g +
1)(0g+2)+ (0+1)(0+2))/2. Also the number of potential can-
didates of invariants n; to fill up the matrix rows is reduced be-
cause only tensor products with one or two different types of fac-
tors have to be taken into account.

In practice, for the orders that we computed, Langbein’s ba-
sis could be found faster though. Since both algorithms terminate
when the number of required invariants are found, the factor dom-
inating the computation time is the number of invariants that ac-
tually get tested and their sizes. Langbein’s algorithm is efficient
w.r.t. this number because it sorts the candidates by the number of
factors and will find enough small simultaneous invariants before
having even to check the large homogeneous ones that are neces-
sary to ensure flexibility. The times of the precomputation can be
found in the appendix.
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Magnitude

—0.02 >
0.0e+00

(a) The original pattern cut out from the dataset.
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vectors Magnitude

0.0e+00

(b) A pattern that does not appear in the data.

Fig. 4. The two patterns used for the experiment visualized through line integral convolution (LIC) [32] and velocity magnitude through color coding.

5.9. Implementation

We provide an open source implementation of the algorithms
through the Visualization Toolkit VTK [31]. The moment invariants
module (gitlab.kitware.com/vtk/MomentInvariants) is used for pat-
tern detection and can be run using the method suggested by Bu-
jack et al. [2], the method suggested by Langbein and Hagen [3],
or the method suggested in this paper. The derivation of the inde-
pendent homogeneous invariants is very time consuming for high
ranks, which is why we separate it from the main pattern detec-
tion algorithm, where we use the hard-coded invariants.

6. Experiments

We will demonstrate the difference between the flexible basis
and Langbein’s basis on two real world datasets.

B

(a) Langbein invariants and existing pattern with

maximum similarity of 148K.

r

Please note that the two algorithms produce very similar results
for most real world patterns. In order to show cases where they
differ noticeably, we explicitly chose locations in the datasets that
have a very small rank one component.

6.1. 2D Vector

Fig. 5 shows one timestep of a hydrodynamics simulation of
a von Karman vortex street. This flow behavior is the result of a
laminar fluid being forced around an obstacle, which periodically
sheds vortices in alternating orientation in its wake. We cut out a
pattern with small first rank moments from the 2D vector-valued
dataset, Fig. 4, rotate it, and let the algorithm look for it in the full
dataset.

We can see in the top row of Fig. 5 that both bases, Lang-
bein’s and ours, have no problem detecting the correct location of

w

e V') URSASY :

(b) Flexible and existing pattern with maximum
similarity of 508K.
(-

%:%w i N
fy

(c) Langbein invariants and non-existing pattern (d) Flexible and non-existing pattern with max-

with maximum similarity of 112K. imum similarity of 62.

Fig. 5. Comparison of the pattern detection results on the velocity of a fluid dynamics simulation. The velocity field is visualized using LIC in green in the background. The
similarity is color coded using the heated body map and transparency on top with 0 being fully transparent and 2e5 being completely opaque. The algorithm by Langbein
cannot distinguish the two patterns and returns approximately the same similarity for both, while our flexible algorithm detects the correct pattern about 10K times stronger
than the wrong pattern. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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~ Generator Langbein

0.75

0.5

0.25

0
0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045 0.0005

(a) The 2D vector values data from Figure 5. The (b) The 3D scalar values data from Figure 7a.

signal to noise ratio drops from 17.8 to 11.8 .

The signal to noise ratio drops from 16.3 to 10.6

Fig. 6. Average normalized similarity of 10 randomly cut out patterns depending on added uniform noise in [—1, 1] multiplied with the values on the x-axis shows that

both bases behave similar in most cases.

the pattern independent of the new orientation. To demonstrate
the difference in their behavior, we let them look for a different
pattern, Fig. 4b, which does not occur in the dataset, but has the
same homogeneous invariants as the cut out pattern, Fig. 4a. Please
note the different velocity magnitudes. We see that Langbein’s ba-
sis cannot discriminate the two patterns, while our flexible basis
clearly does in the lower row of Fig. 5.

To show that both algorithms behave comparably in most set-
tings, we cut out 10 patterns randomly selected from the dataset
and compare the similarity by which each basis detects them for
rank 3 when they get distorted with increasing amounts of uni-
form random noise. We normalize the similarity with noise in
1073[—1,1] to one so that the graphs of the different bases are
directly comparable. The average results of 500 repetitions can be
found in Fig. 6.

6.2. 3D Scalar

For this example, we use the velocity magnitude of one
timestep of the homogeneous buoyancy driven turbulence
dataset [33,34]. It is produced by Los Alamos National Labo-
ratory’s Direct Numerical Simulation (DNS) code and is available
at Johns Hopkins Turbulence Database [35,36]. For this simulation,
two fluids are initialized randomly at rest and later mix due to
gravity and differential buoyancy forces.

We cut out a pattern with small moments of orders 1 and 2
from the 3D scalar-valued dataset, as shown in Fig. 7. Then, analo-
gously to the example in Section 4.2, we construct a false pattern
by replacing the value of My, with its negative. We rotate the pat-
terns, and let the algorithms look for them in the original dataset.

Fig. 9 compares the results of the Langbein basis and the flexi-
ble basis for the reconstructed pattern, whose moments up to or-
der 3 coincide with one location in the data, and the false pat-
tern, differing in the sign of Mgy, = —0.0005. The little outlined
cube shows the correct location of the cut out pattern, which is
correctly detected by both algorithms. The algorithm by Langbein
has a hard time distinguishing the two patterns even though the
first order moments do not vanish completely, but are in the range
of 0.0005, same as Mg, and only one order of magnitude smaller
than the largest moment of this pattern. In contrast to that, the

1

(a) The dataset. (b) The pattern located

in the data.

Fig. 7. The dataset and pattern visualized using color coding on the surface.

(a) The pattern from (b) A pattern that does
the dataset.

not appear in the data.

Fig. 8. The patterns used for the 3D experiment visualized with nested isosurfaces.

flexible basis detects the correct pattern about 30 times stronger
than the wrong pattern.

As mentioned before, the degenerate cases in which moments
vanish completely are rare in real world data. In normal settings,
both bases behave similar, Fig. 6(b).
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(a) Langbein and exist- (b) Flexible and exist- (¢) Langbein and non- (d) Flexible and non-

ing pattern with maxi- ing pattern with maxi- existing pattern with existing pattern with

mum similarity of 59M. mum similarity of 59M. max. similarity of 53M. max. similarity of 2M.

Fig. 9. Comparison of the pattern detection results on the velocity magnitude of the DNS simulation visualized with volume rendering. The similarity is color coded using
the heated body map and transparency on top with 0 being fully transparent and 59M being fully opaque.

7. Discussion and conclusion

We have presented a systematic approach to find bases of mo-
ment invariants with respect to orthogonal transformations using
the generator method for scalar, vector, and tensor fields in 2D and
3D.

Provided that our conjecture holds, i.e., that the set of all ten-
sor contractions is complete, we showed that it is always possible
to construct a basis using all homogeneous invariants and simulta-
neous invariants with no more than two different moment tensors
and with one of the factors fixed per pattern.

This result is very important from a theoretical perspective be-
cause it reveals the structural similarity between the 3D generator
approach and the first complete and independent 2D generator ap-
proach for scalar fields by Flusser [6], which also uses products of
tensors of only two different orders. It also reveals a stronger than
so far expected similarity to the 3D normalization approach [2],
which also used one fixed normalizer, i.e., two different factors.
The normalization approach and the generator approach have their
advantages and disadvantages. We hope that an optimal basis can
be constructed when we understand how to express one through
the other [4] and consider the results of this work a step in the
right direction.

The implications are also of a practical nature. Instead of check-
ing for independence across all orders, we are able to decompose
the problem into many smaller ones, which can be solved inde-
pendent of each other. Further, the property that the needed si-
multaneous invariants can be formed with one of the factors fixed
allows for a flexible algorithm that is always fully discriminative,
independent of the shape of the input pattern.

We would like to point out though that vanishing moments
occur far less in patterns cut out from real world data than for
analytical patterns, which makes Langbein’s basis work reliable in
most of these cases. For a normal distribution of moments, it runs
faster because it makes use of invariants from moment products of
lower order and with fewer factors.
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