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A B S T R A C T

Videokymography (VKG) is a modern video recording technique used in laryngology and phoniatrics to
examine vocal fold vibrations. To obtain quantitative information on the vocal fold vibration, VKG image
analysis is needed but no software has yet been validated for this purpose. Here, we introduce a validated
software tool that aids clinicians to evaluate diagnostically important vibration characteristics in VKG and other
types of kymographic recordings. State-of-the-art methods for automated image evaluation were implemented
and tested on a set of videokymograms with a wide range of vibratory characteristics, including healthy and
pathologic voices. The automated image segmentation results were compared to manual segmentation results of
six evaluators revealing average differences smaller than one pixel. Furthermore, the automatically categorized
vibratory parameters precisely agreed with the average visual assessment in 84 and 91 percent of the cases
for pathological and healthy patients, respectively. Based on these results, the newly developed software was
found to be a valid, reliable automated tool for the quantification of vocal fold vibrations from VKG images,
offering a number of novel features relevant for clinical practice.
1. Introduction

The vibration characteristics of the laryngeal tissues – particularly
those of the vocal folds – are critical for the evaluation of voice
disorders by laryngologists and phoniatricians [1,2]. The vocal folds
are a pair of elastic tissues in larynx (see Fig. 1) and their vibrations
produce phonation. The vibrating folds gradually close and open the
space between them (rima glottidis, or glottis) with the frequency range
of about 60–1000 Hz [3]. To visualize the vocal folds, laryngeal
endoscopy is routinely used in clinical practice (Fig. 1, left). There
are three standard techniques to display and evaluate the vibration of
the vocal folds using laryngeal endoscopy: videostroboscopy, high-speed
laryngeal videoendoscopy, and videokymography [4,5].

Videostroboscopy displays an illusory slowed-down motion of the
vocal folds in real time by temporarily synchronizing the images, cap-
tured by a standard endoscopic video camera, with vocal fold vibratory
cycles [6,7]. While this method is most frequently used in clinical
practice, it is not suitable for documenting and quantifying irregular
vibrations typical for disordered voices.

High-speed videoendoscopy (HSV) captures laryngeal images with a
high-speed camera at frame rates well above the fundamental fre-
quency of phonation, typically exceeding 1000 frames per second [4,
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8,9]. This method accurately documents each oscillatory cycle of the
vocal fold oscillations and produces large amounts of data which are
beneficial for research purposes and can be used for various types of
analyses, such as glottal segmentation and extraction of glottal area
waveforms, digital kymography, phonovibrography, laryngotopogra-
phy, etc. [10–14]. However, the HSV method has not yet been widely
implemented in clinical practice, mainly because it does not provide
real time visual feedback and is time-wise demanding, due to the large
volume of acquired data [15]. Addressing this, a viable strategy to
diminish the vast amount of data generated by HSV is to reduce the
two spatial image dimensions to a single one. This is achieved via the
videokymographic imaging, which is the main subject of the present
study.

In videokymography (VKG) special cameras are utilized to capture
images of the vibrating vocal folds at a single line perpendicular to
glottal axis with the rate of 7200 line images per second and allow
simultaneous observation in standard and videokymographic modes
(see Fig. 1). This allows the clinician to flexibly orient the camera
in order to record the desired line of interest [16–18]. VKG method
offers apparent benefits by combining real time imaging feedback
vailable online 8 July 2022
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Fig. 1. Videokymography: On the left there is the examination of vocal fold vibrations by laryngeal endoscopy using a videokymographic (VKG) camera. On the right there are two
parallel imaging modes of the videokymographic (VKG) camera: standard (left) and videokymographic (right). The videokymographic image is composed of successively acquired
scanned lines at the location indicated in the standard mode. The time is mapped onto the vertical axis within the VKG image, going from top to bottom. The standard duration
is 40 ms (resulting from the standard rate of 25 frames/s [16,17]). This also applies to the other figures with VKG images in this article.
Fig. 2. Proposed data processing pipeline for kymographic documentation and anal-
ysis of vocal fold vibration. This study particularly focuses on layers 2 through 4
(i.e., pre-processing, segmentation, and feature extraction). The algorithms and software
presented in this manuscript have been validated with videokymographic footage.

found in videostroboscopy with the advantages of high-speed imaging,
i.e., sufficient frame rates to truthfully document each oscillatory cycle
of the vocal folds [19].

In a VKG system, data acquisition and kymographic image gen-
eration is facilitated simultaneously on the hardware layer. In con-
trast, two further strategies offer the possibility to generate surrogate
kymographic images from previously recorded endoscopic laryngeal
footage [5]: (a) digital kymography (DKG) [14,20], operating on HSV
data; and (b) strobovideokymography (SVKG) [21–23], operating on
videostroboscopic data.

Here we propose a system for data analysis in which either of these
three types of kymographic image (VKG, DKG, or SVGK) is processed
in a pipeline that is schematically illustrated in Fig. 2. In particular,
the available kymographic images are visually inspected, optimized
and selected for further treatment (see layer 2: pre-processing in
Fig. 2). In analogy to HSV data, the vibrating glottal edge is seg-
mented, thus computing the time-varying medio-lateral deflections of
the vocal folds (layer 3: segmentation). However, while in HSV the
segmentation operates on two spatial dimensions, VGK images have a
reduced dimensionality, thus requiring a fundamentally different seg-
mentation approach. The resulting data is then subjected to extraction
of dedicated metrics that allow for quantitative assessment (layer 4:
feature extraction) and can finally be used for statistical analysis or
intra-subjective comparison if so required (layer 5: data aggregation).

While exclusively manual treatment within this analysis pipeline
has been partially pursued for scientific exploration [24–26], this is
rather time-consuming and thus not feasible in clinical practice. Ideally,
layers 2 through 4 should be automated and completed by computer-
aided (semi)automatic software algorithms and a supporting graphical
user interface (GUI).
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Addressing this, some systems have been developed previously. For
instance, the commercially marketed Kay Elemetrics Image Processing
System (KIPS) offers features to produce DKGs from HSV, segmentation
of these DKGs, as well as limited analysis of the segmented DKG
contours in the form of metrics addressing glottal opening (glottal
width), mean fundamental frequency (𝑓𝑜), the vibratory amplitudes of
left and right vocal folds, as well as the percentage of time when the
glottis is closed with respect to the duration of the analysis. Another
system, proposed by Manfredi et al. [27] operates directly on VKG
images and offers the image segmentation and extraction of basic
quantitative parameters, such as the left-to-right amplitude and period
ratios, open-to-closed phase ratios, and phase symmetry index [28,29].

Despite the existence of these previously established systems, which
constitute commendable groundbreaking work in their own right, a
comprehensive coverage of layers 2–4 in the proposed analysis pipeline
(Fig. 2) is still missing. Neither of the developed software tools has been
available for analyzing the sets of existing clinical VKG recordings: the
tool of Manfredi et al. [27] has not been released for external use and
its exploration has been limited to preliminary or case studies [29,30],
whereas the KIPS software allows analyzing only DKG and not VKG
recordings. Furthermore, performance of neither of these software tools
has been validated against visual assessment.

The goal of this project was to fundamentally address these issues,
targeting two particular objectives:

Objective I was to develop and test a user-friendly software tool for
automated analysis of clinical videokymographic recordings that can
be used in a clinical setting. This software predominantly targets layers
2–4 in the proposed analysis pipeline (see Fig. 2). In this context, we
present (a) a GUI for acquiring kymographic videos or images and their
pre-processing; (b) a segmentation algorithm that supports user-defined
image adaptations; and (c) implementation of a number of clinically
relevant metrics.

Objective II was constituted by a rigorous validation of the im-
plemented segmentation and feature extraction algorithms. This is
achieved by comparing the proposed toolset with manual visual assess-
ments, in order to verify the accuracy and applicability of the proposed
solution. For this, we took advantage of a previously developed proto-
col for visual analysis of videokymograms using pictograms [24,31],
transferring the visual pictogram features into quantitative vibratory
parameters. This was achieved for clinically relevant features, such
as: the relative duration of glottal closure, left–right differences in
vibratory amplitudes, frequencies and phases, left–right axis shifts,
opening versus closing durations, and cycle-to-cycle variability [1,32].

2. Materials and data

2.1. Datasets

All the data used in our study were acquired in cooperation with

the Voice and Hearing Centre Prague, a medical institution specialized
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Fig. 3. Examples of video frames extracted from routine clinical VKG recordings
demonstrate the variability of laryngeal settings, vibratory patterns, and image quality.
The vibrations may show lack of glottal closure or can be asymmetrical. The glottal
opening can contain specular reflections, be over-saturated, blurred, or even off-center.
Such variability had to be taken into account for developing the VKG Analyzer software.

in voice diagnostics. Routinely acquired videokymographic recordings
of patients with and without voice disorders were used; no special
recordings were made for this study. No exclusion criteria were applied
here on the subjects; our primary goal was to obtain and analyze
recordings showing the largest possible variability of findings and im-
age quality, regardless of the clinical diagnosis, gender or age. Healthy
as well as disordered patients were included to ensure the robustness
of the proposed methods. The most common diagnoses included were:
laryngitis chronica, hyperfunctional dysphonia, oedema laryngis, hem-
orrhage, vocal fold atrophy, paresis mm. interni and voice fatigue.
However, since clinical diagnoses have traditionally been based mostly
on structural rather than vibrational features, our goal was not to
obtain clinical diagnoses but rather to accurately capture the vibratory
features of the vocal folds which provide crucial additional information
on the functionality of the vocal folds [32]. For the evaluations, we
have therefore selected images containing large variation of vibratory
patterns and having various levels of image quality in order to test the
robustness of image segmentation and vibration analysis. Examples of
the clinical VKG images subjected to our analysis are shown in Fig. 3.

Three datasets were used to create and validate the software. The
first dataset consisted of 500 randomly chosen images from clinical
VKG examinations of healthy as well as voice-disordered subjects.
It was used for a heuristic adaptation of the algorithms and fine-
tuning of the parameters. We named this dataset the ‘‘Training Dataset’’.
This dataset was used in the layer 2: pre-processing and layer 3:
segmentation of the processing pipeline as depicted in Fig. 2.

A second dataset, the ‘‘Segmentation Validation Dataset’’, was cre-
ated to test the performance of the segmentation algorithm (layer
3: segmentation in the processing pipeline depicted in Fig. 2). The
dataset consisted of manual annotations of 834 key points, i.e., the
opening, closing, lateral and medial extrema for left and right vocal
fold movement contour, performed by 6 raters, yielding the total of
5004 annotations. Details on this dataset are provided in Section 3.6
devoted to the validation studies.

A third dataset, the ‘‘Attributes Validation Dataset’’, was used to
evaluate of the accuracy of the extracted vibration attributes (layer
4: feature extraction in diagram displayed in Fig. 2), testing the
overall analyzer performance. This dataset contained the total of 13500
visually-based manual evaluations of 9 vibratory features obtained
from ten evaluators. These evaluations were performed on 50 VKG
3

images from 50 patients with various voice disorders showing the
largest possible range of pathological vibratory patterns and 200 VKG
images from 40 healthy patients. Further details on this dataset are also
provided in Section 3.6 devoted to the validation studies.

2.2. Videokymographic data acquisition/voice recording

In order to acquire the videokymographic images, we used a com-
mercially available 2nd generation videokymography camera (Cymo,
Netherlands) connected to a 90◦ rigid laryngoscope (type 130310529,
Xion, Germany) with a bright light source (300-W xenon, type FX
300 A, Fentex, Germany) (Fig. 1). Examples of the videokymographic
images from different patients can be seen in Fig. 3. Audio signal has
also been captured together with the videokymographic data using an
electret microphone (Xion) for perceptual monitoring of the recorded
voices.

2.3. Software tool implementation

Initial development has been realized in Image Processing Toolbox
for Matlab [33]. The final application is programmed in C++, com-
plemented by the openCV library [34] for image and video handling
and by the Qt library [35] for the graphical user interface. The SQLite
database system [36] was used for data storage.

3. Method

The proposed software solution, addressing the objective I, consists
of five main building blocks, as shown in Fig. 4. The input data can be
in the form of single kymographic images (from DKG, VKG or SVKG
modality), a VKG video file, or a live video stream of the VKG exami-
nation session. Following the initial information rich frames detection
and preprocessing, the software localizes the fundamental vibration
structures for every vibration cycle — the contours of glottal openings,
the lateral movement extrema, and the opening/closing points. These
basic features are used for the derivation of advanced features, and
ultimately for computation of the final vibration attributes. Finally,
the software visualizes the results in the graphical user interface. In
the following paragraphs, the individual pipeline blocs from Fig. 4 are
described.

3.1. Information-rich-frames detection

A typical VKG video data acquisition process produces many frames
containing irrelevant data (the cases where the patient moved, did not
phonate, or the resulting images are off-center or low quality). As a
part of the preprocessing, the image content richness of every frame is
estimated. The content richness detection is based on searching for the
vocal fold oscillations’ amplitude using the column frequency analysis.
The absolute values of the first 32 coefficients of each column’s Fourier
transformation determine the vibration amplitudes for the relevant fre-
quencies (see Fig. 5). The maximum of calculated amplitudes therefore
signifies the level of vibrations in the VKG image. Frames achieving
a higher maximum value than the empirically defined threshold are
marked. The process of preselecting the content-rich frames helps the
physician to focus on the relevant parts of the VKG video, where
the vocal folds are visible and vibrating. An interactive visualization
tool (the representation part in Fig. 4) helps the user to select the
information-rich-frames of interest.

3.2. Preprocessing of VKG images

The acquired data contain various degradations (examples are de-
picted in Fig. 3). Primary goal of Image preprocessing (layer 2 Fig. 2)



Biomedical Signal Processing and Control 78 (2022) 103878A. Zita et al.
Fig. 4. Streamline processing pipeline schema. The input sequence is processed frame
by frame. The first stage focuses on image preprocessing (layer 2 in Fig. 2). Next,
the glottal openings are segmented (layer 3). The segmentation determines the lateral
extrema and opening/closing points. Then the derived vibration features and final
attributes are calculated (layer 4). Lastly, the software visualizes the results in the
graphical user interface.

is to reduce unwanted artifacts caused by the data acquisition process
and normalize the input for further processing.

After loading an image containing the VKG data, the system per-
forms adaptive histogram equalization [37] to normalize the image.
In this phase, the operator can further adjust the image contrast and
brightness using the controls in the program interface.

When the user initiates the automatic extraction of attributes, the
algorithm first removes any specular light reflections caused by the
mucosal secretions. Here, the pixels having values higher than the
preset threshold (set to 200) are replaced by the mean value of all
pixels in the same column. This rudimentary impainting approach is
sufficient for the segmentation process. Next, the algorithm cuts out
the image borders, which have no informational value. By default, the
cutout is set to 1/4th of the image width from both sides. For the rest of
the pipeline, only the middle part of the image containing the relevant
vibration structures is kept.
4

Fig. 5. Spectral analysis for the selection of content-rich images. The example shows
the spectral analysis of each column of the VKG image with (top) and without (bottom)
pronounced vibrations. The 𝑥-axis of the graph shows the VKG image spatial domain;
the 𝑦-axis shows the first 32 Fourier coefficients’ absolute values.

Fig. 6. Vibration features in videokymograms. (a) Schema and (b) real case.

3.3. Segmentation and extrema estimation

Vibration characteristics of the vocal folds in the acquired VKG
images are computed from the glottal openings (see Fig. 6). The seg-
mentation of the openings outlines the border between the laryngeal
tissue and the open glottis. This part of the processing pipeline covers
the layer 3: segmentation in the schematic overview (recall Fig. 2).

First, the algorithm determines the active part of the VKG image
using the intensity variations in every column. It finds the left-most
block of 5 columns of image pixels, all having the standard deviation
higher than 0.5. Then it finds the right-most columns of pixels with the
same property. The found columns define the part of the VKG image
with pronounced vibrations containing the glottal openings for seg-
mentation. In the next phase of the processing, the algorithm executes
a segmentation of the glottal area using pixel intensity thresholding.
In order to find the global threshold for the image segmentation, the
algorithm first estimates the middle line of the glottal opening. Next,
the global threshold is estimated using the sorted middle line in the
next phase. (see the Algorithm 1). The procedure performs the final
segmentation by selecting pixels having an intensity lower than the
calculated threshold. All mentioned parameters in both steps of the
algorithm were established and fine-tuned empirically on the randomly
selected data of 500 VKG frames from healthy and unhealthy patients
(the Training Dataset defined in Section 2.1).

The global segmentation method can produce unwanted artefacts
such as false ‘holes’ in dark areas of vocal folds. To remove these
incorrectly segmented areas, the algorithm performs a morphological
opening [38] using a rectangular morphological element of size 3 × 3.

The achieved segmentation determines the contour pixels of the
glottal openings (refer to Fig. 7(b)). The extremal points of the contours

in the temporal domain (up or down on image) denote the glottal
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Algorithm 1: Find the Global Threshold
𝑠𝑜𝑟𝑡𝑒𝑑_𝑖𝑚𝑎𝑔𝑒 := SortColumns(𝑖𝑚𝑎𝑔𝑒)
𝑛𝑒𝑤_ℎ𝑒𝑖𝑔ℎ𝑡 := Height(𝑖𝑚𝑎𝑔𝑒) * 0.55
𝑠𝑜𝑟𝑡𝑒𝑑_𝑖𝑚𝑎𝑔𝑒 := 𝑠𝑜𝑟𝑡𝑒𝑑_𝑖𝑚𝑎𝑔𝑒[1:𝑛𝑒𝑤_ℎ𝑒𝑖𝑔ℎ𝑡, :]
𝑐𝑜𝑙𝑢𝑚𝑛_𝑠𝑢𝑚𝑠 := Sum(𝑠𝑜𝑟𝑡𝑒𝑑_𝑖𝑚𝑎𝑔𝑒, 1)
𝑚𝑖𝑑𝑑𝑙𝑒_𝑖𝑑𝑥 := ArgMin(𝑐𝑜𝑙𝑢𝑚𝑛_𝑠𝑢𝑚𝑠)
𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛 = Sort(𝑖𝑚𝑎𝑔𝑒[:, 𝑚𝑖𝑑𝑑𝑑𝑙𝑒_𝑖𝑑𝑥])
𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛 := Filter1D(𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛, GAUSS)
for 𝑖 in 1:Length(𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛) do

if 𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛[i] ≤ 0.1 then
𝑚𝑖𝑛_𝑖𝑑𝑥 := 𝑖

end
if 𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛[i] ≤ 0.22 then

𝑚𝑎𝑥_𝑖𝑑𝑥 := 𝑖
end

end
𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛 := 𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛[𝑚𝑖𝑛_𝑖𝑑𝑥:𝑚𝑎𝑥_𝑖𝑑𝑥]
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑣𝑒𝑐𝑡𝑜𝑟 := 𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛[1:end-1] - 𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛[2:end]
for 𝑖 in 1:Length(𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛) do

if 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑣𝑒𝑐𝑡𝑜𝑟[𝑖] > 0.03 then
𝑔𝑙𝑜𝑏𝑎𝑙_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 := 𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛[𝑖]
return 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

end
end

opening (top) and closing (bottom) points. Between the glottal cycles
(defined by the segmented glottal opening(s)), the glottis can be closed
(Fig. 7(b)). In such a case, the line connecting the closing of one cycle to
the opening of the following cycle is used to approximate the position
of the boundary between the left and the right vocal fold during glottal
closure. The final tracing contours of the movements of the vocal folds
are formed as curves running from the first glottal opening, each on one
side, including the connecting lines when the vocal folds are closed,
repeatedly for every glottal cycle, until the end of the last glottal
opening on the analyzed image frame. These tracing lines are then used
for finding the lateral and medial peaks (see Figs. 6 and 7(b)).

Each of the established tracing lines (left and right) can be viewed
as a continuous curve. Therefore, we can use the first derivative test
to find the lateral peaks (the violet points in Fig. 7(b)) as well as the
medial peaks when glottal closure is missing (Fig. 6). Places where
the first-order derivative is zero signify the places of either extreme or
saddle point. A second-order derivative is used to distinguish between
an extreme and the saddle point. The lateral peaks are used for finding
the vibration amplitudes. The medial peaks are important to localize
for the cases, where the vocal folds do not close completely.

3.4. Features

The main calculation pipeline (layer 4, Fig. 2) of the proposed
software starts with extracting the basic and advanced (derived) fea-
tures. The basic vibration features targeted here are: the frequency
and regularity of vocal fold vibration, the relative duration of glottal
closure, opening versus closing duration, and the left–right vibratory
asymmetry. These features are calculated directly from the detected
extrema points — namely the frequency, lateral amplitude (vocal fold
vibration amplitude), and the maximum opening point (lateral peak).
From the combination of the left and right extrema points, we can
also determine the phases where the glottis is closed and open. The
lateral peaks and the closed phase (or the medial peak when there is
no closed phase) are used to detect the opening and closing points. (See
Table 1 for reference; the upper index 𝑅 or 𝐿 denotes correspondence
to the right or left vocal fold; the lower index 𝑖 ∈ {1,… , 𝑛} denotes the
number of the corresponding vibration cycle, where 𝑛 is the number of
cycles in the videokymogram.).
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Fig. 7. Glottal space contouring and subsequent main features detection. (a) Original
VKG image; (b) Detected glottal opening border with the main feature points: Opening
Points, Closing Points, and Lateral Peaks.

Table 1
Basic glottal features in videokymograms (see Fig. 6);
upper indices 𝑅 and 𝐿 denote the right and left vocal
folds and lower index 𝑖 denotes the number of the
vibration cycle in the videokymogram.
Basic feature Notation

Opening points 𝑂𝑖
Closing points 𝐶𝑖
Lateral peaks 𝐴𝑅

𝑖 , 𝐴
𝐿
𝑖

Medial peaks 𝑀𝑅
𝑖 ,𝑀

𝐿
𝑖

Table 2
Derived glottal features in videokymograms (see Fig. 6); upper index 𝑗 ∈ {𝑅,𝐿} denotes
the right and left vocal folds and lower index 𝑖 denotes the number of the vibration
cycle in the videokymogram.

Advanced features Notation and definition

Generalized opening points 𝑂̃𝑗
𝑖 = {𝑂𝑖 ,𝑀

𝑗
𝑖 }

Generalized closing points 𝐶̃𝑗
𝑖 = {𝐶𝑖 ,𝑀

𝑗
𝑖 }

Opening phase duration 𝑡𝑜𝑗𝑖 = 𝐴𝑗
𝑖 (𝑦) − 𝑂̃𝑗

𝑖 (𝑦)
Closing phase duration 𝑡𝑐𝑗𝑖 = 𝐶̃𝑗

𝑖 (𝑦) − 𝐴𝑗
𝑖 (𝑦)

Open phase duration 𝑇 𝑜𝑗
𝑖 = 𝑡𝑜𝑗𝑖 + 𝑡𝑐𝑗𝑖 = 𝐶̃𝑗

𝑖 (𝑦) − 𝑂̃𝑗
𝑖 (𝑦)

Closed phase duration 𝑇 𝑐𝑗
𝑖 = 𝑂̃𝑗

𝑖+1(𝑦) − 𝐶̃𝑗
𝑖 (𝑦)

Vibration cycle duration 𝑇 𝑗
𝑖 = 𝑇 𝑜𝑗

𝑖 + 𝑇 𝑐𝑗
𝑖 = 𝑡𝑜𝑗𝑖 + 𝑡𝑐𝑗𝑖 + 𝑇 𝑐𝑗

𝑖 = 𝑂̃𝑗
𝑖+1(𝑦) − 𝑂̃𝑗

𝑖 (𝑦)
Vocal fold amplitudes 𝑎𝑗𝑖 = mean(|𝐴𝑗

𝑖 (𝑥) − 𝑂̃𝑗
𝑖 (𝑥)|, |𝐴

𝑗
𝑖 (𝑥) − 𝐶̃𝑗

𝑖 (𝑥)|)
Glottal amplitudes 𝑎𝑖 = 𝐴𝐿

𝑖 (𝑥) − 𝐴𝑅
𝑖 (𝑥)

The derived glottal features are computed from the basic features
using the definitions in Table 2. The generalized opening points are
defined as the union of opening points and medial peaks, and similarly,
generalized closing points are defined as the union of closing points and
medial peaks. The generalized opening and closing points enclose open
phases, while the generalized opening points separate vibration cycles.1

3.5. Attributes

The set of vocal fold vibration attributes used by clinicians was
previously implemented by the authors into a visually-perceptual VKG

1 Depending on the definition, vibration cycles can be separated by the
generalized opening points, by the lateral peaks, or by the generalized closing
points.
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Table 3
Cycle-to-cycle amplitude variability: correspondence between the numer-
ical values of the Amplitude Periodicity Index (API) and categories of
the parameter in the VKG visual evaluation form [24,31].
Category Description VariabilityR, VariabilityL

1 Negligible (0.85, 1]
2 Small (0.61, 0.85]
3 Medium (0.5, 0.61]
4 Large [0, 0.5]

evaluation sheet [24,31]. In our software, we aimed at evaluating
these visual attributes automatically using a set of parameters derived
from the detected glottal features. The intervals for the parameters’
discretization (see Tables 3–9) were obtained by manually measuring
the pictograms depicting the typical idealized VKG waveforms — those
served as visual anchors for the previous visual VKG evaluation stud-
ies [24,31]. The discretization of the calculated values is mandatory
for a backward reference to manual annotations performed using the
VKG visual evaluation tool. Additionally, the human-to-computer com-
parative study utilizes the discretized values for more straightforward
performance evaluation.

The meaning of the parameters and their relation to the VKG
features was defined as follows:

Number of cycles

(1) NumberOfCyclesR = 𝑦𝑚𝑎𝑥
𝑇
𝑅

(2) NumberOfCyclesL = 𝑦𝑚𝑎𝑥
𝑇
𝐿

he ‘‘Number of cycles’’ parameter is defined by the duration of the
ecorded videokymogram 𝑦𝑚𝑎𝑥 and the average length of the vibration

cycle 𝑇
𝑗
= 1

𝑛𝑗

∑𝑛𝑗
𝑖=1 𝑇

𝑗
𝑖 , where 𝑗 = 𝑅,𝐿 and 𝑛𝑅 and 𝑛𝐿 denote the number

f full cycles of the right and left vocal fold in the videokymogram
etermined from the total number of detected opening points 𝑂𝑅 and
𝐿, respectively.

This parameter is directly related to the fundamental frequency
f oscillations of the vocal folds and consequently to the produced
undamental frequency of voice.

ycle-to-cycle variabilities

(3) VariabilityR = median
𝑖=1,…,𝑛−1

𝐴𝑃𝐼(𝑖, 𝑅)

(4) VariabilityL = median
𝑖=1,…,𝑛−1

𝐴𝑃𝐼(𝑖, 𝐿)

The cycle-to-cycle amplitude variability indicates how much the vocal
fold vibration amplitudes deviate from ideal periodic vibrations. This
feature is related to the degree of voice roughness [39]. The ‘‘Cycle-
to-cycle amplitude variability ’’ parameter is defined by the Amplitude
eriodicity Index (API) [40] 𝐴𝑃𝐼(𝑖, 𝑗) =

min{𝑎𝑗𝑖 ,𝑎
𝑗
𝑖+1}

max{𝑎𝑗𝑖 ,𝑎
𝑗
𝑖+1}

, where 𝑖 = 1,… , 𝑛−

1, 𝑗 = 𝑅,𝐿. Analogously, the ‘‘Cycle-to-cycle period variability ’’ can
be defined through the Time Periodicity Index (TPI) [40] 𝑇𝑃𝐼(𝑖, 𝑗) =
min{𝑇 𝑗

𝑖 ,𝑇
𝑗
𝑖+1}

max{𝑇 𝑗
𝑖 ,𝑇

𝑗
𝑖+1}

, where 𝑖 = 1,… , 𝑛 − 1, 𝑗 = 𝑅,𝐿.

Duration of closure

(5) ClosureDuration = median
𝑖=1,…,𝑛

𝐶𝑄(𝑖)

The relative duration of glottal closure is a classic feature that indicates
how well the vocal folds close during phonation [32,41]. The relative
duration of the closure is defined by the Closed Quotient (CQ) [40] as
𝐶𝑄(𝑖) =

𝑇 𝑐
𝑖
𝑇𝑖

, 𝑖 = 1,… , 𝑛.

Amplitude differences

(6) AmplitudeDifferences = median 𝐴𝑆𝐼(𝑖)
6

𝑖=1,…,𝑛
Table 4
Duration of closure: correspondence between the
numerical values of the Closed Quotient (CQ) and cat-
egories of the parameter in the VKG visual evaluation
form [24,31].
Category Description Closure duration

1 No closure [0, 0.01]
2 1–20 (0.01, 0.2]
3 20–40 (0.2, 0.4]
4 40–60 (0.4, 0.6]
5 >60 (0.6, 1]

Table 5
Amplitude differences: correspondence between the numerical values of
the Amplitude Symmetry Index (ASI) and categories of the parameter in
the VKG evaluation form [24,31].
Category Description Amplitude difference

1 R much larger [−1,−0.6)
2 R larger [−0.6,−0.31)
3 R slightly larger [−0.31,−0.1)
4 R ∼ L [−0.1, 0.1]
5 L slightly larger (0.1, 0.31]
6 L larger (0.31, 0.6]
7 L much larger (0.6, 1]

Table 6
Frequency differences: correspondence between numerical values and
categories of the parameter in the VKG evaluation sheet [24,31].
Category Description Frequency difference

1 R faster than L (0, 0.91)
2 L and R equal [0.91, 1.1)
3 L faster than R [1.1,1)

The difference in vibration amplitude of the left and right vocal folds
shows the vocal fold asymmetry and can help clinicians discover unilat-
eral pathologies hindering the vibratory ability of the vocal folds [32,
41]. The ‘‘Amplitude difference’’ parameter is defined by the Amplitude
Symmetry Index (ASI) [40] 𝐴𝑆𝐼(𝑖) =

𝑎𝐿𝑖 −𝑎
𝑅
𝑖

𝑎𝐿𝑖 +𝑎
𝑅
𝑖

, 𝑖 = 1,… , 𝑛.

Frequency differences

(7) FrequencyDifferences = NumberOfCyclesL
NumberOfCyclesR

This parameter allows discovering differences in the fundamental fre-
quencies of the left and right vocal folds. In normal phonation, the left
and right vocal folds are expected to vibrate at the same fundamental
frequencies. In the case of left–right frequency differences, the voice
may become biphonic or diplophonic [32,41,42]. The ‘‘Frequency dif-
ference’’ parameter is defined as a ratio between the number of left and
right cycles (see parameters (1)–(2)).

Phase differences

(8) PhaseDifferences = median
𝑖=1,…,𝑛

𝑃𝑆𝐼(𝑖)

he ‘‘Phase difference’’ parameter is defined by the Phase Symmetry
ndex (PSI) as [40] 𝑃𝑆𝐼(𝑖) =

𝐴𝐿
𝑖 (𝑦)−𝐴

𝑅
𝑖 (𝑦)

𝑇𝑖
, 𝑖 = 1,… , 𝑛. This parameter

provides information on the possible asymmetry between the tension
of the left and right vocal folds.

Axis shifts

(9) AxisShift = median
𝑖=1,…,𝑛

𝐴𝑆(𝑖)

The ‘‘Axis shift ’’ parameter is the third parameter revealing the left–
right asymmetry of the vocal fold vibration [32]. In contrast to the
phase differences, which are mainly visible during the open phase of
the glottal vibratory cycle, the axis shift allows discovering the left–
right asymmetries during the closed phase of the glottal vibratory
cycle [32,41]. The ‘‘Axis shift ’’ parameter (AS) is defined as [43]
𝐴𝑆(𝑖) = 𝑂𝑖+1(𝑥)−𝐶𝑖(𝑥) , 𝑖 = 1,… , 𝑛.
𝑎𝑖
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Table 7
Phase differences: correspondence between the numerical values of the
Phase Symmetry Index (PSI) and categories of the parameter in the VKG
visual evaluation form [24,31].
Category Description Phase differences

1 R ahead of L: large (0.3, 1]
2 R ahead of L: medium (0.15, 0.3]
3 R ahead of L: small (0.05, 0.15]
4 Negligible [−0.05, 0.05]
5 L ahead of R: small [−0.15,−0.05)
6 L ahead of R: medium [−0.3,−0.15)
7 L ahead of R: large [−1,−0.3)
14 lambada: large Yet to be quantified

Table 8
Axis shift: correspondence between numerical values and categories of
the parameter in the VKG evaluation form; the evaluation sheet denotes
the ‘‘R→ L’’ category by 2, the ‘‘negligible’’ category by 1, and the
‘‘complex’’ category by 4.
Category Description Axis shift

1 R → L (0.1,1)
2 Negligible [−0.1, 0.1]
3 L → R (−1,−0.1)
6 Complex Yet to be quantified

Table 9
Opening versus closing duration: correspondence between the numerical
values of the Speed Index (SI) and categories of the parameter in the
VKG evaluation form.
Category Description SkewingR, SkewingL

1 Much shorter [−1,−0.75)
2 Shorter [−0.75,−0.35)
3 Slightly shorter [−0.35,−0.05)
4 Equal [−0.05, 0.05]
5 Slightly longer (0.05, 0.35]
6 Longer (0.35, 0.75]
7 Much longer (0.75, 1]

Opening versus closing durations, cycle skewing

(10) SkewingR = median
𝑖=1,…,𝑛

𝑆𝐼(𝑖, 𝑅)

(11) SkewingL = median
𝑖=1,…,𝑛

𝑆𝐼(𝑖, 𝐿)

The opening and closing phases of the vibration cycle of the vocal
folds can have different duration. These differences appear as a skewing
of the vocal fold vibratory pattern and provides clinically interesting
information [32,41,44]. The skewing can differ for the left and right
vocal fold and reveals the vocal fold vibration’s detailed dynamics.

The ‘‘Opening versus closing duration’’ / ‘‘Skewing ’’ parameter can be
quantified by the Speed Index (SI) [45] 𝑆𝐼(𝑖, 𝑗) =

𝑡𝑜𝑗𝑖 −𝑡𝑐𝑗𝑖
𝑇 𝑜
𝑖

=
𝑡𝑜𝑗𝑖 −𝑡𝑐𝑗𝑖
𝑡𝑜𝑖 +𝑡

𝑐
𝑖

=
𝑆𝑄(𝑖,𝑗)−1
𝑆𝑄(𝑖,𝑗)+1 , 𝑖 = 1,… , 𝑛, 𝑗 = 𝑅,𝐿, which is derived from the Speed Quotient

(SQ) [46,47] 𝑆𝑄(𝑖, 𝑗) =
𝑡𝑜𝑗𝑖
𝑡𝑐𝑗𝑖

, 𝑖 = 1,… , 𝑛, 𝑗 = 𝑅,𝐿.

3.6. Verification studies

To address the objective II, two studies were done to compare the
performance of the proposed image analysis tool with the clinician
visual assessments and verify the usability of the proposed algorithms.
The first study evaluated the accuracy of the segmentation process,
which is the critical tool for further feature extraction. The second study
focused on the estimated vibration attributes and their comparison to
the clinician visual assessments.

The first verification study addressed the segmentation accuracy
of our algorithm (layer 3 Fig. 2) using the Segmentation Validation
Dataset described in Section 2.1. It consisted of annotated key extrema
7

Fig. 8. Examples of the segmentation comparison study. The plus sign, star, diamonds,
and circles denote the key points of opening, closing, left, and right lateral extremes,
respectively. The magenta color codes positions selected by examiners, the white color
codes the average of all examiners’ positions, and the green color denotes the points
automatically estimated by the algorithm. In image a), the selected areas are also
magnified so that the pixelization of the images is clearly visible.

points of the vibration waveforms, i.e., the opening and closing points,
and the left and right lateral and medial peaks (recall Figs. 6 and
7(b)). The validation procedure was analogous to the one used by
Lohscheller et al. [48]: using an auxiliary manual annotation tool, six
expert examiners denoted 834 key points on the set of clinical VKG
images yielding the total of 5004 annotations. The images were selected
to represent different degradation levels (e.g., noise, blur, or presence
of specular reflections) and various types of healthy and pathologic
vocal fold vibrations that could influence the segmentation accuracy,
regardless of particular clinical diagnoses. The annotated key point
positions were compared to the mean of the other annotators’ key
points to verify the robustness of the annotations. The ground truth for
the 834 key points was then established as the mean of the manually
detected coordinates. This procedure ensured the quality of the annota-
tors’ performance. Examples of the annotated points, together with the
locations of the points detected automatically by the VKG Analyzer are
shown in Fig. 8. The segmentation accuracy of the tool was assessed
as the distance errors between the automatically detected key points
and those obtained by the manual procedure. We analyzed the errors
in both the spatial and temporal domains.
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Fig. 9. Program layout: the left pane shows the dual image as produced by the camera system; next to it, there is the VKG image after contrast and brightness normalization
and image de-noising, together with the detected glottal contours and key points; the right pane shows the calculated features of the VKG recording; the bottom pane displays the
slide-bar for video scrubbing, as well as the color-coded feature visualization bars.
The second verification study aimed to compare the automatically
calculated vibratory features (layer 3-4 Fig. 2) with those that were
manually evaluated by human examiners using the pictogram-based
VKG visual evaluation tool [31]. The visual evaluation data previously
gathered by Hampala [24] were used for this purpose, partially forming
the third dataset, i.e., the Attributes Validation Dataset. The original
trial involved 50 VKG images obtained from 50 patients with various
voice disorders, again showing the largest possible range of healthy
and pathological vibratory patterns to which we added another 200
VKG images from 40 healthy subjects. Ten evaluators manually labeled
the 50 images of pathological patients using the VKG visual evaluation
tool [31], paying attention to 33 vibratory features per image. Eight
of these evaluators performed the visual analysis twice for test–retest
comparison purposes. This resulted in the total of 29 700 (50 × 18 × 33)
manual evaluations. Nine out of the 33 features, thus 8 100 manual
evaluations were selected for the purpose of this study. The 200 images
of healthy patients were evaluated by three experts annotating the
same nine features forming another set of 5400 (200 × 3 × 9) manual
evaluations.

The resulting compilation of 250 visually-evaluated clinical images
was then subjected to the objective image analysis by the VKG Analyzer
tool. The feature values quantified by the software tool were discretized
into the visually-based categories using the conversion tables defined
in Section 3.5. The individual test–retest comparison results were di-
vided into three categories – Correct, Partially correct or indecisive, and
Incorrect [24]. Since the evaluation is fundamentally subjective, the
label Partially correct/indecisive was introduced. In our study, it means
that the algorithm misclassified the result to the neighboring category.
E.g., ‘‘slightly larger amplitude difference’’ instead of ‘‘larger amplitude
difference’’, etc. This decision was a result of previous observations,
that this level of error is common within human evaluation even for
repeated evaluation by the same expert [24].

4. Results

4.1. VKG Analyzer tool — representation

The developed user interface (UI) of the tool (addressing objec-
tive I) is shown in Fig. 9. The emphasis was on visualization clarity and
ease of use so clinicians could easily use the VKG Analyzer tool during
routine patient examinations. The user interface is divided into 4 areas.
The main part of the UI is used to visualize the kymographic image. The
left top part shows the original recorded image. In Fig. 9 it is the dual
image produced by the VKG camera providing the standard and VKG
8

views, but it could also be a DKG or SVKG image. Next to it, there is
the processed kymographic image together with the detected borders
and estimated features. The top right pane shows a list of computed
vibration attributes.

The bottom part of UI is designed to visualize the video timeline
with color-coded values of relevant vibration attributes. A user can
select a set of parameters for visualization in the right pane (see
Fig. 9). This is helpful particularly for evaluations of video recordings
performed with the VKG camera. The interactive visualization timeline
slide-bar helps clinicians to find instances of interest directly, elimi-
nating the time-consuming process of frame-by-frame visualization and
analysis of the whole video recording. Additionally, the green line at
the top of the bar indicates the information-rich video frames where
oscillations were detected and which were marked during the pre-
selection phase. All the processed data can be stored for later analysis,
and the stored records can be analyzed repeatedly. Furthermore, the
analyzed data, e.g., the analyzed frames with the segmented contours
and the extracted parameters can be exported and used for further
external analyses.

4.2. Segmentation precision

The results of the first validation study addressing objective II,
which focuses on the accuracy of the automatic segmentation tool, are
revealed in Tables 10 and 11 showing the mean and standard deviations
of the key point positions with respect to the human ground truth.
These data are also visualized in Fig. 10.

In spatial domain (left–right accuracy), the mean difference between
the software-detected individual key points and their average manual
locations was always less than one pixel (refer to Table 10, last row,
and to the horizontal differences between the average manual and
software results shown in the individual graphs of Fig. 10). The smallest
manual vs. automatic average difference was found for the right lateral
peak (0.05 pixels) and largest one for the left medial peak (−0.73 pix-
els). The manual vs. automatic differences show considerable standard
deviations, however (up to ±1.08 pixels for the right lateral peak),
revealing that the software vs. average manual positions differed across
different vibratory cycles. This variability is, nevertheless, comparable
to the uncertainty of the manual location of the key points (the largest
standard deviation was ± 0.92 pixels for the left lateral peak, see
Table 10, second last row), thus suggesting that the software inaccuracy
is similar to that of the manual evaluations. Considering all the key
points together, the average difference between their automatic and
manual locations was 0.12 ± 0.79 pixels (Table 10, last row, last



Biomedical Signal Processing and Control 78 (2022) 103878A. Zita et al.

.

a
o

4

Table 10
Manual and automatic segmentation accuracy in spatial domain (left–right accuracy), expressed in pixels. Average manual locations of the key points (refer to Fig. 6)) were used
as the reference (zero) points. Mean differences from the reference points and their variability (i.e., standard deviation) are shown for the individual raters (rows 1-6) and for the
automatic (SW row) segmentation results for each key point. The mean row shows the uncertainty (i.e., standard deviation) of the manual location of the reference points. Last
column provides the results for all the key points pooled together. For the up-down accuracy, see Table 11 and for graphical representation of these results, see Fig. 8 and Fig. 10

L lateral L medial Opening Closing R lateral R medial All Points

1 0.13 ± 0.66 −0.08 ± 0.43 −0.03 ± 0.45 0.01 ± 0.43 −0.44 ± 0.72 −0.01 ± 0.60 −0.07 ± 0.62
2 −0.39 ± 0.71 −0.29 ± 0.45 −0.01 ± 0.47 −0.04 ± 0.44 0.13 ± 0.73 0.32 ± 0.37 −0.05 ± 0.63
3 −0.68 ± 0.97 −0.19 ± 0.52 −0.22 ± 0.44 −0.22 ± 0.46 0.33 ± 0.77 0.42 ± 0.51 −0.09 ± 0.79
4 1.17 ± 1.24 −0.13 ± 0.66 0.17 ± 0.45 0.27 ± 0.56 −0.57 ± 1.03 −0.09 ± 0.41 0.14 ± 1.08
5 0.51 ± 0.98 1.15 ± 1.07 0.01 ± 0.51 −0.05 ± 0.49 −0.09 ± 0.81 −0.79 ± 0.64 0.12 ± 0.81
6 −0.75 ± 0.80 −0.47 ± 0.55 0.09 ± 0.42 0.04 ± 0.43 0.63 ± 0.86 0.14 ± 0.36 −0.05 ± 0.83

Mean ±0.92 ±0.65 ±0.46 ±0.47 ±0.83 ±0.49 ±0.81

SW −0.2 ± 0.91 −0.73 ± 0.34 0.13 ± 0.51 −0.17 ± 0.49 0.05 ± 1.01 0.29 ± 1.08 −0.12 ± 0.79
Table 11
Manual and automatic segmentation accuracy in temporal domain (up–down accuracy), expressed in pixels. The organization of the Table is identical to that in Table 10. For
graphical representation of these results, see Fig. 8 and Fig. 10.

L lateral L medial Opening Closing R lateral R medial All Points

1 0.02 ± 1.10 −0.01 ± 1.57 −0.5 ± 0.94 −0.63 ± 0.92 −0.13 ± 0.98 −0.06 ± 1.71 −0.22 ± 1.06
2 0.86 ± 1.07 −0.19 ± 1.74 0.05 ± 1.22 −0.04 ± 1.12 0.4 ± 1.01 −0.45 ± 2.72 0.11 ± 1.24
3 −0.62 ± 1.24 1.36 ± 1.92 −0.28 ± 1.35 0.04 ± 1.04 −0.24 ± 0.89 0.91 ± 2.18 0.2 ± 1.25
4 0.45 ± 1.33 0.84 ± 1.96 1.72 ± 1.56 −0.55 ± 1.26 0.23 ± 1.23 1.48 ± 2.35 0.7 ± 1.60
5 −0.41 ± 1.39 −2.25 ± 2.75 0.41 ± 1.10 −0.3 ± 0.96 −0.16 ± 1.07 −1.85 ± 2.39 −0.76 ± 1.34
6 −0.3 ± 0.89 0.25 ± 1.44 −1.41 ± 1.09 1.47 ± 1.22 −0.11 ± 0.88 −0.04 ± 1.95 −0.02 ± 1.45

Mean ±1.18 ±1.94 ±1.23 ±1.09 ±1.02 ±2.24 ±1.33

SW 0.18 ± 1.19 0.03 ± 1.35 0.87 ± 1.19 −1.15 ± 1.04 0.9 ± 1.44 0.43 ± 1.63 0.21 ± 1.48
column), revealing that the performance of the automatic segmentation
is very similar to the manual one, even though there is variability across
individual vibratory cycles and different key points.

In the time domain (up-down accuracy), the differences between
the software and manual locations of the key points were mostly larger
than those in the spatial (left–right) domain (Table 11). Also, the
standard deviations were larger here, revealing larger variability of
the differences between the manual vs. automatic locations of the key
points as well as larger uncertainty of the manual location of the key
points. This is visually reflected also in the plots of Fig. 10, mostly
showing the error bars to be longer in vertical than in horizontal direc-
tion. The largest uncertainty was found for the manual location of the
medial peaks (±1.9 and ±2.2 pixels for the left and right medial peak,
respectively, see Table 11, second last row). The largest differences of
the automatic positions from the manual averages were found for the
Opening and Closing Point (0.9±1.2 and −1.2±1.0 pixels, respectively),
and for the Right Lateral Peak (0.9±1.4 pixels, Table 11, last row).
Considering all the key points together, however, the average difference
between the manual and automatic locations was only 0.2 pixels with
the standard deviation of ±1.48 pixels (Table 11, last row, last column)
gain revealing that the performance of the automatic segmentation is,
n average, similar to the manual one.

.3. Precision of attributes

The results of the second validation study addressing objective II
and comparing the estimated vibration attributes to the clinician visual
assessments are depicted in Fig. 11. For the healthy subjects’ data,
91% of cases were in agreement with the human assessment. For the
disordered patients, the software tool’s performance agreed with the
manual annotation assessments in more than 84% of cases.

5. Discussion

The goals of this work were to develop and test a user-friendly soft-
ware tool for automated analysis of clinical videokymographic record-
ings (objective I) and to perform a rigorous validation of the im-
plemented segmentation and feature extraction algorithms (objective
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II).
Both objectives were fulfilled. The developed VKG Analyzer tool
facilitates selecting and exporting individual frames from the video
recordings (see layer 2 in Fig. 2) and provides the means for automat-
ically segmenting the vibrating glottal contours and for detecting key
points of vocal fold vibration (layer 3 in Fig. 2). These data can then
be subjected to automated feature extraction (layer 4 in Fig. 2).

Because videokymographic data have a different structure than
standard laryngoscopic images, novel algorithms had to be developed
and tested in order to facilitate proper kymographic image processing.
During algorithm design, software implementation and validation, a
number of noteworthy issues arose, which are being discussed in the
following paragraphs.

5.1. Segmentation method

The approach utilized here differs from the previously explored
image segmentation algorithms. While numerous segmentation meth-
ods have been developed to process high-speed videolaryngoscopic
images [49], these cannot be utilized in VKG recording processing
because the input images have different formats and meanings. To
achieve the best segmentation results, we have experimented with the
Active Contours (Snakes) approach (used for example in [28,50]) but
ultimately opted not to use it due to the higher time demands and
dependency on good initialization. Other methods we experimented
with were the Region Growing methods [48,51,52], Graph-cuts [53],
classical thresholding approaches like Otsu thresholding [54], water-
shed [55], and others. The Region Growing methods were found to
be slow and dependent on good initialization. Graph-cut algorithms
were promising initially, but in the end, they were hard to initialize
correctly. Finally, the standard thresholding methods were fast but did
not produce satisfactory results. The problem of correct initialization
of certain methods is a circular one. Usually, the initialization consists
of identifying pixels inside the glottal opening, but when known, the
segmentation is not needed in the first place.

Our final solution is based on a handcrafted segmentation algorithm
for finding the best threshold for segmentation. This approach has
proven to be both robust and fast. In contrast to the Snakes algorithm
(≈0.5 s per frame [50]), our implementation runs in real-time (< 0.04 s

per frame). The image pre-processing and segmentation methods use
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Fig. 10. Segmentation study — graphical representation of the results in Tables 10 and 11. The depicted crosses show the relative mean positions and their sizes in the 𝑥-axis and
𝑦-axis represent the standard deviations in the spatial and temporal domains, respectively. The overall human average value is colored orange and represents the ground truth, or
golden standard, to which the software results (in blue) were compared. The black crosses represent the six human annotators.
Fig. 11. Results of automatic features extraction by our program compared to visual
evaluation by human experts for healthy (top) and disordered patients (bottom). The
bars show percentage representation of correct results (green), partial correct (blue)
and incorrect results (red) as evaluated by machine vs. human experts.

parameters and thresholds that needed to be determined empirically,
however. To fine-tune these parameters, we used the Training Dataset
(defined in Section 2.1) and performed a parameter search optimizing
the resulting algorithm performance.
10
5.2. Segmentation accuracy

To test the correctness and robustness of our segmentation method,
the automatic segmentation results were compared to the key point
coordinates segmented manually. Considering the results across all the
key points together, there were negligible differences between their
automatic locations and the raters’ manual average (recall Fig. 10, plot
for All points). Furthermore, comparison of the error bars in the same
plot reveals that the variability of the manual-to-automatic differences
was very similar to the uncertainty of the manual location of the key
points, suggesting that the performance of the automatic segmentation
algorithm is comparable to the manual segmentation.

Nevertheless, there is a tendency of the software to locate the
Opening Points about 1 pixel later, and the Closing Points about 1 pixel
earlier, than the raters (Fig. 10, plots ‘‘Opening point’’ and ‘‘Closing
point’’). Taking into account the time running towards the bottom of
the VKG image, this makes the duration of the open phase to be slightly
shorter than when evaluated manually. This case is also reflected in
annotations of the Opening and Closing points in Fig. 8(a) suggesting
that manual annotators considered slightly different threshold between
the vocal fold and the glottis — the software tends to locate the glottal
boundary at slightly darker pixels inside the glottis than the raters. This
tendency is detectable also in the plots for the Lateral and Medial peaks
in Fig. 10 showing analogous, but much smaller shifts of the automatic
key point locations to the right or to the left side, always towards the
glottis (see the shifts of the blue versus the orange crosses in Fig. 10
horizontally). Nevertheless, considering the theoretical inaccuracy limit
of 1 pixel, the observed differences between the manual and automatic
evaluations smaller than c. 1 pixel are deemed acceptable. The tool can
therefore be considered as a valid alternative to the manual procedures.

In this respect, it should be noted that manual annotators are not
always consistent in their evaluations. Differences among the individual
raters are visible in the spread of their annotations for the different key
points (black crosses in the plots of Fig. 10). More specifically, Fig. 8(d)
demonstrates the low precision of human experts particularly in the
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temporal (y-coordinate) domain for determining the Medial Peaks in
cases of missing closure points. The low precision can be attributed to
the roundedness of the contours making it difficult to locate the exact
position of the peaks. The raters’ uncertainty is reflected also in the
large standard deviations (close to ±2 pixels) for the Left and Right
Medial Peaks in Table 11 (second last row) and in the correspondingly
large orange vertical error bars of the respective plots in Fig. 10.

The segmentation precision study underlines the strengths and
weaknesses of our approach. The influence of the input data quality
on the segmentation precision is shown in Fig. 8(c). The shift in left
(right on image) lateral opening is caused by an imprecise segmentation
threshold estimation due to the low image contrast. For purposes of the
study, the contrast of the input image was unchanged, although the
software tool allows a manual correction of contrast and brightness.
The algorithm performed as expected for images with sufficient input
image contrast (example can be viewed in Fig. 8(a)).

5.3. Feature extraction

Our VKG Analyzer tool implemented a larger amount of parame-
ters than preceding tools for VKG analysis [28,29]. To enable easier
interpretation of the numerical results for the clinicians, we derived
empirical ranges for relating the numerical results of the quotients to
descriptive categories defined in [31]. This made it possible to perform
a comparative study, that aimed to address the precision and objectivity
of extracted characteristics.

The result of the study (Fig. 11) show good software agreement with
human examiners, namely in more than 91% of the cases for healthy
patients (top graph) and more than 84% of the cases for disordered
patients (bottom graph), depicted by the green segments of the graphs.
We find this result satisfactory.

Additionally, the study revealed that in many cases, for the same
image, the same examiner evaluated some attributes differently when
the tests were performed several days apart. This experiment underlines
the subjectivity of the task, and consequently, the difficulty of obtaining
objective ground truth. To incorporate inconsistencies of the human
evaluations into the study, we marked the mis-classifications to the
neighboring categories as ‘‘Partially Correct’’ (see Fig. 11 blue segments
of the graphs). A disadvantage of this approach is that it considers mis-
classifications on different attributes as equally significant, although
different attributes have different interpretations and importance. Nev-
ertheless, this approach allows good insight into the accuracy of the
visual as well as visual versus automatic image assessment.

5.4. Additional software features

A noteworthy feature of the presented software is that it is designed
to process not only VKGs, but also DKG and SVGK images. Furthermore,
it allows to export the extracted glottal contours to a file in order to be
analyzed by another means. These exported contour data, created by
our tool, have already been successfully used in other detailed studies
providing good applicability of the developed software framework [26,
56,57].

5.5. Overall assessment

Results of both the validation studies indicate that the developed
software is a valid, fast and robust automatic tool for vocal fold
vibration analysis with minimal hardware requirements.

The comparison of the objectively measured attributes, which are
automatically estimated by the developed software to visual assess-
ments of ten evaluators makes this study unique. To the best of our
knowledge, this is the first study that relates visual perception of such
videokymographic features to objectively measured parameters. This
rigorous and thorough validation ensures reliable application of the
developed tool.
11
6. Summary

In the context of this study, we have developed and introduced a
novel software tool for automated segmentation and feature extrac-
tion of all sorts of kymographic data (VKG, DKG, and even SVKG).
The software is capable of automatically calculating the vocal folds’
fundamental and derived vibration attributes. Additionally, it helps
clinicians to focus on the information-rich sections of the VKG video
recording by automatically pre-selecting such images from the recorded
VKG examination session.

The software and its algorithms have been subjected to a rigorous
validation at unprecedented scope, ensuring robust and reliable appli-
cation in both a clinical and a research setting. Based on comparative
results, the vibration attribute estimation demonstrated agreement with
manual annotation in more than 91% (healthy patients) and 84% (dis-
ordered patients) cases. Owing to these outstanding validation results,
the software is expected to become a robust and reliable state-of-the art
tool for clinical and scientific examination of vocal fold vibrations and
laryngeal function.
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