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Abstract 

The driving forces behind cryptoassets’ price dynamics are often perceived as being 
dominated by speculative factors and inherent bubble-bust episodes. Fundamental 
components are believed to have a weak, if any, role in the price-formation process. 
This study examines five cryptoassets with different backgrounds, namely Bitcoin, 
Ethereum, Litecoin, XRP, and Dogecoin between 2016 and 2022. It utilizes the cusp 
catastrophe model to connect the fundamental and speculative drivers with possible 
price bifurcation characteristics of market collapse events. The findings show that the 
price and return dynamics of all the studied assets, except for Dogecoin, emerge from 
complex interactions between fundamental and speculative components, includ-
ing episodes of price bifurcations. Bitcoin shows the strongest fundamentals, with 
on-chain activity and economic factors driving the fundamental part of the dynam-
ics. Investor attention and off-chain activity drive the speculative component for all 
studied assets. Among the fundamental drivers, the analyzed cryptoassets present their 
coin-specific factors, which can be tracked to their protocol specifics and are economi-
cally sound.
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Introduction
Cryptoasset markets1 have come a long way from being a fringe curiosity of financial 
markets to being viewed as players of interest by regulators and central banks. They have 
attracted, albeit in waves, the attention of both institutional and retail investors. Overall 
market capitalization increased from $1B in 2013 to almost $3T in 2021 and hovered 
between $1T–$2T in 2022. As cryptoassets, particularly Bitcoin, have been developed 
and advertised to challenge standard financial assets and instruments, currencies, and 
the monetary system, much of the financial research on these assets has focused on 
their properties as diversifiers, safe havens, and inflation hedges (Bouri et al. 2017; Selmi 
et al. 2018; Urquhart and Zhang 2019; Dutta et al. 2020; Shahzad et al. 2019). In addition 
to the above, several studies have also presented rather standard forecasting exercises 
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utilizing various methodologies (Atsalakis et al. 2019; Wu et al. 2018; Adcock and Gra-
dojevic 2019; Mudassir et al. 2020; Sutiksno et al. 2018; Bedi and Nashier 2020; Alexan-
der and Dakos 2020; Sebastião and Godinho 2021; Gradojevic and Tsiakas 2021; Fang 
et  al. 2021). Xu et  al. (2019) and Fang et  al. (2022) provide comprehensive surveys of 
blockchain, its potential, and implications for trading.

Moreover, because cryptoassets are very different from their conventional counter-
parts, standard pricing and valuation methods are difficult or impossible to implement. 
Thus, studies on pricing and valuation are relatively scarce. Kristoufek (2015), following 
the earlier works on speculative attention-driven price dynamics in Kristoufek (2013); 
Garcia et  al. (2014), and Garcia and Schweitzer (2015), is among the first to examine 
potential fundamental factors in Bitcoin price dynamics via wavelet coherence analysis. 
The results show that both fundamental (transactions, price level, supply) and specu-
lative attention-based factors drive these dynamics. Hayes (2019) argues that marginal 
cost of production is essential for explaining Bitcoin prices, thus, challenging the stand-
ard economic viewpoint that Bitcoin is worthless. Kristoufek (2019) added the quantity 
theory of money to the equation, showing that the price dynamics (not necessarily the 
price itself, as the price level for the US economy is not available in USD terms) closely 
follow those implied by fundamental economic laws. White et al. (2020) concluded that 
Bitcoin can be best classified as a technology-based product, an emerging asset class, 
rather than a currency or security, which has important legal implications. In their het-
erogeneous agents model, Lee et al. (2020) showed that Bitcoin price dynamics can be 
explained by the interactions between speculators and tech-savvy investors, each follow-
ing a different trading strategy. In addition, recurrent pricing bubbles and busts appear 
to be inherent to the dynamics of cryptoassets (Cheung et al. 2015; Corbet et al. 2018; 
Kyriazis et al. 2020; Fry 2018; Wheatley et al. 2019).

We build our analytical approach based on three aspects of crypto-markets, as 
reported in the literature reviewed above: a speculative component, fundamentals, and 
emergent bubble-burst episodes. The main contribution of the current study stems 
from connecting these three aspects into a single complex model, instead of studying 
them separately or in an additive manner. Moreover, we cover a wide range of funda-
mental and speculative factors, at work inside the crypto-markets and outside. By doing 
so, we deliver novel insights into pricing dynamics of cryptoassets, connecting the dots 
between different approaches presented in the current topical literature.

The catastrophe theory framework brought to empirical finance by Barunik and 
Vosvrda (2009) and Barunik and Kukacka (2015) provides a coherent playground for the 
study of cryptoassets as it is specifically transferred from the natural sciences to finance 
for inspecting the interactions between fundamental and speculative components of the 
market with endogenous bubbles and busts. In addition, the current study focuses on a 
larger set of cryptoassets to examine the strength of the speculative and fundamental 
components, their tendency to fall into price bifurcations, and if and how these aspects 
are connected to specific properties of such cryptoassets. Bitcoin (BTC), Ethereum 
(ETH), Litecoin (LTC), XRP, and Dogecoin (DOGE) are studied as they represent dif-
ferent types of cryptoassets. The cusp catastrophe model is the ideal instrument for 
inspecting the rich dynamics of the above-mentioned interactions.
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We find that the price dynamics of all the assets under study (except Dogecoin) emerge 
from complex interactions between the fundamental and speculative components, pass-
ing through price bifurcation episodes and characteristic price surges and collapses. Bit-
coin possesses the most solid fundamentals. Generally, the fundamental components 
driving these dynamics are dominated by on-chain activity, while investor attention 
mainly represents speculative drivers. Traditional financial markets also drive crypto-
markets through both channels via stock market price dynamics and market uncertainty. 
Thus, both sides of the pricing system—fundamental and speculative—play a unique 
role in dynamics and price formation, and they are both influenced by the stock market. 
Thus, the crypto-market is not detached from traditional financial markets.

The remainder of this paper is organized as follows. The next section provides an over-
view of the literature on catastrophe theory and the following section introduces “Cusp 
catastrophe model” and details of its application. In the section on “Estimation method-
ology and evaluation” we discuss the econometric procedures employed in this study. 
In the next section, “Data description and final sample,” we describe the datasets and 
discuss sample characteristics. The research hypotheses are developed in the next sec-
tion. The following section “Empirical results” presents and interprets the quantitative 
and qualitative results of the empirical analysis. Finally, the “Conclusion” summarizes 
the study, discusses the implications and usefulness of the findings, and suggests poten-
tial avenues for future research. Additional details are provided in the Appendix. Sup-
plementary materials associated with this article containing the datasets collected and 
analyzed during the current study and a sample R code for illustrative replication of the 
results are available in the GitHub repository: github.​com/​jirik​ukacka/​Kukac​ka_​Krist​
oufek_​2023 [created 2022-09-15].

Catastrophe theory literature review
While catastrophe theory was developed by Thom (1975) in mathematical biology, it 
was promptly applied to financial markets by Zeeman (1974) to explain stock market 
crashes. Unfortunately, the theory was strongly criticized shortly after its inception by 
Zahler and Sussmann (1977) for the inaccurate use of statistical methods and serious 
failures to meet its restrictive mathematical assumptions in applications. This led to a 
significant decline in interest in and development of catastrophe theory until Rosser 
(2007) re-evaluated the original criticisms in detail and suggested that many of them 
were misguided. He argued that while its proper use is indeed limited, there are many 
potential applications in modeling dynamic discontinuities in economic and financial 
models.

Since then, the application of catastrophe theory has flourished in natural and social 
sciences (Poston and Stewart 2014), such as ecology (Roopnarine 2008; Wang et al. 2011; 
Piyaratne et  al. 2013), environmental research (Mostafa 2020), hydrology (Ghorbani 
et al. 2010), physics (Kostomarov et al. 2012), mechanics (Fasoulakis et al. 2015), engi-
neering (She et al. 2020), the building and construction industry (Xiaoping et al. 2010), 
transportation (Papacharalampous and Vlahogianni 2014), psychology (Stamovlasis and 
Vaiopoulou 2017; Lv et al. 2017), political sciences (Weidlich and Huebner 2008), medi-
cal research (Chen et al. 2014), education (Stamovlasis and Tsaparlis 2012), management 
research (Alessandri et al. 2018; Guastello et al. 2019), conflict resolution (Chow et al. 

https://github.com/jirikukacka/Kukacka_Kristoufek_2023
https://github.com/jirikukacka/Kukacka_Kristoufek_2023


Page 4 of 23Kukacka and Kristoufek ﻿Financial Innovation            (2023) 9:61 

2012), and safety research and prevention (Park and Abdel-Aty 2011; Wang et al. 2017; 
Chen et al. 2018), among other applications.

Catastrophe theory has also been successfully applied in various fields of finance. 
Clark (2006) modeled net flows of US stock mutual funds to understand the determi-
nants of their dynamics and stressed on the importance of sentiment variables in asset 
pricing. The first empirical application of catastrophe theory to model stock market 
crashes was provided by Barunik and Vosvrda (2009), where the authors compared two 
large historic stock market drops, namely, Black Monday on October 19, 1987, and Sep-
tember 11, 2001, following the terrorist attack on the World Trade Center, NY, USA. The 
authors concluded that internal forces led to the 1987 crash, which can be well explained 
by catastrophe theory, while the 2001 crash was confirmed to be caused by an exter-
nal shock. Barunik and Kukacka (2015) extended the original maximum likelihood esti-
mation of the cusp model by Cobb and Watson (1980), as augmented by Wagenmakers 
et al. (2005) and Grasman et al. (2009), by a two-step approach. It allows for a methodo-
logically rigorous application of stochastic catastrophe theory to more extended periods 
of stock market data with time-varying volatility. In the first step, daily realized volatility 
is modeled, which is subsequently used to standardize the 27-year long time series of US 
stock market returns that enter the estimation routine.

Using two different estimation approaches, Diks and Wang (2016) empirically exam-
ined the housing market and interest rate data for six Organization for Economic 
Cooperation and Development countries using the cusp model. They showed that the 
behavior of housing prices, which also exhibit turbulent booms and bust periods similar 
to stocks, can be modeled and predicted by cusp catastrophe theory. Another econo-
metric application, in this case, aimed at explaining the dynamics of the financial crises 
in the US, is provided by Wesselbaum (2017). Using a catastrophe-augmented bank fail-
ure model, the authors showed that the primary triggers of economic crises are concen-
tration of risks via the interaction of banks and their exposure to higher-risk classes and 
Federal Funds rate hikes, combined with low reserves.

Most recently, Kukacka and Kristoufek (2020) studied the complexity of nine financial 
agent-based models, including the cusp, and Kukacka and Kristoufek (2021) extended 
this research topic with a sensitivity analysis concerning model parameter settings. 
Chen et  al. (2021) developed an innovative Bayesian approach based on two different 
likelihood approximations and estimated the cusp catastrophe model using USD/EUR 
exchange rate data. Finally, Lux (2021) estimated cusp as a benchmark model using 
monthly S &P 500 data until 2015 to explain index mispricing compared to the ex-post 
rational price. As seen from the brief summary of the related literature, this study is, to 
the best of our knowledge, the first empirical application of the stochastic cusp catastro-
phe model to explain the dynamics of cryptocurrency markets.

Cusp catastrophe model
Catastrophe theory represents a general theoretical framework describing how grad-
ual, continuous changes in the control variables of a financial system form a bull mar-
ket, which might lead to an abrupt, discontinuous change known as a market crash. 
It also suggests the dynamics of the following bear phase of the market and indicates 
how interactions between the two main types of investors—fundamentalists and 
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speculators—finally result in the market recovering back to its equilibrium state (Zee-
man 1974). The following description focuses on the cusp catastrophe model, a topo-
logically simple family of stochastic catastrophe systems with wide applications in 
behavioral sciences (Cobb 1978; Cobb and Watson 1980; Cobb 1981; Cobb and Zacks 
1985; Wagenmakers et al. 2005). Moreover, as the aim is to apply this model to highly 
volatile cryptocurrency data, the methodology by Barunik and Kukacka (2015) is fol-
lowed, and in the first step, the returns are standardized by their estimated volatility.

Model description

The model assumes that the market log returns rt = σtyt , t = 1, . . .T  follow a stochastic 
process yt:

where σt represents the instantaneous volatility, dV (yt;αx,t ,βx,t)/dyt is the deterministic 
potential function of the state variable yt describing the equilibrium of the cusp model, 
and αx,t and βx,t are the control functions, called the asymmetry and bifurcation factors, 
representing the fundamental and speculative sides of the market, respectively. Further-
more, σyt denotes the constant diffusion function and Wt denotes the Wiener process, 
which together represent the stochastic behavior of the system due to market noise. 
More specifically, the cusp potential function is defined as

where the two dimensions of the control space, αx,t and βx,t , determine the predicted 
values of yt given the realization of n explanatory variables xi,t , i = 1, . . . n as follows:

The dynamics of the model are based on the principle that the system returns to the 
equilibrium state, in which the potential function V (yt;αx,t ,βx,t) attains the minimum 
value with respect to yt . The equilibrium is defined as

As a third-order polynomial, it has upto three roots representing three potential pre-
dictions regarding equilibrium response surface of the model. The subset of the control 
space described by αx,t and βx,t , where (5) has one root, represents the stable unimodal 
phase of the market around its equilibrium, or the cyclical dynamics of the bull and 
bear market phases, as first described by Zeeman (1974). In the case of the three solu-
tions of (5), the system enters the bifurcation phase characteristic of a market crash fol-
lowing the bursting of a financial bubble; the state variable yt becomes bimodal as the 
model predicts two probable values of yt accompanied by a so-called anti-prediction, 

(1)dyt = −
dV (yt;αx,t ,βx,t)

dyt
dt + σyt dWt ,

(2)−V (yt;αx,t ,βx,t) = −1/4y4t + 1/2βx,ty
2
t + αx,tyt ,

(3)αx,t =α0 + α1x1,t + . . .+ αnxn,t ,

(4)βx,t =β0 + β1x1,t + . . .+ βnxn,t .

(5)−
dV (yt;αx,t ,βx,t)

dyt
= −y3t + βx,tyt + αx,t = 0.
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that is, the least probable state of the system. Thus, the deterministic part of the equilib-
rium response surface creates a typical smooth S-shape within the unstable bifurcation 
region, supplemented by a simple sheet within the stable domain of the control space, as 
depicted in Fig. 1.

Application to financial markets

Finally, we discuss the inconspicuous but crucial assumption regarding the constant 
value of the diffusion function σyt = σ in (1). It originated in the development of catas-
trophe theory during the 1970s within the natural sciences. Such an assumption is often 
entirely legitimate in many applications. However, it is completely restrictive when the 
stochastic cusp model is applied to financial data, where σyt = σt represents the volatil-
ity of market returns, characterized by strong time-varying dynamics and regular clus-
tering properties. Thus, Barunik and Kukacka (2015) suggested a two-step estimation 
methodology to overcome this problem rigorously. First, the actual market returns are 
standardized by their consistently estimated volatility. This effectively leads to simplifica-
tion σyt = 1 , that is, the diffusion term essentially disappears from (1).

The estimation might be based on the well-known concept of daily realized variance if 
high-frequency market data are available or can even be based on a simple GARCH-type 
model for which only daily closing prices are necessary. In this study, the popular Gar-
man–Klass volatility estimator is utilized (Garman and Klass 1980), which provides daily 
volatility estimates σGK ,t using high, low, opening, and closing prices:

Fig. 1  An illustrative equilibrium response surface of the cusp catastrophe model and the cyclical dynamics 
of the market. Source: produced in R using the cusp package version 2.3.3. and completed by the authors
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where ht , lt , ct , and ot denote high, low, opening, and closing prices, respectively. The 
second step then follows the usual maximum likelihood estimation of the cusp model 
under assumptions that are fully compatible with stochastic catastrophe theory.

Estimation methodology and evaluation
Under these assumptions, the probability distribution corresponding to the solution of 
(1) converges to that of a limiting stationary stochastic process because changes in the 
explanatory variables xi,t are assumed to be much slower than the reactions of the state 
variable yt (Cobb 1981; Wagenmakers et al. 2005). Thus, the model parameters can be 
estimated using the maximum likelihood approach, first proposed by Cobb (1978); Cobb 
and Watson (1980).

Software packages and estimation methods

Several packages are available for estimating the cusp catastrophe model. The cusp-
fit FORTRAN program was developed by Cobb (1978) and subsequently modified by 
Hartelman (1997). Oliva et  al. (1987) suggested GEMCAT​ (General Multivariate Meth-
odology for Estimating Catastrophe Models), which was later extended to GEMCAT II, 
implemented in Delphi by Lange et al. (2000). Diks and Wang (2016) applied an alterna-
tive numerical method to that of Cobb (1978), which is based on Euler discretization to 
approximate the model dynamics and obtain estimates of the parameters using nonlin-
ear least squares. Recently, there has been an innovative attempt at Bayesian estimation 
of this model by Chen et al. (2021). However, the “industry standard” used in this study 
is the cusp package version 2.3.3, available in R (Grasman et  al. 2009), which imple-
ments and extends the method in Cobb et  al. (1983). Its main advantages include the 
stability of the software for fitting the cusp probability density, simplicity of use, and its 
optimization routine based on the well-known limited-memory BFGS algorithm.

Estimation setup and model selection

Estimated parameters in (3) and (4) represent the reaction coefficients of the individual 
empirical explanatory variables, that is, {α0, . . . ,αn,β0, . . . , . . . ,βn} . Moreover, according 
to Grasman et al. (2009), two additional parameters, ω0 and ω1 , are estimated from

which first-order approximates the true, smooth transformation of the measured market 
returns, standardized by their estimated volatility rt/σ̂t.

The subsequent model selection procedure follows the standard stepwise elimination 
of individual explanatory variables based on their statistical significance until all remain-
ing variables in the model are significant at least at the 10% level. This technique allevi-
ates potential multi-collinearity problems between the explanatory variables, leading to 
higher statistical support for the resulting parsimonious models.

(6)σ̂GK ,t =

√

0.5 log

(
ht

lt

)2

− (2 log 2− 1) log

(
ct

ot

)2

,

(7)yt = ω0 + ω1rt/σ̂t ,
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Evaluation of the fit

The cusp package produces several empirical results summarized in Table  1, accom-
panied by various diagnostic tools to evaluate the quality of the estimation fit. First, 
parameter ω1 from (7) should be statistically significant and of a reasonable magnitude. 
Otherwise, equation (7) would only trivially represent a constant ω0 and the cusp model 
would hardly explain the data. Additionally, at least one of the coefficients (except for 
the intercepts) in each of equations (3) and (4) should be statistically significant at a 
standard level. Second, the log-likelihood for the given sample labeled “LL” is standardly 
based on logarithms of the probability distribution corresponding to the solution of (1) 
accumulated over t = 1, . . .T  . As a result, the higher the log-likelihood, the better the 
estimated model fits. Moreover, the nonlinear cusp model should exhibit a significantly 
better fit than multiple linear regression with the same set of n explanatory variables. 
This means that this log-likelihood should be significantly higher compared to ordinary 
regression, which can be statistically assessed rigorously using a likelihood ratio test. The 
null is defined as the log-likelihoods of the two models being at the same level, and the 
statistics for this test are directly reported under “ χ2

2  .” This is compared to a critical value 
based on the chi-squared distribution with two degrees of freedom, as parameters ω0 
and ω1 are not estimated for the linear model.

Finally, and most importantly, the cusp should outperform the logistic curve estimated 
via nonlinear least squares:

for t = 1, . . . ,T  , i = 1, . . . , n , where yt , αi , and βi have already been defined in equations 
(1), (3), and (4), and ǫt represents zero-mean random disturbances that can be normally 
distributed, but not necessarily (Seber and Wild 1989). A comparison between the cusp 
and logistic curve is an optimal indicator of the presence of bifurcation because the 
logistic function can also model rapid changes in the state variable as a function of the 
explanatory variables, imitating sudden transitions of the cusp model, but it does not 
possess degenerate discontinuous points inside the unstable bifurcation region. As the 
cusp probability density and the logistic functions are not nested models, the likelihood 
ratio test should not be used in this case (Grasman et al. 2009). Instead, the fit can be 
compared using the Akaike and Bayesian information criteria (AIC and BIC). The more 
conservative criterion, BIC, is preferred (Wagenmakers et al. 2005). The lower the infor-
mation criterion, the better the fit of the estimated model.

Data description and final sample
The datasets were collected from five publicly available online sources. The high, low, 
opening, and closing daily prices of cryptocurrency are used as background data for the 
dependent state variable and were downloaded from coinm​arket​cap.​com. Technical 
explanatory variables representing on-chain activity and trading volumes were retrieved 
from coinm​etrics.​io and coinm​arket​cap.​com, respectively. Explanatory variables related 
to Google Trends were downloaded from trends.​google.​com, and Wikipedia page visit 
counts from pagev​iews.​wmclo​ud.​org. Additional financial variables were retrieved from 

(8)yt =
1

1+ e−αx,t/β
2
x,t

+ ǫt ,

https://coinmarketcap.com/
https://coinmetrics.io/
https://coinmarketcap.com/
https://trends.google.com
https://pageviews.wmcloud.org
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Yahoo​ Finan​ce. All databases were accessed on August 10, 2022. We refer the reader to 
GitHu​b repos​itory for downloading the datasets.

The behavior of five well-known cryptoassets was studied. Bitcoin (BTC), Litecoin 
(LTC), and Ethereum (ETH) are well established within the crypto community and have 
been at the forefront for a long time. Two more rather specific currencies were also 
added: XRP by Ripple, which is premined, and Dogecoin (DOGE), which has gained 
much attention and has recently established a stable position in the TOP 20 according 
to the market cap. The data span the period from January 1, 2016, to January 31, 2022, 
which means that more than seven years of rapid development of the crypto-markets is 
covered, providing us with 2223 daily observations. Figure 2 depicts time-varying com-
bined market capitalization of these five cryptoassets compared to the total cryptocur-
rency market capitalization. It strongly supports their selection as a representative set 
of the entire cryptocurrency market, in which Bitcoin retains its dominant power and 
predictive information potential for other cryptocurrencies over time (Wang and Ngene 
2020).

Explanatory variables

Independent variables that are hypothesized to drive the market in the cusp catastrophe 
model are divided into three groups: technical, information demand-related, and finan-
cial variables. For each cryptoasset, data on the following technical variables was col-
lected: total number of active addresses (Addresses, originally downloaded under label 
AdrActCnt), average daily transaction fee in USD (Fees, originally FeeMeanUSD), min-
ing-related information represented by the hashrate (Hashrate), annualized inflation in 
percent (Inflation, originally IssContPctAnn), speed of circulation of a given currency 
inspired by the monetary concept of “velocity of money” (Velocity, originally NVTAdj), 
and ratio (ExchangeRatio) between the volume of trading on crypto exchanges (Volume) 

Fig. 2  Combined market capitalization of BTC, LTC, ETH, XRP, and DOGE. Note: Depicted in relation to the 
total cryptocurrency market capitalization between January 1, 2016, and January 31, 2022. Data are retrieved 
from coinm​arket​cap.​com

https://finance.yahoo.com/
https://github.com/jirikukacka/Kukacka_Kristoufek_2023
https://coinmarketcap.com/


Page 10 of 23Kukacka and Kristoufek ﻿Financial Innovation            (2023) 9:61 

and volume of transactions on the blockchain. The only exception is the premined XRP, 
for which Hashrate and Inflation data do not exist.

Next, a measure of currency-specific interest of Google search users (GoogleCur-
rency) and a measure of the overall interest in the cryptocurrency market (GoogleMar-
ket) were used. For each specific cryptoasset, their tickers and full names were combined 
in Google searches, weighted by their global queries. However, Ripple was used as a full 
name for XRP, even though it is not precise, as the name is often used in the community. 
Queries with a low search frequency did not need to pass the minimum search barrier 
set by Google’s algorithm because the reported Google data are based on random sam-
pling. Thus, the sampling was run ten times for each keyword, ensuring a new sample by 
adding a random alphanumeric sequence and using an average search score. Additional 
information demand-related variables include Wikipedia page visit counts for individ-
ual cryptoassets (Wiki) and the CBOE Volatility Index (VIX). The latter is a well-known 
measure of stock market volatility expectations based on S&P 500 options. Finally, we 
also included two financial variables that represent a relatively broad interconnection 
between the cryptocurrency market and the worldwide economy: log-returns of the S&P 
500 index (SP500) and the USD/EUR exchange rate (USDEUR).

For illustrative purposes, Table 3 in the Appendix depicts the descriptive statistics of 
the original downloaded dataset for BTC. Three statistical tests supplement standard 
sample moments: for the augmented Dickey–Fuller test (ADF) specified with a constant, 
with a linear trend, and up to 25 lags (automatically selected according to AIC), H0 is 
“unit root presence/covariance nonstationarity,” for the Kwiatkowski–Phillips–Schmidt–
Shin test (KPSS), H0 specifies both “level stationarity” and “trend stationarity,” and for 
the Jarque–Bera test (J-B), H0 is “normality.” Generally, the data are nonnormal and, 
most importantly, some of the time series violate the stationarity assumption.

Final sample characteristics

Several common data transformations were undertaken to obtain the final sample 
entered into the estimation routine. First, log-returns for all cryptocurrencies were 
obtained based on the difference between closing and opening log-prices and for SP500 
and USDEUR based on the closing prices. Second, stationarity of all explanatory varia-
bles was achieved by first-differencing. The only exceptions are SP500 which was station-
ary without modification, and ETH Hashrate, which required second-log-differencing. 
Thus, the researcher was left with a final sample consisting of 2221 daily observations. 
Third, all explanatory variables were standardized to eliminate numerical impact of the 
units of measurement and to unify the interpretation of the results. For illustrative pur-
poses, Table 4 in the appendix summarizes descriptive statistics of the final sample for 
BTC. Due to standardization, the sample mean and standard deviation (SD) are trivially 
the same for all explanatory variables. The data are still nonnormal, but all currencies’ 
log-returns and explanatory variables achieve stationarity at any reasonable significance 
level based on the KPSS test; it is further supported by the ADF test which rejects unit 
root presence at the 1% significance level. Estimated volatility σ̂t computed according to 
(6) is nonstationary as it is strongly persistent and exhibits regular clustering properties.
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Finally, Fig.  3 depicts the correlation matrices for all variables that enter the esti-
mation. No serious issues were found concerning possible collinearity, as the higher 
correlations fall below 0.8 (except for one observation for DOGE), and the strongly 
correlated variables often act on different sides of the model (e.g., SP500 vs. VIX). 
However, some interesting connections were observed. The velocity of money and 

Fig. 3  Correlation matrices of the datasets. Note: The color gradually changes from dark blue ( ρ = 1 ) through 
white ( ρ = 0 ) to dark red ( ρ = −1 ) as the Pearson correlation coefficient ρ decreases; see the specific range 
of colors on the right side of the figures. “SDReturns” represents rt/σ̂t . Based on N = 2221 observations and 
rounded to two decimal digits
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exchange ratio are positively correlated (and rather strongly correlated for BTC and 
LTC), indicating increased on-chain activity. Google searches for specific assets gen-
erally have a weak correlation with overall market searches, supporting their inclusion 
in the analysis. However, LTC, XRP, and DOGE exhibited strong positive correlation 
with Wikipedia page visit counts. Finally, fees and off-chain volumes are most corre-
lated with investors’ attention toward ETH and DOGE.

Research hypotheses
The model was structured under the assumption that the following variables: Addresses, 
Fees, Hashrate, Inflation, Velocity, SP500, and USDEUR represent the fundamental com-
ponent of the pricing mechanism of cryptoassets. Of the variables listed above, the five 
technical variables are primarily blockchain-based metrics; they either represent techni-
cal parameters of the system and are practically exogenous to the system (Inflation) with 
its security provided by the validators/miners (Hashrate) or on-chain congestion due 
to its use (Addresses, Fees, Velocity). The two financial variables are included follow-
ing current literature on interconnectedness between cryptocurrencies and the global 
economy. Corbet et al. (2020) showed how macroeconomic news announcements influ-
ence Bitcoin price. Most importantly, an increase in positive (negative) news surround-
ing unemployment rates and durable goods decreases (increases) Bitcoin returns. Zhu 
et  al. (2017) found that (macro)economic factors such as consumer price index (CPI), 
US Dollar Index, Dow Jones Industrial Average (DJIA), or Federal Funds Rate influence 
Bitcoin price in the long run. Unfortunately, daily observations required for our anal-
ysis were unavailable for most of the suggested variables. Still, we included a broader 
S&P 500 index (SP500) as a potential aggregator of overall macroeconomic development 
in the US. The inclusion of a USD-related variable (USDEUR) is further supported by 
Dyhrberg (2016), who detected the presence of regional or country-specific effects, as 
the USD/EUR exchange rate significantly affects the volatility of Bitcoin returns.

The speculative component is represented by VIX, often called the “fear index.” Its 
inclusion is based on literature suggesting that crypto is perceived as a hedge against 
stocks and Bitcoin serves as a “safe haven” (Bouri et al. 2017; Selmi et al. 2018; Urquhart 
and Zhang 2019; Dutta et al. 2020; Shahzad et al. 2019). Volume and ExchangeRatio nat-
urally appear on the speculative side, as most speculative actions in these specific cryp-
toassets occur off-chain, that is, on centralized exchanges. Moreover, trading volume 
has been shown to Granger cause extreme negative and positive returns for many cryp-
tocurrencies (Bouri et al. 2019) and contain predictive information for Bitcoin returns 
(Balcilar et  al. 2017). Finally, variables related to Google Trends and Wikipedia views 
have a rather long tradition of being used as proxies for retail investors’ attention (Kris-
toufek 2013; Garcia et al. 2014).

As the impact of n = 13 explanatory variables is studied, this technically trans-
lates into a set of linear restrictions of equations (3) and (4), which are as follows: 
α8 = α9 = α10 = α11 = α12 = α13 = 0 specifies the fundamental side of the market 
represented by the asymmetry factor αx,t , and β1 = β2 = β3 = β4 = β5 = β6 = β7 = 0 
specifies the speculative side of the market represented by the bifurcation factor βx,t . 
Thus, it is expected that the other reaction coefficients are nonzero, which can be 
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considered a set of 13 individual research hypotheses for each of the five cryptoassets. 
We are especially interested in the potential differences between them.

Empirical results
First, we quantitatively evaluate the overall estimation results summarized in Table  1, 
and then focus on the qualitative interpretation of individual models for each cryptocur-
rency in detail.

Quantitative evaluation

Following the toolkit in the section on “Estimation methodology and evaluation” sec-
tion, we observe that for all cryptocurrencies, parameter ω1 is estimated to be strongly 
statistically significant and of reasonable magnitudes between 0.381 and 0.553. This 

Table 1  Estimation results

***, **, *, and ‘.’ denote significance levels of 0.1%, 1%, 5%, and 10%, respectively

BTC LTC ETH XRP DOGE

ω̂0 − 0.189 ** 0.399 *** − 0.156 ** 0.378 *** − 0.891 ***

ω̂1 0.512 *** 0.388 *** 0.553 *** 0.381 *** 0.403 ***

α̂0 − 0.332 . 2.259 *** − 0.269 * 1.998 *** − 4.999 **

α̂1,Addresses 0.078 .

α̂2,Fees 0.198 *** 0.140 ** 0.052 . 0.235 ***

α̂3,Hashrate –

α̂4,Inflation –

α̂5,Velocity 0.095 *

α̂6,SP500 0.147 *** 0.197 *** 0.190 *** 0.285 ***

α̂7,USDEUR

β̂0 − 2.173 *** − 4.999 *** − 1.699 *** − 4.999 *** − 4.380 ***

β̂8,VIX 0.164 * − 0.240 ** 0.341 ***

β̂9,Volume
0.162 ** 0.652 *** 0.152 . − 0.226 ***

β̂10,ExchangeRatio − 0.276 ***

β̂11,GoogleMarket
0.153 * − 0.322 ** − 0.270 * 0.166 ***

β̂12,GoogleCurrency 0.144 * 0.278 *** 0.568 ***

β̂13,Wiki
0.142 *

cusp model

LL − 3105.510 − 3104.456 − 3106.319 − 3105.382 − 3103.173

AIC 6235.020 6228.912 6228.638 6226.764 6222.346

BIC 6303.488 6285.970 6274.284 6272.410 6267.988

Linear model

LL − 3393.817 − 3262.685 − 3379.525 − 3334.278 − 2992.940

AIC 6807.635 6541.369 6771.050 6680.556 5997.879

BIC 6864.692 6587.015 6805.285 6714.791 6032.111

χ2
2

≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001

Logistic model

LL − 3369.692 − 3179.475 − 3369.088 − 3320.334 − 2857.437

AIC 6761.384 6376.950 6752.177 6654.669 5728.873

BIC 6824.147 6428.302 6792.117 6694.609 5768.810
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means that equation (7) approximates a well-defined smooth transformation of meas-
ured market returns. Additionally, there are multiple statistically strongly significant 
explanatory variables driving the fundamental and speculative sides of the market, rep-
resented by equations (3) and (4), respectively, for all the analyzed cryptoassets. How-
ever, for DOGE, only α2,Fees is significant among the variables on the fundamental side, 
and for XRP (for which Hashrate and Inflation data do not exist as it is premined), only 
α6,SP500 is statistically significant. Moreover, for ETH, the p value for α2,Fees is exactly 
0.100364, but we retained it in the model because the difference from the borderline p 
value of 0.10 is minuscule.

According to the log-likelihoods (LL), the nonlinear cusp catastrophe model exhibits a 
significantly better fit than the multiple linear regression model for all cryptocurrencies 
except DOGE. This is indicated either by its considerably higher log-likelihood values 
or by the likelihood ratio test ( χ2

2  ), based on which we can confidently reject the null 
hypothesis that log-likelihoods are at the same level. While the null hypothesis is also 
rejected for DOGE, this result indicates that the linear model fits better as it exhibits a 
higher log-likelihood.

More importantly, as per BIC and AIC, in the case of all four cryptocurrencies other 
than DOGE, the catastrophe model outperforms the logistic regression model. While 
the latter can also replicate rapid changes in the state variable, it does not possess degen-
erate discontinuous points. While the difference cannot be rigorously tested statistically, 
it is most pronounced for BTC, ETH, and XRP. Based on the overall quantitative evalu-
ation of the estimation results, we can partially conclude that for BTC, LTC, ETH, and 
XRP, the cusp catastrophe model explains the data considerably better than the two nat-
ural benchmarks—linear and logistic regressions.

Qualitative interpretation

Table 2 summarizes the statistically significant variables (at least at the 90% confidence 
level) for the cryptoassets under study. We now focus on these factors separately.

Table 2  Variables remaining in final models

BTC LTC ETH XRP DOGE

Addresses �

Fees � � � �

Hashrate –

Inflation –

Velocity �

SP500 � � � �

USDEUR

VIX � � �

Volume � � � �

ExchangeRatio �

GoogleMarket � � � �

GoogleCurrency � � �

Wiki �

cusp ≻ logistic � � � �
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Bitcoin

Starting with Bitcoin, both the fundamental and speculative core dynamics are rich in 
significant variables. On the fundamental side, on-chain transaction fees were found to 
be the most dominant driver of dynamics. On-chain activity propagating into increasing 
fees as the network congests, represents a clear fundamental price driver, as it meas-
ures network usage. Similarly, as active addresses also provide information about net-
work activity, their significance might be mitigated by the more dominant transaction 
fee effect, although their correlation is only mild at 0.34, see Fig. 3. Increased on-chain 
activity is also captured by the velocity variable, which is statistically significant. Put-
ting together the significance of all three variables, there is strong evidence that the 
increased on-chain activity, that is, transactions between wallets outside of the central-
ized exchanges, drives Bitcoin price dynamics, which is an evident fundamental factor. 
The other two fundamental variables are insignificant. Hashrate, sometimes referred to 
as network security but often considered to be the amount of computational power the 
miners are willing to contribute to the system for the chance of getting rewards, does not 
affect the price. This is in agreement with previous studies on the interaction between 
Bitcoin price and hashrate (Kristoufek 2020; Song and Aste 2020; Marthinsen and Gor-
don 2022). Inflation, representing newly minted coins, has no tangible effect on price 
dynamics; it seems to be priced in from a long-term perspective, as new emissions are 
known and imprinted in the protocol.

On the speculative side, attention-based variables and volume on exchanges are statis-
tically significant, showing that attention—a proxy for retail investors’ interest—strongly 
drives price dynamics. As Wikipedia page views are also statistically significant, they 
seem to provide additional information about Bitcoin on top of Google searches. This 
result is unique for Bitcoin as Wikipedia page views are insignificant for the other cryp-
toassets under study. Interestingly, Google searches are significant for the entire crypto-
market and not just for Bitcoin. Again, this is a rather unique observation in the set, 
indicating the important role played by Bitcoin in the entire crypto-market dynamics. 
The exchange ratio remains insignificant, which suggests that the possibly increasing 
volume on centralized exchanges compared with on-chain transfers, does not affect 
price. Among the real-world variables, SP500 on the fundamental side and VIX on the 
speculative side are statistically significant. Bitcoin is thus not detached from conven-
tional financial markets. It is rich in drivers on both sides of the spectrum, which inter-
act in a highly nonlinear manner and go through bifurcation phases, as the catastrophe 
model outperforms both the linear and logistic specifications.

Hashrate, Inflation, and USDEUR are insignificant for all the studied cryptoassets. 
Insignificance of Hashrate is in line with Kristoufek (2020) pointing towards Bitcoin 
price driving the hashrate rather than the other way around. This direction seems to 
have prevailed in recent data and also in other mining-based coins (including all but 
XRP in our case). Insignificance of Inflation can be attributed to its protocol-imprinted 
status as minting of new coins is mainly predetermined and thus, likely priced in. Con-
sequently, it does not cause unexpected shocks to the dynamics. Exchange rate probably 
does not possess enough variability to be an essential factor in explaining the often-tur-
bulent dynamics of cryptoassets.
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Litecoin

Turning to Litecoin, one must note that it has been introduced as a fork (and “lite” ver-
sion) of Bitcoin, building on the Proof-of-Work transaction confirmation, but with a dif-
ferent hashing function (SHA-256 for Bitcoin and Scrypt for Litecoin, where the latter 
is more memory-centric and the former is more computational power centric), presum-
ably leading to a lower concentration of miners and shorter block times and, therefore, 
faster transactions. Similar to the case of Bitcoin, the cusp catastrophe model explains 
price dynamics rather well. On the fundamental side, there are transaction fees and the 
S &P 500 index. On the speculative side, there are attention-based measures, volume on 
exchanges, and the VIX index. Thus, the dynamics are driven in a similar manner as that 
of the largest cryptoasset, albeit with tiny differences (insignificant velocity and Wiki-
pedia searches). However, the interpretation remains the same. In addition, the analysis 
shows that even smaller cryptoassets are driven by their own fundamental and specu-
lative components rather than being simply driven by the market leader. This is high-
lighted by the fact that even Litecoin-specific Google searches are significant in addition 
to general crypto-markets queries.

Ethereum

Ethereum provides a smart-contract protocol that can be used to build decentralized 
applications via its Ethereum Virtual Machine; thus, it is structurally very different from 
the first two cryptoassets. Many tokens (mainly of the ERC-20 type) have been deployed 
in the Ethereum network. When transacting on the network through decentralized 
applications, the user must pay fees (gas) in ETH, giving it ongoing utility and demand. 
In fact, fees are the only ETH-specific fundamental driver of price dynamics. On the 
fundamental side, SP500 has an even stronger effect on the ETH than BTC, similar to 
LTC. This is in line with the notion that altcoins are more sensitive to standard financial 
market moves than Bitcoin. On the speculative side, exchange ratio is found to be statis-
tically significant, indicating that the imbalance between on-chain and off-chain activi-
ties (centralized exchanges) plays an important role. In addition, Google Trends searches 
for Ethereum also play an important role in the dynamics, detached from the overall 
market sentiment.

It is surprising that the fundamental part of the ETH dynamics is relatively weak. In 
a way, ETH’s position comes in waves, where it cyclically becomes the victim of its own 
success. Often, there are applications that become too popular, and their frequent trans-
actions congest the network, causing such hikes in fees that users are driven away. Alter-
natively, there are situations when some tokens traded only on decentralized exchanges, 
such as UniSwap become very popular and attract a massive amount of transactions, 
again congesting the system. The most profaned example of the latter is Shiba Inu. Such 
episodes have led to increased interest in either alternative blockchains (Binance Smart 
Chain, Cardano, Avalanche, Solana) or layer 2 solutions and roll-ups (Polygon, Opti-
mism, Arbitrum) of the Ethereum network.

XRP

Since XRP is premined and does not adhere to the Proof-of-Work consensus, it has nei-
ther inflation nor hashrate. It primarily serves as an intermediary mechanism between 
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two currencies in a SWIFT-like environment. Ripple Labs, the company behind XRP, has 
ongoing issues and conflicts with the SEC regarding the statute of XRP and its presenta-
tion to potential investors. This has led to various legal battles, causing large exogenous 
shocks to the pricing mechanism. This is reflected in the dynamics being dominated by 
the speculative components of most of the five analyzed cryptoassets. XRP is the only 
analyzed asset with no significant coin-specific fundamental component. Here, we see 
that only SP500 drives the fundamental dynamics; its effect on XRP is the strongest 
compared to its effect on the fundamental sides of the other cryptoassets. The specu-
lative components point toward metrics based on Google Trends, likely reflecting the 
above-mentioned controversies and ongoing legal battles, the news of which apparently 
drives pricing. Even though the structure of the significant variables might seem less 
appealing than in previous cases, they tell a logical story of the coin’s history. Impor-
tantly, in this case also the cusp model outperformed the linear and logistic models by 
a margin similar to that of the previous three coins. The complex interactions between 
the limited set of significant variables still lead to emergence of bifurcation, and conse-
quently, endogenous bubbles and busts.

Dogecoin

Dogecoin is the “father of memecoins” created as a fork of Bitcoin with some changed 
parameters, most notably its possibly unlimited supply, as opposed to the hard-capped 
21 million Bitcoins ever to be minted. DOGE is the only cryptoasset under study for 
which the cusp catastrophe model does not outperform either the logistic or the lin-
ear model specification. The logistic model is dominant, pointing towards a nonlinear 
response of the returns dynamics to the independent variables in both fundamental 
and speculative sectors of the market. Thus, DOGE dynamics or better price forma-
tion mechanism is less complex than that of the other four assets examined herein. Even 
then, it is subjected to both sides of the price formation process. While transaction fees 
drive the fundamental component, similar to the other cryptocurrencies, the speculative 
side is strongly driven by proxies based on Google Trends, not for the currency-specific, 
but for the overall interest in the entire cryptocurrency market.

Only Bitcoin and Dogecoin are mainly driven by overall crypto-market attention 
rather than coin-specific searches. In the case of Bitcoin, it can be attributed to the fact 
that Bitcoin is often treated and perceived as a proxy for the whole market. However, 
in the case of Dogecoin, one might speculate that the memecoin will react to the over-
all market hype rather than the interest in Dogecoin specifically. It might be interesting 
to compare these with other memecoins, but these are primarily new phenomena and 
often short-lived with short time series (with the most prominent exception being the 
Shiba Inu token). Nevertheless, this remains a promising avenue for future inspections. 
The speculative component turns out to be rich in drivers, as the VIX and Volume are 
also significant for DOGE. The overall market stress and volume on exchanges form its 
pricing dynamics.

Interestingly, DOGE is the only analyzed coin not driven by SP500 on the fundamental 
side. Thus, its long-term dynamics are distinct from conventional financial markets. As 
is the case for BTC and LTC, VIX plays its role on the speculative side. Therefore, only 
Bitcoin and its forks react to conventional market stress levels on the fundamental side.
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Conclusion
The price formation of cryptoassets is always a controversial topic, primarily because of 
their unprecedented building blocks and features. However, these features also include 
very detailed data structures that allow study of interactions within the system, which 
one can hardly imagine for standard financial assets and instruments. The returns 
dynamics of five cryptoassets with various specifications (including Bitcoin, Ethereum, 
Litecoin, XRP, and Dogecoin) were studied. This study focuses on the interplay between 
the fundamental and speculative parts of the pricing mechanism with possible bifurca-
tion episodes within the cusp catastrophe model. All the cryptoassets studied herein, 
except for Dogecoin, demonstrate that their price and returns dynamics emerge from 
complex interactions between fundamental and speculative components, including epi-
sodes of price bifurcation characteristics of market collapse events. Bitcoin shows the 
strongest fundamentals, with four out of seven potential fundamental factors being sta-
tistically significant. Interestingly, technical factors connected to the cryptoasset’s supply 
(Inflation and Hashrate) do not play a significant role in the price formation process in 
any of the analyzed coins. It is mainly on-chain activity and (macro)economic factors 
(stock market price dynamics and uncertainty) that drive the dynamics. The speculative 
component is primarily driven by investor attention and (potentially resulting) off-chain 
activity. Notably, crypto-markes are not detached from conventional financial markets 
as both sides of the market dynamics are affected by stock market price dynamics repre-
sented by S &P 500 index and stock market uncertainty measured by the VIX index.

The results clearly show that the price dynamics of the top cryptoassets are formed 
by both fundamental and speculative components. This opens up a wide space for the 
further exploration of related topics. Our results suggest that fundamental factors must 
be included in pricing models when forecasting and developing trading strategies, which 
is often not the case. The connection with conventional financial markets should also 
be taken into account. In risk management within the crypto-market segment, the pre-
sented significant price dynamics drivers should be considered as factors possibly driv-
ing variance and even correlations among cryptoassets. One can easily imagine, for 
example, that on-chain activity is a structural factor not necessarily connected to a single 
asset, as crypto-investors are often interested and invested in various projects on dif-
ferent blockchains. The available width of cryptoasset datasets is a huge advantage in 
such analyses, but it also poses some challenges as possible factors need to be chosen 
carefully, and thus, possibly arbitrarily, or via data mining and machine learning tech-
niques. In addition, the separation between fundamental and speculative factors is not 
clear-cut, as one can often find an explanation for both classifications. This is related to 
another common issue in crypto-analyses—possible endogeneity, which is complicated 
to tackle in such an intertwined system. Such limitations do not spare conventional 
financial markets, but much lower data availability makes this less evident. For cryptoas-
sets, specifically Bitcoin, Kubal and Kristoufek (2022) and Kristoufek (2023) provided 
an outline of how to treat endogenous crypto-systems, although multi-assets treatment 
poses additional challenges. However, these are possible issues for interpreting the eco-
nomics behind it, but not for forecasting and portfolio studies that do not consider the 
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classification. Either way, factors other than those that are autoregressive and specu-
lative, help describe and explain price dynamics and should be considered when con-
structing relevant models.

From the investors’ perspective, complex interactions between the fundamental and 
speculative components with a tendency towards bifurcations form a tricky playing 
field. The structural and fundamental characteristics of the analyzed coins suggest that 
long-term investors should be rewarded for their investments as long as the technology 
progresses. However, the strength of speculative factors indicates turbulent periods. The 
least favored type of investor in cryptoassets is the one in between—an investor who is 
neither a trend chaser benefiting from riding the hype nor a long-term investor holding 
towards pension. Holding long but not long enough seems to be the worst strategy. This 
also points to a standard limitation of practically all studies on cryptoassets pricing—
regulatory uncertainty. Even though regulations and changes in the rules of the game are 
an issue for conventional finance and its pricing as well, it is of a different magnitude for 
cryptoassets.

Alternatively, given the events of 2022, exogenous, unpredictable shocks to the system 
could cause cascading dynamics to affect (not only) mid-term investors as well. The 2022 
drama of FTX, a prominent centralized exchange, shows the complexity of the market 
and the associated risks, and demonstrates the consequences of an unregulated market 
lacking proper audits, control mechanisms, and basal risk controls. This brings us to a 
possible extension of the current cusp model. Allowing for heavy-tailed innovations in 
the system would represent extreme shocks and might be more appropriate for crypto-
markets, specifically for future studies focusing on smaller coins or tokens and their 
cusp-like dynamics. These would bypass the need for inclusion of systemic risk meas-
ures in the tightly interconnected system that the crypto-markets are. Such measures 
are difficult to construct reliably given crypto-markets specifics, and they still need to be 
improved in the literature (Kim et al. 2021).

From the big-picture perspective, our results not only provide a basis for forecasting, 
portfolios, and investment applications but also contribute to the structural discussion 
about cryptoassets and their classification. Although our study is not the first to examine 
both fundamental and speculative components of cryptoassets’ pricing dynamics within 
a single model, it is the first to compare and discuss the building blocks of various cryp-
toassets, each representing a different part of the market, instead of focusing solely on 
Bitcoin, which is still a standard. In addition, we construct our models with a wide array 
of variables on both sides of the price formation process, within and outside the crypto-
markets. Notably, altcoin pricing dynamics are shown to follow their own paths, partially 
following Bitcoin as a dominant cryptoasset but with coin-specific drivers of both the 
fundamental and speculative components. Economically sound models are thus worth 
exploring, not only for Bitcoin but also for altcoins.

Appendix
See Tables 3 and 4.
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Abbreviations
ADF	� Augmented Dickey–Fuller test
AIC	� Akaike information criterion
BIC	� Bayesian information criterion
BTC	� Bitcoin
CPI	� consumer price index
DJIA	� Dow Jones Industrial Average
DOGE	� Dogecoin
ETH	� Ethereum
J-B	� Jarque–Bera test
KPSS	� Kwiatkowski–Phillips–Schmidt–Shin test
LTC	� Litecoin
SD	� standard deviation
SP500	� Standard & Poor’s 500
USD	� United States dollar

Table 3  Descriptive statistics of the BTC original dataset

N = 2223 observations, p values reported for the statistical tests

Statistic Mean SD Min Max Skew Kurt ADF KPSS J-B

AdrActCnt (counts) 758k 202k 317k 1367k 0.44 − 0.55 0.09 ≤ 0.01 ≤ 0.001

FeeMeanUSD (USD) 3.64 6.81 0.07 60.95 3.90 19.31 ≤ 0.01 ≤ 0.01 ≤ 0.001

HashRate 64.3M 58.1M 0.7M 216.9M 0.49 − 1.12 0.96 ≤ 0.01 ≤ 0.001

IssContPctAnn (%) 3.80 1.93 0.71 12.02 1.48 2.73 0.04 ≤ 0.01 ≤ 0.001

NVTAdj 65.86 32.23 15.22 252.90 1.27 2.01 ≤ 0.01 ≤ 0.01 ≤ 0.001

SP (log-returns) 1.0e−5 0.01 − 0.06 0.05 − 0.61 12.90 ≤ 0.01 ≥ 0.10 ≤ 0.001

USDEUR (log-returns) 2.0e−5 1.4e−4 − 1.6e−3 1.7e−3 0.09 19.36 ≤ 0.01 ≤ 0.01 ≤ 0.001

VIX (level) 17.96 8.11 9.14 82.69 2.73 12.09 ≤ 0.01 ≤ 0.01 ≤ 0.001

VolumeExch (USD) 17.7B 20.8B 28.5M 3.5e11 2.97 30.44 0.02 ≤ 0.01 ≤ 0.001

ExchangeRatio 5.50 6.32 0.14 52.02 2.13 6.02 0.25 ≤ 0.01 ≤ 0.001

GoogleTrendsCrypto 0.90 1.11 0.01 8.41 2.16 4.95 0.03 ≤ 0.01 ≤ 0.001

GoogleTrends 0.81 0.80 0.13 11.48 5.44 50.97 ≤ 0.01 ≤ 0.01 ≤ 0.001

Wiki (counts) 17.4k 23.4k 3.8k 344.7k 6.43 58.61 ≤ 0.01 ≤ 0.01 ≤ 0.001

Table 4  Descriptive statistics of the BTC final sample

N = 2221 observations, p values reported for the statistical tests

Statistic Mean SD Min Max Skew Kurt ADF KPSS J-B

Returns 0.002 0.04 − 0.47 0.23 − 0.77 11.69 ≤ 0.01 ≥ 0.10 ≤ 0.001

σ̂ 0.03 0.02 0.00 0.24 2.67 12.04 ≤ 0.01 ≤ 0.01 ≤ 0.001

Addresses 0.00 1.00 − 4.73 3.81 0.28 0.84 ≤ 0.01 ≥ 0.10 ≤ 0.001

Fees 0.00 1.00 − 12.48 10.55 1.29 40.68 ≤ 0.01 ≥ 0.10 ≤ 0.001

Hashrate 0.00 1.00 − 8.06 5.08 0.02 5.54 ≤ 0.01 ≥ 0.10 ≤ 0.001

Inflation 0.00 1.00 − 5.13 5.94 0.21 2.98 ≤ 0.01 ≥ 0.10 ≤ 0.001

Velocity 0.00 1.00 − 5.93 5.32 − 0.64 4.69 ≤ 0.01 ≥ 0.10 ≤ 0.001

SP500 0.00 1.00 − 8.26 7.48 − 0.61 12.89 ≤ 0.01 ≥ 0.10 ≤ 0.001

USDEUR 0.00 1.00 − 8.47 8.54 − 0.11 11.22 ≤ 0.01 ≥ 0.10 ≤ 0.001

VIX 0.00 1.00 − 10.19 14.36 3.34 50.46 ≤ 0.01 ≥ 0.10 ≤ 0.001

Volume 0.00 1.00 − 27.59 26.81 − 0.76 493.36 ≤ 0.01 ≥ 0.10 ≤ 0.001

ExchangeRatio 0.00 1.00 − 10.96 9.10 − 0.62 23.41 ≤ 0.01 ≥ 0.10 ≤ 0.001

GoogleMarket 0.00 1.00 − 12.47 18.26 2.23 78.44 ≤ 0.01 ≥ 0.10 ≤ 0.001

GoogleCurrency 0.00 1.00 − 14.85 28.65 9.37 333.49 ≤ 0.01 ≥ 0.10 ≤ 0.001

Wiki 0.00 1.00 − 16.91 19.77 3.47 146.57 ≤ 0.01 ≥ 0.10 ≤ 0.001
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