Arch. Rational Mech. Anal. (2023) 247:5
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-022-01834-9

l‘)

Check for
updates

Nonlinear and Linearized Models
in Thermoviscoelasticity

RUFAT BADAL, MANUEL FRIEDRICH & MARTIN KRUZK

Communicated by M. ORTIZ

Abstract

We consider a quasistatic nonlinear model in thermoviscoelasticity at a finite-
strain setting in the Kelvin—Voigt rheology, where both the elastic and viscous stress
tensors comply with the principle of frame indifference under rotations. The force
balance is formulated in the reference configuration by resorting to the concept of
nonsimple materials, whereas the heat transfer equation is governed by the Fourier
law in the deformed configurations. Weak solutions are obtained by means of a
staggered in-time discretization where the deformation and the temperature are
updated alternatingly. Our result refines a recent work by Mielke and Roubicek
(Arch Ration Mech Anal 238:1-45, 2020) since our approximation does not re-
quire any regularization of the viscosity term. Afterwards, we focus on the case of
deformations near the identity and small temperatures, and we show by a rigorous
linearization procedure that weak solutions of the nonlinear system converge in a
suitable sense to solutions of a system in linearized thermoviscoelasticity. The same
property holds for time-discrete approximations and we provide a corresponding
commutativity result.

1. Introduction

Nonlinear and large strain continuum mechanics has become a thriving field of
research over the last few decades; it is still subject of important advancements and,
at the same time, offers many challenging open questions. For instance, rigorous
studies on large strain viscoelastic materials [19,24,26,31] or nonlinear models
in thermoviscoelasticity [33] have been initiated only recently. Besides analytical
intricacies, the usage of large strain models in engineering practice is often im-
peded due to nonconvex behavior that complicates numerical implementations. On
many occasions, however, linearized models are still sufficient to describe observed
phenomena and are significantly easier to treat, both analytically and numerically.
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Roughly speaking, heuristic calculations suggest that, if the deformation of the body
is “close” to the identity, nonlinear models can be replaced by linear ones with a
negligible error. Clearly, the reliability of such predictions depends on the rigorous
derivation of simplified linearized models, e.g., via I'-convergence [7,12]. This is
an intensive research program that has been initiated in the context of linearized
elastostatics in [13]. Subsequently, this work was extended in various directions,
among others, models for incompressible materials [23,27,28], atomistic models
[8,40], or problems without Dirichlet boundary conditions [29] have been consid-
ered. For multiwell energies allowing for phase transitions we refer to [1,14,39],
and we mention also settings beyond elasticity such as plasticity [34] or fracture
[18,20]. As to evolutionary models, we refer to [19] where viscoelasticity in the
Kelvin—Voigt rheology and its linearized version are treated.

The goal of this contribution is to couple the nonlinear equations of viscoelastic-
ity with a heat transfer equation. We first analyze a corresponding frame-indifferent
and thermodynamically-consistent model of thermoviscoelasticity at large strains,
and refine the results obtained recently by Mielke and Roubicek [33]. Afterwards,
in the spirit of the isothermal result [19], we pass to a linearized limit in terms of
rescaled displacement fields and different regimes of rescaled temperatures.

We start by introducing the large strain model. Neglecting inertia effects, a non-
linear viscoelastic material in Kelvin—Voigt rheology obeys the following system
of equations

—div (pW(Vy,0) + 9:R(Vy, Vy,0)) = f in[0,T] x Q. (1.1)

here [0, T'] is a process time interval with T > 0, Q C R4 is a bounded domain
representing the reference configuration, y: [0, T] x € — R? is a deformation
mapping, Vy is the deformation gradient, & denotes the temperature, W : R7*¢ x
[0, 00) = RU {400} is a stored energy density, which represents a potential of the
first Piola—Kirchhoff stress tensor 37 W, and F € R?*4 is the placeholder of Vy.
Finally, R: R4*4 x R?*4 % [0, 0o) — R denotes a (pseudo)potential of dissipative
forces, where F is the time derivative of F, and f:00,T] x 2 — R is a volume
density of external forces acting on 2.

The density W respects frame indifference under rotations and positivity of
the determinant of the deformation gradient, i.e., local non-self-penetration is real-
ized. (In contrast to [24], we do not consider conditions implying global non-self-
penetration.) At the same time, we focus on physically correct viscous stresses,
i.e., as observed by Antman [3], R must comply with a time-continuous frame
indifference principle meaning that for all F it holds that

R(F,F,0) = R(C,C,0)

for some nonnegative function I§, where C ;= FTFand C .= FTF + FTF.

In contrast to the rapidly developed static theory at large strains, already in the
isothermal case existence of solutions to (1.1) remains a challenging problem and
results for models respecting the physically relevant frame indifference for both
W and R are scarce. We refer, e.g., to [26] for local in-time existence or to [15]
for the existence of measure-valued solutions. To date, weak solutions in finite
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strain isothermal viscoelasticity [19,24,33] can only be guaranteed by using the
concept of second-grade nonsimple materials where the stored energy density (and
consequently the first Piola—Kirchhoff stress tensor) additionally depends on the
second gradient of the deformation. This idea was first introduced by Toupin [41,42]
and proved to be useful in mathematical continuum mechanics, see e.g. [4,5,32,35].
In this spirit, we consider a version of (1.1) for nonsimple materials where the stored
energy density depends also on the second gradient of y, and (1.1) is replaced by

—div (9 W (Vy, 0)=div(dG H(V ) +0; R(VY, V3,0)) = [ in[0, T]x,
(1.2)
which corresponds to an additional convex term |, oH (V2y)dx in the stored energy.
Let us mention that a main justification of this model lies in the observation that, in
the small strain limit and under suitable scaling, the problem leads to the standard
system of linear viscoelasticity without second gradient [19].
In the present contribution, we focus on a nonlinear coupling of the system
(1.2) with a heat transfer equation of the form

cy(Vy,0)6 = div(K(Vy, 0)V6) + 3;R(Vy, Vy,6) : Vy

+ 03 WP (Vy, 0) : Vyin [0, T] x Q, (1.3)
where dpg = drdy, WP denotes a thermo-mechanical coupling potential,
cy(F,0) = —0892W°91(F ,0) is the heat capacity, IC denotes the matrix of the

heat-conductivity coefficients, and the last term plays the role of an adiabatic heat
source. This corresponds to heat transfer modeled by the Fourier law in the deformed
configuration which is however pulled back to the reference configurations, whence
K depends on the deformation gradient. Here, following [33], we assume a rather
weak thermal coupling by using the splitting of the free energy W via the explicit
ansatz

W(F,0) = W'(F) + WP(F, 9), (1.4)

implying that g W = 3y WP, The coupled system (1.2)—(1.3) is equipped with
suitable initial and boundary conditions, see (2.17)—(2.18) below.

Thermoviscoelasticity is a notoriously difficult problem already at small strains,
e.g., there is no obvious variational structure of thermal part due to the low regular-
ity of data. New developments in the the L!-theory for the nonlinear heat equation
[9,10] paved the way to advancements in small strain thermoviscoelasticity (for ex-
ample, see [6,11,37]) which eventually culminated in the analysis of a physically
sound large-strain model by Mielke and Roubicek [33]. We refer to [33, Introduc-
tion; items (a)—(¢)] for the main properties and challenges for this model which
coincides with ours up to minor points, see Remark 2.1. Their existence result is
based on a time-incremental approach for a regularized system which does not
comply with the above mentioned frame indifferent principles, e.g., in (1.2) a term
AVy is added for A > 0. Then, they first pass to the time-continuous limit in the
regularized problem and eventually recover the original system in the limit of the
vanishing regularization parameter A.



5 Pagedof 73 RUFAT BADAL, MANUEL FRIEDRICH & MARTIN KRUZAK

The first result of our work (Theorem 2.3) revisits their study by proposing a
slightly different semidiscretization in time which directly approximates the PDE
system in the limit for vanishing time steps and comes along without any regu-
larization. Although establishing the same existence result on weak solutions, our
approach sheds new light on the issue as we propose a time-discrete approxima-
tion scheme complying with frame indifference. This, combined with a spatial
discretization, see e.g. [25, Section 9.3], could be the basis for a numerical imple-
mentation. As in [33], our scheme is staggered, i.e., first the deformation is updated
at fixed temperature from the previous time step and then the temperature is up-
dated. Our scheme differs in the usage of explicit or implicit steps, i.e., whether in
certain terms the ‘old’ or the ‘new’ temperature is used, see Remark 2.4. By means
of delicate estimates on the coupling potential, we are hereby able to establish the
necessary a priori bounds without any regularization. At this point, we derive a pri-
ori estimates for different scalings of the elastic strains and the temperature which
is at the basis of our subsequent analysis on small-strain limits.

In the second part of our work, we are interested in the case of small strains
and temperatures, i.e., when Vu := Vy — Id is of order ¢ for some small ¢ > 0
and 6 is of order “ for any exponent « > 0. Here, u := y —id is the displacement
corresponding to y with id and Id standing for the identity map and identity matrix,
respectively. Such properties are certainly reasonable if initial values and boundary
values for the deformation and the temperature are close to the identity or zero,
respectively. Therefore, it is convenient to introduce the rescaled displacement
ug = ¢~ (y — id) and rescaled temperature . = £%6, and to replace f by &f.
We write (1.2)—(1.3) in terms of the rescaled quantities and multiply (1.2) with g1
and (1.3) with e7*. Then, formally, we can pass to the limit and obtain the system

—div (Cwe(u) + Cpe(it) + B u) = f,
Gy — div(KoVi) = CWe(w) : (i), (1.5)

where Cy := 812, Wel(Id) is the tensor of elastic constants (W€ is defined in (1.4)),
Cp = 8§R(Id, F ,0) is the tensor of viscosity coefficients, B@ represents a
thermal expansion matrix, cy is the heat capacity at zero temperature and the stress
free material state, and Ko := /C(Id, 0). Finally, e(u) := (Vu + (Vu) ") /2 denotes
the linear strain tensor and e(it) the strain rate. By different scaling properties of
the two equations, it turns out that the limit is «-dependent and, as we point out
later, only meaningful in the regime « € [1,2]. The matrix B® is only active
for « = 1 and in this case it is related to the coupling potential, namely B =
OFrg WCpl(Id, 0). On the other hand, (C(g) is nonzero only for « = 2 and then
it coincides with Cp. Interestingly, although the nonlinear thermoviscoelasticity
system is written for a nonsimple material, in the limit we obtain linear equations
without spatial gradients of e(u). This relies on the fact that we assume H to have
super-quadratic growth at 0. Formal derivations of such PDE systems is not new and
can be found, e.g., in [21, Section 59]. The second main contribution of our work
(Theorem 2.7) is to make this limit passage rigorous, i.e., we show that solutions to
the nonlinear system (1.2)—(1.3) converge in a suitable sense to the unique solution
of the linear system (1.5) as ¢ — 0. Besides this convergence result, we also
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get analogous convergences for time-discretized problems, and we confirm that
convergences for vanishing time step and ¢ — 0 commute, see Theorem 2.8.

To the best of on knowledge, this is the first linearization result of a mechanical
model coupled with heat transfer in the material. We perform linearization near
the natural (i.e., stress free) state and zero temperature. Without further details,
let us however mention that by a shifting argument our techniques would allow to
linearize about a fixed, positive temperature 6., whenever the initial and boundary
data lie above 6, and the coupling potential WP!(F, #) vanishes for 6 < 6.

We now give an outline of the paper and present some fundamental ingredients
of the proof. After some basic notations, we introduce the nonlinear setting in
Sect. 2.1. In Sect. 2.2, we formulate our semi-discrete approximation result in the
nonlinear setting and briefly highlight the differences to the scheme in [33], see
Remark 2.4. In Sect. 2.3, we introduce the linearized setting and present our results
on convergence of solutions in the nonlinear-to-linear passage.

In Sects. 3.1-3.2, we address the well-definedness of the staggered time-
incremental scheme. The core of our approach is an inductive bound on the to-
tal energy, see Lemma 3.11: this is achieved by suitably testing the momentum
balance and the heat-transfer equation, adding the two equations, and exploiting
cancellation of the dissipation. In contrast to [33], see particularly [33, Remark
6.1], this cancellation is already possible in the time-discrete setting as we use a
simpler, explicit, thermo-mechanical coupling term in the scheme allowing us to
proceed without the necessity of regularizing terms. This, however, comes at the
expense of the fact that the argument to guarantee nonnegativity of the temperature
in the thermal step is more sophisticated. For this, we need a delicate estimate for
the coupling potential, see Proposition 3.8.

As a preparation for the passage to the linearized system, we need an adaption
of the bound on the total energy, see Sect. 3.3. In fact, due to the different scaling
& and &“ of the mechanical and the heat-transfer equation, the above mentioned
cancellation cannot be used in general for small ¢. Thus, novel techniques are
required to tame the contribution of the dissipation including higher integrability
of the temperature variable, see Lemma 3.15 for details. Section 3 is closed with
a priori bounds derived from the energy bound, see Sect. 3.4. As in [33], the main
ingredients here are Gagliardo—Nirenberg interpolation inequalities and special test
functions developed by Boccardo and Gallouét [10] for parabolic equations with
measure-valued right-hand side. For convenience of the reader, almost complete
proofs are provided since in addition to [33] we need scaling invariant estimates in
terms of the small parameter ¢.

In Sect. 4 we then address the passage to vanishing time steps in the nonlinear
model. At this point, having settled the a priori estimates, we can essentially follow
[33]. Since we work without regularization terms, however, we need to combine
and adapt the techniques from Sections 5-6 of [33], and therefore we elaborate the
proofs to some extent. Eventually, Sect. 5 is devoted to the linearization. In Sect. 5.1
we first deal with the passage to the time-continuous problem. The strategy in the
proof is similar to the one in the nonlinear setting in Sect. 4, with the additional
challenge that in each term we need to ensure that higher order terms in Taylor
expansions are asymptotically negligible. In particular, we show that contributions
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of the second gradient vanish in the limit. As in the nonlinear setting, strong con-
vergence of the strains and the strain rates is necessary to pass to the limit, see
Lemma 4.5 and Lemma 5.4. Due to rescaling of the equations, however, this is
more demanding in the passage to the linerized setting as higher integrability of
the temperature is needed to control the coupling term, cf. Remark 4.3. Eventu-
ally, Sect. 5.2 is devoted to time-discrete problems which particularly involves a
I"-convergence result for the mechanical part, see Proposition 5.7.

2. The Model and Main Results

2.1. The setting and modeling assumptions

In what follows, we use standard notation for Lebesgue and Sobolev spaces.
The lower index ; means nonnegative elements, i.e., L%F(Q) denotes the convex
cone of nonnegative functions belonging to L2(2) and a similar definition is used
for Hi(Q). We also set Ry := [0, +00). Let a A b := min{a, b} fora, b € R.
Denoting by d > 2 the dimension, we let Id € R?*¢ be the identity matrix, and
id(x) := x stands for the identity map on R?. We define the subsets S o) =
{AeR¥>™: ATA =1d, det A = 1}, GLT(d) := {F € R?*4: det(F) > 0}, and
Réwd = {A e R™*4: AT = A}. Furthermore, F~7 := (F~)T = (F")~!, and
given a tensor (of arbitrary dimension), |F| will denote its Frobenius norm. We
denote the scalar product between vectors, matrices, or 3rd-order tensors by -, :,

and :, respectively. As usual, in the proofs generic constants C may vary from line
to line. If not stated otherwise, constants depend only on d, p > d, Q, o > 0,
and the potentials introduced in the sequel. We frequently use a scaled version of
Young’s inequality with constant A € (0, 1) by which we mean ab < Aa? +Cbh? /A
fora,b = 0, exponents p,q = 1 with 1/p + 1/¢g = 1, and C > 0 large enough.

Consider an open bounded set Q c R¢ with Lipschitz boundary I := <. Let
I'p, 'y bedisjoint Borel subsets of I such that HA-1 ('p) > 0,andT" =T'pUTl'y,
representing Dirichlet and Neumann parts of the boundary, respectively. For p > d,
we introduce the set of admissible deformations by

Vid := {x})y € WHP(Q;RY): y =id on ['p, det(Vy) > 0in 2, 2.1

and we say that the absolute temperature 6 is admissible if 6 € LL(Q). We also
introduce the space

WP RY) = {y € W2P(@: RY): y = 0on Ip}. 2.2)

Next, we discuss our variational setting. In this regard, let c¢p, Co with 0 < ¢¢ <
Co < oo be some fixed constants.

2.1.1. Mechanical energy and coupling energy The elastic energy We': Vig
— R, is given by

We(y) := /Q We(Vy)dx, (2.3)
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where W¢: GL*(d) — R, is a frame indifferent elastic energy potential with the
usual assumptions in nonlinear elasticity. More precisely, we require that

(W.1) W¢ is continuous and C3 in a neighborhood of SO (d);

(W.2) Frame indifference: W'(QF) = We(F) for all F € GL*(d) and Q €
SO(d);

(W.3) Lower bound: WeI(F) = ¢o(|F|*> + det(F)~4) — Cp for all F € GL*(d),
where ¢ = pp—_dd.

Adopting the concept of 2nd-grade nonsimple materials, see [41,42], we also con-
sider a strain gradient energy term 'H: Vig — Ry, defined as

H(y) = / H(V?y)dx, (2.4)
Q

where its potential H : RIxdxd

(H.1) H is convex and C!;

(H.2) Frame indifference: H(QG) = H(G) forall G € R?*4*d and Q € SO(d);

(H.3) ¢o|GI? < H(G) £ Co(l + |G|P) and |dgH(G)| £ Co|G|P~! for all
G e Rdxdxd.

The mechanical energy M: Yig — Ry is then defined as the sum

M(y) = W) +H). (2.5)

— Ry satisfies

Besides the mechanical energy, we introduce a coupling energy WP': Viq x
L}F(Q) — R given by

WPy, 6) ;:fQWCPI(Vy,e)dx,

where WP': GLT(d) x Ry — R describes mutual interactions of mechanical and

thermal effects (see e.g. [21]), and satisfies

(C.1) W*P!is continuous and C2 in GL*(d) x (0, 00);

(C.2) WPY(QF,0) = WeP(F,0) forall F e GLT(d),0 >0,and Q € SO(d);

(C.3) WPI(F,0) =0forall F e GLt(d);

(C4) |WPN(F,0) — WPHF,0)| < Co(1 + |F| + |F)|[F — F| forall F, F €
GLT(d),and 6 = 0;

(C.5) Forall F € GL*(d) and # > 0 it holds that

Co(1 + |F
2WP(F,0) < Co, |apa WP (F,0) < LD

max{f, 1}
co £ —093WP(F,0) < Co.

Notice that, by (C.3) and the second bound in (C.5), 3z W°P! can be continuously
extended to zero temperatures with dp WePYF, 0) = 0. For F € GL1(d) and
0 = 0, we define the fotal free energy potential

W(F,0) := W(F) + WP(F, 0). (2.6)

We refer to [33, Examples 2.4 and 2.5] for a class of coupling potentials satisfying
all assumptions above.
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2.1.2. Dissipation potential The dissipation functional R : Yig x ng;)p (2; RY) x
LL(Q) — R, is defined as

RY,y—y,0):= /Q R(Vy,Vy — Vy,0)dx, 2.7

where R: R¥*4 xRI*4 xR, — R, is the potential of dissipative forces satisfying

(D.1) R(F, F,0) := $D(C,0)[C,C] := 3C : D(C,0)C, where C := FTF,
C:=FTF + FTF and D € C(RdXd x Ry RIxdxdxdy with Dy =
D,,kl—D/d,jforl <i jkl=d,

(D.2) colCI2 < C: D(C,0)C < Co|CP forall C, € € R and 6 = 0.

sym *

Notice that the fact that R can be written as a function depending on the right
Cauchy-Green tensor C = FT F and its time derivative C is equivalent to dynamic
frame indifference (see also [2]). Condition (D.1) also implies that the viscous stress
0pR(F, F , 0) is linear in the time derivative C asindeed a simple calculation shows
foranyi, j e {l,...,d}:

95, R(F, F,0) = 9, (Fonk Fii + Fuk Fut) (D(C, 0)C),,

= Simkj Fut + 8im8j1 Fui) (D(C, 0)C),,

= Fi(D(C,0)C) ;, + Fi(D(C.6)C),.

where we have used Einstein summation convention for /, m in {1, ,d}, and §;;
denotes the Kronecker symbol. Hence, by the symmetry of D(C, 6) (see (D.1)) and
the arbitrariness of i and j this proves

d:R(F, F,0)=2F(D(C,0)C). (2.8)

The choice of a linear material viscosity is crucial in our approach and is a relevant
modeling assumption for non-activated dissipative processes with rather moderate
rates. We emphasize, however, that the geometrical nonlinearity of finite elasticity
is still present due to € in (2.8), and that 9 - R necessarily also depends on F, even
for constant functions D. We also define the associated dissipation rate & : R4*? x
R4*4 x R, — R, as

E(F,F,0):=3;R(F,F,0): F=2F(D(C,0)C):
F=D(C,0)0C:(FITF+FTF)=2R(F, F,0), (2.9)

where the second identity follows from (2.8), and the third from the symmetries in
(D.1).

2.1.3. Heat conductivity and internal energy ~The map K: Ry — R&*¢ will
denote the heat conductivity tensor of the material in the deformed configura-
tion. We require that K is continuous, symmetric, uniformly positive definite, and
bounded. More precisely, for all § = 0 it holds that

co = K@) = Co, (2.10)
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where the inequalities are meant in the eigenvalue sense. We define the pull-back
K: GL*(d) x Ry — R of K into the reference configuration by (see [33,
2.24))

K(F,0) :=det(F)F'K@)F~T. (2.11)

2.1.4. Internal and total energy The (thermal part of the) internal energy
win: GL1(d) x (0, c0) — R is defined as

WIN(F, 0) := WPLF, 0) — 00y WPY(F, 0). (2.12)

Using (C.3) and the third bound in (C.5), we can easily see that Win can be continu-
ously extended to zero temperatures by setting W (F, 0) = O forall F € GL*(d).
Also by the third bound in (C.5), the internal energy is controlled by the temperature
in the sense that

dWN(F,0) = —002WP(F, 0) € [cg, Co] forall F e GLY(d)and 6 > 0,
(2.13)

which along with (C.3), yields
cof < WIN(F, 0) < Cob. (2.14)

Eventually, the total energy functional £: Yia X LL(Q) — Ry is then given by
E(y,0) == M(y) + W(y,0) with W"(y,0) := / Win(Vy, 0)dx. (2.15)
Q

Remark 2.1. (Comparison to [33]) We close this part on modeling assumptions by
highlighting the differences to the assumptions in [33]: Our condition in (W.3) is
slightly more general than the corresponding one in [33, (2.30a)], where the term
|F|%is replaced by |F|*® for s > 2. We do not assume that WeP! is bounded from
below. Condition (C.3) as well as bounds similar to (C.4)—(C.5) are also required in
[33], see [33, (2.15), (2.30)]. There, the bound on 3¢ WCP! is slightly more general
for 6 near zero, and only an upper bound on the eigenvalues of 8% WEPL(F, 0) is
required, see [33, (2.30c)]. This similarity of the assumptions will in particular allow
us to employ several intermediate steps proven in [33]. For models complying with
the above assumptions we refer to [33, Examples 2.4, 2.5].

2.1.5. Equations of nonlinear thermoviscoelasticity Fixing a finite time hori-
zon T > 0, let us from now on shortly write / := [0, T]. We fix a constant
& € (0, 1] which represents the magnitude of the elastic strain. In the first part
of the paper, we are mainly interested in the large strain setting, where ¢ = 1.
However, later we perform the passage to the small strain limit ¢ — 0. To al-
low for a consistent notation, we include the parameter ¢ throughout the entire
paper. Let ef with f € WhHI(I; L%(Q;R?)) be a time-dependent dead force,
eg with g € Wl’l(I; L2(FN; Rd)) be a boundary traction, and let %6, with
6, € whl(1; Li(r‘)) and o > 0 be an external temperature. We study the coupled
system
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ef = —div(0pW(Vy.0) +0pR(Vy, Vy,0) — div(aGH(v2y))), (2.16a)
—09FWPL(Vy, 0)6 = div(K(Vy, 0)V0) + £(Vy, V3, 0) + 03rg WP (Vy, 0) : V,
(2.16b)

which, as in [33], is complemented with the boundary conditions

(3pW (Vy, 0) +0;R(Vy, Vy,0)v — divs (36 H(V2y)v) =eg on I x Ty,

(2.17a)
y=id onl x I'p, (2.17b)
AGH(V?y): (wv®v)=0 onl xT, (2.17¢)
K(Vy,0)VO - v+ k6 =ke”9, onl xT. (2.17d)

here v denotes the outward pointing unit normalonT" and « = 0is a phenomenologi-
cal heat-transfer coefficient on I'. Moreover, div s represents the surface divergence,
defined by divg(-) = tr(Vs(-)), where tr denotes the trace and Vg := Id—v®@v)V
denotes the surface gradient. We refer to [33, (2.28)—(2.29)] for an explanation and
derivation of the boundary conditions. Note that by (2.9) the system (2.16) indeed
coincides with (1.2)—(1.3). The mechanical evolution (2.16a) is the quasistatic ver-
sion of the Kelvin—Voigt rheological model (neglecting inertia), corresponding to
the sum of the conservative and the dissipative forces. The equation (2.16b) follows
from the entropy equation s = £ —div g, where the entropy s is expressed in terms
of the free energy by s = —3g W = —ds WCP!. Furthermore, the dissipation rate £ is
defined in (2.9) and the heat flux q is modeled by the Fourier law in the deformed
configuration, pulled back to the reference configuration, i.e., ¢ = —/C(F, 6) V6.
The term —6 892 WePl(Vy, 6) corresponds to the heat capacity at constant volume
and the last term in (2.16b) is an adiabatic heat source. We again refer to [33] or
to [25, Section 8.1] for details. Notice that the the purely mechanical stored energy
Wel see (2.3), does not influence the heat production and transfer in (2.16b).

We consider a corresponding initial-value problem, by imposing the initial
conditions

y(0,) =yoe:=id4+eup and 6(0,-) =6, = %o (2.18)
for some 1 € Li (R2) and some ug € Wl%;)p (22; R?). We now define weak solutions
associated to the initial-boundary-value problem (2.16)—(2.18).

Definition 2.2. (Weak solution of the nonlinear system) A couple (y,0): I x Q —
R? xR is called a weak solution to the initial-boundary-value problem (2.16)—(2.18)
if y € L(I; Yig) N H'(I; HY(Q2:; RY)) with (0, ) = yoe, 0 € L'(I; W-1(Q))
with @ = 0 a.e., and if it satisfies the identities

T
/ / A H(V2y):Vv2;
0 Q

+ <8FW(Vy, 0) +8;R(Vy, V7, 9)) . Vzdxdr

T T
=e/ /f-zdxdt—i—e/ / g - zdH4dr (2.19)
0 Q 0 'y
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for any test function z € C*°(I x Q: ]Rd) withz = 0on I x I'p, as well as

T
| [ K@2.0090 - (693, 95.0) + 0 WP(Ty.0) : V) — W(Ty. 0)gaxds
0 Q
T T )
-‘rK/ /awdﬁd”dz:m“/ /a,godﬁd*‘dwr/ WiN(Vyo.e, 00.e) 9(0)dx (2.20)
0 r 0 r Q

for any test function ¢ € C®(I x Q) with ¢(T) = 0.

One can indeed show that sufficiently smooth weak solutions lead to the classical
formulation (2.16) along with the boundary conditions (2.17), see [33]. We refer to
[33, (2.28)—(2.29)] for details on the derivation of (2.16a), particularly how to treat
the boundary terms. For the derivation of (2.16b), one uses standard integration by
parts and the fact that by the definition in (2.12) we have

d . .
a(Wm(vy, 0)) = ap WP (Vy,0) : Vi — 09pg WP (Vy, 0) : Vi — 09FWPL(Vy, 6)f.

Moreover, using test functions with ¢(0) # 0 we obtain win(v v(0),60(0)) =
Wi“(Vyo,g, 6o.¢), and by the strict monotonicity in (2.13) along with y(0) = yo ¢
we conclude 6(0) = 6y .. We emphasize that one can only expect the regularity
Vy e L2(I x Q;R¥*?) and thus £(Vy, Vy,0) € L' (I x Q) by (2.9). Therefore,
(2.16b) can be understood as a heat equation with L!-data. For this, (2.20) is a
standard weak formulation, see e.g. [37].

2.2. Approximation of solutions in the nonlinear setting

In this subsection, we study the nonlinear system and therefore we fix ¢ = 1.
(In the notation, ¢ is still included, as before.) The existence of energy-conserving
weak solutions to (2.16) in the sense of Definition 2.2 has been proven in [33,
Theorem 2.2]. In contrast to this work, we show here that the solutions can be
obtained directly as limits of a staggered time-incremental scheme without using
any additional regularization.

We fix a discrete time step size t € (0, 1]. For the sake of notational clarity,
we assume without a further mention that any T we encounter evenly divides the
time interval [0, T']. Given any sequence (a;);>, it will be useful to introduce the
following notation for discrete differences

ap —daj—1
8rap = ——, leN
T

Our time-discrete staggered scheme is initialized by setting
yO:=yo, and 09 :=6,, 2.21)

where yo . and 0y, are as in (2.18). We then alternate between a mechanical
step, deforming the material while keeping the temperature fixed, and a ther-
mal step, adjusting the temperature distribution inside the material without chang-
ing the deformation. More precisely, suppose that we have already constructed
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Oy e Vg, and 60 65D € L2 () forsome k € {1, ..., T/T).
The next deformation ygk) is a solution of the minimization problem

. N P 5 g
min { M)+ WP (60870 + ZROED. y = 000 — el ),
) id

(2.22)
where

(e, y) = /fo“‘) Sydx + [F gl - ydnd-! (2.23)
N

for £ .= 1 (],iil)r F(t)dt and g 1= ¢! f(],il)r g(t)dt. We define the k-th

temperature step Qf(k) as a solution of the minimization problem

0
1, . .
min {f/ —(Wm(Vygk),s)—Wm(Vygkfl),HT(k*l)))dsdx
veHl@ LJaJo T

1
+ / SV K(vy&=D 9*k=Dyvgdx
Q

_ _ K _
- / R R / 0 — 052 dn! 1},
Q r
(2.24)

where /i, plays the role of a heat source given by

he (0, yE70, 057Y)
= ap WPL(Vy &=l o=y 5. vy® 4 g (vy®=D 5, vy® ok-D) (2.25)

and o = % (]]ir_l)r 0, (¢)dt. The underlying idea is that the Euler—Lagrange equa-

tions bé;sociated to (2.22) and (2.24) lead to time-discretized variants of the equa-
tions (2.16), see (3.7) and (3.11) below. Supposing that the steps yﬁo) e ygT/ 9
and 67(0), e, GT(T/ 9 as described above exist, we define interpolations as fol-
lows: for k € {0.....T/t}, we let (k1) = y_(k1) = Jr(kr) := y{" and
fort € ((k — )T, k1)

(k) (k=1)

_ . kt —t o t—(k—1Dt
Vo) i=y®, y )= yE, $() = ——yE Y ———— .

T
(2.26)

A similar notation is employed for y_, Y. and y,. We now formulate our first main
result concerning the convergence of solutions to the staggered scheme towards a
weak solution of (2.16)—(2.18).

Theorem 2.3. (Staggered time-incremental scheme and convergence to solutions)
Given any T > O there exists Ty € (0, 1] such that for any t € (0, 1) the following
holds:

1 and 60 .. 6110

(i) (Existence of the scheme) The sequences ygo), e and

satisfying (2.21), (2.22), and (2.24) exist.
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(ii) (Convergence to solutions) There exist y € L*°(I; Yia) N HY(I: H' (; R?))
and 0 € LY(I; WH-Y(Q)) such that the couple (y, 0) is a weak solution to
(2.16)—(2.18) in the sense of Definition 2.2, and up to selecting a subsequence,
it holds that

$r — yin L9 W (@ RY)) and $¢ — e strongly in L2(I; H' (Q; R?)),
(2.27)

0 —> 0in LS(I x Q) and 6 — 0 weakly in L' (I; W7 (Q)) (2.28)
ast — 0 foranyr €[l d%2y gnd s € [1, ddiz). The same holds true if we

> d+1
replace y by y, or Y. in the first part of (2.27), and 6; by 0, or 0. in (2.28).

Let us mention that the proof shows that weak solutions satisfy a total energy
balance of the form

d .
aé‘(y,@):e/gf—ydx—i—s/

g ydH —« / 6 — £%6,)dH!,
I'ny r

i.e., the total energy is conserved up to the work of the external loadings and the
heat flux through I'.

Remark 2.4. (Difference to scheme in [33]) The scheme has several differences
to the one considered in [33, (4.5)—(4.7)]. On the one hand, both steps in [33]
are suitably regularized. More precisely, in (2.22) an additional dissipative term

||V y—V y(k D)2 11 2@ is considered, where A > 0 is a regularization parameter
(called ¢ there), and in (2.24) the dissipation rate & is replaced by a smoothly
truncated version ; —E)»E On the other hand, the term 9 WP (V yik_l) Qf(k_l)) 6 in

(2.24)—(2.25) is replaced by the more involved term f dp WePL(v y(k) s)ds. One of
the main novelties in the present work is that the same result on existence and time-
discrete approximations is achieved for the simpler, explicit, thermo-mechanical
coupling term 9 WP (V ygk_l), Qr(k_l)) and without regularizing terms.

2.3. Passage to linearized thermoviscoelasticity

We are now interested in the passage to a small strain regime ¢ — 0. This is
induced by small external loading, boundary traction, and external temperature as
& — 0, see (2.16a) and the boundary conditions in (2.17). In a similar fashion, we
suppose that the initial values are small when ¢ is small, see (2.18). At this point,
we additionally require that

(WA4) WEL(F) > ¢odist?(F, SO(d)) for all F € GL*(d), and W'(F) = 0 if
F e SO();

(H.4) H(0) = 0;

(C.6) The heat capacity cy(F,0) := —032WP(F,0) for F € GL*(d) and
6 > 0 as well as 9 W' can be continuously extended to GLT (d) x Ry;

(C.7) Forall F € GLT(d) and 6 > 0 it holds that 35 pg WPL(F, 9) < —01}
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In order to ensure the compatibility of (W.4) with (W.3), we assume Cy = co(d +1)
from now on. We write the equations (2.16) and the boundary conditions (2.17)
equivalently in terms of the rescaled displacement field u = ¢~'(y — id) and the
rescaled temperature i = ¢~%0. Then, for o € [1, 2], rescaling the equations by
¢~ and e, respectively, and letting ¢ — 0 we obtain, at least formally, the system

—div (Cwe() + Cpe(i) + B u) = f,
Gy — div(KoVi) = CWe(w) : (i), (2.29)

along with the boundary conditions

u=0onI xTIp,

(Cwe(u) + Cpe(it) —|—]B%(a)u)v =gonl xTy, KoVu-v+kpw=«6onlxT
(2.30)

and the initial conditions

u(0) = ug, ©(0) = uo. (2.31)

Here, e(u) := %(Vu + (Vu)T) denotes the linear strain tensor, and the tensors of
elasticity and viscosity coefficients are defined by

Cw = 9z W (Id), Cp :=0:R(Id,0,0) =4D(Id,0). (2.32)

Moreover, the heat conductivity tensor and the heat capacity (see also (C.6)) at zero
temperature and the natural material state are given by

Ko := K(0), ¢y := cy(Id,0). (2.33)

Eventually, we have the «-dependent quantities

B@ —

9 Pl(1d, 0) ifa =1 if 1,2
roW?P(1d, 0) ifa C(o{)_{o ifa €[1,2) (2.34)

0 ifae(,21” P |Cp ifa=2,

where B@ plays the role of a thermal expansion matrix. Notice that in the formal
analysis above the elasticity tensor does not depend on the coupling potential. This
is due to the fact that 3 WP!(Id, 0) = 0, see (C.3).

Although the nonlinear system is given for a nonsimple material, in the limit
we obtain equations without spatial gradients of e(u). This is a consequence of
the growth conditions in (H.3). Moreover, there is an interesting decoupling effect
due to the different scaling of coupling terms in the mechanical and the heat-
transfer equation, expressed in terms of the o-dependent quantities in (2.34). This
computation also shows why we restrict to the range « € [1, 2]. Indeed, formally,
we would have B = +o0 for @ < 1 while (C(g) = +o0 for o > 2.

The second main goal of this article is to show that the above formal linearization
can be made rigorous. In the case « € [1, 2), our analysis requires a regularization
of the thermal evolution. More precisely, we define the k-th thermal step through

(2.24) with £ replaced by & ¢, (2.24,)
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where

(2.35)

o L

. {s ife <1,

- £%/2 else.

Due to the different scaling of the mechanical and the heat-transfer equation, the
existence of a solution to the scheme is more delicate for ¢ small and @ # 2. More
specifically, we need higher integrability of Wi defined in (2.12) in L?/* which can
be guaranteed by the choice in (2.35). We refer to Sect. 3.3 below for details. We
also emphasize that for @ = 2 no regularization is applied as &, © = £. A similar
result as Theorem 2.3 holds true in the regularized setting.

Proposition 2.5. (Vanishing time-discretization in the regularized nonlinear set-

ting) Given any T > O there exists &g, to € (0, 1] such that for any t € (0, 79) and

g € (0, go) the following holds:

(i) (Existence of the scheme) The sequences yé% A yé,Tf/ Y and 95(91) e S(Tf/ 2

satisfying (2.21), (2.22), and (2.24) exist.

(i) (Convergence to solutions) The convergences (2.27)—(2.28) towards a limit
(Ve, O¢) hold true for the interpolations of the steps from (i). Here (y., 6;) is a
weak solution to the system in a sense similar to Definition 2.2, namely (2.19)
is satisfied and (2.20) holds with & replaced by £3®.

We will prove that (2.29) admits a unique weak solution and that solutions of
the above described regularization guaranteed by Proposition 2.5(ii) converge to
the solution of (2.29) in a suitable sense. Setting

HL (R = {ue H' (Q:R)):u=00nTp} (2.36)
we have the following definition of weak solutions for the linearized system:

Definition 2.6. (Weak solution of the linearized system) A couple (u, p): I X2 —
RY x R is called a weak solution to the initial-boundary-value problem (2.29)—(2.31)
ifu e H'(I; HY (2 RY)) with u(0, ) = uo, w € L'(1; WH(Q)) with = 0
a.e., and if it satisfies the identities

T
/ / (Cwe(u) + Cpe(n) + MIB%(“)) . Vzdxds
0o Ja

T T
= f / f - zdxdr + / / g - zdHtdr (2.37)
0 Ja 0 Jry

forany z € C®(I x Q; RY) withz =0on I x I'p, as well as
T
/ / KV - Vo — CWei) : e(ii)p — éypgdxds + K/ ppdHAdr
0 Q r
=K / 6,dH " dr + ¢y / wo@(0)dx (2.38)
r Q

for any ¢ € C®(I x Q) with ¢(T) = 0.
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Indeed, it is a standard matter to check that sufficiently smooth weak solu-
tions lead to the classical formulation (2.29). Next, we state the relation between
time-continuous or time-discrete solutions of the nonlinear system and solutions to
(2.29)—(2.31).

Theorem 2.7. (Passage to linearized thermoviscoelasticity) Under the above as-
sumptions we have:

(i) There exists a unique weak solution (u, ) to (2.29)—(2.31) in the sense of
Definition 2.6.
(ii) Givenany sequence (&x )y converging to zero and any sequence of weak solutions
(Yey» Og,) given by Proposition 2.5 (i1), the functions ug, = sk_] (v, — id) and
Ui = & *Og, satisfy
e, — win L®(I; H' (1 RY)), iy — win L>(I; H' (Q: RY)),
e, = win LS(I x Q), ug — pweakly in L™ (1 wbhr(Q))
M).

v d+1
(iii) Given sequences (gx )k, (Tk)x converging to zero and any sequence (y, ,, 0. 7,)

foranys € [1, ‘ldiz) andr € [1

of time-discrete solutions given by Proposition 2.5(i), uy := &, ! Ve r — id)
and 1y, = &, %0y o, satisfy

g — win L°(; H (Q RY), iy — win L2(I; H' (2 RY)),
Qe — win LS(I x Q), [u — wweakly in L (I; W ()

forany s € [1, ddiz) andr € [1, z—ﬁ). Apart from the convergence of zik, the

same holds true if we replace Y¢, o, by Vg, 1, or Yoo and égk,tk by 0.z, OF

B

0¢,.7,» and consider the corresponding rescaled quantities.

Note particularly that we obtain strong convergence of strains and strain rates.
Finally, we study the relation between the time-discrete solutions in the nonlinear
and the linear setting, as well as the convergence of time-discrete solutions in the
linearized setting under vanishing time-discretization.

Theorem 2.8. (Passage to linearized thermoviscoelasticity, time-discrete solutions)
The following properties hold:

(1) Let t be sufficiently small. For every k € {1,...,T/t} we have as ¢ — 0
1 1
f(yg? —id) — u(rk) strongly in H! (€2 Rd), —a@é’kr) — ,ugk) weakly in Wl‘r(Q)
€ €
(2.39)
d+2 (k)

foranyr € [1, T57), where ur is uniquely determined by

/ (Cwe®) + Cpe(d:u®) + p¢=DB@) : Vzdx — (¢%, z) = 0 (2.40)
Q
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forall 7 € Hlln (Q; RY) and u,gk) is uniquely determined by
/Q (5v5,u§"> — CWe(8,u®)y : e(arugm))godx
/ KoVu® - Vodx + « / 1 — 6N pand=1 =0 (2.41)

forall ¢ € C®(Q), where SIuT = (u(fk) — ugk 1))/1: and Sfu(k) = (u 2") —
(k 1)) /r
(ii) leen (uf ))k and (,ugk))k from (i), define i, and [i, similarly to (2.26). Then,
iy — win L®(I; HY(Q: RY), iy — i in L2(I; H'(Q; RY)),
fr— pwin L(I x ), Qi — pweakly in L (I; W' (Q)) (2.42)
ast — O foranys € [1, ddi) andr € [1, %), where (u, i) is the unique
weak solution of (2.29)—(2.31) in the sense of Definition 2.6. Apart from the time
derivative, the convergences in (2.42) also hold for the other interpolations.
Remark 2.9. (Variational structure in the time-discrete linear setting) With regard to

Theorem 2.8, we can in fact show that ugk) is the unique solution of the minimization
problem

argminueHl L (RY)
{ / (Cwe) + pn*DB@) : e(u)dx

+ 52 / Cpe(u —u* =Dy : e — u*Vydx — (¢W, u)}
Q

(k

and for o € [1, 2) that the nonnegative function fi7 ) is the unique solution of the

minimization problem

argmlnueHl(Q)

{ f(,,, kD)2 — /(C(D"‘)e(arugm):e(afug"))u

2

From the a priori bounds in the nonlinear setting, we will be only able to prove that
(CDe(STugk) ) : e(STM(k)) e LY(Q). Consequently, the functional in (2.43) might
not be well-defined on H' () for « = 2. Nevertheless, for sufficiently smooth I,
smooth functions f and 6,, and I'p = T, it follows by elliptic regularity theory
that Cpe(S;u'®) : e(8,u) € L2(Q). In this case, 1 is a minimizer of (2.43)
also for o = 2.

+ Kow Vudx + =~ f (1 — egkg)zdx} (2.43)

Section 3 is devoted to existence of the staggered time-incremental scheme
leading to Theorem 2.3(i) and Proposition 2.5(i). Then, in Sect. 4 we pass to the
limit T — 0 and show Theorem 2.3(ii) and Proposition 2.5(ii). Eventually, in Sect. 5
we address the limit ¢ — 0 and prove Theorems 2.7 and 2.8.
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3. Staggered Time-Incremental Scheme

This section is devoted to the analysis of the staggered time-incremental scheme
described in the previous section. Let us start with some fundamental auxiliary
results.

Lemma 3.1. (A priori estimates, positivity of determinant) Given M > O there
exists a constant Cyy > 0 such that for all y € YVig with M(y) £ M (where M is
defined in (2.5)) it holds that

Iyllwzr o) = Cwm, Iyllcti-a/n(q) = Cwm,

_ 1
IOV Met-amgy < Cu. det(Vy) 2 o e 3.1)

If W additionally satisfies (W.4), there exists a universal constant C and a constant
Cyy > Owith Cy; — 0as M — 0 such that

ly —id]l g1y < Clldist(Vy, SO@))l 20 (3.2)
ly — il 1000 < Chy- (3.3)

Proof. For a proof of the first part we refer to [33, Theorem 3.1] relying on a result
in [22]. The second part can be found in [19, Lemma 4.2], where Z;M therein
simply corresponds to M(y) < M§2. O

Lemma 3.2. (Generalized Korn’s inequality) Given M > 0 there exists a constant
cy > 0 such that for all v € HllD (2 RY) and y € Yiq with M(y) < M it holds
that

2
/Q|*|<Vv>TVy+(Vy>TW dx 2 cu ol 0)-

Proof. The statement can be found in [33, Corollary 3.4], relying on the result in
[36]. m]

Lemma 3.3. (Heat conductivity) Forany M > O there exist constants cpy;, Cpr > 0
such that for y € Yiq satisfying M(y) < M and 6 € L' () we have that KK(Vy, 0)
is well-defined and

cm S K(Vy,0) = Cy. (3.4

Proof. By Lemma 3.1 we see that (Vy(x))~! exists for every x € Q which shows
the well-definedness of KC(Vy, 0), see (2.11). The bound in (3.4) is a direct conse-
quence of the latter three estimates in (3.1) combined with (2.10). m|

Lemma 3.4. (Estimate on coupling potential) For all F € GL™(d) and 6 = 0 it
holds that

10 WPLE, )] £ 2Co(6 A 1)(1 + |F)). (3.5)
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Proof. We start by proving (3.5) for® < 1. To this end, we use that 3 WP (F, 0) =
0 (see (C.3) and comments thereafter), (C.5), and apply the Fundamental Theorem
of Calculus to get that

0
|0 WPL(F, 0)| = ’apwcpl(F, 0) + / dpo WP (F, s)ds
0
0
< / 10 WP (F, 5)ds
0
]
< Co(l + |F|)f max{s, 1}7'ds = Cof(1 + | F).
0

On the other hand, for & = 1, we use (C.4) in the limit F — F to find
|0F WPL(F, )| < Co(1 4 2|F|) for every F € GLt(d). O

3.1. Existence of solutions to time-discretized schemes

In this subsection, we show that for T € (0, 7p] a single time step of the stag-
gered time-discretization scheme introduced in (2.22)—(2.24) is well-defined. The
parameter 7 in principle depends on a bound of the mechanical energy of previous
deformations, but we stress that a posteriori 7y can be chosen independently of the
step. Here, we treat the case « = 2 and ¢ € (0, 1] postponing necessary adaptions
fora < 2toSect. 3.3 below. We assume the same set-up of Sect. 2.2. More precisely,
consider initial steps yéf)f) ‘= Y0.e € Vid and@é?,) =6, € L%r(SZ) with yo . and 6p ¢
asin (2.18). Further, let f € Wh1(1; L2(€: R?)), g € WhI(I; L3(Ty; RY)), 6, €
whl; Li(l")),andforeachk ef{l,...,T/t} letégk) be asin (2.23). Suppose that

we have already constructed yé?,), R yg({(,_ De Yia and 95(?2 e, Géf(,_l) € Li(Q)

for some k € {1, ..., T/t}. (We always add an index ¢ for clarification.) We first
investigate the existence of the k-th mechanical step.

Proposition 3.5. (Mechanical step) For any M > 0 there exists to € (0, 1] such
that if k € {1,...,T/t}, T € (0, 1)), and M(yé{cfl)) < M the minimization
problem (2.22) is well-posed, i.e.,

. I P e
min { M)+ WP (3,050 + —ROED y =300l —se )

y€id

(3.6)
attains a solution. Furthermore, such a minimizer yékf) solves the corresponding
Euler—Lagrange equation, i.e., it holds for all 7 € ng,Dp (2; Rd) (see (2.2)) that

/ (OrW VYR, 07 + 0 ROVYETD, 8.9y, 007) -
Q

Vz+dgH(V2y®):vizdx —e(¢®, 2) = 0. (3.7)

Proof. We provide the proof for the coercivity in W7 (2; R4). The remaining
argument coincides with the one in [33, Proposition 4.1], and we only include a
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brief sketch for convenience of the reader. Let us shortly write y := yg{; D and

6 = Og(,kf_l). Let (y»)» C Yia be a minimizing sequence for the problem in (3.6).

Using y as a competitor we can, without loss of generality, assume that foralln € N

- 1 5 o~ 5 o~ 5
M) +WP (y,, D)+ —REG. 3= 0)—e (P, y,) £ MGHAWPF, 6)—e (e 3)
and therefore

| o - ~ JU -
M)+ R, yu = 5,0) £ MG + WP, 0) = W, O +2l(67, yn = 5)1.
(3.8)

By Lemma 3.2 and (D.2) there exists ¢y > 0 (only depending on M) such that

1 B o~ cM -
~RG, yn — 5,0) = —f |Vyn — V5|*dx.
T T Q

By (3.5), the Fundamental Theorem of Calculus, Young’s inequality with constant
cm/(2t), and (W.3) we derive

WPy, B) — WP, )| < 2C /Q(é ADA+ Vyal + IVIDIVyy — V3|dx
< CMt/ @ A 1)2(1 +2Cocy " 4 ey ' W (Vy,) + co_lWel(ij)>dx
Q

C ~
+—M/|Vyn—Vy|2dx
4‘L’ Q

m

< Cut (10 A UG g) + WS Om) + W) +

/ IVy, — V5|2dx
Q

for Cy, sufficiently large depending on M and cg. By using Poincaré’s inequality,
the trace estimate on the bulk and surface term, respectively, and Young’s inequality
with constant cj; /(4Cte) we derive that

el u =5 =] [ 5 ou =+ [ gb-on - sani
N

< Ce(IfH Nl 2 + 185 20y ) I VIn — V3l 12

M -
< Cuee? (1F7 12y + 185 122y ) + 5 190 = V32 -

Combining the aforementioned estimates with (3.8), and using M > W¢ we get
that

M -
(1= CuIMG) + 2 1Vyn = Vil

< (4 CuDME) + Cytl6 AT + 1 12 + 2181 2y -
(3.9
For 79 sufficiently small such that Cyyt9 < 1/2, Lemma 3.1 then shows the

desired coercivity in WZ’P(Q; Rd). The functional is weakly lower semicontin-
uous on W2P(Q; RY) by the convexity of H, see (H.1), the compact embedding
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WP (€ RY) ¢ Wh°(Q; RY), and the continuity of W, WPl and R. This proves
the existence of a minimizer.

For the derivation of the Euler—Lagrange equation, we recall the definitions in
(2.4)—(2.6). The treatment of the convex term H is standard by (H.3) and (H.1). The
Gateaux differentiability of the other terms relies on the uniform bound on gradients
and the control on the determinant, see (3.1). We refer also to [33, Proposition 3.2].
O

From the previous proof, we directly deduce

Lemma 3.6. (Bound on mechanical energy and dissipation) For any M > 0 there
exist constants ¢y, Cyr > 0 and vy € (0, 1] such that ifk € {1,...,T/t}, T €
0, 70), and M(y*7 V) < M it holds that

MGE) + emtlls VI g
< A+ CuoMOED) + et (16870 AT g
+ 1PN a ) + 18012, ) (3.10)

Proof Let Cys as in (3.9). For 19 sufficiently small with respect to Cys we derive
Sproryrs C - = < 14 2Cyrt forall T € (0, 79). Dividing (3.9) (for y in place of y,) by
1-€ M T we get the desired estimate, up to changing the constants Cy and cpy. O

Remark 3.7. By 1 As < \/sfors 2 0,(2.14), (2.15), by the definition below (2.23),
and by a standard application of Holder’s inequality, we deduce from (3.10) that

</\/l(yk 1>)+CM(r5(y(k D08 + 21 f 170wy + €181 210y

k _ 2
In fact, we have ||f()||L2(Q) = 2|/ e f (1 x)dr|dx

1 fo Il f (@ ||L2(Q)dt and a similar computation holds for g.

In the next lemma we discuss the well-definedness of the thermal step.

Proposition 3.8. (Thermal step) For any M > O there exists Ty € (0, 1] such that
if the minimizer given by Proposition 3.5 exists, T € (O 70), and ./\/l(yékr 1)) <M
the minimization problem (2.24) is well-posed on H (SZ). More precisely,

T(6) _f/ (Wi vy®), sy — win(vydoD o*=Dy)dsdx
2/ Vo - K(vydD o* D) vedx

K k
- / he (9. 387D, 617 D)0dx + 2 / 0 — £20/)2dn ™!
Q r
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is finite on HY(Q) and attains a unique minimizer Gg(kr) on H}F(Q). Moreover, 98(1?
satisfies

w) — w7
/ <— T — WP (Vy kD gk
Q

. » Vet

€, e,7° Ve, T

8:Vy®) —e(vyk D 5. vy) 9<"“>)¢dx

— — k —
+ /Q Kvy*D, 6% D)yve®) . vodx + « /F 6% — 20 pdH? =0
(.11)

for any ¢ € H'(Q), where, for brevity, wgffl) = Wi“(Vyg{;]), Qe(f{;])) and
k)

wl = winvyl, o).

Remarkably, the nonnegativity constraint in the minimization problem (2.24)
does not influence the stationarity condition (3.11). We also emphasize that in
contrast to [33] we can ensure uniqueness of the minimizer. This is due to the fact
that we use a simpler (explicit) thermo-mechanical coupling term in the scheme;
see Remark 2.4 for details.

Proof. Step I (Finiteness) We start by showing that all terms of 7 are well-defined
and integrable. First, by (2.14) we find that

£,17

6 .
/ win(vy®) s)ds e (262, 6% (3.12)
0

and fg wélfr_l)ds < C()QGE(,]CT_U a.e. on €, which both lie in L1 () by Holder’s
inequality. By Lemma 3.3, K(V yé{‘,_ 1), 9;{‘;1)) is well-defined in €2, and the cor-
responding termin 7 is integrable. Finally, by (3.5), (D.2), (2.9), and the second esti-
mate in (3.1) we get that the term h; defined in (2.25) satisfies
he &), yE7D 0% 7Dy € L(Q), i.e., the third term is also well-defined. This
completes the proof of the well-definedness of 7.

Step 2 (Existence) The functional is coercive on Hi(Q) due to foe
Wwin(vy), s)ds = 262 by (3.12), the estimate V6 - K(Vyes P, 08 Vyve >
cm|VO|? by (3.4), and the fact that all other terms are either nonnegative or linear
in 6. Moreover, the functional is weakly lower semicontinuous on H _ilr(Q). To see
this, we again use (3.4), the weak continuity of the trace operator in H 1(Q), and
the fact that all other bulk terms are continuous in L>($2) by the reasoning in Step
1. This shows that a minimizer Gg(k,) exists.

Step 3 (Euler—Lagrange equation) In order to prove (3.11) for test functions ¢ €
H(2) which are not constrained to be nonnegative, we extend the minimization
problem (2.24) to possibly negative functions # € H'($2) and we show that Gg(k,)
minimizes 7 on H' (£2). To this end, recalling that Wi“(F, 0) =0for F € GLT(d)
(see below (2.12)), we continuously extend win to negative temperatures by setting
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W(F, 0) = 0for6 < 0.Itnow suffices to check that there exists a constantcp; > 0
such that for all & € H' () it holds that

T0) =T+ 2 ||V9_||L2 (3.13)

(€)’
where ™ := max{—6, 0} and " := max{0, 0},i.e.,0 = 6T —6~. This guarantees
that minimizers of 7 are nonnegative, and because 7 is strictly convex (to see this,

use (2.13)), G(k) is its unique minimizer on H' (). Once this is achieved, in view
of (2.25) and (3.12), by taking first variations it is a standard matter to check that
(3.11) holds true.

Hence, it remains to prove (3.13). First, as Qb(kr) >0 He1ae. on T, we find
that

/ @ — 20" ))2and =" > / Ot — 20" ))2an 1. (3.14)
r

Next, by using (3.4) we see that

1 _ | _ 1 _
7/ ve - ki I)Védxsz vot . ks ”v9+dx+—/ vo~ - K¢ Dve—dx
2 Ja ' 2 Ja ' 2 Jq ’

1 _ ~
> ff vot .k ”ve+dx+°—M/ Vo~ 2dx,  (3.15)
2 Jq ' 2 Ja

where for brevity we have set IC(k b = K(V yékr b Gg(,kr_ 1)). Moreover, fora.e. x €
© we have that

0(x) | 0t(x) .
win(vy® g)ds > / win(vy®  s)ds. (3.16)
0

e,1T° e,17°

0

This follows from Win(F, s) =O0forall (F,s) € GLT(d) x (—o0, 0). Eventually,
we consider the terms involving A, and wgf,_ DAt this point, our argument for
proving nonnegativity of the temperature is more delicate compared to [33] as we
use the backward approximation 6’5(,](,_1), see Remark 2.4. By (C.2) there exists a
function WeP! such that WP (F, ) = WI(C, 6) with C = FT F. Clearly, d¢c WeP!
is symmetric which implies with the chain rule that

dIrWP(F, ) = F(dc WP(C, 8) + (Bc WP (C,0)T) = 2FacWP(C, 6).
(3.17)

By Lemma 3.1, V ys ; Yis invertible at every point in 2. Hence, setting C; ¢ (k D=

(Vy(k 1))TVy(k b , we derive, by the second and third bound in (3.1), (3.5), (3.17),
and the fact that t A 1 < /7 for all + > 0, that

|3 Wepl( C(k 1 e(k 1))| 2‘(Vy§k D)= laFchl(Vyék D gk— 1)))

Ve T

< 2Col(Vy* D) TH@% Y A DA+ V&) S ey /el (318)
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for Cy; > O sufficiently large. Let us further define Cg = (6¢ Vy(k))TV yé{‘; D +
(Vyék 1))T81Vy(k) By the symmetry of dc WeP! we have for all F € GL*(d),
G e R and6 >0

FacWP(C,0): G =dcWPN(C,0): FTG=03cWPN(C,0):GTF

where, again, C := FT F. We now use this identity with F = Vy(k Dand G =

1) Vy(k) By (2.14),(3.17), (3.18), and Young’s inequality with constant 7 it follows
that

0 W@yl 0l D) s vyl = 2wyl Dacwerl D ol D) 1 5. vy

(k—l)
= lac WV 0Dy e < eyl e £ TR 1 cric .

Choosing 1 sufficiently small such that Cc? 370 < ¢p, we derive by (D.1), (D.2),
and (2.9) for all t € (0, tp) that
(k 1)
aFWCPI(Vy(k D k- 1)) 5rvy(k) > 8T E(vy(k 1) 5rvy(k) gk~ 1))
T

1 Ve T &,T = E,T°7ET

(3.19)

(k=1 k) k=D Gg(k 1)) 0 a.e. on Q. From this we

This shows 7~ wg T )+ he(Ye.z, ys T
deduce that

(k=1)
w
= (P 8. o
Q T
(k=1)

z_/Q(w”

Combining the estimates (3.14)—(3.20) leads to (3.13), which concludes the proof.
O

+he R,y &P 0 1>)) 0t dx. (3.20)

Remark 3.9. (Nonnegativity of temperature without dissipation rate) To derive es-
timate (3.19), it was essential that £ (F, F,0) = ¢|FT F + FT F|4 for some ¢ > 1
. The pointwise nonnegativity can still be established only under the assumption
that & = 0, at the expense of assuming that ./\/l(y;kr 1)) < npand M(yé{(t)) < p for
some 7 sufficiently small, and that W additionally satisfies (W.4). Indeed, in this
case we can show that
wkD

ST

T

a.e. in , which, along with & = 0, implies (3.20). To see this, by (2.14), (3.3), and
(3.5), we can estimate that

|3FWCP1(V)’ékr D glk- 1)) S Vy(k)| < ZCOGE({(T—I)(I + |Vy§kt 1)|)|5rvy(k)|

* Ve, T
2C 20*
< 20 &0 4 1)+ ¢ =2
co T

WP (Vy koD gk 5 vy > - 3.21)

Since C;7k — 0asn — 0, (3.21) indeed follows for 1 small enough. This property
will be exploited in the adaptions to the case « < 2 in Sect. 3.3 below.
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For any yékg and 6?5(’? as given in this subsection, we define from now on

w) = win(vy®) o).

e,70 Ve, T

3.2. Well-definedness of the scheme

For fixed time horizon 7 > 0 and time step t € (0, 1] small enough, we
will now prove the well-definedness of the staggered time-discretization scheme
described in the previous subsection. In this part, we are interested in the large-
strain setting, and treat the case ¢ = 1 and & = 2, where £ is not regularized. For
later purposes, we again include ¢ in the estimates. (The reader only interested in
large strains, can readily set e = 1.) As before, we assume for the sake of simplicity
that 7/t is an integer. Although not being necessary, for convenience we suppose
that (W.4) holds. At the end of the subsection, we briefly indicate the changes if
(W.4) is not assumed.

We start with a bound on the total energy £ defined in (2.15). We also need
to take the work of the external forces into account. To this end, similarly to the
notation in (2.23), we consider, for each 1 € I, the functionals £(r) on H!(€2; R?)
defined by

(), v) = / f(@) - vdx + / g(t) - vdH4! (3.22)
Q 'y
forallv e HY(Q; Rd). Furthermore, we define
Cf’g = ”f”Wl'l(I;LZ(Q)) + ”g”Wl'l(I;LZ(FN))' (323)
Note that the trace estimate in H!($; Rd) shows that
IOl g-1 = C(ILFOll2@) + 12D z2qry))

and, hence, by the Fundamental Theorem of Calculus in whi(r; L2()) and
WU, L2(T'y)) we get that

€@ g1 = CrCypyg (3.24)
for a constant Cr only depending on 7. Given the sequences yé% e, yékf) and
95(?1), e, Gg(k,) for some k € {1, ..., T/t}, as described in Sect. 3.1, we define, for
1e€{0,...,k},

FO =P 000 —etedn), y{). —ia), (3.25)

and observe the following relation between F ) and the total energy &£ (yg)r, 98(1% :

Lemma 3.10. There exists a constant Ct > 0 only depending on T such that for
alll € {0, ..., k}withk € {1,...,T/t} it holds that
eledo), yh —id)| < min{FD, G, 00} + £2Cr €3

R ARCN 4 r.e

with C ¢ as defined in (3.23).
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Proof. By yél)r € )id, Poincaré’s inequality, (3.2), and (W.4) we derive that

Iy =131 ) = CIVYS —1d]72 g, < OO,

Hence, by (3.24) and Young’s inequality with constant A /& (to be chosen below) it
follows that

[(edry, y&O —id)| < a0l g1y —idll g1 o

§CTCfg||y”—ld||Hl(Q)
CTE .

< =—Ci, —||y<” idll}1 g,
CTS

S -G+ 0 2ol o).

Now, take A small enough such that CA § . Then, by the definition of F® we
discover that

FO =G0, 00) —elto), y¥) —id) 2

E,T7 VE,T E,T7 VE,T

e 0y —2Cr i,

N =

and the statement follows. O

We now proceed with the bound on the total energy. For definiteness, we set
£(t)=0fort ¢ I.
Lemma 3.11. (Inductive bound on the total energy) For any M > O there exist
Cy such that, if the sequences yg(f),), e, yékr) and 93(,02 e ékr) , as described in
Sect. 3.1, forsomek € {1, ..., T/t}exist satisfying FO < M foralll =0, ... k—
1 with FO defined in (3.25), it holds that

k
FOLFO Lyt +2Cr(1+C)+C Y FO
=0
It
x / (IO N1 + 166+ D)l 1 )dr
kr
+ ke / / f,dHdt, (3.26)
where C is a universal constant, Ct a constant only depending on T, and
Vi = Z f 16:Vy () 2dx. (3.27)

Proof. Step I Letus fix [ € {1,. k} Using Proposition 3.5 for [ in place of k,
(2.9), and testing (3.7) with z = SI y )it follows that

0= /BFW(Vyg)r,Qg(lrl)) 8:VyL + g H(Vy{)s, vy D dx

f (V7Y 5,950 607 D)dx — e (6D 5,y D). (3.28)
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Similarly, using Proposition 3.8 for / in place of k we test (3.11) with ¢ = 1 to
obtain

o—f sewl) — apwel(vyloD o=y s vy
/g(Vy“ D 5, vyl 6z 1>)dx+;</(9§{; 26 )an=!. (3.29)
r

Adding (3.28) to (3.29), multiplying by t, and eventually summing over / =
1, ..., k we discover that

k
/"’Osdx—fz</ arwel(vyh) - Bny(l)dx+/ agH(V2y{yis, vy (”dx)
=1

=

+TZ/ (e @y 007D) — ap W wyTD 0070) 5, vy D dx

k
- ‘L’K/(829(l) —0yan? = 4 e 5,y ))+/ wdx,
Q
=1
(3.30)

where wg 1= Wi"(Vyo,s, 0o.s). Here, we also used that W = wel + werl,

Step 2 We continue by bounding the first two sums on the right-hand side of
(3.30) from below. By the convexity of H (see (H.1)) it follows for / € {1, ..., k}
that

HV{TD) 2 HV) + a6 H(V )iV D = v,

Integrating the above inequality over €2 and summing over/ = 1, ..., k leads to

TZ / I H(V2y D)8V yhdxe =2 H(YW) = H(yoe), (331)

where we recall the notation in (2.4). By using the piecewise affine function y, ;
introduced in (2.26), and that W*¢! is Gateaux differentiable (see [33, Proposition
3.2]) we get that

/ /apwe (V3er (1)) 8:Vy L dxdt
(-t

kt
= [ [ 0r W95 < Vi wsr = W) — WG,
(3.32)
For 1 sufficiently small, we can apply Lemma 3.6 in the version of Remark 3.7.

This along with Lemma 3.10, FO < M forl € {0, ..., k — 1}, and (3.23) implies
foralll € {1, ..., k} that
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I -1 -1 -1
MOL) MO+ m (€T 08T + 21113 wqy + 718172y )

<2(14 Cp)F=D 4+ cMechC%g <2014 Cp)M + CMechc%g.

Together with Lemma 3.1 we get that there exists a compact convex set K, only

dependingon M, T, f, and g, such that Vyé{)r € Kae.onQforalll € {0,...,k}.
Then, by the regularity of W¢, setting Cp := SUPpck|OFF Wel(F)|, we can esti-
mate forany 7 € [(I — 1)t,Ir] with] € {1, ..., k} that

~ )
10F W (V56,0 (1) — 0 W (Vyh)

. i It —1t i -1 i -1
< CplVier(t) — vy = chWyé} — T < epvyl = vy TP

Consequently, we get

It
/(I ) /QBFWEI(VﬁE,r(Z)):6TVyg>dedt—I/QE)FWel(Vyg)T):8,Vy§{)rdx
—1)T

k
2
=1

k k
SCuy. T /Q|Vy§{>, =y vy ldy = Cut ) 7 /QwTVyg{de =CytVi.
=1 =1

Combined with (3.32), this leads to

k
> /Q arW(Vy ") 1 8:Vy D dx = W) =W (yo.0) — CuVie. (3.33)
=1

In a similar fashion, using the first bound in (C.5), we can estimate
a D ,d-1 1) (-1 l
> /Q @rwP vy 6l D) — ap P vy TP 08 D)) L6 vylde = —Corvi
=1

(3.34)
Now, employing (3.31), (3.33), and (3.34) in (3.30), and using the definition of the
total energy £ we conclude that

k k
1 _
08, 0%)) < (o O0.e) + CutVi+ Yy tett® 8y + 3 1 fr @20 — g0yar.
=1

I=1
(3.35)
Step 3: It remains to estimate the last two terms on the right-hand side of (3.35).
By the nonnegativity of 95(1% and the definition of Qb(lg below (2.25) we can bound

a k kt

) m/(ezeﬁ — o pand=1 <y :r/cezf o) apd-! :,{82/ f@ded—ldt.
r ’ r- o Jr

=1

=1
(3.36)
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Note that forany ! € {1, ..., k}andt € ((I—1)7,I1) we have that 8; y{'s = .1 (¢).
Consequently, integration by parts yields

k kt .
> re?, 530 / (€(1), Je,c (1)1 (3.37)
I=1 0
kt
= (£(kT), Je o (kT) — id) — (£(0), ¢ (0) —id) — /0 (0(2), Je (1) — id)dt

< (L(kT), Je,r (kT) —id) — (£(0), Ye . (0) —id)
kt
+/0 €@ g1 11 Ve, (8) — id|| 1 () dt. (3.38)
By Poincaré’s inequality, (3.2), and (W.4), for ¢t € [(I — 1)7, [T], we have that

19,2 (1) = I3 g < 20587 —idll g, + Iy

—idll31 o) S COVIGED) WD)

Therefore, by Lemma 3.10, (3.24), and /s < s/¢ for all s > £ we get that

kt
/O VO 11 5e.e (1) — il 1t

k It
§CZ(£+8 15(y(l D Qg(lr 1))+g—15(y§l>t’98(ll)> /(l N ||E(t)||H 1dt
=1 —-br
C v -1 i rr ; 3
< ;Z((ﬁ—)“ﬂ))/ﬂ 1 ||g(t)||H71dr)+sCT(cf,g+cf,g).
-t

~

1

Then, using an index shift and C s, < + 1Yo . We get that
kt
fo N =113 @) — id]| g1 () de (3.39)

o]

(Ol 1+ D)) +6Cra 4 ChY
[=0 (=Dt

(3.40)

for a possibly larger C7 > 0. We plug this into (3.37) and use (3.36) to estimate
the terms on the right-hand side of (3.35), which by (3.25) concludes the proof. O

We proceed with a bound on the (discrete) strain rates Vi defined in (3.27).

Lemma 3.12. (Inductive bound on the strain rates) Given M, T > 0, there exist
a constant Cy and 19 € (0, 1] only depending on M, and a constant Ct only
depending on T such that for T € (0, tg) the following holds: Suppose that there
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exist the sequences yé?g, e, yékg and 98(?f), e, 9€(k,) forsomek € {1,...,T/t}, as
described in Sect. 3.1, with M(y{%) < M foralll € {0, ... k — 1}. Then,

k k—1
Mot /Q 18: V3 Pdx £ CuM(y0.e) +8 CuCrCly+Cut Y (MO +16 A g)-
1= 1=0
(3.41)
Proof. By Lemma 3.6 there exist constants cy;, Cpr > 0 depending on M such
that we have for/ € {1, ..., k}

MGD) + eut f 18: V3 Pdx < (1 + CunMGLTD)
Q

+Cut (116 A7) + 10120y + €218 152 ,,))-

Summing the above inequality over / = 1, ..., k and recalling the definition of

f(l), gg) below (2.23), we arrive at

k
MO = MO0+ Yot [ 18,950 Pax
Q
=1

kt
— Cye? /O (O + 18O 122, )t
k—1

+ Ot Y (MOD) + 160 A T12ag)-
=0

As /\/l(yg‘r)) 2> 0, we conclude the proof by (3.24). O

We are ready to prove the well-definedness of our time-discretization scheme,
i.e., Theorem 2.3(i). At the same time, we will also derive two useful a priori bounds,
namely on the total energy and on the (discrete) strain rate, respectively.

Theorem 3.13. (Well-definedness of the scheme) For any T > 0 there exist a
constant Ct > 0, corresponding constants

A _ T
M/ = 2eCTCfvg (g_zf’(o) + CT(] + C;g) + K/ / eded—ldt)’
' o Jr

M :=2M'+CrCF,. (3.42)
aswellas constants Cpy > 0andty € (0, 1]depending on M such that the following
holds true: for each © € (0, 1) such that T/t € N the sequences yg(?r), ey yé?;/r)

and 98(92, e, 9;?” as described in Sect. 3.1 exist, and for all k € {0, ..., T/}
we have that

EG®, o0y < e2M, (3.43)

e,1° Ve, T

k
Z r/ 18:Vy)12dx £ &2 CyM(1+T) + £2CyCrCi,. (3.44)
Q
=1
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Proof. Step I Let Ct be the maximum of the constants Cy from Lemmas 3.10, 3.11,
3.12, and equation (3.24), and let C be the universal constant of Lemma 3.11. Define
Cr = max{2CTCr,2Cr,2},andlet M’ and M be asin (3.42). Then,let Cy; > Obe
the maximum of the constants Cj; from Lemmas 3.11 and 3.12. Moreover, let 7y €
(0, 1] be chosen sufficiently small so that Lemma 3.5, Lemma 3.6, Proposition 3.8,
Lemma 3.11, and Lemma 3.12 hold true (all applied for M from (3.42)). In place
of (3.43), we focus on showing

FO =, 08 —etekr), y&)) < *M, (3.45)
as then (3.43) follows directly by Lemma 3.10.

We will prove the statement by induction over K. In the base case K = 0,
(3.45) is satisfied by our choice of M’, and the fact that yéor) = ¥0,¢ and 98(,0,) =0p¢.
Given K € {l,...,T/t}, let us assume that the statement as well as (3.45) hold
true for K — 1. We now show that the statement holds true for K. Applying first
Proposition 3.5 and then Proposition 3.8 we see that yé 3 and 9( ) exist, where for
both propositions we use the induction hypothesis (3.43) for K — 1.

Step 2 In this step, we prove that for tp small enough we have that

CutVg < &2, (3.46)

where Vk is defined in (3.27). By e2M < M, Remark 3.7, and (3.23) there exists
a constant Cyy only depending on M such that

(K) (K—1) 2 25
C‘_anvyg’f Vyg.[ ”LZ(Q < M+8 CM(M+TCTCfg)

where we again used the hypothesis (3.43) for K — 1. Hence, by possibly further
decreasing 1o (depending only on M, f, g, T, and the initial values) we can ensure
that

(S}

€
>
Furthermore, by possibly decreasing to (depending only on M, ug, o, f, g, and
T) and using the hypothesis (3.44) for K — 1 in place of K we get CyytVix_1 <
£2/2. Consequently, combining the previous estimates and using T Vx = tVg_| +
||Vy(K "= VeV I, g the desired bound (3.46) follows.
Step 3 By hypothems the energy bound in (3.45) is satisfied fork € {0, ..., K —

1}. Consequently, Lemma 3.11 applies for any k£ € {0, ..., K}. By (3.46) we have
that

CullVyE = vy PIa g <

k
FOSFO L2 +e2cr(+Chp+CYy FO
=0

It
x/ (€O -1 + 1€t + )| g-1)dr + x&? / /ede ldr.
(

-1t
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We now use the following discrete version of Gronwall’s Lemma: if 8 > 0, (a;);
is a nonnegative sequence, (b;); C (0, 1/2), and

k
ax S P+ by fork Z0,
=0

then

k—1
ar < 2B exp (ZZbZ) for k > 0.
=0

Indeed, as by < 1/2, we getay < 28+ Zf:_ol 2bja;, and then the statement follows
from the elementary discrete Gronwall inequality. We apply this result for

T
B:=F9 +e+e2Crl +c},g)+/ce2/ /e,;cmd—ldz,
0 Jr

It
a=F  b:=C / (@1 + 1€+ Dl g1)de, (347
(Y
where we note that b; < 1/2 for all [, provided that 7o is chosen small enough
depending on f and g. In view of (3.24), we then see that (3.45) for K is true.
Finally, (3.44) directly follows from the application of Lemma 3.12 and the fact
that the last term in (3.41) can be controlled by &, see e.g. Remark 3.7. O

Eventually, if (W.4) is not assumed, we get additional additive constants in
Lemma 3.10 and in the derivation of (3.40), leading to an additional constant in
(3.26) which however does not scale as 2. This does influence the proof of the
well-definedness, only the scaling of the energy in terms of ¢.

3.3. Adaptions for exponents o < 2

In this subsection, we prove Proposition 2.5(i). This part can be skipped by
a reader only interested in the proof of Theorem 2.3. In the previous subsection,
we have already established the well-definedness of the scheme in the large-strain
setting, as well as the energy bound (3.43). The latter will be essential to obtain
a priori bounds for the limit passage T — 0 in Sect. 4. In the case « < 2, for
the passage to the linearized setting ¢ — 0, however, the bound (3.43) and the
induced a priori bounds are not expedient. This is due to the different scaling of
the internal and mechanical energy, being of order % and &2, respectively. To
this end, it is necessary to establish energy bounds for rescaled versions of the
energy functionals from Sect. 2.1, namely M, := slz./\/l, Wngl = ;—ZWCPI, and for
ael,2],

Ee(y.0) = M (y) + %/ Win(Vy,0)4dx, (3.48)
2¢ Q

where both ‘types of energy’ are of the same order. Controlling this energy is more
delicate compared to Proposition 3.11, as the mechanical and thermal equation
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(3.28)—(3.29) scale with different powers of ¢ and cannot simply be added up.
Therefore, novel ideas are required to control the contributions of W°P! and £. To
achieve this, higher integrability of Wi in L%/ is needed which can be guaranteed
by using the regularization of £, ¢ introduced in (2.35). This in turn induces new
challenges for the analysis of the time-discrete scheme since showing the nonneg-
ativity of the temperature in the thermal step, see Proposition 3.8, is more delicate.
For this, it will be essential to assume that strains are small, i.e., we suppose that
the parameter ¢ € (0, 1] is sufficiently small.

Note that for the entire subsection we can assume that o € [1, 2) since in the case
o = 2 there is no regularization of the dissipation rate, the existence of the scheme
is already guaranteed by Theorem 2.3(i), and also an energy bound for &, follows
already from (3.43). The mechanical step is not affected by the regularization, but
Proposition 3.8 needs to be adapted.

Proposition 3.14. (Thermal step with regularization) For any M > O there exists
g0 > O such that if e € (0, &p), if the minimizer y( ) given in Proposition 3.5 exists,
and if M, (y(k 1)) < M and M, (y(k)) < M the minimization problem (2.24,)

attains a unique solution 98(,) satisfying (3.11) for all ¢ € H'(Q) with & replaced
by £ .

Proof. As & 2 é&eg, the existence and uniqueness of Qg(kf) follows by the same
reasoning as in Steps 1-2 of the proof of Proposition 3.8. Since &° > 0, the
nonnegativity of the temperature follows by Remark 3.9 for ¢ sufﬁmently small,
where we use M(yéf‘;l)) < Me? and /\/l(yg?) < Me2. O

Our next goal is to adapt Proposition 3.11 to the present setting As apreparation,
supposing that for k € {0, ..., T/t} the steps y ) and 95( 7 exist, we define

FP =& <yy;> 0y — e~ (ekr). y) —id), (3.49)
where ¢ is defined in (3.22). By repeating the proof of Lemma 3.10 we find that
ek, y &) —id)| £ min{FP, £,y E). 08N} + Cr €T, (3.50)

E,T? 7E,T
fork € {0,..., T/t}, for a constant Cr > 0 only depending on T and Cy,; as in
(3.23).

Lemma 3.15. (Inductive bound on the rescaled total energy) There exists 19 €
(0, 1] and, given M > 0, g9 € (0, 1] such that the following holds true: suppose
that for t € (0, 19), € € (0, &9), and k € {1,...,T/t} the steps ys r, e yékf) and

g(,ot), .. 95(]? exist such that F, O < M for alll € {0,. — 1}. Then, for a a
universal constant C and a constant Ct possibly dependmg on T it holds that

F® <c(f<°>+zf<l> / (U B g1+ 1G4 ) 1)
(-t

kt
+:<f /egde 1dt

+CT(1 +Cfg
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Proof. As a preliminary step, we show that the assumption .7-' < M for all
[ € {0, ...,k — 1} implies bounds on the rescaled mechanical energy for all [ €
{0, ..., k}. First, by (3.50) we get for [ € {0, ..., k — 1} that

£, 00 = FO v e Hewkn), y®) —id) < 270 +CrCl, <2M+CrCE .

(3.51)
Consequently, we can choose ¢ sufficiently small such that ./\/l(y(l) < 1 for
[l € {0,...,k—1}. Then, we apply (3.10) for M = 1 to get 7o such that for

T € (0, 7o) it holds that
MG £ A+ COMGET) + Cie (16570 ATl g,
+e& ”f ® ||L2(Q) +e ”g(k) ”LZ(F))

where C; is a universal constant. By (2.14) and the fact that 1 At < ¢1/% fort > 0
we find that

16570 A L1135 g, £ Collwds “nz : (3.52)

() )

such that, dividing the above estimate by &> and recalling (3.48) as well as Re-
mark 3.7 we get that

M) = A+ &G 05 + L1 £ 172wy + 181724,

This along with (3.51) shows that, possibly decreasing &, we have M, (y(l) )< 1
foralll € {0, ..., k}. This induces that in the following proof the constants coming
from Lemmas 3.1, 3.6, and 3.12 are universal and denoted by Cj.

As in the proof of Proposition 3.11, the strategy relies on a suitable test of the
mechanical and the thermal equation, see also (3.28)—(3.29). In contrast, however,
the resulting equations cannot be summed up, but have to be treated separately.
This will allow us to show the estimates

Me(yE) — e Nekr), y*) —id) + ZZ / £(VyITY 5.vy0) 00D )dx
< CM GO + Cr(1+CF)
+CZF(’)/ (L4 16O g1+ 16+ D1 )dr, (3.53)
Dt

and

2¢ 2/(w(k)) “dx — = Z/ §(Vyie V. 8:Vy 0 08 Dydx

/ (w(())) d)C + CMg(y(O)) + CT(l + C%g)

k

+CTZ.7:([)+K/ / 62dH " dr, (3.54)

=0



Nonlinear and Linearized Models in Thermoviscoelasticity Page 35 of 73 5

where C is a universal constant and Cr possibly depends on 7. Then, in view of
(3.48), (3.49), and (3.51) for [ = 0, the result follows by summing up the two
estimates. We now treat (3.53) and (3.54) separately. Step 1 (Inductive bound on
the mechanical energy): The first part is achieved by bounds similar to the ones
obtained in the proof of Proposition 3.11, and we therefore refer to estimates therein.

Testing (3.7) for [ in place of k with z = §; ys r we get (3.28). Then, multiplying
both sides by = -7, summingover/ = 1,..., k, and using W = wel 4 werl (3.31),
as well as (3.33), by possibly increasing C 1 we derive that

k
T
M) = MeGo) + 5 3
=1
[ w3000y 5,950 + T 695 )
Q

2 k
T
< Ci— > :/Sz|3 vy 24x + £ § (e 5. y0). (3.55)
=1

Here, we also used the definition of V} in (3.27), and the fact that the initial value
is given by yo ¢. By (3.5), (3.52), and Young’s inequality it follows that
—( / oW (vyD) pU=D)y 8,Vy§{)rdx‘

< 8—2/(95,’;” ADA+[VyL —1d])(8, Vy L |dx
Q

C

_2/ (wl; 1>)a + vy —1d| )dx+—/|8 vy Pdx.  (3.56)
& Q

A

By Lemma 3.12 and (3.52) we get that

ff 18:Vy)12dx £ £2CiM (o) +£°C1CrCT,
Q

k—1

+Crr Y (MOD) + 1w 12, ).
=0

Using the definition of the total energy in (3.48), the definition of Wf‘, and (W.4),
we insert this in (3.56) to obtain

k k
T T
= > :‘anchpl(Vy;l{,eyr Dy afvygf)fdx’JrS—ZE /Q|sfv2y§{>f|2dx
=1 =1
(3.57)

k
<cry &GN 00) + CMe(ye) + CCrCy . (3.58)



RUFAT BADAL, MANUEL FRIEDRICH & MARTIN KRUZAK

5 Page36of 73

Next, by repeating the argument in (3.37)—(3.40) we find that

k
T
st

Se” (E(kr) Ve(kt) —id) —
(£l -1 + 166 + D)l g-1)dr) + Cr (1 +CF ).

()
+CZ (J-‘ /(l N
(3.59)

Employing (3.57) and (3.59) in (3.55), and using again (3.50) we arrive at (3.53)
Step 2 (Inductive bound on the temperature): For o € [1,2), let x(t) =
2
5(e* + 1)« fort 2> 0. The convexity of x implies that

[t =l a2 [ i — [

Summation of this estimate over/ = 1, ..., k leads to

e~ (0(0), $:(0) — id)

/ (w®)d dx
<1 “Dyy/ (w<l> Ydx. (3.60)

< g S/ O)dx + / o _
_/wam)x_ X (w)dx Z ),

This suggests to test (3.11) (for / in place of k, £ % in place of &, and e29)
place of 829(1)) with ¢ = x (w(l) ) which yields

O _ -/Q (S_L_w _ aFch](vyng ])’ Gélr l)) .
%.l'eg(vy(l D 3TVy£Z?[,96(ZT U))X/(we(‘l,)r)dx

/ KVydoD, 08 w00 - Vi (wh)dx + « f 0
r
(3.61)

(19(1)))( (w(l) )de—l'

5. Vyl —

We now estimate the various terms separately. First, we employ (3.5), (2.14), (3.1)
and Young’s inequality with powers 2/« and 2/(2 — «) to obtain

‘/ (0w (w370, 600) 50930 | (w)dx]
<20 /(9” DADA+ VYO8 vy e + wlyadx

<C(1+C1)/ (w“ DA s, Vy(l)|a + (e + @) ))dx (3.62)
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If « € (1,2), we use in the last estimate another Young’s inequality, now with
powers /(o — 1) and «, as well as r A 1 < ¢@~D/« for all + > 0 to show that

‘/ D WPy, 0070 16V, 1wy ax|
§C/ (S +(w(l 1)) +(w(l)) + 18¢ Vy(l)| )dx
Q
< (14 &0 000 +&.00. 60 + — /|8ny<” %d).

(3.63)

Notice that for « = 1 the above bound follows directly from (3.62), simply using
(171)
ALES L
Next we estlmate the &3 %-term. From the definition of &% in (2.35), we have
that £,° < & 7. Hence, by Young’s inequality with power 2/« and 2/(2 — «), and
by a similar reasoning as before, it follows that

f St (Vi V8 Vy L 0 Dy () dx
/ E(V3ITD 5,y 00Ny + Ce2(1 + £ G0 60)). (364
We continue by investigating the /C-term. By (2.12) and the chain rule we have that

Vi wh)) = ==X + wl))a2

% [(BFWCPI(Vy(l) 0) — 00 819 WP (Vy ) 9<l>)) v2yo,

£,T° V€T £,T7 Ve, T

_ 98(11 33 WCPI(Vy(l) 9(1)

£, T 7E,T

o]

This combined with (3.5), the second and third bound in (C.5), (2.14), (3.3), and
(3.4) leads to

]C(l—l)vg(l) Vi(x (w(l) ))

2—
> 2% e +w(l))&_2<c|V9(l)|2 cwl) A1)|v2y<’>||ve§’g|)(3.65)
. :

for some ¢ > 0, where we set /Cé’, b = K(Vy; (1 D 95(11 1)) for brevity. (In the

definition of yx, the addend &* appears to ensure that (e*+ w(l) )a is well-defined
fora > 1.)Byt A1 < 172/ for all t > 0, Young’s inequality twice (firstly
with power 2 and constant A € (0, 1), secondly with powers p/(p — 2) and p/2)
we derive that

i ADIVEYD NIV < MVOD 2 + — (w“) ) v 2

< MVODP 4 5 (@2 + 5 9P,
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Choosing A small enough such that CA < ¢/2 (with ¢ and C as in (3.65)), we
derive, with (3.65), that

I=1) g ! c2-a n\2- ! n
[ KL e v il 2 S I 6 )i 2ve P —cete ol o).
(3.66)

Lastly, for the boundary term, we use (2.14) as well as Young’s inequality with
powers 2/« and 2/(2 — «) and constant A € (0, 1) to arrive at

I 1 I - —1. 1 . 2_ _
[l = ol 2 [ 5 tuls — ol +ulni-lar!
1 2 2 2 2
> 7/(w§’),)ade—l - i/(agli)adH”’—l —A/(e“+w§f),)&de—1.
Co Jr rAldr r
Therefore, choosing A sufficiently small with respect to 1/Cp, we get that

/(96({; — &0 x' wdHdH? ! = —052(1 +/(9;f;)%dﬁd—l). (3.67)
r r

We then divide (3.60) by &2, insert (3.61) multiplied by  in this inequality, and use
(3.63), (3.64), (3.66), and (3.67) to estimate the various terms. This together with
the bounds from (3.50) and (3.57), and the fact that

k k
D2 !
Ty IO iy £ Ct Y (L+16.0032) = Cr + ClO I 20 4011
=1 I=1

by Holder’s inequality yields (3.54). This concludes the proof. O

Theorem 3.16. (Well-definedness of the scheme) For any T > 0 there exist a
constant C, corresponding constants

- T
M’ = 2eCT0FCR (CrF© 4+ Cr(1 + € )+ / / 62dH !~ dr),
0 r
- ! ~ 2
M :=2M'+CrCl,,

as well as constants g, 19 € (0, 1] depending also on M such that the following
holds true: for each ¢ € (0, gy) and t € (0, ©o) such that T/t € N the sequences

yéf)t), R yé,Tr/r) and 95(‘0T), R 5(,7;/’) exist, and for all k € {0, ..., T/t} we have
that
T/t

T - —
> /QI(Wyéf)f 2dx < Cr M1+ T) + CrC2,. (3.68)
k=1
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Proof. The theorem is a consequence of Lemma 3.15 and Lemma 3.12. The argu-
ment is similar to the one of Theorem 3.13 and we therefore omit the details. Let
us just mention that the energy bound follows in the same way by induction, up to
using different values 8, a;, and b; in (3.47), and by employing (3.50) in place of
Lemma 3.10. Based on the uniform energy bound, Proposition 3.14 indeed shows
that the scheme is well-defined, provided that g is chosen sufficiently small. Even-
tually, the bound on the strain rates follows from Lemma 3.12, see particularly
(3.57) in the previous proof. O

Remark 3.17. Due to our regularization of the dissipation rate, in the case « € [1, 2)
we obtain the additional control

v
// VA _ PMHerl gxdi <€, < o0 (3.69)
2 (1 + 71, )7

for a constant C, depending on «, but independent of ¢ and 7, where we shortly
wrote L, ; 1= & %0, (see also (2.26) for the definition of 6, ;). This follows by
using the positive term on the right-hand side of (3.66).

3.4. A Priori bounds

Fix initial values (yo.¢, 60.¢) With & (y0.¢, 60.¢) < Eo for some Ey > 0. Without

further notice, we suppose in this subsection that the sequences y,§°3 e, yé,TT/ )
and 95(01) ey 0;7;/ %) exist by Theorem 2.3(i) or Proposition 2.5(i), respectively, for

e € (0, &) for some gy depending only on «, Eg, f, g, 0,, and T. (In the case
o =2, wecanset e = 1). We derive a priori bounds on the rescaled displacements

_1(y(l) — id) and the rescaled temperatures 8_“98(2 forl € {1,...,T/t}. To
this end, for small e, we will again assume (W.4). Recall the definition of the
interpolations in (2.26). In a similar way, we write we ; = Wi“(iw, Oe.r), and
similarly for the other interpolations. The next lemma is a direct consequence of
Theorem 3.13 and Theorem 3.16.

Lemma 3.18. (First a priori bounds) Let Ey > 0 such that E(yo.e,00.e) < Eo
Then, there exists a constant C > 0 depending on «, Eo, f, g, 0,, and T such that
Ee (yék,), G(k)) S Cforallk € {1, ..., T/t}, and the interpolants constructed from
the discrete solutions satisfy

Ve.e =101 oo gopioe(umay + 1V Verel oo i rn@ipay < CE7P5 (3.70a)
1Ve.r =1l oos. 1 ey = CE (3.70b)
IV 9e.ell 1201 xqmaxay < Ce. (3.70c)
16e. 2l oocr: Lty + Wetll oo L1y < Ce (3.70d)

Estimates (3.70a)—(3.70b) also hold for V. o and (3.70d) holds for Qs’r, 67“, We 7

and Wg ¢, as well.
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Proof. Let us first suppose that (W.4) holds. The energy bound on &, for @ = 2 and
a € [1,2) follows directly from Theorems 3.13 and 3.16, respectively. The first two
estimates can be shown from the uniform bound on the energy, (W.4), (3.2), (5.21),
and Poincaré’s inequality. In a similar way, the bound on w; ; in (3.70d) follows
from the bound on the total rescaled energy, (3.48), and Holder’s inequality. Then,
the proof of (3.70d) is concluded by (2.14). Finally, (3.70c) is a direct consequence
of (3.44) and (3.68), respectively. Eventually, for « = 2 and ¢ near 1, the result also
holds without assuming (W.4) as (W.3) allows us to derive (3.70a)—(3.70b) with C
in place of Ce?/? and Ce on the right-hand side. O

In order to pass to the limit t — 0 in the next section, we need additional
a priori bounds for the temperature. Testing the equation (3.11) turns out to be
delicate since for « = 2 the viscous dissipation & (Vyékf D SrVySkr), QS(kf 1)) is
only bounded in LY(I x Q). Thus, to obtain improved estimates that work in this
case, we employ special test functions developed by Boccardo and Gallouét [10]
for parabolic equations with a measure-valued right-hand side, see also [16]. We
follow here the approach in [33]. However, almost complete proofs are provided
since compared to their setting we perform the estimates in the time discrete setting
and we derive fine estimates in terms of the small parameter ¢.

Lemma 3.19. (Weighted L>-bound) For any n € (0, 1) there exists a constant C
independent of €, t, and a such that

T/t

n
Zr/ 1+n| <’<>| dx < ce*. (3.71)
k=1 (1 + e—"‘w(k)>

Actually, this statement is needed only for « = 2 since for o € [1, 2) we have a
better estimate by Remark 3.17. Still, we state and prove the result for any « since
the following argument does not depend on «.

Proof. Step 1: In the following, C will denote a constant independent of k, ¢, 7, «,
and n. Given k € {1, ..., T/t}, we have by (3.11) (for £ % in place of &) that for
any g € H(Q)

/6 w(k)(pkdx—/hfl(pkdx
Q

/ KEDV6R) . Vrdx — / 6% — e20*)yprand!, (3.72)

where we write

h) = gp WPl (vykoD gDy s 5, vy ®) 4 B (vy & 5, vy K)ok,

E,T’7E,T

Ké/ff—l) IC(Vy(k 1) eé,kr 1)) (3.73)

for brevity. Given n € (0, 1), let x, . : R — R be the function uniquely determined
by xy,:(0) = 0and X,’M(t) =1- W forallz = 0.Choosing ¢} := )(,7 s(w(k)
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in (3.72), multiplying both sides by 7, and summingoverk = 1, ..., T/t, we arrive
at
T/t T/t

Zf(wac) wl 1))xn€(w(k))dx—z / B (w))dx

T/t
_Z /an(w(k) K¢Dve®) . vw®)dx

T/r

—« Z / ©%) — 0Ny, (wlhdn1, (3.74)

Our goal is to show that

T/t
Z / X'l S(w(k) (k l)vgg(’kr) . ng?dx < Ce”. (3.75)

To this end, we estimate the various terms in (3.74). First, notice that by the con-
vexity of x, . we have, forany k € {1, ..., T/t}, that

neWETD) Z e ) + x) D ED —w),

and therefore,

T/t T/t

Z/ wl —wis ”)x,”(w("))de/ (e WD) = xn.e (w7 ))dx
/ Xn.e i/ P)dx —/ Xn.ew)dx = —/Qwé?idx > —Cs%,

where we used x, . = 0 and x,.(t) < ¢ forall + 2 0, and in the last step also
(3.70d). Using (3.5), £°¢ < £, (2.9), (D.2), and (3.70a) we see that

T/r T/t
f h*)dx < CZ/ (VoL 18 vy R + 15, vy &) P)dx

where we used that ¢ A 1 </t fort > 0. Then, by Young’s inequality, Xne =1,
(3.70c), and (3.70d) we get

T/t
Z / h¥ et (w))dx

T/'L’ T/t

< Z / h$)dx < CZ f 08D +18:Vy®) ) dx < Ce®,(3.76)



5 Paged2of 73 RUFAT BADAL, MANUEL FRIEDRICH & MARTIN KRUZAK

where we have used o < 2. Lastly, by Gékr) >0,k 20, x,’%s € [0, 1], and the
definition of %) it follows that

T/t
k _
O / O8) — 20y (wE)dHd!
Q
k=1

T/t
k -
<k Z ‘L’/ 8”‘9b(’r)x,/]’g(w£’2)d7-[d !
Q
k=1

T
< KSaf f Opdxdr < Ce”,
0 Q

where C also depends on 6,. Employing all the aforementioned estimates in (3.74)
we obtain (3.75).

Step 2: We are now ready to show (3.71). In this regard, first notice the following
relation between ng? and v9§f‘2 : since wékg = winv yé{?, Gé,kf)), (2.12) implies
that

E,T Ve, T £,7°7E,T

vul) = [aFWCPl(Vy<k) 08y —0Xape WP (vy k) ok) ] :

Vi) — oW vyl o) velh

&,70 e, T

= Wh V20 LW ve®. (3.77)

By (3.5), (C.5), and (3.70a), we find that the abbreviations Wl(k) and Wz(k) sat-
isfy Wl(k) < C(Gg? A 1) and Wz(k) € [co, Col, respectively. Then, using (3.77),
Lemma 3.3, and the energy bound from Lemma 3.18 we see that there exists a
constant ¢ > 0 such that

C

5 (k)y—1 —
o e EDIVR&® = (W) 7 iRVl - v

e,T

< 1 DKLV vl

£,T

+Cx) D OR) ADIVEYEIVW®] (378)

,T

—1
We now control the second term above. By r A1 < ¢7 forall 2 0 and Young’s
inequality with constant A € (0, 1) (to be chosen later), we estimate by (2.14)

Cxl o) OX A DIVERIVwd)|

£,T T

1 pp=l
< oy D (VRGP + ~ @7 1vHER). (379)

Using the elementary fact

n 1
X e (wi) =

[IA

, (3.80)
1 k
oo(1remeuily) e i
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we derive by Young’s inequality with powers p/(p — 2) and p/2 that

pYt 22
X e D@D TV R < @) VAP

e,T e,T
p=2
= )7 V&P < cw) + 1v2y0).

Let us take A small enough so that CA < ¢/(2Cg) where c is as in (3.78) and C is
as in (3.79). Then, inserting (3.79) into (3.78) we derive that
c

36 e DIV B < € () DRI D VOR Vil w4+ 817,

Integrating the above inequality over €2, multiplying by 7, and summing over k =
1,..., T/t we derive by (3.75), (3.70a), and (3.70d) that

T/t
Se [ DIvutRa < Ca+ Ty
k=1 Y%

where in the final step we used @ < 2. By using the first identity in (3.80), we
conclude the proof of (3.71). O

Theorem 3.20. (Further a priori bounds on the temperature) For any g € [1, ddiz)
andr € [1, %) there exist constants Cy4 and Cy, respectively, both independent

of € and t such that

T/t
> [+ i) < e, 61
k=0 v
T/t
Zr/ (VORI +1vw®) | )dx < C e (3.82)
k=1 7€

Moreover, we can find a constant C independent of € and T such that

T/t

D s wllyr gy < Ce* (3.83)
k=1

Proof. Let g, r be as in the statement. As wék% e H'(Q) (see (2.24)), it fol-
lows that [[We ¢ |l g1y < ©©. Therefore, by using the a priori estimate
114+ %W, . ”Loo(I;L] () < C+ L) (see (3.70d)) as well as Lemma 3.19, we
can repeat the argument from the proof of [33, Proposition 6.3, equation (6.6)] for
e~ %wg ¢ in place of wg, cf. also Remark 3.21 below. This gives the existence of
constants Cy4, C, such that

T/t T/t
Zr[ lw®)|7dx < Cye, Zr/ IVw|"dx < C,e. (3.84)
k=0 7Y% k=1 7%
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By (2.14) we then directly see that (for a possibly larger C,)
T/t

Zr/ 10R17dx < Che™. (3.85)
k=0 ‘%

To conclude the proof of (3.81)—(3.82), it remains to control the gradient of the
temperature. Employing the relation between ng? and VOE(,kr) in (3.77), by (3.5)
and (C.5) we see that

V01 < (V@] + @) A DIV ).

-1
Consequently, using t A1 < 7 foralls 2 0 and Young’s inequality with powers
p/(p —r) and p/r we derive that

=l _a
/We);{‘gvdx < C/ |Vw§’fg|'dx+c5“’/(s—“egfg)’ 7 leTrviyR)|rdx
Q Q Q

PR
< C/ IVw®)|"dx + Ce“’/ (670" = + s—alvzyéf?l”)dx.
Q Q

(3.86)
As r was chosen strictly smaller than Z—ﬁ, we see by p = 2 that
p—1 d+2 p—-1 d+2 1 d+2
Co=r S dti,_ 2T 4 ;= '
p P = + 720-D
Consequently, multiplying (3.86) with 7, summing overk = 1, ..., T/t, and using

(3.70a), (3.84), and (3.85) we conclude the proof of (3.82). Here, we again used
a < 2. Lastly, we show (3.83). Testing (3.11) for the k-th step with arbitrary

¢ € WH°(Q), and using the shorthand notation for hgkz and icé’f; Y from (3.73),
we see by (3.4) and the continuity of the trace operator in W) that

‘/ Srwékggodx‘ = ‘f h®) pdx —f KE=Dvok) . vpdx
k) ) d—1
—k | (6,7 — €76, DpdH
I
<&@ lellze@ + CIVIR L1 @) I Vel L@

k -
+ (CKIIQ,S,]? lwrg) + Ke® / 6, dH 1) @l oo ()
r
k _
< (115121 + CIOX 1) + Ce / O aH ) ol 0.
r
By the arbitrariness of ¢ this shows that

k —
18z wi lwieo@y < 18 11y + IO I wi (g + Ce® / o and=!. (3.87)
r
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We have already seen in the proof of Lemma 3.19 (see in particular (3.76)) that

T/t

Ztl|h§,f‘)[||Ll(Q) § Ce”.

k=1
Consequently, by (3.81)~(3.82) for g = r = 1 and (3.87) the desired bound (3.83)
follows. )

Remark 3.21. Fora € [1, 2), by means of Remark 3 17 we obtain a stronger bound
on the temperature: given g = = + d and r = 242 we can find a constant C
independent of ¢ and t such that

d+2’

T/t T/t

X & X & .
|9(")|‘1d < Ce™, |ve<’<>| dx < Ce™". (3.88)

This can be seen as follows: We start with the second bound. In this regard, by a
For a = 1, this directly follows from (3.69), where we recall it ; = 8‘“§g,r. Let
a € (1,2). Note that r € [1,2) and let m := r(1 — é). Employing a standard
truncation and approximation argument we can assume, without loss of generality,
that iz, , € L*°(I x ). Then, by (3.69) and Holder’s inequality with powers %
and % we derive that

_ m Ve "
”V/’Ls,r”Lr(IxQ): (1+ He,7) dxdr

(I + T ™ e )"
VeI :
S+ 7 / | B L
2-r (IxQ) e(l+xm e, )2(1—*)
SCN+ el (3.89)
L3 (IxQ)
With r = 2add"f2 =2-2_ +2(1 - ) we can use the anisotropic Gagliar(io—
Nirenberg interpolation inequality (see e.g. [30, Lemma 4.2]) with 6 = 7%,

s:p:g,sl=oo,s2=p2=r,andp1=(%t0get

L4 o <CI+m o
A Tl o o S CIAT P L
ad

—_— ad+2
+IVE cllerxe)
(3.90)

< (4Tl 2 0

where we use 5 = szr Notice that by (3.48) and the energy bound in Lemma 3.18
we have that ||1 + 1, ¢ || oo (7. 12/a(q)) 1s uniformly bounded in ¢ and 7. Hence, with

(3.89) and m aziz = (z;i)zdr we derive that

(ozfl)dr
IVIe o -1 x) = € <1 + IIVﬁg,TIIL”r”’(fXQ)> :
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As (gdi)zd < 1, this shows the second bound in (3.88) for the case o € (1, 2). The

first estimate in (3.88) then follows from the second one and (3.90), where we use
r

2m  __r __
thatﬂ_(;_q.

4. Existence of Solutions in the Nonlinear Setting

In this section we pass from time-discrete to time-continuous solutions by letting
7 — 0 and establish Proposition 2.5(ii). Notice that for the special case « = 2 and
& = 1 this will lead to Theorem 2.3(ii). For the deformation and the momentum
balance we can closely follow [33, Section 5], and therefore proofs are omitted or
sketched only. For the limit passage in the heat equation, however, our arguments are
different as we work without regularization terms, cf. Remark 2.4. We first use the
a priori estimates on the interpolants in order to extract convergent subsequences.
Afterwards, we pass to the limit in the discretized weak forms of the momentum
balance and the heat equation. Here, the most delicate term is the dissipation rate
& which is quadratic in F. Therefore, strong convergence in L2(1; HY(Q)) for
the strain rates is required. As before, we assume for simplicity that 7/t € N.
Moreover, without further notice, we suppose from now on that t € (0, 7p) and ¢ €
(0, &9], where 7 and g = &o(«) are chosen such that all statements from Sects. 3.1—
3.4 are satisfied. In particular, &g = 1 for « = 2. The corresponding time-discrete
solutions are denoted by yéof), ey yéTT/T) € Viq and 98(01), .. (T/T) € L2 (2). We
recall the definition of the interpolations in (2. 26) and employ s1m11ar notation for
05,,, Qa,r’ and 05 . as well as we ¢, w, ., and We, 7. All generic constants C > 0
are always assumed to be independent of t and ¢.

We start with the convergence of the deformations under vanishing time-
discretization.

Lemma 4.1. (Convergence of deformations) For each ¢ € (0, go], we can find
ye € L®°;Yia) N HY(I: H'(; R?)) with ve(0,-) = Yo such that, up to a
subsequence (not relabeled), it holds that

Se.r = ye weakly* in L®(I; Vi) and $¢.r — ye weakly in H' (I; H'(Q; RY)),
(4.1a)

Ver = Vye in L(I; L®(; R¥*4)) (4.1b)

as t — 0. In the first convergence of (4.1a), and in (4.1b), the same holds true if
we replace Y by Y, O Ve

Proof. First, (4.1a) follows from the a priori estimates (3.70a), (3.70c) and by
Banach'’s selection principle. For (4.1b), one uses the embedding WP (Q; RY ¢

C 1’1_% (25 Rd) to obtain a Holder estimate in space and (3.70c) for a Holder
estimate in time. Then, by an interpolation estimate one can show that the sequence
is bounded in C¥ (I; Cl”’(Q; RY )) for some y > 0, and the uniform convergence
of the gradients follows then from the Arzela-Ascoli theorem. We refer to [33, Proof
of Proposition 5.1, Step 1] for more details. To conclude that the first convergences
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in (4.1a) and (4.1b) also hold for Ve Or Ve, One again uses (3.70b)—(3.70c) to see

~ — 1
”Vys,r - Vyg,t”LOO(I;LZ(Q)) S Cr2. 0
We proceed with the convergence of the temperatures.

Lemma 4.2. (Convergence of temperatures) For each ¢ € (0, gq], there exists 0, €
L'(I; WhN(Q)) with 0, = 0 a.e. such that, up to a subsequence (not relabeled), it
holds that

Ocr — 0 and We, — w, weaklyin L (I, WL () foranyr € [1, ZI%)

(4.2a)
Oec — Oc and e — we in L*(I x Q) forany s € [1, 152, (4.2b)

as T — 0 where w, = Wingvyg, 0) for ye as in Lemma 4.1. In (4.2b), the
same holds true if we replace 0 with 0, . or O ¢ and W, ¢ with W, OF W g,
respectively.

,T

Proof. The existence of the limit and the convergences in (4.2a) follow from the a
priori bounds in Theorem 3.20 together with Banach’s selection principle.

Lettg € (0,T)andr € [1, %). By Theorem 3.20, (W, 1), is bounded in

L' ([t0, T1; W”(sz)) NWh ([, T1; W ()").

Hence, forany 7 < r* := d —, due to the compactembedding Wi (Q) cc L7 (Q),
the Aubin-Lions’ theorem shows that there exists We € L"([tg, T1; L7 () such
that (W r)r — W, in L ([to, T1; L"(2)), up to taking a subsequence. We observe

that w, = w,. Indeed, it is elementary to check that by (3.83)
||UA)a,r - wa,r”LI(I;WI.OO(Q)*) § [we, —&g,f”LI(I;WI-OO(Q)*)
g T”'L,l\)g,r”l‘l(l;wl,m(g)*) — 0 (43)

as T — 0. Next, we show that the convergence w, ; — w, in L"([t9, T1; LF(Q))
as T — 0 can be improved to convergence in L®([tg, T']; L*(£2)) for any exponent
s e[l, %). To this end, we will interpolate with the bound

lwell Loocr: L1 () = SUPO We, |l Loor: L1 (2)) < 00, (4.4)
>
which follows from (3.70d). Fix s € (1, d+2) and consider r € (1, +1)
(1,7%), both to be specified later. Now, as lim, L derr > ddiz > s, notice that
d+

for r, 7 large enough it holds that X : € (0, 1). Writing vy = We r — we
for shorthand and usmg Holder’s mequahty in the integral over 2 with powers
q1 = =—; and q; = we derive that

vl’

T
S 1—2)s
el s i, 71520 ) =/t /lezl“lvrl( M3 dxds
0

S fon </Q|vrIdX> (/Ivrl dX) e,  (45)
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rF—1)

where we have used Asq; = 1 and (1 — X)sq; = 7. Let ¢ := 76=1) and notice
that
. rd+1)—d 2
lim lim g = lim = > 1
res g+2 F—>r* 312 d(s —1) d(s —1)

where the last inequality is duetos < 1+ % Hence, by possibly increasing r and 7
we can assure that go > 1. We denote by ¢} the conjugate of g>. Consequently, by
We.r — We in L™ ([tg, T]; L™ (Q)) as T — 0, by (4.4), and by Hélder’s inequality
in the integral in (4.5) over [y, T'] with powers qé and g» we get

£ q
||UT||2X([10,T];LX(Q)) § (/ /\|Ut|dx ql d[) </ f|v,| dx )

= (2 U0l We,z ll Loz, LI(Q))) T [ 8”;‘%([“)’7‘];1‘?(9))

—0ast — 0. (4.6)

Sending fo — 0 and using (3.81), this shows (4.2b) for the sequence (¢ ;);. To
obtain the same convergence for w, ; and w, ., we use a more general version of
Aubin-Lions for time-derivatives as measures, see Corollary 7.9 in [38]. To this
end it suffices to see that w, ; and w, . are bounded in L" ([1p, TT; W (Q) N
BV ([to, T]; W°(2)*), and then by repeating (4.5)—(4.6) we get (4.2b) for W, ;
and w, ., up to taking a subsequence.

It remains to show (4.2b) for the three different interpolations of the temper-
atures. In view of (2.13), for any F € GL*(d), the map Win(F, .) is invertible
with %(Wi“(F, ) h < % Thus, from the definition w, ; = W(y, ., 0, r) we
getf, r = WN(VY, , )~ (W 7). Setting 6, := WiN(Vy,, )~ (w,), by (4.1b) for
Ve,r and by we ; — we in L (1 x Q) (see (4.2b)), we get

Oer = WNVY, 1, ) Wer) = W(Vye, ) Hwe) =6, in LI x Q).

The convergence for (6, ) follows in a similar fashion. Lastly, combining the
convergence of (58,1)1 and (¢, ,); we obtain (4.2b) also for GAS,T. |

Remark 4.3. (i) Note that (4.2a) does not holds in general for QAE 0 We. 7

T Le, 10
and w, . as we did not assume Sobolev regularity for the initial datum

—&,T
Ope € L Jr(Q). Yet, the statement could be obtained on any subinterval
I' c IwithO ¢ I'.

(i1) The result only relies on the a priori bounds in Theorem 3.20. Consequently,
the same convergence result holds true for the rescaled temperature and
rescaled internal energy, namely along (interpolations of) the sequences
(& “Gg(k )Tk)k and (g, * wgf?fk)k for sequences (&g, ) with &g — 0 as k —
oo. Namely, the proof of &, “we, , — W in L*(I x Q) for some w is the
same, taking the a priori bounds in (3.70d) and Theorem 3.20 into account.
In view of (C.6), cy = cy(Id, 0) exists and by the third estimate in (C.5)
we have ¢y = c¢p. Hence, we can define 0 = W /cv. Furthermore, by
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Win(F,0) = 0 forall F € GLT(d), cy = W™ (see (2.13)), and the
Fundamental Theorem of Calculus we find

gek,fk = Win(vyek,rk’ ')71(w8k,‘fk)

wsk,‘[k .
= /O v (Vs W (Vg ) ()7 Hds

& “Wey _ o _ _
_ e f V(T o WY, o) el s, (@)
0

where we changed coordinates in the last identity. Consequently, using the
third inequality in (C.5), we can derive the bound

& “Wey,,
—Ol§ ——1 ~ _ k FkoTk \vay Win \vay -1, —ld
ey “Osp,q — €y Wl = VIV 00 W (Vg gr ) (gs)) ™ ds
0

v 1
—/ Cy ds
0

| -
é _|8kaw£k,rk - wl + fkv
o

where

w
fr :=f0 eV (Vg s WV, 10 ) (Efs) ™ =&t ds.

It remains to show that fy — 0in L*(/ x £2). By the third bound in (C.5)
we see that | fi| < %uﬁ € L*(I x 2). Then, by (C.6) and the definition of
cy, it follows that fy — 0O a.e.in I x Q2. Dominated Convergence yields the
desired result. The same argument holds for the other interpolations.

(iii) In the case @ = 1, the convergence can be improved to &, o P 6 in

L?(I; L*()). Indeed, by Remark 3.21 and 6, € L% () we get that

1er.mll L2 xe) + 106, o Ir2axe) + 1V0e 2 x) < Ce.

Then, the convergence in L2(1; L>(2)) follows by repeating the argument
above via Aubin-Lions’ theorem, simply using the compact embedding
HY(Q) cC L*(Q).

We are ready to pass to the limit in the time-discrete mechanical evolution.

Proposition 4.4. (Convergence of the mechanical equation) Let y, beasinLemma4.1
and 6, as in Lemma 4.2. Then, for any test-function z € C*°(I x Q) withz = 0 on
I x I'p we have that (2.19) holds.

Proof. The statement is proved in [33, Proof of Proposition 5.1, Step 2] and we
include a sketch for the reader’s convenience. For y € )iq we define a functional
on X := W27 (Q; RY) by

T
<H(y),z)=/ /aGH(sz)Evzz.
0 Q



5 Page50of 73 RUFAT BADAL, MANUEL FRIEDRICH & MARTIN KRUZAK

Note that H is a hemicontinuous and monotone operator as H is convex. We further
choose bg;, b, € X* such that (3.7) can be written as

<H(y5’f)9 Z) - <b£f7 Z) (4‘8)
forall z € WI%’DP(Q; Rd), and (2.19) can be written as
(H(ye), z) = (be, 2) (4.9)

forall z € WI%’DP (Q2; R?). Note that (4.8) holds by Proposition 3.5, and that our goal
is to confirm (4.9).

First, b, X be weakly* in X* for t — 0asineach of the three terms of b (i.e.,
0rW,d;R, and ng), respectively, see (3.7)) one can pass to the limit by using weak
convergence of (Vy;& Hrin L2(I; HY(; Rd)) (see (4.1a)), uniform convergence of
(V¥er)es (VXE T), on I x Q (see (4.1b)), and pointwise a.e. convergence of (Q&T)t
on I x Q (up toa subsequence, see (4.2b)). At this point, we use in particular that
9 R is linear in V3, ; and that dr W Q&T) is bounded due to (W.1), (3.5),
and (3.70a). Moreover, due to uniform convergence of the gradients we also have
(ber, Ve.r) — (be, ye). We now use Minty’s trick for the monotone operator H:
identity (4.8) and the convergences y, ; — y. weakly in X, be; = b, weakly*
in X*, and (ber, ¥, ;) — (be, ye) imply H(ye) = b, as elements of X*, i.e., (4.9)
holds. m|

For the limit passage in the time-discrete heat equation, we will need the strong
convergence of the strain rates (Vy, ;) in L2(I; L*(Q; R9*4Y) since the dissipa-
tion rate é(VXE’t, Vet Q&f) is quadratic in V3, . Note that our a priori bounds
currently only guarantee weak convergence. The next lemma improves this con-
vergence.

Lemma 4.5. (Strong convergence of the strain rates) For y. as in Lemma 4.1, we
have that, up to taking a subsequence,

y;&r — Y, strongly in LZ(I; H! (€25 Rd)) ast — 0. (4.10)

Proof. The proof follows essentially by combining Steps 4 in the proof of [33,
Proposition 5.1, Proposition 6.4]. We give the main steps here in our setting because
we work completely without regularization. First, in the time-continuous setting,
one derives the energy balance

T T
M(ys(T))+2/0 R(ye, Ve, b)dt =M(yo,s)+8/0 (€(1), ye)dt

T
—/ /8FW°PI(Vyg,95):Vy'edxdt, 4.11)
0 Q

where we recall the notation in (2.5), (2.7), and (3.22). This follows by testing the
momentum balance (2.19) derived in Proposition 4.4 with y, € L*(I; H'(Q)),
employing (2.9), and using a chain rule for the A-convex functional M, see [33,
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Proposition 3.6]. Our next goal is to show a similar balance in the time-discrete set-

ting. To this end, we test the Euler-Lagrange equation (3.7) of the k-th mechanical

step with y(k) yékr Yo get that

8‘[’57.' £,T°7E,T

2rRGETD, 8:y8), 047y = Te(e®, 5.y %)) — /3FW°P1(Vy<’<) 0%y 5, vy*ldx
Q
/a HV2y®):(v2y® — v2y &by —apwe(vy®) s (vy®) — vy Dyda.
(4.12)

By the A-convexity of M derived in [33, Proposition 3.2], we can find A > 0 de-
pending on the energy bound in Lemma 3.18 and the bound in (3.1) but independent
of ¢, T, and k such that

MOED) 2 MOE) = AIVyETD =3Ik, g,
/ dgH(VZyE):(v2y* ) — v2y®)ydx
4 / DrWE(Vy®) - (VytoD — vy @)y,

Using this bound in (4.12) then leads to

MGED) = MGETD) + 2RI, 8058, 057D) = AT 18: VY172 g

< vee®, 5, y%) — / O W(Vyg2 05 ) 6 Vlod,

Summing the above inequality over k € {1, ..., T/t} we arrive at a discrete analog
of (4.11), namely,

T . T .
MG )42 [ R, . Serse e = At [ [ 19500 Pavar
0 ’ 0 Q
T . T ' .
g M()’O,e) + 8/ (g(l)s )A’s,r)dt - f [ aFWCP (Vye,rv Qs,‘[) : V)A)E,Id-th9
0 0 Q

(4.13)

where in the integral for the force terms we used the definition in (2.23). Up to
selecting a further subsequence, we can suppose that the convergences in Lemma 4.1
and Lemma 4.2 hold true, and that Ocr = O pointwise a.e. in [ X €, Yo — Ve
weakly in L%(I; H'(Q; RY)), and V.o (T) = ye(T) weakly in W2P(Q)ast — 0.
This shows that

T . T .
IV = lim (s / (1), Ve, o)dt — / / aFW“"(m,an,,):vyg,,dxdr)
7—0 0 0 Q

T T
= s/ (£(2), ye)dt —f / Ar WP (Vy,, 6,) : Vyedxdt. (4.14)
0 0 Q
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Setting
Cor = (V3e) Wy, +(Vy, ) Viees Coi= (Vi) Vye + (Vy) Vi

we see by (4.1) that Co; — C, weakly in L2(I x ; Rdx") Consequently, by the
convexity of H and the fact that R is convex in C = FT F 4+ FT F standard lower
semicontinuity arguments (see also [17, Theorem 7.5]) imply that

1Y :=lim ninf M(3,. (7)) Z M(ye(T),
T—
19 —hmmf/ Ry, ,y“,_”)dt /R(yg,yg,eg)dt (4.15)

Combining (4.11), (4.13),(4.14),and (4.15), and using thatlim,; o T fO fQ | Vf}m |2
dxdr = 0 we get that

T
M(ye(T)) +2 / R(yes So, 60)dt = M(y0.) + IV
0

T
> 19 4219 > M(y(T)) +2 /0 ROe. je. 60)d1.

and thus both inequalities in (4.15) are actually equalities. Consequently, we get
by (2.7) and (D.1) that

T T
/ /D(cg,,gg’f)c'g,:c'g,dxdra/ /D(Cg,eg)cgtcgdxdt, (4.16)
0 Q Q

where we shortly write Cer := (Vy, )TVy cand C, 1= (Vye)'Vy,. Based on
this, we show the strong convergence of the straln rates. By (D.2) it follows that

co/ /|C8, — C,pPdxdr
0 Q

T
< /(; /QD(Cer,Qs,f)(Csr —Cp) : (Cor — Co)dxdt

T T
:/ /D(cg,,gm)c'g,:c'g,dxdt—z/ /D(cgf,gar)c'szc'mdxdt
0 Q

/ / D(Cer,0, ,) C: : Codxdr.

By a weak-strong convergence argument and (4.1) we get that Cg; — C, weakly in
L2(I; L*(2; R?*9)). Moreover, by (D.2), D(Cq, 0, ) is uniformly bounded and
D(Cer, QS’I)C."S converges to D(Cg, 0;) C'E strongly in LZ(Q; RdXd). Thus, (4.16)
and Dominated Convergence imply that

lim [|Cer = Cell2xg = 0- 4.17)

It remains to show that V3, ; — V3, strongly in L2(I; L2(Q; R¥*?)) as then
(4.10) follows from Poincaré’s inequality. By the uniform bound on the energy in
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Lemma 3.18, we can apply the generalized Korn’s inequality stated in Lemma 3.2
for a constant ¢ depending only on the initial data and f, g, 6,, and T. This shows
that

cllVIe,r — V)"s”LZ([xQ)
S I(V3ee = V) Vye + (V) (V3 r — Vi)l 20 ¢
S VI Vy,  + (Vy, ) V3er = (V3) Ve = (Vo) Vel 2 c0)

+2IVIe.cl 2 x) ||VX&r — VyellLouxo)-

Now, (4.1b), (4.17), and sup, . ||V§g,f||Lz(1XQ) < 400 by (4.1a) show ||V§')g,r —
Vyellp2(1xqy — 0as T — 0. This concludes the proof. |

The last step in the proof of Theorem 2.3(ii) and Proposition 2.5(ii) consists in
passing to the limit of the thermal evolution.

Proposition 4.6. (Convergence of the heat-transfer equation) Let y. be as in
Lemma 4.1 and 6, as in Lemma 4.2. Then, for any test-function ¢ € C*°(I x Q)
with ¢(T) = 0, we have that (y., ;) satisfies (2.20) with S;eg in place of &.

Proof. Suppose that we have already selected a subsequence such that Lemmas 4.1

and 4.2 apply. By possibly taking a further subsequence we can also assume that

0, . — 0 pointwise a.e. in I x 2. Furthermore, let ¢ as in the statement. Sum-
reg

ming the Euler-Lagrange equation (3.11) (for &, © in place of &) for each step and
integrating by parts we get that

T T
/ /IC(VX”,QN)V@J-Vgodxdt+/c/ /58,,¢dH‘f—1dz
0 Q ’ 0 r
T . .
- / / (séfg(m Ve 0. ) +FWP(Vy 0, )¢ V&s,f)rpdxdr
0 Q ’ !

T
- / / e rpdxdr
0 Q

T .
=Ks“f0 fréb,ﬂded—ldr+/S2W1“(Vyo,s,90,s)¢(0)dx, (4.18)

where 0, . (1) := Gb(kr) fort € (k— Drt,kt]land k € {1,...,T/t}. As 6, €
Wl’l(l; LZ(F)) We S€c ||§b’1— - Gb”Ll(I;Ll(F)) g T”éb”LI(I;LZ(F))' COnsequently,

T T
/ /a,fgadﬂd—ldt - / /Gb(pd'Hd_ldt as T — 0. (4.19)
0 r 0 r

It thus remains to show that the left-hand side of the above equality converges to-
wards the left-hand side of (2.20) (with &, in place of £) as T — 0. By Lemma 3.3
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and our choice of ¢ we have |IC(VX5 - 0. )Vl < C|Vgp|ae.in I x Q. Conse-

quently, by the weak convergence of (5‘”)r in L™ (I; WH (), see (4.2), it follows
that

! T
/ f K(Vye r’QE r)vas,f - Vodx + K/ f gg,rfded_ldt
o Je T o Jr
g T
N / / KV e, 0e) Ve - Vpdx +K/ / Ocpd I~ dr.
o Ja o e

The strong convergence of (W ;)7 in L¥(I x ) for some s € (I, ddiz), see (4.2b),
leads to

T T T '
—/ / e, pdxdt — —/ / we@dxdr = —/ / W™ (Vye, 0,)@dxdz.
0 Ja 0 Ja 0 Ja

As in the proof of Lemma 4.5, (see (4.14)), we obtain

T . T
/0 /Qapwcpl(vzw,gm):vyg,,¢dxdz—>/() anFWCP‘(Vyg,es):Vy'ggodxdt.

Note that by (D.2), (2.9), and by £, % < &, we have that

reg

A A A 2
a (VY 1 Vierbe0) S 2C0[(V3er) Vy,  +(Vy, ) Vies|

By Lemma 4.5 and (4.1b) ((V);)N)TVX£ . + (VX£ T)TVy;w)r converges strongly
in L2(I; L*(2; R?*4)). Consequently, we get that (S;eg(VXg - Vﬁg,r, 0 ))T is

Ze,T
equi-integrable. Using the pointwise convergence of (V Y, Dt and (0, ,)r as well as
the continuity of &y °, we can also pass to the limit in the &y °-term by an application
of Vitali’s convergence theorem. As we passed to the limit in each term, the proof
is concluded. m]

5. Passage to the Linearized System

This section is devoted to the proofs of Theorems 2.7-2.8. In the following,
let (er)r and (tx)i be sequences with g — 0 and either 7z = 7 constant or
7 — 0. Suppose that initial data (yo ¢, , 00,¢, ) as in (2.18) are given. For brevity, we

denote the corresponding time-discrete interpolations by y; := 7y, 7,y P

and Jx = Yg 7 see (2.26). A similar shorthand notation is also used for the
interpolation of the temperatures as well as the internal energies. Recall that the
objects exist by Proposition 2.5(i). In a similar way, we denote the time-continuous
solutions obtained in Proposition 2.5(ii) by (yg,, 6s,). It will be useful to use a
similar notation for the rescaled quantities: for time-discrete solutions we define

S Ve I T O S S /SR
k=, = , = , =—, ==,
&k =k &k ek k e kg
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and for time-continuous solutions we let

Yy —id Oy
Ug, = s Mg = -
&k ey

For any v € L?(I; H'(2; R?)) we denote the symmetrized gradient by e(v) :=
%(Vv + Vo). Finally, all constants we encounter in this section are implicitly
assumed to be independent of k.

We start with compactness results for the rescaled quantities which directly
follow from the a priori estimates for the nonlinear system. Recall the definition of
H]in (2.36).

Lemma 5.1. (Compactness for the rescaled displacements) There exist u, u €
H'(I; HL (2 RY) with u(0) = &(0) = uo such that, up to possibly taking a
subsequence, it holds that

G — win L°(1; L*(S RY), g — u weakly in H'(I; H'(2; RY)), (5.1)
e, — i in L°(I; L*(2 RY)),  ug, — it weakly in H'(I; H'(Q; RY)). (5.2)

Moreover, if . — 0, we also have
Wy, u, — u weakly in H'(I; H'(R2; RY)). (5.3)

Later, by uniqueness of the solution to the linear system, we will see that actually
u=u.

Proof. By the definition of u; and (3.70b) we derive forany ¢ € I that ||uy (¢)|| ;1 %)
= sk_l 1V —id|l g1 < C. For the other interpolations, we proceed in a similar
fashion and get for all r € I that

itk (Ol 1) = C- (5.4)

Moreover, using Poincaré’s inequality, (3.70c), and the definition of ii; we have
that

X A 1 A
||uk||L2(1;H1(Q)) = C||Vuk||L2([;L2(Q)) = g”vkaLz(IxQ) =C. (5.5)

Combining (5.4)—(5.5) we discover that (i )x is bounded in L>®°(I; H'(Q; RY)) N
H'(I; H'(Q; RY)) and thus (iig)x is compact in C(I; L2(Q2; R?)) by the Aubin-
Lions’ theorem. This together with Banach’s selection principle shows (5.1). More-
over, (5.3) follows from (5.5) and the definition of the interpolations. Finally, due
to (5.1) and the fact that 4 € H'(I; H{. (92; RY)) with it (0) = uo (see (2.1) and
(2.18)), it directly follows that u € H'(I; H{ (2;R?)) with u(0) = uo.

We now show (5.2). To this end, suppose that for each k € N the solution
(Ver» Og,) is obtained as the limit of time discrete solutions (3¢, 1, éskr,) for a se-
quence (7;); converging to zero. Repeating (5.4)—(5.5) the corresponding rescaled
quantities satisfy ||de, 7 |l poo(s. (@) = C and ||deg, g |l L2751y = C for a con-
stant C independent of /. Then, using (2.27) we get

||Mgk ”LOC(I;H](Q)) é C and ||L25k ”LZ(I;HI(Q)) é C.



5 Page560f 73 RUFAT BADAL, MANUEL FRIEDRICH & MARTIN KRUZAK

Now, (5.2) and the other properties of # again follow by the Aubin-Lions’ theorem.
O

Lemma 5.2. (Compactness for the rescaled temperatures) There exist [, i €
LY(I; WhN(Q)) with w, i = 0 such that, up to possibly taking a subsequence,
foranys € [1, ddiz) andr € [1, 9£2) it holds that

iy
e —> pin LI x Q), T — uweakly in L' (I; wh(Q)), (5.6)
fep = fLin LS(I x ), e, — it weakly in L™ (1; W (). (5.7)

Moreover, if Ty — 0, we also have that
By ik — pin L*(I x Q). (5.8)

Later, by uniqueness of the solution to the linear system, we will see that actually
w= Q.
Proof. Let r and s be as in the statement. The proof of (5.6) relies on the a priori
bounds on the internal energy in Theorem 3.20, i.e.,

||§k”L"(];W1J(Q)) + ||wk||LS(I><£2) + Hwk”]j([;wl,r(gz)) + ”li)k“Ll([;Wl,OO(Q)*) § CS]?
(5.9)

Infact, we can follow closely the lines of the proof of Lemma 4.2, see Remark 4.3(ii).
In particular, one first shows the convergence of the internal energies and then by
(4.7) the convergence of the temperatures. Here, we also see that for tz — 0
property (4.3) implies (5.8).

To see (5.7), we suppose that for each k € N the solution (yg,, 6, ) is obtained
as the limit of time discrete solutions (J¢, 1, égk 1) for a sequence (1;); converging
to zero. By the above reasoning we obtain (5.9) for §sk 7 in place of 6 and Wep g o=
Wi“(Vigk o §8k ) in place of wy. Then by (4.2) and the lower semicontinuity of
the norms we get that

10l Lrcr:wir )y + Nwe lLs (<) + lwe | prrwir @)y = Cegs
where wg, = Wi“(VySk, 0¢,). It now suffices to check that, also,
||ll)€k ”LI(I;W]'OO(Q)*) § CE]? (510)

holds, as then the statement follows by repeating the proof of Lemma 4.2, see again
Remark 4.3(ii). To derive (5.10), we use (2.20) (for £ ° in place of &) to get that
wg, coincides in the distributional sense with o where for each ¢t € I and each
@ € C(Q2) we set that

(0(1). @) ==k / (626, — 60 )pd ™ (x)
r
- L (’C(V)’aka Qak)veé‘k : V‘P - ( gleg(vyé‘ks V)}ak» 98]()

9P WP (Ve ) Vi) )d,
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where all functions on the right-hand side are evaluated at r € I. By passing
to the limit t — 0 in (3.70a)—(3.70c) and (3.81)—(3.82) we obtain the a pri-
ori bounds [|ys, — il ooy < Cer'"s e — il gty S Céks
and [0l 117 wi1 () < Ceyf. This along with (D.2), &® < &, (34), (3.5),
o < 2, and the trace estimate shows that t — ||o (¢) ||W1,OC(Q)* lies in L'(I) with
ol 2 wieo )y < Cey}. This concludes the proof of (5.10). O

We now proceed with the proofs of Theorems 2.7 and 2.8 which we split into
two subsections.

5.1. Proof of Theorem 2.7

We will only prove Theorem 2.7(iii) as item (ii) of the statement can be obtained
along similar lines by performing the linearization directly in the weak formula-
tion (2.19)—(2.20) in place of the Euler—Lagrange equations (3.7) and (3.11). Note
that the proof of Theorem 2.7(iii) will also imply the existence statement in The-
orem 2.7(i). In this subsection, we also address the uniqueness of the solutions to
the linearized system.

Proposition 5.3. (Linearization of the mechanical equation) Let u and p be given
as in Lemmas 5.1-5.2. Then, for any z € C*°(I x Q; Rd) withz =0o0onl xT'p
we have that (2.37) holds.

Proof. Let z be as in the statement. As z € ngg’ (Q2; RY), we can multiply (3.7)
with 7 /ex and sum over all steps 1, ..., T/t to get that

// aFW(Vyk,ek)+aFR(vyk,Vyk,9k)) Vz + 06 H(V?3,) V2 zdxd:
T_

:/ <e‘fk(t)s Z)dt9 (511)
0

where ka(t) = ng) fort € (I — Dr,It]and ! € {1,..., T/t}. Our goal now
is to show that (2.37) arises as the limit of the above equation as k — oo. First,
recalling (2.23) we can easily check that

T T T
/ (Etk(t),Z(t»dt_)/ /f~z+f / g - zdxdt (5.12)
0 0 Q 0 'y

as k — oo. By (H.3) for g H, (3.70a), and Holder’s inequality with powers %

and p, we derive that
< —/ f|v2 |7 V2z|dxdr

f f 36 H(V?y,):V2zdxdt
. ey
g _/ v yk”Lp(Q)”v Z”LP(Q)dt < C8k

8k

—Ce, " >0, (5.13)
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as p > d > 2. We now address the coupling term. In view of 3 W°P'(Id, 0) = 0,
(3.70a), and (3.5), a Taylor expansion implies that

0F WP (V5. 0,) — (03 WP (1A, 0)ex Vi + 0 WP 1, 0) ez, A D)
< ClexVug|* + C(|82{Ek|2 AT) (5.14)

pointwise a.e. in / x . Thus, by (5.1) and (5.8), along with > A 1 < ¢* fort > 0
for some fixed s € (1, ddiz) it follows that

1 T
lim — / / 3F WPV, 0;) : Vzdxdt
k—o00 & JO Q

T
= lim / / (0F WP, 0) Vit + & 0o WP (I, 0) (e s, A 1) : Vzdixdr.
0 Q -

k— 00

Recalling 32 WP (Id, 0) = 0 (cf. (C.3)) and the definition of B in (2.34) we find
that

1 T T
lim —/ / 8FWCPI(V7k,Qk) : Vzdxdr = [ / B@p : Vzdxdr. (5.15)
k—oo ek Jo Ja 0 Ja
By a Taylor expansion, (3.70a), and the fact that W¢! is C3 we have that
C
‘ek—lapwe‘(vyk) - B%We‘(ld)Vﬁk‘ < Z|Vy, — 1d.
&k

Integrating the above inequality over / x €2 and using (3.70b) we get that

T
/ / (s,;laFWe‘(vyk)—a%We‘(Id)Vﬁk):Vzdxdz
0 Q

< Cei IV —1d17agy ) < CTer — 0. (5.16)
By (2.8)
0;R(Vy,. Vii.0,) : V2 = 2Vy (D(Cr. 0)exCr) :
Vz=eCr 0 D(Cy, 0,)(V2' Vy, + Vyl Va), (5.17)
where
Co=Vy[Vy, Cii=Vi]Vy +VylViy. (5.18)

Note that the second identity is obtained by an elementary computation using the
symmetries of D stated in (D.1). By (3.70a) and (5.1) we then see that
Cr — 2e(it) weakly in L2(1 x €; R4X%), (5.19)

sym

Using (D.2) we also have that

ID(Ck, 0,)(V2' Vy, + Vy[ V)| £2C)|Vzl1e@lIVy, I @)-
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Up to taking a subsequence (not relabeled), we can suppose that VXk — Id and
0, — Oa.e.in I x Q. Thus, Dominated Convergence implies

D(Cy,8,)(VZ' Vy, + Vy!Vz) - D(d, 0)(Vz + Vz') = 2D(1d, 0)Vz

strongly in L2(1 x §; R4%4). This along with (5.17) and (5.19) leads to

T ‘ ’
8;1/ / 3F'R(Vyk, Vi, 0;) : Vzdxdt — / / 4D(d, 0)e(it) : Vzdxdr.
0o Jo = o Jo
(5.20)

Recalling the definition of Cp and Cyy in (2.32), as well as collecting (5.12), (5.13),
(5.15), (5.16), and (5.20) we conclude the proof. m]

Similarly as in Sect. 4, for the limit passage in the heat-transfer equation, we
will need the strong convergence of the strain rates (Viig) in L>(I; L*(Q; R?*%))
since the dissipation rate is quadratic in Vii;. We now improve the compactness
in Lemma 5.1 as follows. At this state, we need the additional assumption (H.4)
which combined with the bound on dg H (G) from (H.3) leads to

|H(G)| < Co|G|P forall G € RI*4x4 (5.21)

Lemma 5.4. (Strong convergence of the rescaled strains and strain rates) With u as
in Lemma 5.1, up to possibly taking a subsequence, we have that

G (1) = u(t) strongly in H (S RY) forallt € 1,
Vil — Vi strongly in L*(I; L*(Q; R9*4)). (5.22)

The first convergence also holds with uy or u, in place of iy.

Proof. Step 1 (Lower bounds for elastic energy and dissipation) Suppose we have
already selected a subsequence so that the convergences of Lemma 5.1 as well as
Lemma 5.2 hold true. Recall the definition of M, before (3.48). For convenience,
forany v € H'(; R?), we define

Mo(v) 1= %/S;(Cwe(v):e(v)dx,

where Cyy = B%Wel(ld) is as in (2.32). Let us fix an arbitrary ¢+ € I. By the
non-negativity of H, a Taylor expansion, and (3.70a) we derive that

Mo, Gi(0) = 672 fQ Wl (Y5, (1))dx

1\

%/ﬂa?,we‘(m)vm(z) : vuk(t)—C/Q|yk(t)—1d||wk(z)|2dx

1\

1
3 / 02W (1) Vit (1) : Viig(t) — Ce;'” f Vit (1) dx.
Q Q

(5.23)
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Consequently, using (5.3), it follows that

I = likm inf M, (7, (1)) 2 likm inf Mo (@ (1)) = Mo(u(1)). (5.24)

Let Cy and Ck be as in (5.18). In (5.19) we have seen that Ck — 2e(ut) weakly
in L2(I x €; R?*?) This along with the definition in (2.9), Cp = 4D(Id, 0), the
pointwise convergences of (V Zk)k and (0, ), and standard lower semicontinuity
arguments (see also [17, Theorem 7.5]) show

t .
I = liminf sk_z/ / E(Vy,, Vk, 0;)dxds
k—o00 0 JQ =k -

k—o00

t
=liminf/ /D(Ck,Qk)Ck:dexds
0 JQ

t
2/ /(CDe(L't):e(d)dxds. (5.25)
0 JQ

Step 2 (Convergence of elastic energies and dissipations) Our next goal is to show
the reverse inequalities for the lim sup. To this end, we draw ideas from the proof
of Lemma 4.5 and compare an energy balance on the nonlinear time-discrete level
with a time-continuous energy balance in the linearized setting. First, recall from
(4.13) that for K € N with Kt € [, t + 1) it holds that

Ky . Ky .
Mgk(yk(l(fk))-i-sk_z/() [Qs(v&(,vyk,gk)dxds—rkzxfo /leﬁklzdxds

1 Kt R Kty B . B R
< Mey Goe) +— | (06, Sk(s)ds — e op WP (V. 0, : Viigdxds,
&k JO 0 Q (5 26)

where A > 0 does not depend on k. Here, we also used (2.9) to replace R by &.
Now, in a similar fashion, testing (2.37) with z = 1 we see that

t t
mo(u(t))—ﬂo(uo)—l—/ f ((CDe(L't):e(u')—i—uB(“):Vﬂ)dxds:/ (0(s), it(s))ds.
0 JQ 0
(5.27)

We now address the convergence of the various terms. First of all, by (5.1) we
clearly have that

Kty

1 . Kt . t
— ; (£(s), Yk (s))ds Z/() (£(s), tg(s))ds — ./() ((s), u(s))ds. (5.28)

Ek

For « = 1, by arguing similarly as in (5.14)—(5.15), and using (3.70a) as well as
Wy = 1 strongly in L2(I x ), by Remark 4.3(iii) we find that

1 Kty . t
I3 := lim — / / dp WPV, 0,) : Viigdxds = / / By : Vidxdr,
k—o0 &k Jo Q 0 Jo
(5.29)
where we also used the definition of B in (2.34). For « € (1, 2], (5.29) also holds
(with B@® = 0), since by Remark 3.21 we find that My isbounded in LY (I; L1(R2))
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for some ¢ € (2/a, 2], and therefore using 1 A 1 < ¢4/ for + > 0 and Young’s

inequality with constant &.9/>

*‘/0 /‘(S?Ek)/\IHVﬁdedt

we get that

— 2
< 1( S e 1 1 ey F ||wk||Lz(IXQ)) 0. (530
Eventually, we get that
lim Mg, (yo.,) = lim M., (id + euo) = Mo(uo). (5.31)
k—00 k—00

In fact, for the convergence of the elastic energy we repeat the Taylor expansion
in (5.23) (with equality), and for the second-gradient term we get by (5.21), ug €
W2P(; RY), and p > 2 that

8;2‘/ H (e V2ug)dx| < Cs,f*zf IV2uo|Pdx < Cel ™% — 0.
Q Q

Combining (5.26)—(5.27), Kt = ¢, the convergences (5.24), (5.25), (5.28), (5.29),
and (5.31), as well as using that 7 fOKTk JoIVitg|*dxds — 0as 7p — O we get that

t t
ﬂo(u(t))Jr/ (Cpe(@) : e(it) + uB® :vu)dxds=ﬂ0(uo)+/ (€(s), 1(s))ds
0 JQ 0

t
21+ L+ I3 2 Mo(u(t)) +f / (Cpe(i) : e(it) + uB® : Vii)dxds.
0 JQ

Thus, all inequalities in (5.24) and (5.25) are equalities. In particular, we derive
that

lim © / Cwe@() : el ()dx = - / Cwe()) : e(u(r))dx, (5.32)
%2 Jg 2 Jq

lim —f /é(Vyk,Vyk _k)dxds—/ /4D(Id 0)e(u) : e(i)dxds,
(5.33)

where we also used the definition of Cp in (2.32).

Step 3 (Strong convergence) Strong convergence for iy in H ' (Q; R?), i.e., the first
part of (5.22), follows directly from (5.32), Korn’s and Poincaré’s inequality, and
the fact that Cyy is positive definite on Rd *d Tn the same way we obtain convergence
of u; by employing y . (t) inplace of y;, (t) in (5.23). Hence, the statement also holds

for i1y, For the second part of (5.22), we will first show strong convergence of (Cor
defined in (5.18): by (D.2) we estimate

T T
CO/ /|c'k—2e(u)|2dxdr g/ / D(Cy, 0,)(Cy — 2e(ih)) : (Cy — 2e(i))dxdr
0 Q 0 Q
T ) T )
=8k_2/ /S(V&{,V&k,ﬁk)dxdt—zf /2D(Ck,gk)e(u):ckdxdt
0 Q 0 Q

T
+/ / 4D(Cy, 0)e(u) : e(i)dxdt.
0 Jo
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By (5.33) for t = T, the pointwise convergence of (VXk)k and (6 )« to Id and 0,
respectively (see (5.1)—(5.3) and (5.6)), and the already shown weak convergence of
C « towards 2e(it) (cf. (5.19)) we see that the above derived upper bound converges
to 0 as k — oo. Then, the desired strong convergence of (Viig)y is derived as
follows: by using Poincaré’s and Korn’s inequality, (5.1), and (3.70a) we get that

T . T .
/ [ |Viig — Vi[> dxdr < c/ f lsym(Viiy — Vi)|>dxds
0 Q 0 Q

T T .
< c/ /|c’k —2e(u)|2dxdt+cf /|Vyk—Id|2|Vﬁk|2dxdt
0 Q 0 Q

T T .
< c/ / |Cx — 2e(it)|>dxdr + Ce,ﬁ/”/ / |Viig|>dxd: — 0.
0 Q 0 Q

This concludes the proof. O

Proposition 5.5. (Linearization of the heat-transfer equation) Let u be as in
Lemma 5.1 and pu as in Lemma 5.2. Then, for any ¢ € C°(I x Q) with o(T) =0
we have that (2.38) holds.

Proof. Similarly to the proof of Proposition 4.6, see (4.18), we can show that

T T T
/ /K(Vyk,Qk)Vﬁk-dexdt—/ /sk_“ﬁ;kq')dxdt—i—/c/ /ﬁkwde_ldt
0 Q - 0 Q 0 r

T . .
_/0 /Q (s,:aséeg(vzk, VK. 0x) +g]1*aaFchl(VXk,Qk) : Vﬁk)godxdt
T .
=k / / éb’.[(pd’]-(dfldl‘ + g;a / W‘“(Vyo,s, 90,8)@(())(1)57 (5.34)
0 r Q

where Wy 1= We; 7, Vyo,e = Id+eVug,and 6y ¢ = &f puo. Note that in contrast to
(4.18), werescaled both sides with £, “. We will now pass to the limit in each integral
above as k — oo. Recall that cy (F, 0) := —GSgWCPI(F, ) for any F € GL*(d)
and 0 = 0.

Using (C.6) and Dominated Convergence we can show in a similar fashion as
in Remark 4.3 that

e " fQ Wi (Vyo.e, 60.e)p(0)dx — fQ v mow(0)dx.

By Lemma 3.3 we have that |K(VXk’ 0,1 is uniformly bounded. Consequently,
from the pointwise convergence of Vy f and 0, to Id and 0, respectively, see (5.1)—
(5.3) and (5.6), we derive that

T T
/ /IC(Vy ,Qk)Vﬁk~Vgodxdt+K/ /ﬁkwdH"’ldt
0 Q 0 r

T
—>f fKOVu-dexdt+K/ podHdr,
0 Jo r
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where Ko is defined in (2.33). By a change of variables and Dominated Convergence
we find that
_ . o i _ " _
& WV, 0k) = /O cv (V. egs)ds = /O cv (Vg ef s)ds + O — il
— cy(Id,0) (5.35)

pointwise a.e. in I x 2, where we again used that by (C.5) the function cy is bounded,
the pointwise convergence of (VY ), to Id, and the pointwise convergence 1, — [
(see (5.6), up to a subsequence). By Dominated Convergence this convergence also
holds in L1 (I x §2). The same holds true for ¥, O inplace of 3y, 0. Thus, recalling
the definition of wy, we have shown that

T T T
/ /egaﬁ)k(bdxdt—)/ /cv(Id, O)M(bdxdt:/ /Evu¢dxdt.
0 Q 0 Q 0 Q

(5.36)
We now prove that the contribution of the coupling potential vanishes in the limit.
Indeed, by (3.5), (3.70a), (3.81), (5.1), and t A 1 < £°/2 for some s > <D with

s e (1, ddiz), the Cauchy-Schwarz and Holder’s inequality we see that

T
‘/ /e;*”WCP‘(Vyk,Qk):vakwdxdt
0 Q -
T .
gs,i—“/ /C(Qk/\l)(1+IVXk—Id|)|Vﬁk||<p|dxdt
0 Q
< Cey 102 N 2 | Vit 2ol | Lo ()

l—a+as/2 g X
< Cep P w17 o) Vi 2y @l oo @) — 0.

Lastly, by (5.18), by the second convergence in (5.22), (2.9), and the continuity of
D one can show for = 2 that

T ) T .
/ / & "6 (VY. VIk, 009 = / / & “E(Vy,, VK, 009
0 Q 0 Q
T
—>/ /(CDe(zk):e(L't)godxdt.
0 Q

For a < 2 instead, it is easy to check using &, ¢ < & that the term vanishes as

k — oo. Collecting all convergences and recalling the definition of (C(Da) in (2.34),
we get that (2.38) holds true, where for the external temperature we use (4.19). O

Lemma 5.6. (Uniqueness of the linearized system) There exists at most one solution
in the sense of Definition 2.6.

Proof. We start with & € (1, 2]. In this case, (2.37) is independent of the variable
. We show uniqueness of u. To this end, we suppose that there exist two solutions
uy, uz,andsetu := uy —uz. Thenu = 0on I x I'p and u(0) = 0. Subtracting the
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weak formulations (2.37) for both u1 and u», we see that forany z € C*°(I x ©2; RY)
with z =0on I x I'p it holds that

T

/ / ((Cwe(u) n CDe(u)) . Vzdxdt = 0. (5.37)

0o Ja
Let us now define

a(t) := %/ Cpe(u(t)) : e(u(t))dx forz e I.
Q
Note thata € W1 (I) with
a(t) = / Cpe(u(t)) : e(u(t))dx = f Cpe(u(t)) : Vu(t)dx
Q Q

forae. t € I.Let ¢ € C*°(I). Testing (5.37) with a sequence of smooth maps
(zn)n vanishing on I x I'p and converging to ¢u in LZ(I; H! (2)) we derive that

T
/ ¢>/ (Cwe(u) +CDe(u)) : Vudxdr = 0.
0 Q
By the arbitrariness of ¢ it then follows for almost all # € I that
/ (Cpe(i(t)) + Cwe(u(r))) : Vu()dx = 0.
Q
This shows that
a(t) = / Cpe(u(t)) : Vu(t)dx = —/ Cwe(u(®)) : e(u(t))dx 0.
Q Q

As a(0) = 0, it follows that @ = 0, and therefore u = 0. Now, given a unique
u € H'(I; HY()), we see that (2.38) is an equation in the variable p only. More
precisely, it corresponds to the weak formulation of a heat equation with L'-data.
Uniqueness has been provided in [37, Proposition 1]. This finishes the proof in the
case o € (1,2].

We now briefly give the argument for « = 1. In this case, (2.38) does not
depend on u and uniqueness follows again from [37, Proposition 1]. Then, the term
fOT Jo B 1 Vzdxdr in (2.37) is only a datum, and uniqueness of u follows by
repeating the argument starting with (5.37). O

We are now ready to prove Theorem 2.7.

Proof of Theorem 2.7. We start with the proof of Theorem 2.7(iii). First, by Lem-
mas 5.1-5.2, we obtain limits u € H'(I; HllD(Q; RY)) and u € L'(I; Wh1(Q)).
In view of (5.1), (5.6), and Lemma 5.4, the convergences stated in the statement
hold, up to selecting a subsequence. In particular, (5.3) and (5.8) show that the con-
vergence holds for all three different interpolations. By Propositions 5.3 and 5.5
we see that (u, u) is a weak solution in the sense of Definition 2.6. As the weak
solution is unique by Lemma 5.6, Urysohn’s subsequence principle implies that
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the convergence holds for the whole sequence. This concludes the proof of Theo-
rem 2.7(1),(iii).

We briefly describe the adaptions for Theorem 2.7(ii). First, in the compactness
result we replace (5.1) and (5.6) by (5.2) and (5.7), respectively. The lineariza-
tion of the mechanical equation and the heat-transfer equation in Propositions 5.3
and 5.5, respectively, can be derived along similar lines, by replacing the time
discrete equations (5.11) and (5.34) with their time-continuous analogs in (2.19)
and (2.20), respectively. In a similar fashion, for the proof Lemma 5.4, we use the
time-continuous energy balance (4.11) in place of (5.26). The rest of the argument
remains unchanged. O

5.2. Proof of Theorem 2.8

We start with a I'-convergence result. With the notation from Sects. 2.1-2.2
we define for k € {1, ..., T/t} the functional E‘gk): Hllu(Q; R?) - R through

EP W) = 400 ifu ¢ w>P(Q; R?) and

1 1
EDw = e_zM(id +eu) + 5_2W0pl(id + ¢u, 9;,](;1))

' Vet

1
+ ER(yé(‘{(f_l)v id 4+ eu — yé{‘;l) e(k—l))

T et

1
— (% uy — —2/ 05D g wePl(vy k=D gk=Dyqy (5.38)
& Q

ifu e W2P(; RY). Although the last term in (5.38) does not influence the min-
imizers of E ék) for fixed k, it is needed to ensure the boundedness of (|E‘§k)|)‘8 as
& — 0 along sequences of minimizers. Recall also & from (3.48).

Proposition 5.7. Suppose that sup,_ é}(yg(; 1), 98(,]?])) < 400 and ugk; D

8_1(yg<f_l) —id) — ud=h strongly in H'(Q;R?) as ¢ — 0. Suppose that
8_0195(’]{;1) — uﬁ"*” in LY() and that the convergence holds in L*(Q) ifa = 1.
Then, the sequence (E ék)) ¢, defined in (5.38), T-converges in the weak H'-topology
to Eék): HllD(Q; R?) — R given by

_ 1 1 - _
EP @) :=/Q(§(Cwe(u):e(u)dx—|—§(CDe(ﬁ):e(ﬁ)—i—Evugk Dy I)B(“):Vﬁ)dx

k
— (¢, uy,

where i .= u — uﬁkil), Cw, Cp asin(2.32), ¢y asin (2.33), and B® as in (2.34).
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Proof. All constants we encounter in this proof are implicitly assumed to be inde-
pendent of e. We will work with the equivalent representation

E® ) = M(ld+8u)+ R(y<k Did +eu — y&70 087Dy
+ —2/ W;“(Id+.svu, 0% ydx
&t Ja

1
+—2/ 081 (3 WPl (Id + eVu, 681
. :

* Ve, T
— WP (Vyd D ok D)) dx — (60 u), (5.39)
which can be derived from (5.38) by adding and subtracting

1

82/9“‘ Vg WP (1d + eVu, 07 1)

and using the definition of W™ in (2.12).
Step 1 (Mechanical energy bound): Let (ug), C W?;)p (2: RY) be a sequence such

that sup,.. Eék) (ug) < o0o. We will show that then also sup,. s_zM(ye) < 00,
where we shortly wrote y, := id + cu,. By the nonnegativity of W™ and R we
derive that

1 1 _
EO @) 2 5 MO + / 61D (3 W (V ., 6157D)
Q

— WP (VyE=D & D)) dx — (¢, up). (5.40)

’ Ve, T

By the second bound in (C.5), Young’s inequality with constant A, and 1 At < /1
for t 2 0 it follows that

e(k 1)|a WCpl(Vys,G(k l)) 39WCPI(Vy§k 1) e(k l))|

1 Ve T

< CO* TV A DA+ |Vy, —1d| + [Vy¥TD —1d))

C
< xegf‘;” + CAVy, —1d* + CA|Vy* ) — 1d|%.
Integrating over 2 and using (3.2) as well as (W.4) we get that

’/ 0% (3 WCpl(Vyg 0%y = WP (VD 6 )ax|

C
< - 2fe(k Ddx + - We‘( - 1>)+ Wel(yg) (5.41)

Again by (3.2), Poincaré’s inequality, and Young’s inequality with constant A /¢ we
see that

_ . C
1(€®, ue)| =& 1|<z§k>,y8—nd>|§xneg")n L+ C Wel(m
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Hence, combining the above estimate with (5.41) and (5.40), and using Holder’s
inequality, we arrive at

E® (ye) 2 (1 — Ce 2 M(ye) — —(6 GED 0Ky + 11e® 12 ).

Choosing A sufficiently small such that 1 — CA = 1/2 this leads the desired bound.
Consequently, in the sequel, we can assume that (3.70a)—(3.70b) holds for both y,

and y(k b,

Step 2 (T-liminf): Let (u¢)e C H} (2 R?) be such that ue — u weakly in
H'(Q; RY). Without loss of generality we can assume that sup,._ Eék) (ve) < o©
and liminf,_ ¢ E; % (ug) = limg_ g E;¢ * )(ug) In particular, we can select a subse-
quence (without relabeling) such that G(k D 0 ae. in Q. We are now ready

to compute the liminf of the various terms of Eék) (ug). By (3.70a) we see that
Vy, — Id uniformly. Hence, by the weak convergence of (u), in H L€ ]Rd) we
can show similarly to the derivation of (5.24) that

1 1 1
lim inf — M (y) > lim inf—f CwVug : Vugdx 2> —/ Cwe(u) : e(u)dx.
e—>0 & =0 2 Jgo 2 Ja

(5.42)
As in the proof of (5.25), it follows from the pointwise convergence of ( yé{(; 1)) .
(k=1)
and (0¢.;r '), that

_ _ 1 _ _
11m1nf —R(y(k 1), yé{cf 1),08(’kf 1)) > E_/ (CDe(u—ugk 1)) : e(u—ugk 1))d)c.
Q

By the same argument as in (5.36), the L'-convergence of £~ 95(15_1) implies that
lim — / Wi (Vye, 0% Dydx = ¢y / pnDdx, (5.43)
e—0 ¥ Q

For the remaining coupling term in (5.39), we Taylor expand around (Id, 98({(;1))

and get by the second bound in (C.5), (C.7), and (3.70a), applied for both y, and

Y&V that

98(’](1—_1)|(80WCP1(V_))8,Qrs(f{_l)) 8 WCpl(Vy(k 1) 9(1{ 1)))
= B WA, 0071): V(ye — ()]
S CO*V AD(IVy, —1d)? + |VyETD —1d)?)
< Ce" T O A D (IVie] + IVu)).

pointwise a.e. in €2. Thus, by repeating the argument in (5.30) we derive that

lim — /9“ D (8 WP (Vye, 0K — dpwePl(vyk=D gk =Dy)dx
Q

s—>0£2 e

=1lim [ e7'0% Vaprwad, 085y V(u, —u;Y).

e—0
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Thus, by the definition of B@ in (2.34) and by repeating the argument in (5.29)—
(5.30) we conclude that
1

82 Ve, T

/9(k 1)( WCpl(vyg’ (k l)) WCpl(Vy(k 1) 9(1{ U))dx

Q

_>/,Lgk—‘>153<a>: V(u —ulydx (5.44)
Q

as¢ — 0. Finally, notice that the weak convergence also implies lim,_, (Egk) ,Ug) =

(ng), u). Combining all aforementioned estimates we conclude the proof of the I'-
lim inf.

Step 3 (I'-limsup) Let u HY(Q; Rd) with # = 0 on I'p. By a standard
approximation argument in Sobolev spaces we can assume without loss of gener-
ality that u € C°(Q; R?). Choose u, = u for all &. We only need to check the
convergence of the energy. First, notice that by (5.21) and p > 2

1 1
—2/ H(V?yp)dx < —2/ ColeViu|Pdx = coeP—Z/ |V2u|Pdx — 0,
& Ja & Ja Q
where y. := id + eu. By a Taylor expansion we also see that
1 1
—/ Wel(Vy,)dx = —/ CWEVu:sVudx—i—O(s/ |v3u|dx)
e Ja 262 Jg Q
1
— —/ Cwe(u) : e(u)dx.
2 Ja
Furthermore, using (D.1) we can write that
_ 1 B . .
R(y<k Voye =yl 08T = 5 / D(Ce, 07 C, - €,
Q

where C, = (Vy(k NTyy¢D and ¢, == (Vu — w(" NTyykb 4
(Vyékr 1)) (Vu Vug T 1)) By the strong convergence of (ug - 1))5 in H! (Q RY)
it follows that C, — 2e(u — 5" 1)) strongly in L2(; R4*4). Consequently,

’ST

1 _ _
-~ LRGE, ye =y, 0% erCDe(u—ui" D)o —ul).

The convergence of the terms (5.43) and (5.44) follows as in the previous step. This
concludes the proof. O

We close with the proof of Theorem 2.8.

Proof of Theorem 2.8. We prove the result by induction on k. For the base case

k = 0, we only need to check the convergences and the energy convergence. In
0 (0)

fact, setting u;~ := wug and uy = o, this directly follows from (2.18) and
repeating the argument in the I'-lim sup above.
Suppose now that the statement is true for k — lwherek € {1,...,T/t}. With

(3.70b) we have ug 3 = s_l(y(k) id) — u, Weakly in H'($2:; RY) (up to a sub-
sequence). By the induction hypothesis it holds that u k D= e_l(ygkt b_ id) —
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uikil) strongly in H'(Q2; RY) and 8“"9“{71) — p, G=1) weakly in W7 () for
,Zﬁ *“G(k Do ke strongly in
L'(Q). If « = 1, Remark 4.3(iii) even yields convergence in L?(). As also

Sup,..q Eg(ygkr D Gg(k l)) < 400 due to Lemma 3.18, we can apply Proposi-

any r € [1 ). Therefore, we also find ¢

tion 5.7. By the fundamental theorem of I'-convergence, ugk) is a minimizer of
E(()k) and E(k) (u(k)) — E(k)( (k)) As E(k) is strictly convex, u( ) is the unique
minimizer of the correspondmg mlmmlzatlon problem. In particular, the weak
H! -convergence of (u ¢,7)e holds true without selecting a subsequence. Moreover,
energy convergence implies that in (5.42) equality holds. This along with weak con-

vergence, as well as Korn’s and Poincaré’s inequality yields u g , — ugk) strongly

in H'(; Rd) Clearly, u; ) satisfies (2.40).
Letr € [1 d+2) and s € [1, d+2) As T > 0 was fixed, we see by (5.6) that,

> d+1
up to selecting a subsequence 8“"9(1? — Mﬁ“ weakly in W17 (Q) and strongly in

L*(€2). This limit ,u ) solves (2.41). Indeed, testing (3.11) (with &% in place of &)
with ¢ € C*(Q) and dividing by % we can pass to the limit & — 0, and obtain
(2.41) by an argument similar to the one in the proof Proposition 5.5 neglecting
the time dependence. The main difference is that we do not perform integration by
parts in time, but by using the argument in (5.35) we pass directly to the limit in
the term

1
r_l( (k 1) (pdx—)/ (k) ugk_l))(pdx.

To conclude the induction step, it remains to show the uniqueness of ,ugk), which in
particular will imply that the weak W !”-convergence holds true without selecting
a subsequence. Suppose that ,u( ) also satisfies (2.41). Then, for the difference
W= /L(k) (k) it holds that

/ (EV%@ + KoV - Vo)dx + K/ pedH =0
Q r

Taking a smooth sequence (¢p);, C CZ°(2) converging to x(u) in C ! where
x (¢) := arctan(z), this shows with (2.10), x ()t = 0 for all #, and x’ = O that
Jo BEx(uydx = 0. As x(1)r = O forall r and x (1) = 0 if and only if = 0, we
have proved p = 0, and thus uniqueness holds.

(i) We only sketch the proof as it follows along the lines of the reasoning
in Sect. 4. Let i, Uy, u, be defined similar to (2.26), and use similar notation
for . We first observe that (i), is bounded in H'(I; H'(2; R?)) and (fi¢):
is bounded in L”(I; W' ()). This follows from Lemmas 5.1-5.2 and (2.39).
Additional control can be recovered from the estimates stated in Theorem 3.20.
Thus, we can findu € H'(I; HFID(Q; R4)) such that Vii; — Vi and Vii; — Vu
weakly in L2(I x ; R?*4) Moreover, there exists u € L'(I; W-1(Q)) with
w = 0 a.e. such that the latter two convergences in (2.42) can be derived (up to a
subsequence) using the Aubin-Lions’ theorem and by following the reasoning in
Lemma 4.2.
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Using (2.40) for every smooth z € L2(I; HllD(Q; R?)) and summing over
every k € {1, ..., T/t} we derive that

T . r_
f / (Cwe(ur) + p B + Cpeliy)) : Vzdxdr —/ (€ (1), z(1))dt =
0 Q 0

Consequently, we can then pass to the limit t — 0 in the above equality which
results in (2.37). Using (2.41) for every k € {1,..., T//t} we also see that for any
@ € C®(I x Q) with ¢(T) = 0 it holds that

T . . T
| [ (€5 et etioro+ %oV - Vo —avinei)asar + [ [
r

B edH =&y / Jop(0)dx,
Q

where as usual we applied integration by parts. In particular, as T — 0 by (2.42)
we see that

T T
lim / / (=&vfieg + KoV, - Vg)dxdt + / / (T, — By o )pdHI!
Q 0 r

=0 Jo

T T
= / / (—ypg + KoV - Vo)dxdr + « / /(u — O)pdHIL. (5.45)
0 Q 0 r
We also find that

lim l/ Cwe(it(t)) : e(iu(r))dx = l/ Cwe(uy (1)) : e(ue(1))dx,
=02 Jqo 2 Ja

T . . T
limf /(CDe(ﬁr):e(ﬁ,)godxdtzf f@De(u):e(u)gadxdt. (5.46)
Q 0 Q

=0 Jo

Indeed, inequalities follow from weak convergence, and the equalities are recovered
by resorting to energy balances in the time-discrete and time-continuous setting,
see Lemma 4.5, in particular (4.15)—(4.16), for details. Let us highlight that at this
point for @ = 1 we exploit [ [, 1t p B : Vi dx — J f uB@ : Vidx since
we can assume /L —> /4 in L2(I; L2(Q)) by Remark 4.3(iii).

The second part of (5.46) along with (5.45) implies that (2.38) holds. This shows
that (u, u) is a weak solution of (2.29)—(2.31) in the sense of Definition 2.6. This
solution is unique (see Theorem 2.7(1)), all aforementioned convergences hold true
without selecting a subsequence. Energy convergence in (5.46) along with weak
convergence implies i, (f) — u(t) strongly in H'($; R?) for every t € I. For the
other interpolations, one can argue in a similar fashion by replacing u (t) by u (¢)
in (5.46).
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