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A Bootstrap Comparison of Robust Regression Estimators
Jan Kalina!, Patrik Janacek 2

Abstract. The ordinary least squares estimator in linear regression is well known to
be highly vulnerable to the presence of outliers in the data and available robust statis-
tical estimators represent more preferable alternatives. It has been repeatedly rec-
ommended to use the least squares together with a robust estimator, where the latter
is understood as a diagnostic tool for the former. In other words, only if the robust
estimator yields a very different result, the user should investigate the dataset closer
and search for explanations. For this purpose, a hypothesis test of equality of the
means of two alternative linear regression estimators is proposed here based on non-
parametric bootstrap. The performance of the test is presented on three real economic
datasets with small samples. Robust estimates turn out not to be significantly different
from non-robust estimates in the selected datasets. Still, robust estimation is beneficial
in these datasets and the experiments illustrate one of possible ways of exploiting the
bootstrap methodology in regression modeling. The bootstrap test could be easily ex-
tended to nonlinear regression models.
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1 Introduction

As the linear regression represents the most fundamental model in current econometrics [5], it is crucial to estimate
its parameters without being excessively influenced by the presence of outliers in the data [11]. Robust regression
estimators started to become established alternatives to the least squares since late 1960s [18]. The practical anal-
ysis of economic data however lags behind the current trends in mathematical statistics, although new robust esti-
mators have recently been developed and investigated. The robust estimates are more variable (less efficient) com-
pared to the least squares for non-contaminated models and choosing the robust fit in every situation is not neces-
sarily optimal. The robust procedures are either intended to replace the least squares as self-standing estimators,
or they have the potential to accompany the least squares as a sort of diagnostic procedures [1]. In the second
situation, the user does not have to decide whether the least squares estimator is reliable or whether the robust fit
is preferable. In any case, users of robust statistics should also have the ambition to compare the performance of
several methods and to decide for the method that is able to outperform other methods.

The approach based on understanding robust regression estimators as diagnostic tools for the least squares has
been developed from the very dawn of robust estimation [6]. Such approach is still topical in current data analysis,
as documented e.g. by the application of the least weighted squares estimator [24] in the study of [9], where robust
analysis is presented primarily as a tool revealing non-robustness of a standard data analysis. An example of such
a recent standing-alone methodology is the robust regression by means of the method of moments of [2], which is
reliable under contaminated as well as non-contaminated models. In addition, robust estimators start to obtain their
own diagnostic tools (cf. [25]). In general, if a robust estimator yields a (sufficiently) different result from the least
squares, the user should investigate the dataset closer and search for explanations [17]; in this context, a formal
hypothesis test would be very useful. Let us however proceed with formulating the test problem carefully.

In standard terminology, a coefficient estimate is a realization of an estimator obtained for the sample at hand.
With the sample data in place, two different estimates are either different or not. Still, it may be useful to ask
whether the expectations of two alternative estimates are equal or not. Thus, the question is how to perform a
formal hypothesis test of equality of the means of two alternative estimators, especially for small sample sizes. If
the two estimators are consistent, they are already asymptotically unbiased and any such test is redundant. Still,
the test may be meaningful for situations with finite samples when assuming consistency is not desirable. In fact,
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some of the robust estimators such as the least trimmed squares or least weighted squares require to assume a
lengthy list of technical assumptions in order to achieve consistency; also, each of the estimators has its own set
of specific assumptions [23, 24]. Not relying on the consistency has also the advantage that a possible extension
of the test to nonlinear regression is straightforward; consistency properties remain unknown for some robust
nonlinear regression esteimators (including common types of robust neural networks [20]). This motivates our aim
to propose a test of equality of the means of two alternative linear regression estimators based on nonparametric
bootstrap. We recall that nonparametric bootstrap represents a popular methodology for estimating variability (i.e.
the covariance matrix) of various robust regression estimates [13].

Testing equality of the means of two regression estimates, which seems not be mentioned in recent robust-
ness literature [6], was discussed as an important topic in financial applications in the recent paper [12]. There,
a Hausman-type test was proposed to compare the mean of the MM-estimate with the mean of the least squares fit.
We recall that the Hausman test based on the difference of the two-stage least squares and the ordinary least squares
is based on the asymptotic covariance matrix of the difference; the test is meaningful in econometric models with
endogenic variables, where the least squares estimator is not consistent [5]. Naturally, deriving an asymptotic test
of Hp requires to derive the asymptotic covariance matrix of ,@A — ,5’3 and cannot be obtained only as a combina-
tion of two individual covariance matrices for 3A and ,5‘ B Nevertheless, the work [12] compared two estimators
that are consistent and asymptotically normal, exploiting known formulas for their asymptotic covariance matrices.
Because we do not want to assume asymptotic normality to be available, we resort to a nonparametric bootstrap
procedure. In Section 2, a nonparametric bootstrap test of equality of two means of two alternative linear regres-
sion estimates is proposed. Its performance over three real economic datasets is presented in Section 3. Section 4
brings conclusions.

2 Comparing two regression estimates

Throughout the paper, we consider the standard linear regression model

Yi=p/BXag+-+ 8, Xppte, i=1,...,n ()
which may be expressed in the matrix notation as Y = X 3 + e. Here, we consider p fixed regressors (predictors)
available for the total number of n observations (measurements). In our notation, 3 = (31, ..., ,Bp)T is the vector
of parameters, where the i-th row of X will be denoted as X; = (X1, ..., Xz-p)T fori =1,...,n. We assume the

errors to be independent identically distributed; such random sampling assumption justifies using nonparametric
bootstrap in (1), and we need the assumptions of the so-called classical linear regression model [5], i.e. Ee = 0,
vare = g?Z forac > 0,E XTe = 0,and h(X) = p. While the consistency of the least squares is already ensured
in the classical linear regression under these assumptions, we do not assume additional assumptions required to
achieve consistency of robust estimators in (1).

Our aim is to test equality of two regression estimates of 3 in (1). These two estimates will be denoted as

B =B, BT and B =(BP.... 50T, (2)

while we typically take one to be the least squares estimator and the other to be one of available robust estimators.
We are interested in testing equality of the expectations of these two estimators. Formally, the null hypothesis can
be expressed as

Ho: EB = EBP 3)
for any of the indexes 5 = 1,...,p, against the corresponding two-sided alternative hypothesis. The true but
infeasible expectations naturally depend on the distribution of errors, while we omit any distributional assumptions
here, and on the particular contamination of the data (severity of contamination, type of outliers).

Principles of bootstrap (resampling) applicable to confidence intervals as well as hypothesis tests have been
well known in econometrics and were thoroughly discussed e.g. in [4] and references presented therein. While the
range of commonly used bootstrapping approaches is quite broad, we rely here on the nonparametric bootstrap,
which is known to perform well in regression modeling tasks [4]. A confidence interval for (,5’14 — SB) is simply
obtained from the bootstrap distribution for the random variable (ﬁA — BB). The approach for bootstrap-based
testing of equality of the means of two alternative regression estimates is formally proposed in Algorithm 1.
Algorithm 1 exploits the effective idea to select the bootstrap samples once for all 7 and only afterwards to construct
the confidence intervals separately for every particular j = 1, ..., p. We recall that consistency of both 34 and BB
already ensures (3) to hold. The presented nonparametric bootstrap test is inspired by [8], where nonparametric
bootstrap estimation for robust regression was discussed and presented with an algorithm.
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Experiments

We consider three real publicly available datasets. These were selected as datasets, where it is meaningful to ex-
plain a continuous response by a linear regression model using several regressors. From the original data, we
however keep only continuous regressors, omitting all discrete ones. Let us first describe these datasets, which all
have an economic background and do not contain any missing values.

Algorithm 1 Nonparametric bootstrap test of Hpy (3) of equality of means of ;ni’_f‘ and jf foragivenj € {1,... p}

Input: Data rows (Xjq,. .., Xip. Yi)i=1,..., n
Input: j < {1,..., Pt

Input: S =0

Output: Decision function of the test of Hy in (3)

1:
.

L

HD

fors =1to Sdo
Generate 1 bootstrap samples

{[3:“’“";1"‘ O _;PH:]}:T.) J =1,..., . (—1)

by sampling with replacement from (X, .... Xip, Yi,i=1...., M.
Consider a linear regression model in the form

,.'3)1'}-' = (s)70 + i.‘r]n.fl[stY_h + -t {_g\,“,-pt.g].l—jp + () V5 J= 1...., 1. 5

with random errors (gyvq,. .., (s)Vn-

Compute the estimator ;?,_1 of 7 in(5).
meputg the cﬁstimator Fp of 31in(5).
B = [3}-"’ — 3}5].

end for N N
Arrange the values 8], . .. | #, in ascending order as
é{l) e Eé[_q]- (6)
Construct the 95 % confidence interval as
i iy
[Sunn'ﬂftn—nn] : @

where h = |0.025n | and | 2| denotes the greatest integer smaller or equal to .
Reject Hy (3) if and only if the confidence interval (7) does not cover 0.

The datasets represent important bench- marking data well known in robust statistics, as they contain outliers and
robustness is known to be meaningful and beneficial for their modeling.

Cirrhosis dataset with n = 46 and p = 4 available e.g. in [21]. The death rate from cirrhosis is considered in
individual U.S. states. This response is explained by

- X = percentage of urban population,

- X5 = number of late births,

- X3 = wine consumption per capita, and

- X, = consumption of hard liquor per capita (.Y ;).

Education dataset with n = 50 and p = 3 contained e.g. in the package [22]. Per capita expenditures on public
education are considered in the 50 U.S. states. This response is explained by

- X, = number of residents in urban areas,

- X5 = per capita personal income, and

- X3 = percentage of individuals below 18 years of age in the population.

Pasture dataset with n = 67 and p = 3 available e.g. in [21]. The rental price of pastures in different places in
Minnesota is considered. This response is explained by

- X, = rent of arable land,

- X3 = number of milk cows per square mile, and

- X3 = difference between pasturage and arable land.
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3.1 Robust estimators

The least squares estimator, which is used as the reference estimator here for comparing with robust estimates, is
computed by the function Im of R software. In the computations, we use the following robust estimators.

1. Least trimmed squares (LTS) [18]. In the computations, we use the function ItsReg of [22] with the trim-
ming constant h = |3n/4]. Properties of the LTS were derived in [23].

2. LTS-RLS, which denotes the LTS estimator accompanied by the reweighted version (reweighted least
squares) described in [18]. We use again h = |3n/4].

3. MM-estimator with breakdown point equal to 0.5 and with efficiency equal to 0.95. Properties of MM-
estimators were derived in [15]. For the computation, we use the function Imrob of [22].

4. LWS-lin, defined as the least weighted squares (LWS) estimator [24] with linearly decreasing weights [8];
properties of the LWS estimator bLWS of B were derived in [24].

5. LWS-log, defined with weights generated by the logistic function [8].
6. LWS-trim, defined with trimmed linear weights [8].
7. LWS-err, defined with weights exploiting the (so-called) error function [8].

Except for the LWS, which remains much less known in the econometric community, the considered robust esti-
mators can be characterized as well established tools. We do not present results of S-estimators on the given data
because of numerical instability of their implementation in [22].

3.2 Results

We perform all computations in R software [16] exploiting the robustbase package [22]. Point estimates of the
differences 3 — ;§LS evaluated for the robust estimates of Section 3.1 are presented in Table 1. We do not present
results for the intercept, because we understand the test to be meaningful only for the slopes. As revealed in the
table, highly robust methods yield quite different results from non-robust methods. Particularly, LTS-RLS seems
yield the estimates most different from those of the least squares, while MM-estimators and all versions of the
LWS represent more or less a compromise between the least squares and LTS-RLS.

The table presents also nonparametric bootstrap confidence intervals for the differences 3 — _‘3‘55 obtained
always with S = 1000 bootstrap samples. Using the bootstrap confidence intervals for hypothesis testing, all
obtained intervals cover the value 0. Thus, the bootstrap test yields no significant result on the usual level of 5 %.
In other words, we do not find any significant difference between any two estimates. This is true in spite of the
already mentioned differences among the point estimates corresponding to different estimation procedures.

The regression estimates that have narrower confidence intervals should be preferable for practical applications.
In the cirrhosis dataset, the narrowest confidence intervals are those comparing the mean slopes of LTS and LWS-
trim with the slopes of the least squares. In the education dataset, MM-estimator is the best and LWS-log remains
only slightly behind. In the pasture dataset, LTS and MM-estimator have the narrowest confidence intervals and
all versions of the LWS fall behind.

4 Conclusions

Robust estimators for the linear regression model have already established their position in the analysis of econo-
metric data, although some promising estimators with a high breakdown point remain to be almost unknown to
the econometric community. A bootstrap test of equality of the means of two regression estimates is developed in
this paper based on a bootstrap confidence interval for the difference between the two estimators. We are particu-
larly interested in the LWS estimator which can be characterized as an estimator with only rare applications; see
[24] for the LWS in linear regression or [7] for the LWS in the location model. Still, the proposed bootstrap test
can be used to compare any two robust estimators so that its usage is not limited to the LWS estimator.

The numerical study is performed here for three real economic datasets. Rejecting the null hypotheses would
require more observations in our datasets, because of relatively large values of variances of individual regression
estimates. Actually, significance remains achievable only for a very heavy contamination for n < 70, although
point estimates subjectively seem very different from each other. This is an interesting result as such: on one hand,
robust estimation is typically applied to handle small samples [10], but on the other hand, the variability of robust
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estimators (e.g. of the LWS estimator) has not been sufficiently investigated (see [8]). The results also reveal the

difficulty of reliable regression modeling under small samples.

Mean difference for the regressor
Estimator | Inderoepd X, X X, X,
Clrhosis daiasel (r = 46)
LTS 178 oalT =1.56 038 1.44
[—1.Z3%; 2477] [—%.530; DL18] [—Z407 335] [-0.d8; 3.36]
LTE-RELS i 04358 =136 ond 1.38
[—1.321; X3 [—%. 10 D38 [-Z68;X76] [—0.d8; 3.24]
MM 1.o 0053 —0.13 ol 0
[—Z.005; 2 195] [—2.Z2 1.96] [—Z204; 294] [—1.90;2.08]
LWE-lin 194 R —1.54 =027 — .03
[—1. 10 Z.344] [—3.02; i34 [-272; X35 [-1.79; 1.73]
LW E-log i35 0,380 —0_ 46 —0.47 — 1.8
[—1418; Z113] [—Z.18; 1.26] [—% 1 X16] [—3.19;043]
L% S-trim 0.4 0,197 —0.2% —0.5% —1.51
[—1.30E; 1.507] [—L.77; 1.27] [—2.50 1.B3] [—3.32; 0.30]
WS- 5.0 0. 196 —0.47 —0.20 23
[—1.61G; 2.015] [—2.23; 1.29] [—%.01; 261] [—-1.65;2.11]
Education daiaset (n = 5i)
LTS od 0126 —0.04 —0. 56 -
[—03TE; 0.624] [—0.16:; DUE] [—1.23; 0R1] -
LTS-ELS 1] 0070 —0.02 —0.7% -
[=D0.E80; 0.520] [=0.12; D0E] [=1.83;0.37] -
MM E 0.0aE =0.0% =6k -
[=0LE3E; 0.36E] [ = 00.0A; DS [—1.56; D] -
LWE-lin 5 007 =003 =il -
[—0.ZTE; 0.42F] [—0.11; Ds] [—1.44; 0.14] -
LW S-log 32z 00 =003 =0.TE -
[ =364 0.3406] [—0.11; Ds] [—1.58; D) -
LN S -trim 45 0075 —0.03 —0.8D -
[—0L255; 0.405] [—0.11; DAs] [—1.63; D3] -
LWES-21r 127 OLO2E —0.01 —0.74 -
[—0.34E; 0.349E] [—0. 10, DA0E] [—1.64; 0.1A] -
Pasture dataset in = 67)
LTS ian =102 -0 175 191 -
[—0ZTE, 0074]  [—0.d78; DL1ZR]  [—0.8i; Ebs0] -
LTS-ELS 4 67 —0.113 —0, 1k 1640 -
[—0.368; 0.043] [—-0387T, 0179 [—1.50 4.70] -
MM 1.57 — 054 —0.0]1% 20z -
[—0.I6Z; 0.050] [—0.242;0206] [—-1.07; 5.13] -
LW S-lin .77 — (56 g 0 -
[—0.096; 0.024]  [—0220]1; 0259 [—5.06; 3.14] -
LW S-log ian —0.152 —0.045 —-1.37 -
[=1.10Z; 0.79&8] [—0252; 0156 [—4.17; 1.43] -
LW S-trim 440 0155 138 1.69 -
[=0LEDS; 1.115]  [=0u072; 0.348]  [—1.21;4.59] -
LW S-z1r 077 0056 LT =045 -
[—O0EL; O0056]  [—0252 0.248]  [-3.65; 1.75] -

Tabie | Resulls of the experiments over three datasets. For each dalaset and estimabe 4. polnt estimates of 4 — A%
are given, where 24 Is ihe least square estimate of the true 5. Bootstrap conddence Intervals for the estimated
differences 3 — 35 ane glso given.
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We can make a general conclusion that robust statistics has shifted since its origins in direction to self-standing
efficient methods. A comparison of point estimates (without any hypothesis test) based entirely on a visual inspec-
tion of the presented tables was common in early books on robustness (such as [18]), but such approach becomes
outdated and we recommend to consider point estimates to be always accompanied by bootstrap estimates of their
variability. Such estimates were presented e.g. in [8] however only for data with p = 1. It is also necessary to
mention that bootstrap as a computational technique, helpful in solving various practical questions (e.g. estimating
the covariance matrices of regression estimators), has not been so much acknowledged in theoretical approaches
to robust statistics [6].

Higher attention of robust statisticians should be paid to methods for high-dimensional data [3]. The robustbase
package [22] for robust statistical methods contains mainly datasets that are even smaller than the datasets analyzed
here. We intend to perform further computations on larger data as well as to extend the bootstrap test procedure to
robust multivariate (or high-dimensional) estimators [14] or robust neural networks [20], for which there are no
available results on consistency.
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