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Grid-Based Bayesian Filters With Functional
Decomposition of Transient Density

Petr Tichavský , Senior Member, IEEE, Ondřej Straka , Member, IEEE,
and Jindřich Duník , Senior Member, IEEE

Abstract—The paper deals with the state estimation of non-
linear stochastic dynamic systems with special attention to grid-
based Bayesian filters such as the point-mass filter (PMF) and
the marginal particle filter (mPF). In the paper, a novel func-
tional decomposition of the transient density describing the sys-
tem dynamics is proposed. The decomposition approximates the
transient density in a closed region. It is based on a non-negative
matrix/tensor factorization and separates the density into functions
of the future and current states. Such decomposition facilitates a
thrifty calculation of the convolution involving the density, which
is a performance bottleneck of the standard PMF/mPF imple-
mentations. The estimate quality and computational costs can be
efficiently controlled by choosing an appropriate decomposition
rank. The performance of the PMF with the transient density
decomposition is illustrated in a terrain-aided navigation scenario
and a problem involving a univariate non-stationary growth model.

Index Terms—State estimation, nonlinear systems, nonlinear
filtering, point-mass method, non-negative matrix factorization.

I. INTRODUCTION

S TATE estimation of nonlinear discrete-time stochastic dy-
namic systems from noisy measurements has been a subject

of considerable research interest for many decades. It plays an
indispensable role in fields such as navigation, speech and image
processing, fault diagnosis, and adaptive control.

Within the Bayesian framework, a general solution to the
state estimation problem is given by the Bayesian recursive
relations (BRRs) inferring the probability density functions
(PDFs) of the state conditioned on the measurements. The PDFs
fully describe the immeasurable state of a possibly nonlinear
or non-Gaussian stochastic dynamic system. The relations are
analytically tractable for a limited set of models such as linear
Gaussian models. In other cases, approximate solutions to the
BRRs have to be employed, offering various approximation
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levels. The Gaussian filters assuming the joint state and measure-
ment prediction PDF being Gaussian are attractive for mildly
nonlinear models, for which they offer computational efficiency
with acceptable estimate quality. For strongly nonlinear or non-
Gaussian models, one usually resorts to more complex (and thus
computationally demanding) filters such as the particle filter
(PF) [1], [2] or the point-mass filter (PMF) [3].

This paper considers the PMF [4], [5], [6] and the marginal
PF (mPF) [7]. Both algorithms are based on a numerical solution
to the BRRs. The PMF uses deterministic grid-based numerical
integration rules and computes the conditional PDFs at the grid
points only. The mPF approximates the conditional PDFs by
empirical PDFs parametrized by a set of random grid points
called samples and corresponding weights. For both PMF and
mPF, a suitable specification of the number of grid points is
critical as it affects the estimate accuracy and computational
complexity. The predictive step is the computational bottle-
neck of the standard filter implementations, which limits the
number of grid points from above. This step involves an evalua-
tion of a convolution called the Chapman-Kolmogorov equation,
where the grids for two consecutive time instants are combined
through the transient PDF. The convolution complexity thus
grows quadratically ((N2)) with the number of grid points N .

For the PMF, many techniques for computational complexity
reduction were proposed, often with the price of extra approx-
imations, the need for user-defined parameters, or only for
particular models. The techniques are based on the following
approaches:
� Rao-Blackwellisation: The techniques are designed for the

conditionally linear models with Gaussian noises, where
the expensive PMF estimates the nonlinearly modeled part
of the state, whereas the remaining linearly modeled part
is estimated by computationally cheap Kalman filters [8],
[9], [10].

� Separable prediction: These techniques take advantage
of an offline evaluation of the transient PDF, which is
made possible by assuming a particular model and Gaus-
sian noise. They do not use the convolution theorem,
and the computational complexity depends on the state
noise variance. In the worst-case scenario, it is still almost
(N2) [11].

� Copula prediction: Rather than the propagation of condi-
tional PDFs, these techniques propagate the marginal PDFs
and a copula, capturing the correlation. An optimal copula
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cannot generally be found; thus, its selection is a designer
decision leading to an extra approximation error [12].

The PMF grid can also be designed using adaptive or sparse
layouts [13]. Although such layouts lead to the reduction of the
total number of the grid points, the order of the complexity is
still (N2).

To reduce the computational complexity of the mPF, the
algorithm proposed in [14] employs kernel density estimation
while the paper [15] proposes an mPF algorithm with linear
complexity by using the accept-reject technique.

In this paper, we propose handling the transient PDF in
the form of its decomposition within a closed region. The de-
composition is based on the non-negative matrix factorization1

(NNMF) and symmetric NNMF [18]. The transient PDF is
decomposed into a sum of products of functions of current and
future states. The decomposition needs to be found once before
the estimation itself and allows large grids to be handled while
maintaining affordable computational complexity. A short ver-
sion of this paper focused on the PMF only and decomposition
for a scalar state only was presented in [19]. Application of
the decomposition to the case with scalar state estimated by
the mPF was treated in [20]. This paper provides an extension
in the following directions:

i) The decomposition is proposed for arbitrary state dimen-
sion. This includes a design of an efficient triangular
lattice of function locations in the approximation region,
different from the rectangular lattice proposed earlier.

ii) The decomposition is also designed for heavy-tailed tran-
sient PDF, which appears in models involving outliers of
the state.

The paper is organized as follows. Section II briefly sum-
marizes elements of the PMF and mPF-based Bayesian state
estimation. In Section III, the decomposition of the transient
PDF is introduced and its calculation for multivariate Gaussian,
univariate generalized Gaussian, and univariate Student-t dis-
tributed cases is demonstrated. The performance of the PMF
with the proposed decomposition is studied in a terrain-aided
navigation scenario and in a problem involving a univariate
non-stationary growth modeling in Section IV. In Section V,
the concluding remarks are drawn.

II. GRID-BASED BAYESIAN FILTERS

Consider the following discrete-time state-space model of a
nonlinear stochastic dynamic system with additive noises

xk+1 = fk (xk, uk ) + wk, k = 0, 1, 2, . . . , T, (1)

zk = hk (xk ) + vk, k = 0, 1, 2, . . . , T, (2)

where xk ∈ �nx , uk ∈ �nu , and zk ∈ �nz represent the unknown
state of the system, known input, and measurement at time
instant k, respectively. The state and measurement functions
fk : �nx×nu → �nx and hk : �nx → �nz are known vector trans-
formations. Particular realizations of the state and measurement

1The NNMF originally known as non-negative rank factorization or posi-
tive matrix factorization has been subject to intensive research for over three
decades [16], [17].

noises wk and vk are unknown, but their PDFs, i.e., the state noise
PDF p(wk ) and the measurement noise PDF p(vk ), are known
as well as the initial state PDF2 p(x0). The noises wk , vk , and
the initial condition x0 are independent.

A. Bayesian State Estimation and Recursive Relations

The goal of the state estimation is to find the conditional PDF
p(xk|zk ),∀k conditioned on all measurements up to the time
instant k, denoted as zk := [zT

0 , zT
1 , . . . , zT

k ]T , called filtering
PDF. The general solution to the state estimation is given by
the BRRs for the conditional PDFs3 computation [22]

p(xk|zk ) = p(xk|zk−1)p(zk|xk )

p(zk|zk−1)
, (3)

p(xk+1|zk ) =
∫

p(xk+1|xk )p(xk|zk )dxk, (4)

where p(xk+1|zk ) is the one-step predictive PDF computed by the
Chapman-Kolmogorov equation (CKE) (4) and p(xk|zk ) is the
filtering PDF computed by the Bayes rule (3). The state transient
PDF p(xk+1|xk ) = pwk

(xk+1 − fk (xk, uk )) and the measurement
PDF p(zk|xk ) = pvk

(zk − hk (xk )) are obtained from (1) and (2),
respectively. The PDF p(zk|zk−1) = ∫

p(xk|zk−1)p(zk|xk )dxk is
the one-step predictive PDF of the measurement. The recursion
(3), (4) starts from p(x0|z−1) = p(x0).

B. Grid-Based Density Approximation

The PMF and mPF as grid-based Bayesian filters approximate
the conditional PDF p(xk|zm), where m = k for the filtering PDF
and m = k − 1 for the predictive PDF, by a weighted set of grid
points

p(xk|zm) ≈ p̂(xk|zm) =
N∑

i=1

ω
(i)
k|mK (xk − ξ

(i)
k ), (5)

where K (xk − ξ
(i)
k ) is a kernel located at grid point ξ(i)

k ∈ �nx and
ω

(i)
k|m is its corresponding weight. The points ξ

(i)
k , i = 1, . . . , N

form a grid �k = {ξ(i)
k }N

i=1, which is deterministic and regular
for the PMF and random for the mPF.

In the case of the PMF, the kernel is given by a uniform kernel
(up to a normalization constant) defined as

K (xk − ξ
(i)
k ) = S{xk; ξ(i)

k ,�k}, (6)

with S{xk; ξ(i)
k ,�k} being the selection function defined as

S{xk; ξ(i)
k ,�k} =

{
1, if

∣∣∣[xk] j − [ξ(i)
k ] j

∣∣∣ ≤ [�k]j
2 ,

0, otherwise,
(7)

2If the initial state PDF is unknown, often mean and covariance matrix of
the initial state are calculated from the first few measurements and the initial
distribution is assumed Gaussian parametrized by the moments [21].

3Considering the model (1), (2), the BRRs (3), (4) should also be conditioned
on the available sequence of the input uk, ∀k. However, for the sake of notation
simplicity, the input signal is assumed to be implicitly part of the condition
and it is not explicitly stated, i.e., p(xk+1|xk ) = p(xk+1|xk ; uk ), p(xk |zk ) =
p(xk |zk ; uk−1), and p(xk+1|zk ) = p(xk+1|zk ; uk ).
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Fig. 1. Illustration of evaluating the predictive PDF without and with transient density decomposition.

where the notation [·] j stands for the j-th element of the involved
vector. Thus, the selection is uniform over the �k-neighborhood
of the grid point ξ

(i)
k . The weight is then given as

ω
(i)
k|m = P(i)

k|m = ck|mP̃(i)
k|m, (8)

where P̃(i)
k|m = pxk |zm (ξ(i)

k |zm) is the conditional PDF p(xk|zm)

evaluated at the i-th grid point ξ
(i)
k , and ck|m = (δk

∑N
i=1 P̃(i)

k|m)−1

is a normalization constant, δk = ∏
i[�k]i.

In the case of the mPF, the kernel is given by a Dirac kernel

K (xk − ξ
(i)
k ) = δ(xk − ξ

(i)
k ), (9)

with δ(·) being the Dirac delta function. The grid points ξ
(i)
k are

called particles and the weights ω
(i)
k|m are normalized to one.

C. Chapman-Kolmogorov Equation Computation

Computing the predictive weights {ω( j)
k+1|k}N

j=1 for grid-based
predictive PDF approximation p̂(xk+1|zk ) in the PMF (see
e.g., [19]) and the mPF (see e.g., [20]) requires evaluation of
the predictive PDF given by the CKE (4) at the grid points
xk+1 = ξ

( j)
k+1, j = 1, . . . , N as

p(ξ( j)
k+1|zk ) =

∫
p(ξ( j)

k+1|xk )
N∑

i=1

ω
(i)
k|kK (xk − ξ

(i)
k )dxk, (10)

where the filtering PDF p(xk|zk ) is approximated as (5). Thus,
the state transient PDF p(xk+1|xk ) is evaluated for all combi-
nations of the grid points �k+1 and �k (see Fig. 1(a)). When
using a large number of grid points, such evaluation constitutes
a bottleneck for both PMF and mPF standard implementations.
This paper proposes a transient PDF decomposition to reduce
the computational costs of convolution calculations.

III. TRANSIENT DENSITY DECOMPOSITION

Assume that the state transient PDF can be decomposed as

p(xk+1|xk ) ≈
R∑

r=1

r
1(xk+1)r

2(xk ), (11)

where r
1(·),r

2(·), r = 1, . . . , R are suitable (non-negative)
functions, known in advance, and R is the order of the approxi-
mation called rank.4 The decomposition (11) is “efficient” if R
is small and the approximation error is small as well. There is
always a trade-off between the complexity of the approximation
(R) and the error. Later in the paper, we show that the trade-off
is “good” in the case of the Gaussian transients and in the case
of non-Gaussian distribution with heavier tails, which can be
encountered in the literature [24].

Given (11), the CKE (4) can be written as

p(xk+1|zk ) ≈
R∑

r=1

r
1(xk+1)

∫
r

2(xk )p(xk|zk )dxk . (12)

The simplification of (12) w.r.t. (10) is that R integrals in (4)
can be computed at the grid points �k only, without the need of
considering the combination of all grid points �k+1 for xk+1 and
all grid points �k for xk .

For the point-mass approximation (6) of p(xk|zk ) the integral
in (12) is∫

r
2(xk )p(xk|zk )dxk ≈

N∑
i=1

r
2(ξ(i)

k )P(i)
k|kδk =: r

k . (13)

The values of the predictive PDF (12) are then given as

P̃( j)
k+1|k =

R∑
r=1

r
1(ξ( j)

k+1)r
k . (14)

Obtaining values P( j)
k+1|k of p̂(xk+1|zk ) for all grid points �k+1

then requires:
1) evaluating R functions r

2 at {ξ(i)
k }N

i=1,
2) combining their values with the weights in (13) to ob-

tain r
k ,

3) evaluating R functions r
1 at {ξ( j)

k+1}N
j=1,

4) obtaining the approximate transient PDF values
through (14).

4The relation (11) can be seen as a special case of the functional tensor
decomposition [23] where the functions r

1 and r
2 are not decomposed further

to functions of single elements of xk+1 and xk .
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The whole process can be illustrated for the two-dimensional
state with N = 72 = 49 grid points {ξi

k}N
i=1 and rank R = 4 by

Fig. 1.
For the particle approximation (9) of p(xk|zk ), the integral

in (12) is

∫
r

2(xk )p(xk|zk )dxk ≈
N∑

i=1

r
2(ξ(i)

k )ω(i)
k|k . (15)

Calculation of the predictive weights ω
(i)
k+1 then requires the

same procedure described above. More details about using the
decomposition in the mPF can be found in [20].

Note that in some cases, the functions r
1(·) and r

2(·), have
the same functional form for r = 1, . . . , R, i.e.1

1 = 2
1 = · · · =

R
1 and 1

2 = 2
2 = · · · = R

2 , and differ only in the value of a
vector/scalar parameter θ so that

r
1(xk ) = F1(xk; θr

1), (16)

r
2(xk+1) = F2(xk+1; θr

2). (17)

Such a case is demonstrated in Section III-C, where the functions
r

1 and r
2 both have Gaussian bell-curve shape parametrized by

its location, width, and height.

A. Finding the Decomposition

The decomposition in (11) can be found by the following
procedure: First, fixed grids of points �k+1 and �k represent-
ing xk+1 and xk , respectively and covering regions of interest
�k+1 ⊂ �nx and �k ⊂ �nx , respectively, are constructed and
the transition PDF is evaluated at the grid points (Remind that
pxk+1|xk

: �nx × �nx −→ �). Then, the resulting tensor is de-
composed using the well-known task of NNMF or non-negative
tensor factorization. Note that this decomposition used optimiza-
tion w.r.t. L2 norm.

Next, a suitable rank R of the decomposition is determined. It
should be selected to achieve a compromise between the compu-
tational complexity of the approximation and the approximation
error. As a rule of thumb, we can determine a suitable rank as
the number of significant singular values of the matrix as will
be shown later.

Once the decomposition (11) is obtained for the fixed grid,
it can be interpolated to give a similar decomposition in the
continuous domain �k+1 × �k , which defines the closed ap-
proximation region. The interpolation can be numerical, e.g.,
spline, or functional. In the examples, we use interpolation func-
tions r

1(·) and r
2(·) with parameters θr

1 and θr
2 that are found

off-line by an optimization procedure. The procedure minimizes
a norm of the difference of the original transient PDF and the
functional approximation (11) with (16) over the approximation
region. The L1 norm seems natural when dealing with PDFs, but
its computation may be computationally prohibitive for higher
state dimensions. In such cases, we use the L2 norm instead. The
L2 norm is highly large-error dominant and thus more prone to
outliers than L1 norm. The L1 norm, is more robust towards
outliers than L2 norm, as it does not overstate errors. The error
expressed using L1 norm aligns with the original degree of the

variable, which is the PDF in this case. Throughout this paper,
we use the Nelder-Mead algorithm [25] for the minimization.

B. Simplification for Additive State Noise

The functions r
1(·) and r

2(·) (or their parameters θr
1 and

θr
2) may change with position of regions of interest. For the

additive state noise (1), a simplification of the decomposi-
tion calculation can be achieved. In such a case, the transient
PDF p(xk+1|xk ) = pwk

(xk+1 − fk (xk, uk )) can be interpreted as
a function of xk+1 and fk , where fk = fk (xk, uk ) denotes the
value of the function fk for convenience. The value of the
transient PDF thus depends only on the difference of xk+1 and
fk , i.e., p(xk+1|xk ) = pwk

(xk+1 − fk ). Subsequently, the decom-
position (11) in the form

pwk
(xk+1 − fk ) ≈

R∑
r=1

r
1(xk+1)r

2(fk ) (18)

needs to be computed on the basis of a time-invariant grid � ×
� covering a fixed region of interest � × � ∈ �nx × �nx for
[xT

k+1, fT
k ]T . The region of interest � × � is fixed as only the

difference xk+1 − fk matters.
If the value (18) needs to be evaluated for grids corresponding

to xk+1 and fk that are far from the approximation region, they
can be both shifted by some ζ towards the center of the approxi-
mation region as pwk

(xk+1 − fk ) = pwk
((xk+1 − ζ) − (fk − ζ)).

This is highly beneficial for the reduction of costs of the de-
composition computation, which can be calculated prior to the
estimation itself and does not affect the PMF or mPF costs.

Additionally, if the function pwk
(xk+1 − fk ) is symmetric in

the sense that it is invariant with respect to a permutation of its ar-
guments xk+1 and fk , we may assume that the decomposition (18)
is symmetric as well, i.e.,r

1 = r
2 (or θr

1 = θr
2) for r = 1, . . . , R.

Note that if the process noise does not act additively in the
state dynamics (1), the transient PDF could be complicated
and time-varying, which may require the calculation of the
decomposition at each time instant. This may have an adverse
effect on the computational costs of the PMF.

C. Univariate Gaussian Transient PDF

This section demonstrates the decomposition for the univari-
ate Gaussian transient PDF, which is symmetric. For conve-
nience, consider process noise variance var[wk] = Q = 1

p(xk+1|xk ) = pwk
(xk+1 − fk ) = 1√

2π
e− 1

2 (xk+1− fk )2

. (19)

Consider a region � ⊂ �2 for [xk+1, fk]T given by the ranges
xk+1 ∈ [−L, L], fk ∈ [−L, L], L = 10, with granularity 1/10
to obtain a D × D grid �, D = 201. Then, the state transient
PDF (19) is evaluated at its points, which results in the matrix
M ∈ �D×D. This matrix is subject to an NNMF M = WH or,
better, a symmetric NNMF M = WWT , where W ∈ �D×R and
H ∈ �R×D are matrices with non-negative elements and R is the
rank. Here, due to the symmetricity, the algorithm of [18] is
utilized.
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Fig. 2. (a) Original transient PDF, (b) leading eigenvalues of M, (c) an
approximate transient PDF for R = 20, and (d) columns of W for R = 20
obtained by NNMF.

A suitable rank5 R of the approximation WWT can be deduced
from the number of leading eigenvalues of M.

For illustration, the matrix M (i.e., the transient PDF (19)
evaluated at �) and 40 of its largest eigenvalues are plotted
in Fig. 2. The eigenvalues suggest that a good approximation
could be obtained for ranks R ≥ 20. An approximate transient
PDF for R = 20 and curves depicting 20 columns of W are
shown in Fig. 2. The values in columns of W representing
values of r

1 = r
2, r = 1, . . . R at grid � have the Gaussian

bell-curve shapes, roughly uniformly distributed6 within the
interval [−L, L]. Hence, the columns of W will be modeled
by the functions r

1(·) = r
2(·) = r (·; θ r ) as

(x; θ r ) = β · e− 1
2 (x−μr )2/σ 2

(20)

parameterized by the peak position μr , width σ , and height β,
i.e., θr = [μr, σ, β]. Notice that due to the shapes of the curves
for each column of W, the parameters β and σ are the same for
r = 1, . . . , R. Given the range 2L, rank R, and regularity of the
peak distribution, the distance of the adjacent peaks will be fixed
to d = μr − μr−1, r = 2, . . . , R, where d = 2L/(R − 1) is the
distance between the adjacent peaks. The other two parameters

5Note that the rank of a decomposition of a matrix is a lower bound of the
rank of the non-negative decomposition of the matrix, in general.

6A minor difference can be spotted close to x = 0, and close to the region
boundaries. The boundaries are rather unimportant in this problem; they are
related to the ranges of xk+1 and fk , which can be easily adjusted to make sure
that the values xk+1 and fk will remain in this range.

TABLE I
PEAK DISTANCES, RANK, WIDTHS, HEIGHTS, AND THE MEAN ABSOLUTE

ERROR OF THE TRUE AND APPROXIMATE TRANSIENT PDF DECOMPOSITION

OBTAINED BY NUMERICAL OPTIMIZATION FOR UNIVARIATE GAUSSIAN

DISTRIBUTION

σ and β will be obtained by the numerical optimization (the
Nelder-Mead algorithm [25]) to minimize the average absolute
error (denoted by E ) between the true transient PDF and its
approximation (19). The results of the optimization are listed in
Table I. From the table, it follows that the error E decreases
with increasing rank. However, for R > 30 the shape of the
curves deviates significantly from the Gaussian bell-curve shape,
and the error does not decrease anymore. The result (20) can
be generalized for arbitrary variance Q and arbitrary range L,
as it is shown in section III-H. A simple scale transformation
converts the case with the general Q in the case of Q = 1. The
transformation implies that the appropriate rank R′, distance of
the adjacent peak positions d ′, and the height β ′ and width σ ′ of
the terms in (20) would be

R′ =
⌊

2L√
Q

⌋
, d ′ = d

√
Q, β ′ = β

4
√

Q
, σ ′ = σ

√
Q. (21)

We note that the approximation of the transient PDF is accu-
rate in the interior of the lattice of the peaks. At each point,
only a few peaks located closest to the point contribute to the
PDF approximation. As the peaks outside the boundary are not
present, the approximation may be less accurate close to the
boundary of the lattice. Outside the lattice, the approximation is
poor and converges quickly to zero for increasing distance from
the lattice. This is a very general pattern that applies not only to
Gaussian distribution but to other distributions as well.

D. Student T-Distributed Transient PDF

In this section, we repeat the previous procedure for the
Student t-distributed transient PDF that was studied, e.g., in [24].
This PDF has heavier tails than the Gaussian distribution. We
have chosen the distribution with three degrees of freedom7

(DoF), which has the density

p(xk+1|xk ) = pwk
(xk+1 − fk ) = 2

π
√

3[1 + (xk+1 − fk )2/3]2
.

The Student t-distributed transient PDF, leading eigenvalues
of M, approximate transient PDF, and columns of W are shown
in Fig. 3. We can see that roughly the same accuracy as for
Gaussian transient is attained for a slightly higher rank, between

7This DoF is the smallest value, for which the mean and variance are defined.
For large DoF, the Student t-distribution approaches the Gaussian distribution.

Authorized licensed use limited to: UTIA. Downloaded on February 14,2023 at 10:36:42 UTC from IEEE Xplore.  Restrictions apply. 



TICHAVSKÝ et al.: GRID-BASED BAYESIAN FILTERS WITH FUNCTIONAL DECOMPOSITION OF TRANSIENT DENSITY 97

Fig. 3. (a) Student t-distributed transient PDF with DoF 3, (b) leading eigen-
values of M, (c) an approximate transient PDF for R = 25, and (d) columns of
W for R = 25 obtained by NNMF.

25 and 30. Columns of the matrix W have a form of peaks, now
with certain sidelobes.

The peaks have a shape similar to that of the original transient
PDF. Therefore, we shall model them as

r (x) = β

(1 + (x − μr )2/σ 2)α
. (22)

It means that each peak is parametrized by the height β, the
width σ , location μr , and the exponent α. The peak locations
are regularly distributed with distance d between the adjacent
peaks. The optimum values σ , α and β for various values of d
are listed in Table II. The mean error E is computed over interior
of �, in the region given by xk+1 ∈ [−9, 9] and fk ∈ [−9, 9].

E. Cauchy-Distributed Transient PDF

In this section, we repeat the previous procedure for the
Cauchy-distributed transient PDF that was mentioned, e.g.,
in [26]. This PDF still has heavier tails than the Student-t
distribution. It has the density

p(xk+1|xk ) = pwk
(xk+1 − fk ) = 1

π

1

1 + (xk+1 − fk )2
.

The peaks in the decomposition will be modeled as those in
(22), which seems flexible enough. The difference is only in

TABLE II
PEAK DISTANCES, RANK, WIDTHS, ALPHAS, HEIGHTS, AND THE MEAN

ABSOLUTE ERROR OF THE TRUE AND APPROXIMATE TRANSIENT PDF
DECOMPOSITION OBTAINED BY NUMERICAL OPTIMIZATION FOR UNIVARIATE

STUDENT T-DISTRIBUTION

TABLE III
PEAK DISTANCES, RANK, WIDTHS, ALPHAS, HEIGHTS, AND THE MEAN

ABSOLUTE ERROR OF THE TRUE AND APPROXIMATE TRANSIENT PDF
DECOMPOSITION OBTAINED BY NUMERICAL OPTIMIZATION FOR UNIVARIATE

CAUCHY DISTRIBUTION

error and the optimum parameters. The results are summarized
in Table III. The mean error E is computed over interior of �,
in the region given by xk+1 ∈ [−9, 9] and fk ∈ [−9, 9]. We note
that the fitting error is, indeed, greater than in the case of Student
or Gaussian distributions.

F. Multivariate Gaussian Transient PDF for nx = 2

In this section, the assumption of a scalar state is dropped and
nx = 2 is assumed. Then, for a zero-mean Gaussian noise wk

with the covariance matrix cov[wk] = Q, the transient PDF is

p(xk+1|xk ) = pwk
(xk+1 − fk )

= 1√
(2π )nx |Q|e

− 1
2 (xk+1−fk )T Q−1(xk+1−fk ).

Assume first, for simplicity, that Q is the identity matrix. Then,

pwk
(xk+1−fk ) = 1

2π
e− 1

2 (xk+1−fk )T (xk+1−fk )

= 1
2π

e− 1
2 [([xk+1]1−[fk]1 )2+([xk+1]2−[fk ]2 )2]

= p([xk+1]2|[fk]2) p([xk+1]1)|[fk]1). (23)

In Section III-C, we have shown that each term p([xk+1]i|[fk]i),
i = 1, 2 can be decomposed as a sum of R terms r

1
r
2.

The direct product of two one-dimensional decomposi-
tions each having R1 terms would require R = (R1)2 terms


r1
1 

r1
2 

r2
1 

r2
2 . It means that the effective rank of such decom-

position is (R1)2 through peaks arranged in a rectangular lattice,
see Fig. 4, left diagram. The grid can be written symbolically
as [−L : d : L] ⊗ [−L : d : L]. This approach was proposed
in [19].
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Fig. 4. Rectangular and triangular lattices of peaks.

Fig. 5. Mean absolute error versus the rank.

The rectangular lattice is not, however, optimal in the sense
of packing circles representing the functions (x, θr ) on a 2D
surface.8 The highest-density lattice packing of circles can be
obtained for a triangular lattice, where the vertices are the
centers of the densest possible circle packing [27]. The tri-
angular lattice covers the area of interest more efficiently by
increasing rank while preserving a minimum distance between
adjoint vertices. It can be written as a union of two rectan-
gular grids, ([−L : d : L] ⊗ [−L : d1 : L]) ∪ ([−L + d/2 : d :
L] ⊗ [−L + d1/2 : d1 : L]), where d1 = d

√
3, see Fig. 4, right

diagram.
We show that with the same number of peaks the triangular

lattice of peaks reduces the error of the approximation for the
rectangular lattice or, vice versa, the same approximation error
for both lattices can be obtained with a lower number of peaks
for the triangular lattice, see Fig. 5.

In both cases, the transient PDF in (23) is approximated as

p(xk+1|xk ) ≈
R∑

r=1

(xk+1; θr )(fk; θr ) (24)

where R is the number of peaks and

(x; θr ) = βnx · e− ‖x−μr ‖2

2σ2 (25)

= β2 · e− 1
2σ2 [([x]1−[μr ]1 )2+([x]2−[μr ]2 )2] (26)

with θr = [(μr )T , σ, β]. The approximation in (24) can be very
accurate if both xk+1 and fk lie in the interior of the lattice. Close
to its boundary, the error is somewhat larger. The parameters σ

and β are found by optimizing the average absolute error of the
approximation in the interior, specified by the range [−9, 9] ×
[−9, 9]. The d represents the distance of the adjacent peaks. The
result of the optimization is presented in Table IV. We can see
that for d ∈ [0.5, 0.8] the optimum value of σ is approximately
0.7071 ≈ √

0.5. It is the same value that was achieved in the

8The functions  are even-symmetric, i.e., for example for nx = 2, the
contours of the functions are circles. Circle packing then concerns the most
efficient way of covering a region in the plane by such circles

TABLE IV
PEAK DISTANCES, RANK, WIDTHS, HEIGHTS, AND THE MEAN ABSOLUTE

ERROR OF THE TRUE (GAUSSIAN) AND APPROXIMATE TRANSIENT PDF
DECOMPOSITION FOR nx = 2, OBTAINED BY NUMERICAL OPTIMIZATION

one-dimensional optimization in Table I. Note that the case of
general Q will be treated later in Section III-H.

G. Multivariate Gaussian Transient PDF for nx > 2

In dimensions greater than 2, the decomposition of the tran-
sient PDF proceeds similarly to nx = 2. Again, it is possible to
consider a rectangular lattice of peaks, or a triangular one. In 3D,
the peaks will be arranged as vertices of regular tetrahedrons.
The key parameter is the distance of the adjacent peaks, d . In
the rectangular grid in 3D, each peak has 6 adjacent peaks of the
same distance. In the triangular grid in 3D, there are 12 adjacent
peaks of the same distance. Six of them lie in one plane, three
above the plane and the other three below the plane. In 3D,
the triangular lattice can be built as a union of four rectangular
lattices. In 4D, it is composed of eight rectangular lattices. The
lattices can be constructed recursively, using shifts of lattices of
lower dimensions. Let n = n(L, d ) denote the triangular lat-
tice in dimension n, i.e., a collection of n−dimensional vectors,
n + [x1, . . . , xn] be a shift of the grid. Then,

1(L, d ) = [−L : d : L],

2(L, d ) = 1(L, d ) ⊗ [−L : d1 : L]

∪ (1 + d/2) ⊗ [−L + d1/2 : d1 : L],

3(L, d ) = 2(L, d ) ⊗ [−L : d2 : L]

∪ (2 + [d/2, d1/6]) ⊗ [−L + d2/2 : d2 : L],

4(L, d ) = 3(L, d ) ⊗ [−L : d3 : L]

∪ (3 + [d/2, d1/6, d2/8]) ⊗ [−L + d3/2:d3 :L],

where d1 = d
√

3, d2 = d
√

8/3, and d3 = d
√

2. Similarly to the
2D case, the triangular lattice provides, with the same number
of peaks, smaller fitting errors than the rectangular one.

In dimensions 3 and higher, it is costly to compute the fitting
error through the L1 norm, as we did before, and consequently to
compute the optimum parameters of the peaks. If the system state
has dimension 3, the transient function lives in dimension 6, and
if we want to compute the approximation error on the grid with
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TABLE V
PEAK DISTANCES, PEAK NUMBER (RANK COMPUTED FOR THE AREA OF

INTEREST 7 × 7 × 7), WIDTHS, HEIGHTS, AND L2 ERROR OF THE TRUE

(GAUSSIAN) AND APPROXIMATE TRANSIENT PDF DECOMPOSITION FOR nx = 3
COMPUTED IN THE DOMAIN [−1, 1]3 × [−∞,∞]3

TABLE VI
PEAK DISTANCES, PEAK NUMBER (RANK COMPUTED FOR THE AREA OF

INTEREST 7 × 7 × 7 × 7), WIDTHS, HEIGHTS, AND L2 ERROR OF THE TRUE

(GAUSSIAN) AND APPROXIMATE TRANSIENT PDF DECOMPOSITION FOR nx = 4
COMPUTED IN THE DOMAIN [−1, 1]4 × [−∞,∞]4

40 points along each axis, it is 406 points. The computation of
the error of each of these points involves hundreds or thousands
of peaks, so it is computationally intensive.

Therefore, in place of the L1 norm, we propose to com-
pute (and minimize) the L2 norm of the difference between
the true transient function p(xk+1|xk ) = pwk

(xk+1 − fk ) and its
approximation. The L2 norm can be computed in the area
[−L, L]nx × [−∞,∞]nx analytically, see Appendix for details.
The results for nx = 3 and nX = 4 for rectangular and triangular
lattices are presented in Tables V and VI, respectively.

Note that the L2 norm of the error can be used for nx = 2 as
well. This leads to the same parameter values as for the L1 norm
of the error shown in Table IV.

H. Gaussian Transient PDF Generally Correlated Elements

Assume now that the process noise is multivariate Gaussian
with zero mean and positive definite covariance matrix Qk that is
generally time-varying. In that case, we propose a simple linear
transformation of the variables in order to convert the problem
with Qk equal to the identity matrix.

Fig. 6. Fitting error for transients with generalized Gaussian distribution with
parameter α.

Let Qk = SkST
k be any matrix Qk decomposition, e.g., the

Cholesky decomposition. Define x′
k = S−1

k xk and f′k = S−1
k fk for

all k. It can be easily checked that if the PDF of the difference
xk+1 − fk isN {0, Qk}, then the PDF of x′

k+1 − f′k isN {0, I}. The
modification of the algorithm for arbitrary Qk is thus simple. In
each step, the grid points for xk+1 and fk are normalized, and the
CKE is evaluated for the normalized grid points.

I. Generalized Gaussian Transient PDF

The generalized Gaussian density function with parameter α,
zero mean and variance one is defined as [28].

pα (x) = cα exp {−(λα|x|)α} (27)

where α > 0 is a positive parameter that controls the distribu-

tion’s exponential rate of decay, cα = αλα
2(1/α) and λα =

√
(3/α)
(1/α) ,

and (·) is the Gamma function,. This PDF is a parametric family
of distributions that includes both sub-Gaussian distributions
(those with kurtosis lower than 3) for α > 2 and super-Gaussian
distributions with higher kurtosis and longer tails for 0 < α < 2.

Let the transient PDF have this density,

p(xk+1|xk ) = pα (xk+1 − fk ). (28)

As in the previous examples, we shall assume that the decom-
position (16) holds with the functions F r

F r
α′ (x) = β pα′ ((x − μr )/σ )) (29)

where β, α′, σ and d are parameters to be tuned, and d is
the distance of the neighbor peaks, so that μr = rd , r =
0,±1,±2, . . . .

Neither L2 nor L1 approximation error is tractable analyt-
ically. In this paper, we compute the L2 error by numerical
integration of

E2 = 1

d

∫ d/2

−d/2

∫ 5

−5

[
pα (x − f ) −

5∑
r=−5

F r
α′ (x)F r

α′ ( f )

]2

dx df .

The expression includes five peaks on both sides of
point 0. The error is minimized with respect to the param-
eters β, α′, σ for given d , d = 0.7, 1, 1.2 and given α =
0.75, 1, 1.25, . . . , 3, 4, 6, 8. The resultant minimum error is
shown in Fig. 6. It can be seen that the error is minimum
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Fig. 7. L2 approximation error of Gaussian transient PDF versus the distance
of neighborhood peaks d. The curves for the optimum σ and for fixed σ = √

0.5
overlap.

Fig. 8. The square represents the area of the interest, and the diagonal lines
mark the width of the transient. The circles stand for the peaks placed along
the diagonal to approximate the transient. If σ0 = 1, then σ = √

0.5 is the
appropriate peak width.

for α = 2, i.e., for the Gaussian distribution. It follows that
the proposed technique with functions r in the same form as
the transient PDF (c.f. (27) and (29)) and may not be suitable
for other than Gaussian distributions. In such a case, a more
appropriate r is needed.

J. Parameter Optimization Aspects

The height β is an element of parameter vector θ common
to the decompositions of the Gaussian transient PDF (20),
(25), Student t-distributed transient PDF (22) and generalized
Gaussian transient PDF (29). These decompositions are used
in the evaluation of the PMF and mPF weights ω

(i)
k|m (8). Since

the weights are normalized by the constant ck|m evaluated using
the transient PDF decomposition, the accuracy of the height
parameter is unimportant for the filters. In other words, this
parameter influences the fitting error of the transient but not
the filter itself.

In the case of the Gaussian transient PDF (univariate or
multivariate), there is only one other parameter, the width of the
peaks, which should be optimized. We can see in Tables I, IV, V,
and VI that the optimum width σ is very close to

√
0.5 = 0.7071,

unless the distance d between the neighborhood peaks is large.
For the explanation, see Fig. 8.

In Fig. 7, the L2 approximation error is analyzed for nx = 2
as a function of parameter d for (i) the optimum σ and (ii) for
fixed σ = √

0.5. The difference is negligible; for d = 1.2, the
approximation error for fixed σ = √

0.5 is 2.05 · 10−4 and for
the optimum σ the error is 1.95 · 10−4. Their difference is about
5%. Similar results were obtained for nx = 1, 3, 4 (not shown

here). In conclusion, σ = √
0.5 and β = 1 are good choices in

general.

K. Computational Complexity

In terms of a function evaluation, the standard evaluation of
the convolution requires(N2) evaluations of the transient PDF.
The proposed decomposition of the transient PDF then requires
((2N + 1)R) evaluations of the function . The proposed
decomposition has thus overheads depending on the rank R (c.f.
Fig. 1). For a fixed R, its computational complexity is linear
w.r.t. N . Thus, for increasing N , the difference in complexity
between the standard evaluation and the proposed one also
increases. From the comparison, it follows that the savings due
to the decomposition can be expected for N � R.

IV. NUMERICAL ILLUSTRATION

The performance of the PMF with the proposed transient
PDF decomposition is illustrated using terrain-aided navigation
(TAN) problem [11] and the univariate non-stationary growth
model (UNGM) [29], which is strongly nonlinear and often used
as a benchmark problem9.

Note that the TAN problem involves a four-dimensional state.
A similar TAN problem involving only a two-dimensional state
was shown in [19]. For the UNGM, we consider the Student
t-distribution of the process to noise to account for its possible
outliers.

A. Terrain-Aided Navigation Problem

Let a state-space model (1), (2) be considered,

fk (xk, uk ) =

⎡
⎢⎢⎢⎣

1 sin(ωT )
ω

0 1−cos(ωT )
ω

0 cos(ωT ) 0 − sin(ωT )

0 1−cos(ωT )
ω

1 sin(ωT )
ω

0 sin(ωT ) 0 cos(ωT ),

⎤
⎥⎥⎥⎦ xk, (30)

where xk = [pN
k , vN

k , pE
k , vE

k ]ᵀ is a four-dimensional state vector
describing the vehicle horizontal position (pN

k and pE
k ) and

velocity (vN
k and vE

k ) in north and east directions, ω = 0.02 rad/s
is turn-rate and T = 0.2 s is the sampling period. The equa-
tion (30) represents a coordinated turn model (CTM) [30] with
a known turn rate, which is independent of the input uk . The
state noise density is normal p(wk ) = {wk; [0, 0, 0, 0]T , Q}
with covariance matrix

Q =

⎡
⎢⎢⎢⎣

2(ωT −sin(ωT )
ω3

1−cos(ωT )
ω2 0 ωT −sin(ωT )

ω2

1−cos(ωT )
ω2 T −ωT +sin(ωT )

ω2 0

0 −ωT +sin(ωT )
ω2

2(ωT −sin(ωT )
ω3

1−cos(ωT )
ω2

ωT −sin(ωT )
ω2 0 1−cos(ωT )

ω2 T

⎤
⎥⎥⎥⎦ .

The measurement zk is the terrain altitude below the vehi-
cle10 and hk (·) denotes a terrain map connecting the sought
horizontal position and the available altitude. The measure-
ment noise vk includes sensor reading uncertainty and map

9Performance of the mPF for the UNGM and TAN (nx = 2) problems has
already been analyzed in [20], and thus it is not presented in the manuscript.

10Terrain altitude can be based on the barometric altimeter, radar altimeter,
or their combination depending on the type of vehicle.
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Fig. 9. Simulated trajectory and map.

TABLE VII
PERFORMANCE EVALUATION FOR THE TAN

error. Its pdf is described by p(vk ) = {vk; 0, 22}. The sys-
tem was simulated for 50 time steps with the random ini-
tial condition described by Gaussian distribution with mean
x̂0 = [15 × 103 m, 750 m/s, 10 × 103 m, 0 m/s]ᵀ and covari-
ance matrix P0 = diag([50, 1, 50, 1]) A top-view of the sim-
ulated trajectory (start indicated by the circle) and the map are
depicted in Fig. 9.

The performance of the following PMF algorithms was ana-
lyzed:
� PMFSTD with the standard convolution computation N =

304 = 81 × 104,
� PMFD-rect with the convolution involving the proposed tran-

sient PDF decomposition with N = 304 and rectangular
lattice of 204 =160000 peaks with parameter d = 1 and
corresponding weight and height from Table VI,

� PMFD-tria with the convolution involving the proposed
transient PDF decomposition with N = 304 and triangular
lattice11 of 160956 peaks with parameter d = 1.2 and
corresponding weight and height from Table VI,

using (i) average absolute error (AAE) of the state estimate for
position and velocity, (ii) convolution execution time (T ), and
(iii) relative computational cost saving (RCC). The results can
be found in Table VII. They indicate that the average errors in
position and velocity of PMFD-rect and PMFD-tria are comparable
to that of PMFST. Also, the computational costs are reduced
by more than 75 % by using the decomposition. This reduction
would be more pronounced for a higher number of grid points
as the complexity of PMFST increases with N2 whereas the

11Note that the parameter d for the triangular lattice was set to a value larger
than for the rectangular lattice to achieve an approximately equal number of
peaks for both lattices.

TABLE VIII
PERFORMANCE EVALUATION FOR THE UNGM

Fig. 10. Comparison of predictive CFD for selected time instants.

complexity of PMFD(·) increases with N only. Note that in
the simulation, we used only 30 points per dimension (i.e.,
N = 304), to keep the PMFSTD tractable.

B. UNGM Problem

The model is given by

xk+1 = 0.5xk + 25 xk

1+x2
k

+ 20 sin(0.05k) + wk, (31)

zk = x2
k

20 + vk, (32)

where k = 0, 1, . . . , 30, the noise wk has Student-t distribution
with 3 DoF, the noise vk is zero-mean Gaussian with variance
var[vk] = 0.1, and the initial state is x0 = 0.1. The state was
estimated by
� PMFSTD with the standard convolution computation,
� PMFD(d) with the convolution involving the proposed Stu-

dent t-distributed transient PDF decomposition with pa-
rameter d ∈ {2, 1.0, 0.7}, L = 20, and parameters taken
from Table II.

All filters were initialized with p(x0) = {x0; 0.1, 0.1} and
used N = 104 grid points.

The model was simulated in 103 Monte Carlo (MC) simula-
tions. The performance of the filters is analyzed in terms of the
average time of the convolution computation (T ), RCC, and the
time average of the mean absolute error (AMAE)

AMAE = 1

30

30∑
k=1

1

103

103∑
m=1

|xk (m) − x̂k (m)|,
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where xk (m) is the true state at time k in m-th MC simulation
and x̂k (m) is its posterior mean estimate obtained from a PMF.
The results are given in Table VIII.

From the table it follows that compared to the algorithm
PMFSTD the algorithms PMFd(·) achieve slightly higher AMAE,
which decreases with decreasing parameter d , i.e, increasing
rank. The convolution computation time of the PMFd(·) is almost
by two orders of magnitude lower than that of the PMF with
the standard convolution computation. Also, by decreasing the
parameter d (increasing R), the computational time is slightly
increasing.

Additionally, a comparison of predictive cumulative density
functions (CDFs) F (xk|zk−1) produced by PMFST and PMFd(·)
for selected time instants is shown in Fig. 10. The results indicate
that the PMF algorithms based on the decomposition calculate
predictive CDF that is close to the CDF generated by the PMF
with the standard convolution. This demonstrates the high qual-
ity of the decomposition given the fact that the predictive PDF
is multimodal for the challenging UNGM problem.

V. CONCLUDING REMARKS

The state estimation of nonlinear stochastic dynamic systems
by the point-mass filter and marginalized particle filter was
treated. The paper proposed a non-negative functional decom-
position of the transient density in a closed region, through
which the convolution in the filters can efficiently be calculated.
The decomposition was particularized for univariate Gaussian,
Student t, Cauchy, and multivariate Gaussian transient densities.
With a choice of an appropriate rank of the decomposition,
significant computational cost savings can be achieved with only
negligible loss of filter estimate quality.

An important open problem is how to avoid large ranks of the
decomposition, which is significant, especially for higher state
dimensions. The problem can be partially addressed by keeping
the approximation region small in size. It should be possible in
light of the fact that the approximation of the transient density
is always affected by only a few components that have peak
positions close to the working point. Another open problem is
obtaining the decomposition for more general transient densi-
ties. It shall however be noted, that the Gaussian and Student
t-distributions considered here are the most used distributions
of additive process noises in state space models.

APPENDIX A
APPENDIX: COMPUTING L2 NORM OF THE ERROR

The Gaussian transient PDF for additive noise in dimension
nx and its approximation read

pwk
(xk+1 − fk ) = 1

(2π )nx/2
exp

(
−1

2
‖xk+1 − fk‖2

)

p̂wk
(xk+1 − fk ) =

R∑
r=1

(xk+1; θr )(fk; θr )

=
R∑

r=1

βnx exp
(
−‖xk+1−μr‖2

2σ 2

)
βnx exp

(
−‖fk−μr‖2

2σ 2

)

= β2nx

R∑
r=1

exp

(
− (‖xk+1 − μr‖2 + ‖fk − μr‖2)

2σ 2

)
.

In the following, we omit the time indices for convenience and x,
f, and μr elements will be denoted xi, fi, and μr

i , i = 1, . . . , nx,
respectively. The L2 norm of the error is

E =
∫ L

−L

∫ ∞

−∞

[
pw(x − f) − p̂w(x − f)

]2
dx df. (33)

where

dx df =
nx∏

i=1

dxidfi.

The integration with respect to xi proceeds from −L to L the
integration with respect to fi proceeds from −∞ to ∞ for i =
1, . . . , nx. For notation simplicity, we shall only use a single
integration symbol without explicitly specifying the integration
region.

The error is a quadratic function of γ := β2nx so that

E = E1 − 2γ E2 + γ 2E3, (34)

where

E1 =
∫

pw(x − f)2dx df, (35)

E2 = 1

β2nx

∫
pw(x − fk ) p̂w(x − f)dx df, (36)

E3 = 1

β4nx

∫
p̂w(x − f)2dx df (37)

are independent of β (β cancels out) or γ .
Once we have computed the integrals E1, E2, and E3, the

quadratic function in (34) can be minimized with respect to γ

in closed form,

γ0 = argmin E (γ ) = E2

E3
.

Then, the minimum error has the value

E (γ0) = E1 − E2
2

E3
.

The error E (γ0) is a function of a single scalar parameter σ ,
which is finally optimized to achieve the minimum error. It holds

E1 = 1

(2π )nx

∫
exp

(
−

nx∑
i=1

(xi − fi )
2

)
dxdf

= 1

(2π )nx
πnx/2

∫ L

−L
df = 1

(2π )nx
πnx/2(2L)nx

= Lnx

πnx/2
. (38)

We used the fact that∫ ∞

−∞
exp(−t2)dt = √

π.

Next,

E2 = 1

(2π )nx/2

R∑
r=1

∫
exp

(
nx∑

i=1

− (xi − fi )2

2

Authorized licensed use limited to: UTIA. Downloaded on February 14,2023 at 10:36:42 UTC from IEEE Xplore.  Restrictions apply. 



TICHAVSKÝ et al.: GRID-BASED BAYESIAN FILTERS WITH FUNCTIONAL DECOMPOSITION OF TRANSIENT DENSITY 103

− [(xi − μr
i )2 + ( fi − μr

i )2]

2σ 2

)
dxdf. (39)

The argument in the sum in (39) can be rewritten as

− (xi − fi )2

2
− [(xi − μr

i )2 + ( fi − μr
i )2]

2σ 2

= −
(

xi − σ 2
1 ( fi + μr

i

σ 2 )
)2

2σ 2
1

− ( fi − μr
i )2

σ 2
2

(40)

where

σ1 =
√

σ 2

1 + σ 2
(41)

σ2 =
√

2σ 2(1 + σ 2)

1 + 2σ 2
. (42)

Then, E2 can be integrated with respect to x first to receive

E2 = σ
nx

1

2nx/2

R∑
r=1

∫ L

−L
exp

(
nx∑

i=1

− 1

σ 2
2

( fi − μr
i )2

)
df

= πnx/2σ
nx

1 σ
nx

2

2nx

R∑
r=1

nx∏
i=1

[
erf

(
L − μr

i

σ2

)
+ erf

(
L + μr

i

σ2

)]

where erf is the error function defined as

erf (x) = 2√
π

∫ x

0
exp(−t2)dt .

Finally,

E3 =
R∑

r=1

R∑
r′=1

∫
exp

(
− 1

2σ 2

nx∑
i=1

(xi − μr
i )2 + (xi − μr′

i )2

+( fi − μr
i )2 + ( fi − μr′

i )2
)

dxdf (43)

The argument in the sum in (43) can be rewritten as

(xi − μr
i )2 + (xi − μr′

i )2 + ( fi − μr
i )2 + ( fi − μr′

i )2

=
(

xi − μr
i + μr′

i

2

)2

+
(

fi − μr
i + μr′

i

2

)2

+ (μr
i − μr′

i )2.

(44)

The resultant expression is

E3 = πnx σ 2nx

2nx

R∑
r=1

R∑
r′=1

nx∏
i=1

exp
(
−(μr

i − μr′
i )2

)
⎡
⎣erf

⎛
⎝L − (μr

i +μr′
i )

2

σ

⎞
⎠ + erf

⎛
⎝L + (μr

i +μr′
i )

2

σ

⎞
⎠
⎤
⎦ . (45)
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