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Abstract— In this paper, a fixed-time tracking control problem
is investigated for an uncertain high-order nonlinear pure-
feedback systems with practical state constraints. To this end,
a new nonlinear transformation function with lower change rate
at the state constraint boundary is first proposed, which can not
only handle both constrained and unconstrained states in a uni-
fied way, but also reduce the control magnitude at the constraint
boundary. With the help of the proposed transformation function,
the original system is transformed to a new system without state
constraints. Then, a non-singular fixed-time adaptive tracking
controller is designed by applying an adding a power integrator
technique and an adaptive neural network method. It is shown
that the practical fixed-time stability can be guaranteed for
the closed-loop system under the proposed tracking controller.
Finally, two numerical examples are presented to demonstrate
the proposed fixed-time tracking control strategy.

Index Terms— Fixed-time tracking control, nonlinear pure-
feedback system, state constraint, nonlinear transformation
function, adding a power integrator technique.

I. INTRODUCTION

N SOME practical systems, system states are subject to cer-

tain constraints due to the physical limitations or security
requirements [1], [2]. For example, velocity and displacement
of unmanned vehicle system suffer constraints of traffic rules
and road conditions. The violation of the state constraints
may cause the deterioration of the system performance and
even the safety accidents. Therefore, it is necessary to ensure
the satisfaction of state constraints while achieving stability
control. In recent years, this significant issue has attracted
extensive attention and research.
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In the past decade, the methods of set invariance control [3],
model predictive control [4] and barrier Lyapunov function
(BLF) [5] have been developed to deal with the constrained
systems. Among them, the barrier Lyapunov function (BLF)
method has been widely used. Reference [6] employed the
BLF to deal with static symmetric full state constraints.
Reference [7] developed the integral BLF to handle static
asymmetric full state constraints. For time-varying full state
constraints, an adaptive neural network control scheme was
established by using a tangent BLF in reference [8]. However,
the above BLF-based controls produced additional feasibility
conditions, which need extra complex offline calculations
and even have no solution sometimes. To avoid this defect,
a nonlinear transformation function (NTF) method was devel-
oped in reference [9], which can transform the original
constrained system to a new one without constraints. Recently,
the NTF method has been extensively used. For example,
in reference [10], an adaptive neural dynamic control of
pure-feedback nonlinear systems with full state constraints
was designed by introducing another NTF. In reference [11],
an NTF based tracking controller was designed for uncertain
non-strict feedback systems with full state constraints.

Nevertheless, in practical systems, it is quite common that
only partial states, not full, are subject to constraints. The
above-mentioned controls were developed for the systems
with full state constraints, which will fail for the systems
with unconstrained states. To tackle this issue, reference [12]
studied the partial state constraints-based control by dividing
the full state into two parts and requiring that the first m states
of the system were constrained states and the last n —m states
were free states. However, the constrained state sequence was
not arbitrary in reference [12]. Although the sequence of par-
tial constrained states was arbitrary in references [13] and [14],
a set of artificial constraints need to be imposed on the free
states. Once the free state sequence changes, it is necessary
to reimpose artificial constraints and redesign the controller.
Therefore, a unified control way that can simultaneously deal
with the constrained and unconstrained sates without changing
the control structure is significantly to be researched.

Up to now, only a few literatures have begun to tackle
the constrained and unconstrained states in a unified way.
Reference [15] developed a unified NTF to achieve track-
ing control for non-strict-feedback nonlinear systems with or
without state constraints. Reference [16] proposed another
unified NTF for high-order strict-feedback systems and applied
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the proposed unified NTF to the tracking control of robotic
systems [17]. However, the cascade connections were affine in
the references [15], [16], [17] and therefore easier to handle.
In this paper, the so-called pure-feedback systems having
nonaffine connections between cascades will be considered.
Pure-feedback systems were introduced in [18] and thor-
oughly studied along with their more specific version - the
so-called triangular systems [19], [20], [21]. Up to now,
very few studies have been presented for the control of
pure-feedback systems with constraints in a unified way.
Although references [22] and [23] studied unified tracking
controls for pure-feedback systems with both constrained and
unconstrained states by developing the unified NTFs, but only
asymptotic convergence, not fixed-time convergence, were
achieved.

As is well known, the fixed-time convergence has faster
convergence rate and better disturbance rejection [24], [25],
[26], [27]. To achieve fixed-time convergence, the homogene-
ity method [28] and terminal sliding mode method [29] have
been proposed for linear systems and second-order systems,
respectively. For high-order systems, the modified backstep-
ping method with fractional feedback terms was proposed
and widely applied to the fixed-time tracking of nonlinear
systems with state constraints [30], [31], [32], [33]. How-
ever, the singularity problem may occur in fixed-time control
design due to the derivatives of the fractional power terms.
To overcome the singularity problem, reference [34] proposed
the switching functions and applied it into the finite-time
control. Moreover, reference [35] developed the adding a
power integrator technique to avoid the singularities in fixed-
time control. However, for uncertain nonlinear pure-feedback
systems with partial or full state constraints, the fixed-time
tracking without singularities in a unified way has not been
studied.

Motivated by above discussion, we are devoted to inves-
tigating the non-singular fixed-time tracking of uncertain
nonlinear pure-feedback systems with partial or full state
constraints. The main difficulties and challenges are: 1) To
remove the singularities in fixed-time control, the introduction
of the adding a power integrator technique will increase
the complexity and difficulty of the traditional backstep-
ping design. Especially for constrained pure-feedback systems
with nonaffine cascade characteristic, designing a non-singular
fixed-time tracking controller is more complex and challeng-
ing. 2) How to design a new unified NTF that can not only
result in a smaller control effort to pull state back from the
constraint boundary, but also be applicable to the multiple
practical constraint situations given below is another challenge.
Specifically, the considered constraint situations include:
@® All states are constrained; @ All states are not constrained;
@ Some states are constrained and other states are not con-
strained. The main contributions are summarized as follows:

1) A new unified NTF is proposed to handle the constrained
and unconstrained states uniformly. Since NTF converts the
state x into a variable &, the variable £ tends to infinity when
state x tends to the constraint boundary. This leads to a large
control effort to ensure the boundedness of the &. However,
compared with references [16] and [23], the NTF proposed in
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this paper makes the £ tend to infinity more slowly for the
same process that x tends to the constraint boundary, which
can lead to a smaller control effort than that of [16] and [23].

2) The adaptive neural network technique is applied to
deal with the uncertain nonlinearities of the pure-feedback
systems and the adding a power integrator technique is used
to overcome the singularities in fixed-time control process.

3) The non-singular fixed-time tracking controller for uncer-
tain nonlinear pure-feedback systems with or without state
constraints is first developed in a unified way in this paper,
which not only realizes the practical fixed-time tracking, but
also ensures that the constrained states satisfy the correspond-
ing constraints by a unified control structure. Compared with
asymptotic tracking of the pure-feedback systems with or
without state constraints [22], [23], this paper achieves the
fixed-time tracking. Moreover, in contrast to references [16]
and [17], there is no singularities in this paper.

The remainder of this paper is organized below. The prelim-
inaries and problem formulation are presented in Section II.
Section III gives a unified nonlinear transformation function
and an adaptive fixed-time control strategy. At the same time,
practical fixed-time convergence is analyzed for the closed-
loop system. In Section IV, numerical examples are given
to validate the proposed fixed-time control strategy. Finally,
conclusions are presented in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. Preliminaries

Definition 1: Consider the system x = f(¢, x), x(0) = xo,
where x € R”, the nonlinear function f : Ry x R" — R”
is continuous with respect to ¢ and Lipschitz continuous with
respect to x, and f(¢,0) = 0. The equilibrium of the system
is said to be practically fixed-time stable on R”, if it is stable
and Ve > 0 there exists a settling time 7' (¢) > 0 such that
lx(t, x0)|| <€, Vxg € R", Vt > T (¢).

Lemma 1 ([17]): Consider the system x = f(¢, x), where
f Ry x R" — R” is continuous with respect to ¢t and
Lipschitz continuous with respect to x, and f(¢,0) = 0. The
equilibrium of the system is practically fixed-time stable if
V§ > 0O there exist a positive definite function Vj(¢,x) and
parameters k| > 0,k > 0,0 <y <1, 8>1,and 0 <6 <
1 such that

Vs(t,x) < —k1Vs(t,x) —kaVs(t, x)P 4 6.

Furthermore, there exists a settling time 7 such that

§ L 5 1
Vs(t,x) < '{—V,_ﬁ}’
3(t, %) < min (kle) (k29)
when ¢t > T, and the upper bound of the settling time 7 is
given by:
1 1
T < + .
ki1 =0)d—-y)  kd-60)(B—-1)

Lemma 2 ([36]): (Mean value theorem) If function f(x) is
continuous on a closed interval [a, b], and is differentiable on
an open interval (a, b), then there exists a € (a < € < b) such
that

fb) = f@ = f' ()b —a) (1
holds.
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Lemma 3 ([37]): The following three inequalities hold.
@ For arbitrary constants x; > 0, x; > x3, and p > 1,
it holds:

p p
(x1 _XZ)p > Xy — X7

@ For arbitrary constants p > 0, x; > 0, and x5 > 0,
it holds:

1 I+p _ 1y
U0

xl(xp —x1) < (x,

“14+p
® For arbitrary constants x; € R and p > 0, it holds:

n n
O Ixih? < max{n?~' 11D ;7.
i=1 i=1

Lemma 4 ([35]): For a real-valued function y(x,y) >
0 and positive constants ¢, d, the following inequality holds:

c . d _c
x|yl < e x| 4 i w Wyt

Lemma 5 ([35]): For x € R, y € R, and scalar p < 1,
it holds:

[x? — yP| <277 |x — y|P.

According to the radial basis function neural network
(RBFNN) technique [38], the unknown continuous function
F(x) € R can be approximated by a linearly parameterized
model as follows:

F(x)=WTSx)+ek), xeR", )

where W € RV is the weight vector of a radial basis
function neural networks, S(x) = [S;(x), ..., Sy(x)]T € RV
is the basis function vector. Particularly, the basis function is
generally given by

x—t)Tx—1w)
V2

where ¥; € R, t; € R" are the width and the center of the basis
function, respectively. ¢ € R is the estimation error. In this
paper, the unknown weight vector W and estimation error &
satisfy the following assumption:

Assumption 1: In the linearly parameterized model (2),
assume that |[W|| < W, |¢| < &, where W and & are unknown
positive constants. Furthermore, define w = max{W, g}

Sl-(x)zexp|:— :|, i=1,...,N, (3

B. Problem Formulation

Consider an uncertain high-order nonlinear pure-feedback
system as follows:

Xi= filki, xiy),i=1,...,n—1,
Sn = fu(En, u), “4)
y =X,

where x = [x1,...,x,]7 € R" is the state; X; denotes
[x1,...,x;]" € R; y € R is the output; u € R is the control
input; f;(-) (i =1,...,n) are unknown nonlinear functions.
The system states need to satisfy the following constraints:

—hi1(t) < xi(t) < hjpp@®), i=1,...,n, 5
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and we allow that &;1(¢) and h;>(¢) can include the following
practical situations:

1) hj1(¢) and hja(t),i = 1, ..., n, are bounded time-varying
strictly positive smooth functions. This means that all states
are constrained all the time.

2) hi1(t) = hjp(t) = 400, i = 1,...,n, which means that
there is no constraint on the whole system.

3) hi1(t) = hiz(t) = +oo for partial i € {1, ..., n}, and the
other h;1(t), hj2(¢) are bounded time-varying strictly positive
smooth functions. This denotes that the researched objective
is a system with partial state constraints.

4) 0 < h;j(t) < +oo fori € {1,...,n}, j = 1,2, which
implies that the state x; may be constrained for a period of
time and unconstrained over certain period.

Assumption 2: The initial states satisfy —h;1(0) < x;(0) <
hi(0),i=1,...,n.

Assumption 3: fi(Xi, xiy1) ( =1,...,n—1)and f,(x,, u)
are continuously differentiable with respect to all x € R" and
ueR.

According to Assumption 3 and Lemma 2, there exists a
constant o € (0, 1) such that the following equation holds:

Jn(Xn, u) = frn(xn, 0) + g0 (Xn, du)u, (6)

where g, (X,, qu) = Wb:aw

Assumption 4: We assume that 8, < gn(-) <g,, where 8,
g, are unknown positive constants.

For the nonlinear system (4), the reference output is given
by y4(t), which is bounded and smooth, and satisfies the
constraint (5), i.e., —h11(t) < yq(t) < h12(2).

The objective of this paper is to design a fixed-time con-
troller u for the system (4) to achieve practical fixed-time
output tracking, that is,

ly(t) —ya@®)| < ¢,

where ¢ and T are some positive constants, and at the same
time, the controller u guarantees that the state constraints (5)
are not violated all the time.

Vi =T, @)

III. MAIN RESULTS

In this section, firstly, a unified nonlinear transformation
function is constructed to handle the cases with and without
state constraints. Thus the system (4) can be transformed to
a new unconstrained system by using the nonlinear transfor-
mation function. Secondly, a non-singular practical fixed-time
tracking controller is constructed by introducing the adding a
power integrator technique and the adaptive neural network
technique. Thirdly, the convergence analysis is given to show
that the practical fixed-time output tracking of the closed-loop
system is achieved and the state constraints are always satisfied
simultaneously.

A. Unified Nonlinear Transformation Function

In order to uniformly handle more practical systems that
meets all the constraint situations listed in (5), a unified
nonlinear transformation function is proposed as follows:

hit(t) + hiz(@) |, hit(t) + x; (1)

silt) = 2 ") —x)

®)
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Fig. 1. The nonlinear transformation functions (NTFs).

The nonlinear transformation (8) has the following
properties:
. i (1) = —00;
W 3 D =
. i () — )
(i xi(t)inilliz(t) 5i(0) oo ®)
(iii) lim &) = xi(1).

hi1(®)=hi(t)—>~+00

Remark 1: According to the properties (i) and (ii), one can
obtain that if &;(¢) is bounded, then the condition —h;{(¢) <
xi(t) < hip(t) holds for any —h;1(0) < x;(0) < hi2(0).
Therefore, in order to ensure that the constraints are not
violated, we just need to ensure that &;(¢) is bounded. For
the property (iii), h;1(t) = hi>(t) = +00 means that there is
no state constraint and thus &;(z) = x;(¢). Consequently, the
proposed transformation (8) can deal with the cases with and
without state constraints in a unified manner.

Remark 2: The transformation function (8) can be applied
to the systems with both constrained and unconstrained states.
Moreover, the transformation function (8) is also applicable
to the systems that start from an unconstrained initial state
to a constrained state space. For example, when an unmanned
vehicle drives into a narrow tunnel starting from an open area,
the state constraint is continuously changing from infinity to
a bounded region. In thisl case, the constraint functions can be

selected as h;j(1) = e’ + k;jj (j = 1,2), where 1y is the
initial time instant, k;; is a positive constant. Thus the state
constraint decreases monotonically from infinity to 1 + k;;.
Remark 3: It is noted that when the state x; tends to the
boundary of constraint, the transformed variable &; (¢) tends to
—o0 or 400, which often needs a large control effort to make
the &;(#) be bounded. However, compared with the unified
NTFs in [16] and [23], the change of & tending to —oo
or +oo in this paper is slower than that in [16] and [23],
respectively. When the state constraint is set as |x;| < 1, the
evolution of the transformed variable &;(¢) is shown in Fig. 1.
More details can also be found in Table I. From Table I,
it can be further found that the change rates of the transformed
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TABLE I

THE CHANGE RATE OF & IN DIFFERENT x INTERVALS
Change rate of £ in different « intervals

References [0.85,0.9] [0.9,0.95] [0.95,0.99]

This paper 6.24 10.38 23.5
[16] 27.34 81.4 648.82
[23] 50.06 150.04 1200

variable £ under different x intervals near the boundary 1 are
smaller than those in references [16] and [23].

Under the unified nonlinear transformation function (8),
differentiating £ = [£,...,&,]7 yields a new system as
follows:

{f:izﬂ(ii+l7§i+l)+§i+l, i=1,....,n—1, (10)
En = Fu(Xp) + @ngnu,
where
Fi(Xit1, §iv1)
=i fi(Xi, xip1) + i — &y, i=1,...,n—1,
Fo(Xn) = @n fn(Xn) + Pn,
o = & (hir (@) + hio(1))’
I 4(hi1(t) + xi () (hia(t) — xi (1))
@:hmn+mxn( hin) — hio() )
4 hir() +xi (1) hia(t) — x; (t)

hin@) + hia (1) | hin () + xi(1)
4 hia(t) — x; ()’
fori =1,...,n, and fu(Xy) = fu(Xn,0), gn = gn(Xn, aut)
are defined in (6).

Obviously, the original system (4) with the state constraint
(5) is transformed to an unconstrained system (10). The
constraints on state x can be guaranteed by ensuring the
boundedness of the variable £. In sequel, based on the trans-
formed system (10), we need to design a fixed-time controller
to not only ensure that the state constraints are not violated,
but also realize the practical fixed-time output tracking.

According to the unified nonlinear transformation function
(8), a nonlinear transformation is given for the reference output
vq as follows:

hir(1) + hia (1) - hi1 () + ya (@)

§a(1) = n . (11
4 hio(t) — ya(t)
B. Controller Design and Convergence Analysis
Define
e1 =& — &4,
12
[ngm_$m7k:lmw’ 12

where gy =1 —(k— D1, 7 = g e (0, %), and p is a positive
even constant, g is a positive odd constant. It can be verified
that ¢, < g,—1 < ... < g2 < 1. & is the virtual controller to
be designed at the step k of the following Algorithm 1.

where Vi () = n—(k— D) +exef +vi—1+Gro1+lky/1 + 67 >
0, the parameters €;, k = 1,...,n are positive constants,
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Algorithm 1 Power integrator based control design.

Step 1: Consider
e1 =& —&4.
Construct the Lyapunov function as
Vi = te? + 162, (15)
then, according to the derivative of Vj, design the vir-
tual controller as A
& = —elYi(er, 01).
Step k: (2 <k <n — 1) Consider
er = %-kl/‘Ik _ gljl/Qk.
Construct the Lyapunov function with a power inte-
grator as
Vi = Vit + [ (sl — gl 02 ags 1 102,

' (35)
then, according to the derivative of Vj, design the vir-
tual controller as . .

& = —e Y (er, &2y Ek, O, B).
Step n: Consider

(18)

1 *1
en = %-n/Qn _ Sn /%z.

Construct the Lyapunov function with a power inte-
grator as
Vo = Voot [ sV — g7V 92nds 4 162,

(46)
and design the controller u as
U= —ﬁeZ"“ (1 + €nel + vy
+Gn71 +ln\/ 1 +él$),
(47

K > 1 ig an even constant. [y = pr_1 + Z;:ll Hy—1, and
_ 2=qi—1 _ol—qrak 1l __ d I \—Q—qk-1)/9k

Pk—1= —g > k-1 = 2 d (2 p 21"/k) >

0, Hk—l,l(') =2- qk)zzqu{—liufo_l’l > 0. Gk—l,l > 0 and

Gi_1 > 0 are C! functions. The positive constant g, is the

lower bound of g,. In addition, the parameters ék and ék are
defined in the detailed controller design process which is given
in Appendix A.

Remark 4: 1t is worth noting that in the references [17],
[30], [31], [32], and [33], the fixed-time controllers suffered
from a singularity problem. Specifically, there is often a state
related term with fractional power less than 1 like xt (< 1)in
the virtual controller «;. Thus the next virtual controller o4
contains the derivative of «;, which leads to a singularity at
x = 0. To overcome this drawback, this paper designs the
controller (47) by introducing the adding a power integrator
into the Lyapunov functions V; (i = 2,...,n), and can
avoid the singularities caused by the derivatives of the virtual
controllers in the traditional backstepping design process.

Under the controller # in Algorithm 1, the objectives in
Theorem 1 are achieved.

Theorem 1: Consider the uncertain high-order nonlinear
pure-feedback system (4) with the state constraints given by
(5). Under Assumptions 1-4, the proposed controller (47) can
achieve the following objectives:

(1) All the states in closed-loop system (4) are bounded.
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! \

Ty —==Ya -==hy --- hu‘
TN o

states

states

0 5 10 15 20 25 30
t(s)

Fig. 2. The trajectories of the states xq, x, and the reference output y,
under the case that x1, xo are all constrained.

(2) The practical fixed-time output tracking is achieved, that
is, |z] = |y — yal < ¢ = ~/2R when ¢t > T. The settling time
is estimated as

2 2
T < + )
ri1-02—-d TInd-0)d+k—2)

where R is defined in (53) in Appendix B, '} = %,

[ : Ok, 1
and I'p Wz,()/z, o] = Milg=l,.., n{LT}’ wy =
ming—1,., n{l,;"T’i}, o = max{%,ZI*Qk}’ 6 is a constant

satisfies 0 < 6 < 1, ox,1 and oy 2 are given positive constants,
Kk > is an even constant.

(3) The state constraints are satisfied all the time.

Proof: The proof is shown in Appendix B.

IV. SIMULATION EXAMPLES

This section contains two examples. Example 1 shows the
relevant control results of numerical system under the three
cases respectively as: 1. all states are constrained; 2. partial
state is constrained; 3. all states are unconstrained, respec-
tively. Example 2 shows the control results of Brusselator
model.

Example 1: Consider the following pure-feedback nonlin-
ear system:

X1 :xl—i—xz—i—x%,

Xy = x1x2 +u + 0.1sin(u), (13)

y =Xxi.

The reference output is given by y; = 0.1sin(0.5¢). The
initial state is set as x(0) = [—0.2,0.2]7 and the parameters
in the controller (47) are selected as follows: g2 = %, q3 =
BT = 135. k = 3, 6 = 001, & = 001, 01, = 001,
012 = 0.01, 021 = 0.01, 025 = 0.01, 6;(0) = 6:(0) = 0,
§n=0.9, lﬁi=3, ‘L’i=0.

Case 1: All states are constrained.

The state constraint functions are given by A((f) = 0.5 +
0.3sin(t), h12(r) = 0.6 — 0.2 sin(z), ho1(t) = 0.54 0.2 cos(?),
and h2() = 0.5 + 0.2cos(f). Then, Fig. 2 shows the
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Fig. 3. The trajectory of the output tracking error z under the case that x1,
xp are all constrained.
120
u
100 - 1
80 1
4
60 2 1
= 0 \/‘——'d
120 1 2 1
-4
60 0 1 2 3 4 5
0 5
20 \ \ \ \ \
0 5 10 15 20 25 30
i(s)
Fig. 4. The trajectory of the control input u under the case that x|, xp are

all constrained.

trajectories of the desired output y; and the states x1, x under
the proposed controller (47). In Fig. 2, we can see that the
state x1 can track the reference output y; at about 7 = 2s.
Moreover, the states x; and x; are always within the given
constraints all the time. Fig. 3 shows the output tracking error
and demonstrates that the tracking error is bounded in fixed
time, that is, |z] < 0.05 for ¢+ > 2s. The control input u is
shown in Fig. 4.

Case 2: Partial state is constrained.

In order to verify the effectiveness of the controller (47) for
the system (12) with both constrained and unconstrained states,
we set that state x; is constrained by A11(¢) = 0.5+ 0.3 sin(¢)
and h12(t) = 0.6 — 0.2 sin(¢), while state x, has no constraint,
that is h1(¢) = h2(t) = +o00. Then, the dynamics of states
X1, x2, and reference output y; are shown in Fig. 5. From
Fig. 5, it can be found that x; and x, are bounded while
x1 does not violate its constraint all the time. Compared with
the case that all states are constrained, the x; in Fig. 5 exceeds
the constraints given in case 1 due to there is no constraint
on state x;. Moreover, the output tracking error |z| < 0.05 for
t > 2s, which is shown in Fig. 6. And the control input is
shown in Fig. 7

3751

@y —==Ya ===hn --=hpp

0 5 10 15 20 25 30
t(s)

Fig. 5. The trajectories of the states xq, x, and the reference output y,
under the case that x; is constrained, x, is unconstrained.
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error

02
ol
-05+ ﬁ—/ e
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Fig. 6. The trajectory of the output tracking error z under the case that xq is
constrained, xp is unconstrained.

Case 3: All states are not constrained.

Considering that there is no constraints on states, then the
trajectories of states, tracking error, and control input are
shown in Fig. 8, Fig. 9, and Fig. 10, respectively. According
to Fig. 8 and Fig. 9, we obtain that state x; can track the
reference output in a fixed-time. Moreover, from Fig. 8, the
maximum value of the state x, is larger than that in case 2 due
to no constraints on neither x; and xj.

The above simulation results illustrate that the proposed
fixed-time controller can handle the output tracking problem
for the uncertain nonlinear pure-feedback system with and
without state constraints while keeping one control structure.

Example 2: To further illustrate the applicability of the pro-
posed controller, consider the following disturbed Brusselator
model [39]:

£1=C—(D+ Dxi+xix2+di,
X2 = Dx| — x%xz + (2 4 cos (x1)u + dy,

y =X,

(14)
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Fig. 7. The trajectory of the control input u# under the case that xj is

constrained, x, is unconstrained.
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states
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Fig. 8. The trajectories of the states x|, xp, and the reference output y,

under the case that xj, xo are all unconstrained.

where the state variables x; and x; denote the concentrations
of the chemical reaction intermediates, the positive numbers
C and D are the parameters of the supply of “reservoir”
chemicals, d; and dp denote the external disturbances. In real
cases, the concentrations of some reaction intermediates are
usually constrained within a certain range to ensure reaction
effectiveness. Thus, we assume that the state x; is constrained
by h11(t) = 0.5+ 0.3sin(z) and h12(¢) = 0.6 — 0.2sin(?),
and the state xp has no constraint. We choose C =1, D = 3,
dy = 2cos (x1)x2, dp = 2sin (x2)x1, and the initial states and
the other parameters are same as those in Example 1.

Then the states xj, xp and the reference output y; are
shown in Fig. 11. The tracking error and control input are
shown in Fig. 12 and Fig. 13, respectively. From Fig. 11,
we can see that the states are bounded and the constraint is
not violated. In Fig. 12, it is shown that the tracking error
|z| < 0.05 for t > 2s. Therefore, the proposed controller (47)
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Fig. 9. The trajectory of the output tracking error z under the case that xp,
x7 are all unconstrained.
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Fig. 10. The trajectory of the control input # under the case that x, x, are
all unconstrained.
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Fig. 11. The trajectories of the states x1, x, and the reference output y; of
Brusselator system.

not only achieves the practical fixed-time output tracking of the
Brusselator system (14), but also ensures that the constrained
state satisfy its constraint condition.
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Fig. 12. The trajectory of the output tracking error z of Brusselator system.
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Fig. 13. The trajectory of the control input u of Brusselator system.

V. CONCLUSION

This paper has solved the fixed-time output tracking prob-
lem for uncertain high-order nonlinear pure-feedback systems
with partial state constraints in a unified way. A new nonlinear
transformation function has been proposed to deal with the
constrained and unconstrained states. Based on the unified
nonlinear transformation, the original partially constrained
systems have been transformed to the systems without con-
straints. The adding a power integrator technique has been
introduced and delicately combined with the adaptive neural
network technique to facilitate the fixed-time controller design.
Thus, an adaptive neural network based fixed-time tracking
controller has been constructed for the uncertain high-order
nonlinear pure-feedback systems, which needs only one struc-
ture to ensure not only practical fixed-time tracking but also
state constraints. Moreover, the effectiveness of the proposed
controller has been validated by numerical simulations.

APPENDIX A
DESIGN PROCESS OF THE CONTROLLER u

Step 1: Construct a Lyapunov function as

1 1~
Vi = set + 567,

3 > (15)
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where 51 =0 — él, él is the estimation of 6. 61 and él will
be given later. According to

é1= Fi1(%2, &) + & — &y
= Fi (%2, &2, £4) + &2,

where Fj (X2, &2, é‘d) = Fi(x2,&) — éd, then we can derive
that

Vi = e1(F1 (%2, £, &1) + &) + 5151
= e1Fi(%2, £2,€0) + €1&) +e1(82 — &) + 60101 (16)

Using the neural network approximation (2), we have
Fi(@, 6,60 = WISX) + ei(X)), where X; =
[x1,x2, 6, E417, Wi € RM, S(X1) € R™ and &(X;) are
weight vector, basis function vector, and estimation error,
respectively. According to Assumption 1, |[|[Wi]| < Wy,
le1] < &1, where Wi and &, are unknown positive constants.
Define w; = max{Wj, &}, we obtain that Fl(iz,éz,éd) <
wip1(X1), where n1(Xy) = 1+ ||S(X1)||. Then, according
to Lemma 4, we get

e F1(%2, &2, E4) < lerlwipy - 192 < p161ed +¢1, (17

where p; = Tud, d =1+ ¢z, c; = £ and 6, = wf.
Design the virtual controller £5° and the adaptive law of 6
as follows:
g =—el’(n+eef +1/1+0])
= —e"Y1(e1.01),

Nq2 Ha2+K d
0 = —(71,191 —01,291 +11€1,

(18)
19)

where €], 01,1, 01,2 are positive constants, k > 1 is an even

constant, | = pj, 1//1(e1,51) =n+e€re] +11,/1 +é12 > 01is
a C! function.
Substituting (17)-(19) into (16), we get

. d ~ A ~ Agrti
Vi < —ne‘ll - 6161+K + 0'1’1919?2 + 0'1’2919?2

+ Cites - &), (20)

where C; = c;.
By employing the second term of Lemma 3, we have

61,15191[’2 = 01,1é1qz(91 — 61
1 N
<011 0f =161 = 1.

According to the adaptive law (19), we can verify that
01(1) > 0 for any given initial value 6;(0) > 0 if 6;(r) > 0.
If él(t) < 0, then él(t) will decrease until él(t) =0ata
certai.n time 4. Due to the fact that / 16(11 > (), it can be found
that 6,(r) > 0 when 6;(t) = 0. Thus, 6;() > O after ¢ > 1.
Therefore, if we choose an initial value él (0) = 0, then we
have 6; (r) > 0, which means that 6;(t) — 6, (1) = 6, (r) = 0.
Next, according to 67 = w‘ll > 0 and the first term of Lemma 3,

the following inequality can be obtained:
~ A 2 ~
01’1919{]2 < —(;l’lefl — 01’19[1

—6. 1)
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Similarly, it can be obtained that:
~ A 2012 01,2
0 9‘12“"( < s 9d+/( _ 9d+K
LT = e d+x
With the help of inequalities (21), (22), the inequality (20)
can be further derived as

(22)

Vi < —ned — d+;<_01_19~d 0129~d+:<
+ e1(652 = &)+ C1 + Ay, (23)
where Al 2Ul 1 ed 2O'l 29d+K
Step 2: Take the followmg Lyapunov function:
& 1.
Va=Vi+ [ sV — gl eyags 5922, (24)
&

\ivhere 52 =6, — éz, éz is the estimation of 6,. In addition, 6;,
0, will be given later. Differentiating V; yields:

. 0’1,1 ~
Vs < —ned — egedtc — 14
1 1 7

200 Loy — ED) + Cr 4+ Ay

d +
+ &P (P, 8) + &) + 620

1
A6 1%

x1/q2 l=q24
o . & ) s.

+ 2—-q2)

(25)

Employing the neural network approximation (2), we have
F(X2) = W] S(X2) + &, where X2 = [%3,&]7, Wa €
RM, S(X5) € RM and & (X)) are weight vector, basis
function vector, and estimation error, respectively. According
to Assumption 1, |[|[W3]|| < Wa, lea| < &7, where W, and &,
are unknown positive constants. Define w, = max{Wa, &2},
we obtain that F»(X») < woua(X3), where ur(X3) = 1 +
1S (X2)I].

Using Lemma 4, it can be obtained that

2 _ _
&y PPy (%3, &) < leal Pwppy - 193
d/2—q2) d

< p2w, e +my, (26)
where pr = 27%“?/(2_”), my =%,
Using Lemma 5, we get
e162 — &) < le1]] 5,/ — &5/ 1)
1
< 21 q2|e1||%-2/‘12 _ %-;1/112|‘12
=27 [|ea|
1
< Eef + vief, 27)

where vy = 2172 L2 (J22~1g)~l/a > 0.

Since e2 = &% — £/ and &F = —eP 1 (), then |&| <
(leal + [E512)P < |ea| + |&2] = |ea]?® + le1|2 41, which
will be applied to the following second inequality.

d(_sz*l/(n)

‘ dt

_(w”qz+ wi GlKe'f)(|Fl|+|‘§2|)
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Hq2
e1l (—o01,10]

1 L- 6,
+ =y N
a J1+82
- Ul,zé]qﬁ_’( -I—llelll)

51
< (le1|” + le2| ™) (1 + lﬂl)(l/fl lﬂ 61K€'f)

I
+w1M1(¢1 + — w“ ellcef)

o
J1+6?

9d+K

J1+6?

+ o1 2—/—m

1A
+ _wl
q2

1 [ A~
d 2
+ 1131 5 1 +91)
< (1e®| + [e212) G (e1, 61) + w11 G (en, 6)
+ Giler, 61),

where Gl(elyél) > 0, é](el,él) > 0, and é](@],él) >0
are C! functions, and

1+ e%ll (01’1

(28)

erker),

2 A z, 1%
Gi(er,61) = (1 + vy (¥, +q—2l”1
. . 1 L1 o4
Gile1,0) = —y* \/1+€%11(01,1—1A
4 J1+82
1 ~
1—A+11€[]1§,/1+912).

1/14—92

Gl(el,él)zlﬁl +— Wl ekey.

9d+K
+ 01,2

In addition, we can derlve that

%2 1/q> *1/q2\1—¢qp
(2 —q2) . (/2 =&, 175 T ds
2

< Q2—q)lea|' " |E — &5
< 2 - q)lea|' 2| (&, 1) — (g5 1))
< 2 —q)lea| ' "221 "0 gy 72
< 2—q2)2'"ey). (29)
According to (28) and (29) and Lemma 4, we obtain that
*1/q2
2 - )% sV — ggl/qz)lfqzds
t £
2
< 2= 22" " %lesl[ (1] + le2]) G
+ w1 Gy + él]
1 1
< 567 +Gred + (2 — q)2! ngulwlclez + g, (30)
_ 1— d
Where G] = (2 — q2)2 qz[ (Zqz m) qu + G] ~|—

%éf] > 0 is a C! function, e =02- (]2)21 qzzdﬂ >0isa
constant.
Substituting (26), (27), (30) into (25) yields

Vo < —(n— e —ere{™ — %éld
o
1.2 9d+K + A+ (v + Gl)eﬁl

Cd+x
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+ 129283 + Cy + 626,
+ 6 PE G (&

d/(2— 42)

— &3, €1y

where 0, = max{w, f} > 0, L = pp+ 2 -
g2)2'~ qzd,u,de >0,Cy = C1+m2+g2 is a positive constant.
Next, we design the virtual controller &5 as follows:

£ = —ef (n—1+eze2+(v1+Gl)+lz,/1+é§)

= —ePyaer, &, 01,60, (32)
and the adaptive law is given as follows:
by = —02,108> — 02208 + hred, (33)

where Y2(-) =n—1+ee5 + (v1 +G1) +124/1 + 522) > 0is
a C! function, 02,1, 02,2 are positive constants.

Substituting (32) and (33) into (31), and according to the
similar analysis of (21), (22), we get

Vo <—(n— 1)(61 +ez) - (eled+” + 623‘2”")

01,1 01,2 zd+x
- =0 0/ +Cr+ A
d ! d_|_ 2 2
02,1 g4 022 44 g
TR e e, G
where Ay = A + (2"219d fﬁ’(zed-wc)

Step k: (3 < k < n — 1) Assume that for the Lyapunov
function

&k 1.
Vi = Vit +/ (s"/a — giV )2k gs 4 S0 39
&

there exist virtual controllers and adaptive laws & =

5 A St
—ezk+llﬁk(-), O = —Gk,19]?2 — O‘k’zé’gz 4 lkef, where

k =3,....n—1, Ye(er, &, ..., &.01,....00) > 0 is a
C! function, such that
<—(—k+DE +ef +...+¢)
_ (61€d+K +62€d+K +. +€keZ+K)
- (791 + 792 .+ —9,?1)
012 sd+« 02,2 ~d+x k2 Fd+x
— 0, 0
(d+/< 1 +d+ + +d+ )

+ Cr + Ak + ek T g — £

Then, we prove that there is a similar conclusion at step k+ 1.
Construct the following Lyapunov function:

kv 1
1 _ ~
Vg1 = Vi _|_/* (sV/arr1 _ E:+/1qk+l)2 At g g 5913+1'

.
(36)
Then, we have
Vst < Vi +ek+1 Fg + ek+1 Y&
(=& /)
+ e I G — §) + 2 — ) o

&1
1 *1/qr1y 1—qy
. /* (s [qk+1 _ §k+1 Yl makrgg
Ek-H

+ §k+15k+1-
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For Fy1, by employing neural network approximation (2),
it can be eftimated aSTFk-H = WkTHSEXkH) + &k+1, vsihere
Xir1 = X2, Exg2l”s (Wil = Wigr, ler]l = Exgrs
and w41 = max{Wiy1, ek+1}. Then, according to Lemma 4,
we obtain that

2—qk+1

2—qk+1
Ck+1

19k+2

Fri1 < ekl | Fiet1] -

d d d
< Pk+1Wj g My 1€hr1 T Mi+1, 37
where 11 = 2_?1“ M1

In addition, according to Lemma 4 and Lemma 5, we obtain

2—
€L " (Er+1 —

‘Ik+2

2— 1/qx 1/
lex] 111\|(;’: +')Qk+1 _ ($k+l +1)qk+1|

£ =

1
< Eek + el (38)

where v = 217G gL (] _d_ )"Ca/at 5 0 s a
constant.

Similar to the derivation of (28), we have

22—qx 21 qk+1

‘d(_g:j»/]qlﬁ—])
dt
S*I/QkJrl ~
5‘("—J;1)‘(|F1|+Iézl)
3( _ %-Zj_/lqurl)
+ | —2 (R + 1&]) +
06 (IF2l + 1&31)
3( _ %-:i/l‘ﬂc+l) ‘
+ Fil +
05, (1Fxl + |&k+11)
a9 — *1/qr41 R R
+ M( - 01719;]2 — 01,29;]2_” + llef)
001
( %-*I/QkJrl)
T ..+‘—( o010 — o 268 4 1.
06
1/qk

. 1

Since e = & /% — &'/% then |&¢| < (lex| + |71"/4)% <
lex |9 +1&F| = lex|% + |eg—11% i —1. Further, according to the
Proposition B.5 in reference [35], we can obtain that

k+1

d(_g*l/qk-f—]
dt

< (le1® + le2l2 + ... + lex+11%) G (&x, O

k - -
+ D wimGrier, ) + Gr(er, ),
=1
(39)

where & = [e1,....el", 6 = [01,....007, Gr() > 0,
Gri(-) > 0, Gr(-) > 0 are C' functions.

Moreover, the following inequality can also be derived:

Ek+1
1 _
2= qiy1) / (M gy ek g
< (2= qr1)2' 7 ey ] (40)

Then, according to Lemma 4, we have

(- E];kl/lqk+l) y
*1/qx _
(2 = q+1) d-it_ ( Vi1 _ g:kJrlq“*")] Gr+1 g g
S
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k k
1
<> Qeld +GrOef g + D wi Hea (el + gevt, (4D
=1 =1

_ 1—- 1 d 2%+1~1 112 d
v~vhere lek(‘) = 2 — qx+1)2 qk“[g,(zq2 G )1 kG4
Gr+ 1G{] > 0 and Hi;(-) = (2 — gy41)2% %1 —M;’Gf’l >
0 are C' functions, giy1 = (2 — qk+1)22_‘1k+1@ is a

positive constant.
Combining the inequalities (37), (38) and (41), we obtain

Vier < —(n—k)(ef +¢§ +

.+ ek)
d—+k d+K)

d+k NI erel

+ €26,
+ (Uk + Gk)ek+1
k

+ (ox + z Hk,1)9k+1€;'f+1
=1

— (e1€]

2—qr+1 * 2—qit1 &%
+ €ril (§k+2 - Sk.t,_z) + €ril §k+2

+ G101 + Crp1 + Ag,
d/(2 Ge+1)  d d _
where Gy41 = max{w s Wy - Wi Cryr = Cr +
Mmpy1 + gr+1. Design §k+2 as follows:

(42)

qk+2 K
—epy (n —k+ €kt1€

+ v + G + lgp14/1 + 9k+1)

qk+2
_ek_:i wk-i-l (.)a

*
§ipn =

(43)
and

5 A42 A2tk d
Ok+1 = —0k1,10; 1 — k1,20, + k1€, (44)

where the C! function ¥4 (-) = n—k+ek+1e}§+1 +vr+Gr+

lkr14/ 1+ 9,3+1 > 0, and o}41,1, Ok+1,2 are positive constants,

liv1 = pr + Z;{:I Hy .
Substituting (43) and (44) into (42), we can derive that

Vier < —(n —k)(ef + €5 +

.+ ek)
d—+k d+K)

.+ €xey
Ok+1,1 5

d—+k +.

— (e1e]™" + 6262

01,1 5
— (6] +792 e

7

12 Ad+k Ok+1,2 d+/c
—= g
d+« + +d+ Ocst)

2—
+ Ciat + Mkt + € 1 Errz — E510)

- (=
(45)

204+1.1 pd 204+1,2 pd+
where Agy1 = Ag + ( + 9k+1 + ch 0k+1’()

Step n: Construct the Lyapunov function V,, as follows:

&n
(SI/Qn

.
— gy mngs 4 62,
& 2

Vn = Vi1 + (46)

where 5,, =6, — é,,, én is the estimation of 0, £ = @,gsu.
Set k = n — 1, then V,;, = Viyy. Thus, 6, = 6ry1, which is
given in (42). Based on the analysis of (42), we have

Vo < —(ef + -.+e,”f D= (e et
0'11 02,1 On—1,1 7
— (— _9 — 0
( 4+ 7 S+t y 0¢_ )
012 fd—+k 02,2 ~d+x On—1,2 d+/<
- (—= 0, —0,
(d+1< ! +d+ o d+« v
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2—qn
+ a1+ Guo1)es + e (D)
n—1
+ (pn—l + Z Hn—l,l)eneg + énén
=1
+ Cp+ Apy—1.

According to (42) and (43), we design the controller u and
the adaptive law 6, as follows:

1 -

u=———e! (1+ene;+vn_1+Gn_1+ln 1+9,%),
ng,

47

by = 0010 — 0,20 + el (48)

where ¥k > 1 is an even constant On,1, Op,2 are positive
constants, [, = p,— 1+Zl | Hoo1, and p,o1 = %,
vy = 21" de (1A 41 L_)=Cau-0/tn > 0, H,_y () =
@2 — g)2> 0 Lpd GO g >0 Guo1y > 0and G, > 0

are C' functions. The positive constant 8, is the lower bound
of g,.
According to (47) and (48), we can obtain

Ve < —(ed + +ed) — (1] + ..+ enel™)
o
- (L o 219")
_ (d"lTZK ;HK + o T2 Ay 4 Cyt Ay, (49)
where A, = A,_1 + (2(3“9,21 + %11",(295“)
APPENDIX B

PROOF OF THE THEOREM 1

Proof: According to Lemma 5, V,, can be analyzed as
follows:

Vi

IA

1 2 S 1- 2 $ 1~2
561“‘22 qkek+259k
k=2 k=1
n n
o+ 3 %)
k=1 k=1

where o = max{}, 2!7%]}.
We have derived that
V, < —(e? +ed)—(eled+" +...
o1, 1 On,1 x4
(2L o g
( d )

‘712 Fd+i Fd+x
— 6 + 9 + Q
(d+/< ! d+ )
n

; ZEked“—Z%f

k=1
—z k2 gdte 4@
d+r k

where Q = Cn + A,. Then, according to the third term of
Lemma 3, we can continue to obtain that

(50)

IA

+ EneZ+K)

(D

n
Vo < —w1 D (el +6) — Z(ed“ +0) + @
k=1
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n d
@1 2, 52)2
< —m(w > et +9k)) +Q
k=1
()] d+ ! L
| s 2 N2
— —w_(d+K)/22n 2 (w;(ek +9k))
d d+x -
=-TW:-ILV,> +Q, (52)
_ . Ok, 1 o Ok,2
where o1 = mmk:l,...,nivlz, =7} w2 = mim=1,_a{l, 75}
Fl = m, and Fz = W

Then, using Lemma 1, we obtain that there exists a time 7,

such that
< memminl ()1 (2)7).

when t > T, where

T < 2 + 2 :
ra-6062—-dy TInd-0)d+«x-—2)

and 0 < 6 < 1 is a constant. This implies that the closed-
loop system (12) is practically fixed-time stable. Moreover,
because V, € Loo, thus ex € Loo, Ok € Lo, k = 1,..., 0.
Then, we can derive that & is bounded. Thus &, = ¢; + &/,
k = 2,...,n are bounded, and & = e; + &; is bounded.
Therefore, all states of system (10) are bounded.

Due to V,, < R when ¢t > T, thus, we have |e|| < V2R
when t > T. Define the output tracking error z = y —
vq. Recalling the transformation functions (8) and (11) and
applying the mean value theorem, we get that there exists a
constant é such that

(53)

2] = hi1(t) + hi2(t) tanh( 28, )
2 hi1(t) + h1a()
~ hu@) +hi@) tanh( 284 )‘
hi1(t) + h12(t)
_ h11(t) + h12(2) 1 y 2081 —&a)
2 cosh?(§) ~ h11(1) + hia(t)
hi1(#) + hi2(t) 2
= 2 8 hn(¢)~l—hlz(t)|s1 — &
= & — &4

=el’

2 2§ 284 — _
where & € (it mrtinm ) Therefore, |2 = |y
va|l < le1] < V2R whent > T, which means that the practical
fixed-time output tracking objective (7) is achieved, that is,

ly(@®) —ya@®)| <¢ =+v2R, Vt>T.

Moreover, since it has been obtained that &, k =1,...,n
are bounded, thus —hg () < xx < hpo(¢) is satisfied for
—hr1(0) < x;(0) < hg2(0). Therefore, all the state constraints
are not violated all the time.

This completes the proof.
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