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ABSTRACT

We introduce NeRD, a new demosaicking method for gen-
erating full-color images from Bayer patterns. Our approach
leverages advancements in neural fields to perform demo-
saicking by representing an image as a coordinate-based
neural network with sine activation functions. The inputs
to the network are spatial coordinates and a low-resolution
Bayer pattern, while the outputs are the corresponding RGB
values. An encoder network, which is a blend of ResNet
and U-net, enhances the implicit neural representation of
the image to improve its quality and ensure spatial con-
sistency through prior learning. Our experimental results
demonstrate that NeRD outperforms traditional and state-of-
the-art CNN-based methods and significantly closes the gap
to transformer-based methods.

Index Terms— Demosaicking, neural field, implicit neu-
ral representation.

1. INTRODUCTION

Raw data acquired by modern digital camera sensors is sub-
ject to various types of signal degradation, one of the most
severe being the color filter array. To convert the raw data
(Fig. 1a) into an image suitable for human visual perception
(Fig. 1b), a demosaicking procedure is necessary [1].

Two main categories of image demosaicking exist: model-
based and learning-based methods. Model-based methods,
such as bilinear interpolation, Malvar [2], or Menon [3], are
still widely used, but they fail to match the performance of
recent deep learning-based approaches using deep convolu-
tional networks (CNN) [4, 5, 6] or Swin Transformers [7].

Recently, Transformer networks have seen remarkable
success in computer vision tasks and have become a state-of-
the-art approach in demosaicking. However, a new paradigm
in deep learning, Neural Fields (NF) [8], is gaining attention
due to its comparable or superior performance in several com-
puter vision tasks [8, 9, 10, 11, 12, 13, 14]. The basic idea
behind NF is to represent data as the weights of a Multilayer
Perceptron (MLP), known as implicit neural representation.
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a) Bayer pattern b) RGB imageMLP

Fig. 1. An illustration of demosaicking using coordinate-
based Multilayer Perceptron and local encoding technique.

NF has been applied in various domains and applications
including Neural Radiance Fields (NeRF) [9] which achieved
state-of-the-art results in representing complex 3D scenes.
NeRV [11] encodes entire videos in neural networks. The
Local Implicit Image Function (LIIF) [12] represents an im-
age as a neural field capable of extrapolating to 30 times
higher resolution. SIREN [13] uses a sinusoidal neural rep-
resentation and demonstrates superiority over classical ReLU
MLP in representing complex natural signals such as images.

Prior information from training data can be encoded into
neural representation through conditioning (local or global)
using methods such as concatenation, modulation of acti-
vation functions [15], or hypernetworks [14]. For example,
CURE [10], a state-of-the-art method for video interpolation
based on NF, uses an encoder to impose space-time consis-
tency using local feature codes.

NF has also been used in image-to-image translation tasks
such as superresolution, denoising, inpainting, and generative
modeling [8]. However, to the best of our knowledge, no NF
method has been proposed for demosaicking.

In this paper, we present NeRD, a novel approach for
image demosaicking based on NF. The proposed method em-
ploys a joint ResNet and U-Net architecture to extract prior
information from high-resolution ground-truth images and
their corresponding Bayer patterns. This information is then
used to condition the MLP using local feature encodings. The
proposed approach offers a unique and innovative solution for
image demosaicking.
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Fig. 2. The overall architecture of NeRD. Encoder consisting of 8 residual blocks and U-net architecture generates encoding
ξ for the input Bayer pattern. Numbers below each layer in the encoder represent the number of output channels. Spatial
coordinates x = (x, y) concatenated with the corresponding local encoding vector ξx are transformed into RGB value using a
multilayer perceptron with 5 hidden layers each with 256 output channels, siren activation functions, and two skip connections.

2. PROPOSED METHOD

NeRD converts spatial coordinates and local encodings into
RGB values. The local encodings are generated by an en-
coder that integrates consistency priors in NeRD. The overall
architecture of NeRD is depicted in Fig. 2.

The core of NeRD is a fully connected feedforward net-
work NΦ : (ξx,x) → n with 5 hidden layers, each with
256 output channels and sine activation functions. Φ de-
notes the network weights. The input is a spatial coordinate
x = (x, y) ∈ R2 and local encoding vector ξx. The output
is a single RGB value n = (r, g, b) ∈ R3. The SIREN archi-
tecture [13] was chosen for its ability to model signals with
greater precision compared to MLPs with ReLU. There are
two skip connections that concatenate the input vector with
the output of the second and fourth hidden layers.

Using the MLP without local encoding ξx leads to sub-
optimal demosaicking results due to the insufficient informa-
tion contained in the training image. This is demonstrated by
the result in Fig. 3-NeRD.0, where the reconstructed image is
the output of the SIREN model trained only on original input
Bayer pattern in self-supervised manner. The lack of spatial
consistency in these results highlights the need for additional
prior information in the form of spatial encoding, which is
why we utilize an encoder.

The encoder provides local feature codes ξx for a given
coordinate x and its architecture is shown in the first row of
Fig. 2. The Bayer pattern is processed through a combined

network that incorporates 8 residual blocks (using the EDSR
architecture [16]) and 4 downsampling and 4 upsampling lay-
ers (U-Net architecture [17]) connected by multiple skip con-
nections. The result is a global feature encoding H×W×128,
where H and W denote the height and width of the initial
Bayer pattern in pixels. The local encoding ξx is extracted
from the global encoding as a 5 × 5 region centered at x,
which is then flattened into a 3200-dimensional feature vec-
tor. The architecture of the encoder is adopted from [10].

The final RGB image is produced by independently re-
trieving the RGB pixel values from NeRD at the coordinates
specified by the input Bayer pattern.

3. EXPERIMENT

We numerically validated NeRD on standard image datasets.
Experiments also include an ablation study highlighting the
key components of the proposed architecture and compar-
isons with state-of-the-art methods.

3.1. Dataset and Evaluation Metrics

A training set was created by combining multiple high-
resolution datasets, such as DIV2K [18], Flickr2K [16], and
OST [19], resulting in a total of 12 000 images. During each
epoch, 10 000 randomly cropped patches of size 200 × 200
and corresponding Bayer patterns (GBRG) were generated.
The Kodak and McM [20] datasets were used for testing.
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Fig. 3. The ablation study of NeRD. The original image is from DIV2K dataset. ”ReLU” and ”Siren” models show the
implicit neural representation of the original image using MLP with ReLU and sine activation functions, respectively. These
models were trained in a self-supervised manner to fit the original image. ”ReLU.pe” stands for ”ReLU” model with additional
positional encoding in the form of Fourier feature mapping. ”NeRD.0” model is identical to ”Siren” model but is only trained
using the input Bayer pattern. ”NeRD” is the proposed demosaicking method, while ”NeRD.ns” represents the proposed
architecture without skip connections in the MLP. Each image is labeled with its PSNR value with respect to the original image.

The evaluation was performed using Peak Signal to Noise
Ratio (PSNR) and the Structural Similarity Index Measure
(SSIM).

3.2. Training Configuration

The training was conducted using an Nvidia A100 GPU. The
NeRD model was optimized using the Mean Squared Error
loss function, and the Adam optimizer was used with β1 = 0.9
and β2 = 0.999. The initial learning rate was set to 0.0001,
and a step decay was applied, reducing the learning rate by
0.95 every epoch consisting of 10 000 iterations. The patch
size was set to 200× 200 and the batch size was 5.

3.3. Ablation Study

MLP and activation functions. RGB images can be
represented as the weights of a fully connected feedforward
neural network. This representation is achieved by train-
ing an MLP in a self-supervised manner to fit the original
image. However, the usage of standard ReLU activation
functions in MLPs produces unsatisfactory results, as shown
in Fig. 3-ReLU. To significantly improve reconstruction,
Fourier feature mapping of input spatial coordinates can be
used (see Fig. 3-ReLU.pe). This technique is referred to as

“positional encoding”. Nonetheless, an even better outcome
can be achieved by replacing ReLU with sine functions, also
known as SIRENs. They demonstrate the capability of MLPs
as image decoders and hold promise for demosaicking appli-
cations. SIREN architecture has the capacity to model RGB
images with great precision. As demonstrated in Fig. 3-Siren,
the SIREN with 5 hidden layers, each with 256 neurons,
achieved a PSNR of 50.7 dB when trained for just 1000
iterations to fit the original image.

Encoder. The naive approach of decoding RGB im-
ages from Bayer patterns using SIREN architecture fails as
it loses two-thirds of the original information, as shown in
Fig. 3-NeRD.0. To improve the demosaicking capability of
the MLP, prior information must be incorporated through an
encoder. This encoder learns prior information across various
training image pairs and conditions the MLP with local en-
codings. The effectiveness of the encoder is demonstrated in
Fig. 3-NeRD, which shows the results of demosaicking using
the NeRD architecture described in Sec. 2.

Skip Connections. The integration of encoding into the
MLP can be achieved through various methods. However,
methods such as modulation of activation functions or the use
of hypernetworks present challenges in terms of paralleliza-
tion. Hence, we utilized a method of concatenation, where the
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(b) Ground-truth (c) Bilinear (d) Matlab (e) Menon

(a) Kodak:kodim05.png (cropped) (f) Raw (g) DeepDemosaick (h) RSTCANet (i) NeRD

Fig. 4. A visual comparison of NeRD and the current state-of-the-art methods on an example from the Kodak dataset. The
visual differences are highlighted by close-ups, which correspond to the red box in the original image. Although NeRD exhibits
slightly inferior visual performance compared to RSTCANet, it outperforms traditional methods in terms of reconstruction ac-
curacy (indicated by the magenta arrow) and avoids over-smoothing details, as seen with the DeepDemosaick method (indicated
by the cyan arrow).

coordinates and feature vectors are combined at the input and
later concatenation of the input with the second and fourth
hidden layers is performed using skip connections. The sig-
nificance of incorporating skip connections into the MLP is
illustrated in Fig. 3-NeRD.ns (no-skip). This figure demon-
strates a degradation in both the quality of the reconstruction
and the PSNR value when these connections are omitted.

3.4. Comparison With Existing Methods

The evaluation of the proposed NeRD demosaicking algo-
rithm was performed on the McM and Kodak datasets, which
were resized and cropped to 200 × 200 px. A comparison of
NeRD with traditional demosaicking algorithms and state-of-
the-art methods is presented in Table 1 in terms of average

Table 1. Average PSNR/SSIM obtained by NeRD and the
current state-of-the-art methods on the McM* and Kodak*
datasets (*resized and cropped to 200 × 200 px). Bold and
underline highlights the highest and second highest values,
respectively. Note the superior results of NeRD over the
CNN-based and traditional methods. Only RSTCANet,
which is based on transformers, has slightly higher scores.

Method McM* [20] Kodak*
PSNR/SSIM PSNR/SSIM

Bilinear 27.15/0.912 28.01/0.894
Matlab (Malvar) [2] 30.54/0.923 33.52/0.957

Menon [3] 31.40/0.918 35.20/0.968
DeepDemosaick [4] 33.31/0.942 37.76/0.976

RSTCANet [7] 37.77/0.978 40.84/0.988
NeRD 36.18/0.969 39.07/0.984

PSNR and SSIM values calculated from the demosaicked im-
ages. The results show that NeRD outperforms traditional
methods and the CNN-based DeepDemosaick [4], but falls
slightly behind the transformer-based RSTCANet [7].

A visual comparison of the demosaicked images is pre-
sented in Fig. 4. The figure highlights differences between
NeRD and the other methods and provides insights into their
performance. One notable characteristic of NeRD is that it
avoids over-smoothing details, unlike the DeepDemosaick [4]
method, as indicated by the cyan arrow in the Fig. 4g. Fur-
thermore, NeRD outperforms traditional methods in terms of
preserving fine details and avoiding unpleasant artifacts, as
indicated by the magenta arrow in the Fig. 4d.

4. CONCLUSION

This paper presents a novel demosaicking algorithm, NeRD,
that leverages the recent class of techniques known as Neural
Fields. The ablation study results emphasize the significance
of incorporating an encoder and skip connections within the
MLP, which results in significant improvement over tradi-
tional techniques and outperforms the CNN-based Deep-
Demosaick method in preserving fine details while avoid-
ing undesirable artifacts. Although NeRD shows slightly
lower visual performance compared to the transformer-
based RSTCANet, it still demonstrates remarkable accu-
racy in terms of reconstruction. Future research can focus
on enhancing NeRD through fine-tuning using input Bayer
pattern-specific loss functions and integrating Transformer
networks or ConvNeXt into the encoder. In addition, expand-
ing the training set by more diverse datasets can improve the
prior. Albeit NeRD may not attain the performance level of
Transformer-based demosaicking, our contribution broadens
the range of domains where Neural Fields can be applied.
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