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ABSTRACT Discrete Racah polynomials (DRPs) are highly efficient orthogonal polynomials and used in
various scientific fields for signal representation. They find applications in disciplines like image processing
and computer vision. Racah polynomials were originally introduced by Wilson and later modified by Zhu to
be orthogonal on a discrete set of samples. However, when the degree of the polynomial is high, it encounters
numerical instability issues. In this paper, we propose a novel algorithm called Improved Stabilization (ImSt)
for computing DRP coefficients. The algorithm partitions the DRP plane into asymmetric parts based on the
polynomial size and DRP parameters. We have optimized the use of stabilizing conditions in these partitions.
To compute the initial values, we employ the logarithmic gamma function along with a new formula. This
combination enables us to compute the initial values efficiently for a wide range of DRP parameter values
and large polynomial sizes. Additionally, we have derived a symmetry relation for the case when the Racah
polynomial parameters are zero (a = 0, α = 0, β = 0). This symmetry makes the Racah polynomials
symmetric about the main diagonal, and we present a different algorithm for this specific scenario. We have
demonstrated that the ImSt algorithm works for a broader range of parameters and higher degrees compared
to existing algorithms. A comprehensive comparison between ImSt and the existing algorithms has been
conducted, considering the maximum polynomial degree, computation time, restriction error analysis, and
reconstruction error. The results of the comparison indicate that ImSt outperforms the existing algorithms
for various values of Racah polynomial parameters.

INDEX TERMS Racah polynomials, Recurrence formulas, Stabilizing condition, Improved stabilization,
Orthogonal moments

I. INTRODUCTION

ONE effective method for representing different objects
is to use a set of basic functions and calculate the

object’s projection onto this basis [1], [2]. When these basic
functions are polynomials, the resulting numerical charac-
teristics are referred to as moments. The use of orthogonal
polynomials is advantageous because it reduces the correla-
tion between moments and improves the numerical stability
of both the polynomials and the moments, particularly at
higher degrees and orders [3], [4]. (The order of the moment
corresponds to the degree of the polynomial.)

Orthogonal polynomials and the moments derived from
them find widespread applications in various fields [5]–[7].

For instance, Usman et al. [8] employed Gegenbauer polyno-
mials to solve nonlinear physical models, while Chakraborty
and Jung [9] utilized Hermite, Legendre, Laguerre, Jacobi,
and generalized Laguerre polynomials to model the impact of
continuous random variables described by normal, uniform,
exponential, beta, and gamma probability distributions, re-
spectively. Feinberg and Langtangen [10] discussed the ap-
plication of orthogonal polynomials for uncertainty quantifi-
cation. In the context of image classification, Abbas et al. [11]
utilized discrete Fourier transformation, wavelets, and statis-
tical moments. Additionally, Chebyshev polynomials were
employed for solving differential equations, as described in
[12]. Interesting way of Zernike moments canbe found in
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[13].
Orthogonal polynomials can be classified into two cate-

gories: continuous and discrete. Continuous orthogonal poly-
nomials establish orthogonality based on integrals over a
specific interval. However, when computing continuous mo-
ments from digital signals that are defined only at discrete
samples, there is an inherent error due to the approximated
computation of integral definitions. This has led to extensive
research on polynomials with discrete orthogonality, which
rely on summations over finite sets of discrete samples.

Over time, various types of discrete orthogonal polyno-
mials have been developed. Chebyshev initially derived two
types of continuous polynomials. More recently, new varia-
tions of Chebyshev polynomials have emerged, such as the
three and four [14] and six [15] polynomial families. In
addition to his well-known continuous polynomials, Cheby-
shev also introduced discrete versions. Mukundan devised an
efficient algorithm for computing these discrete Chebyshev
polynomials [16]. Special approach to the computation of
Chebyshev moments based on Z-transformation is applied in
[17].

Another example is the Krawtchouk polynomials, which
include a parameter p ∈ ⟨0, 1⟩. Adjusting this parameter
shifts the zeros of the polynomials, allowing for the cus-
tomization of the region of interest. An efficient algorithm
for computing Krawtchouk polynomials can be found in [18],
while an alternative method employing filters was published
in [19]. Other algorithm is in [20]. Meixner polynomials,
which are a generalization of Krawtchouk polynomials, have
an efficient algorithm described in [21]. Lastly, the computa-
tion of Hahn polynomials can be achieved using the algorithm
outlined in [22].

The Racah polynomials, named after physicist and math-
ematician Giulio Racah, were initially introduced by Wilson
in [23]. These polynomials are associated with a non-uniform
lattice defined as x(s) = s(s + γ + δ + 1) (refer to [24]).
However, utilizing them in practice can be challenging. To
address this, Zhu et al. [25] made slight modifications to the
definition, using the index s as a coordinate within the object.
The Racah moments derived from these polynomials have
been applied in various applications, including skeletoniza-
tion of craft images [26], Chinese character recognition [27],
handwritten digit recognition [28], and face recognition [29].

Gasper and Rahman derived q-extension of the Racah poly-
nomials [30]. Benouini et al. proposed the moment invariants
to translation, rotation and scaling based on the Racah polyno-
mials in [31]. El Mallahi et al. in [32] used polar coordinates
for derivation of 2D and 3D rotation invariants. Lakhili et al.
applied neural network on 3D Racah moments computed in
Cartesian coordinates in [33]. In [34], Batioua et al. combine
Racah polynomials with other types.

In this paper, we present an efficient algorithm for comput-
ing Racah polynomials of high degrees. The contribution of
this paper can be summarized as follows:

1) The paper introduces a new algorithm called Improved
Stabilization (ImSt) which is specifically designed to

compute DRP coefficients. This algorithm addresses
the numerical instability issues encountered with high-
degree DRPs. The proposed algorithm is applicable
for a wide range of parameters and higher degrees
compared to existing algorithms.

2) The proposed algorithm partitions the DRP plane into
asymmetric parts. In addition, the proposed algorithm
optimizes the use of stabilizing conditions within these
partitions.

3) The paper presents the use of the logarithmic gamma
function and a new formula to efficiently compute ini-
tial values for a wide range of DRP parameter values
and large polynomial sizes.

4) A new symmetry relation for the case when Racah
polynomial parameters are set to zeros.

5) We conduct a comprehensive comparison between the
ImSt algorithm and existing algorithms. We consider
factors such as maximum polynomial degree, computa-
tion time, restriction error analysis, and reconstruction
error in the comparison.

The structure of the paper is organized as follows: Section
II provides a summary of definitions, Section III describes
our proposed method, ImSt, and discusses its properties. The
applications of ImSt are demonstrated in Section IV, and
Section V concludes the paper. The summary of the state-of-
the-art algorithms and some proofs are in Appendix.

II. PRELIMINARIES AND RELATED WORK
In this section, themathematical definitions and fundamentals
of the discrete Racah polynomials (DRP) are presented.
The original Wilson’s definition [23] can be written as

R
(
α,β
γ,δ

)

n (λ(x);N ) = (1)

= 4F3

(
−n, n+α+β+1,−x, x+γ+δ+1

α+ 1, β + δ + 1, γ + 1

∣∣∣∣ 1) ,
where 4F3(·) is the hypergeometric series. It is defined as
follows

4F3

(
a, b, c, d
e, f , g

∣∣∣∣ z) =

∞∑
k=0

(a)k (b)k (c)k (d)k
(e)k (f )k (g)kk!

(z)k . (2)

The symbol (·)m is the Pochhammer symbol defined as

(a)m = a(a+ 1)(a+ 2) · · · (a+ m− 1) . (3)

Zhu et al. in [25] introduced a new variable s and defined

as x = s(s + 1). Then DRPs R
(
α,β
a,b

)

n (s;N ) of the nth degree
are given by

R
(
α,β
a,b

)

n (s;N ) = (4)

=
1

n!
(a+ b+ α+ 1)n(β + 1)n(a− b+ 1)n×

× 4F3

(
−n, a− s, a+ s+ 1, α+ β + n+ 1
β + 1, a+ b+ α+ 1, a− b+ 1

∣∣∣∣ 1) .
2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3321969

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The DRPs satisfy the condition of orthogonality

b−1∑
s=a

R
(
α,β
a,b

)

n (s;N )R
(
α,β
a,b

)

m (s;N ) ρ(s)∆x
(
s− 1

2

)
= d2n δnm,

(5)
where δnm is the Kronecker delta, ∆x

(
s− 1

2

)
is the dif-

ference of the x shifted by a half, i.e. ∆x
(
s− 1

2

)
=(

s+ 1
2

) (
s+ 3

2

)
−
(
s− 1

2

) (
s+ 1

2

)
= (2s+1), ρ is the weight

function of DRP

ρ(s) =
Γ(a+s+1)Γ(b+s+α+1)Γ(b+α−s)Γ(s−a+β+1)

Γ(b+s+1)Γ(b− s)Γ(s− a+1)Γ(a− β+s+1)
(6)

and d2n is the norm factor of DRP

d2n =
Γ(α+ n+ 1)Γ(β + n+ 1)Γ(a+ b+ α+ n+ 1)

(α+ β + 2n+ 1)Γ(n+ 1)Γ(b− a− n)
×

× Γ(b− a+ α+ β + n+ 1)

Γ(α+ β + n+ 1)Γ(a+ b− n− β)
.

(7)

Noting that the weighted version of DRP can be useful. The
nth degree of the proposed method is given by

R̂
(
α,β
a,b

)

n (s;N ) = R
(
α,β
a,b

)

n (s;N )

√
ρ(s)
d2n
·∆x

(
s− 1

2

)
. (8)

For convenience, we will use the simplified notation

R̂
(
α,β
a,b

)

n (s;N ) = R̂n(s) with b = a+ N in the following text.
The state-of-the-art methods of DRP computation are in

Appendix A.

III. THE PROPOSED METHODOLOGY
This section presents the proposed methodology for com-
puting DRPs. We call it improved stabilization (ImSt). The
weighted Racah polynomials are defined

R̂n(s) =

√
Γ (a+N+α−s) Γ (a+N+α+s+1)Γ (N−n)
Γ (a+N−s) Γ (a+N+s+1)Γ (N+α+1+n)

×√
(α+1+2n) (2s+1)Γ (2a+N−n)

Γ (2a+N+α+n+1)
(−N+1)n×

(2a+N+α+1)n 4F3

(
−n, a−s, a+s+1, α+n+1
1, 2a+N+α+1,−N+1

∣∣∣∣ 1) .

(9)

The DRP matrix is partitioned into two parts. They are shown
in FIGURE 1 as Part 1 and Part 2. In the following sub-
sections, the detailed steps are given. First of all, we must
compute initial values.

A. THE FIRST INITIAL VALUE
The selection of the first initial value, specifically its location
and how it is computed, is considered to be crucial because
the entire values of the polynomial rely on this initial value.
The computation of the initial value in the existing algorithms

limits the ability to compute the entire values of DRPs. For
example, in [35], the formula for computation of the first
initial value is

R̂0(a) =
√
(2a+ 1)F ,

F =
Γ(2a+1)Γ(α+β+2)Γ(b−a+α)Γ(a+ b− β)

Γ(a+b+1)Γ(α+1)Γ(2a+1− β)Γ(−a+b+α+β+1)
.

(10)

This formula (Equation (10)) is incomputable for a wide
range of parameter values a, α, and β. Thus, in the proposed
algorithm, we begin the computation at the last value of the
first row, i.e. at s = a+ N − 1 as follows

R̂0(N − 1 + a) =√
Γ(α+β+2)Γ(2a+N )Γ(β+N )Γ(2a+2N+α)

Γ(2a+2N − 1)Γ(β+1)Γ(α+β+N + 1)Γ(2a+N+α+1)
,

(11)

however, the Gamma function (Γ(·)) make this equation in-
computable for high parameter values. To fix this issue, we
rewrote Equation (11)

Y = ψ(α+ β + 2) + ψ(2a+ N ) + ψ(β + N )+

+ ψ(2a+ 2N + α)− (ψ(2a+ 2N − 1) + ψ(β + 1)+

+ ψ(α+ β + N + 1) + ψ(2a+ N + α+ 1))

R̂0(a+ N − 1) = exp(Y/2) , (12)

where ψ(·) represents the logarithmic gamma function:
ψ(x) = log(Γ(x)), log(·) is natural logarithm. Using (12) the
first initial value R̂0(N − 1 + a) is computable for a wide
range of the DRP parameters as shown in FIGURE 2b in
comparison with values R̂0(a) in FIGURE 2a.

B. THE INITIAL SETS
After computing the first initial value, the initial sets in the
first two rows R̂0(s) and R̂1(s) are computed by the two-
term recurrence relation. These initial sets will be used for
computation of the remaining coefficients of DRPs, i.e. the
coefficients in Part 1 and indirectly in Part 2. The values of
the coefficients R̂0(s) in the first row are calculated

R̂0(s) = (13)

=

√
(2s+1) (a−β+s+1) (b+s+1) (b+α−s−1) (a−s−1)
(a+s+1) (b+α+s+1) (a−β−s−1) (2s+3) (b−s−1)

×

× R̂0(s+1) , s = a+ N − 2, a+ N − 3, . . . , a.

After computing the values of R̂0(s), the values of R̂1(s)
in the second row are computed using the previously com-
puted coefficients
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FIGURE 1: The matrix of DRPs. The matrix indices are the degree n vertically and the coordinate i, where i = s−a horizontally.
The parameters a = 6, b = 31, α = 13, β = 8 were chosen as an example.

R̂1(s) = −
( (

(−a+b− 1)α+b2 − s2 − a− s− 1
)
β+

+ (a2 − s2+b− s− 1)α+ a2+b2 − 2(s2+s)− 1
)
×√

α+β+3

(a−b+1)(a+b−1−β)(α+1)(β+1)(−b−α+a−β−1)
×√

1

(b+α+a+1)
R̂1(s+1) , s = a, a+ 1, . . . , a+ N − 1.

(14)

C. THE CONTROLLING INDICES IN THE FIRST AND LAST
COLUMNS

To control the stability of the computation of the DRP co-
efficients, we present a controlling indices that are used to
stabilize the computation of the coefficients.We first compute
the coefficients R̂n(a) and R̂n(a+ N − 1) in the first and
last columns. Then, the location, where the peak values occur,
are found. To compute the coefficients for R̂n(a), the two-

term recurrence relation is used

R̂n+1(a) = (15)

−

√
(N−n−1) (α+β+2n+3) (α+β+n+1)

(2a+N−β−n−1) (α+β+2 n+1) (α+n+1)
×

×

√
(β+n+1) (2a+N+α+n+1)

(N+α+β+n+1) (n+1)
R̂n(a) ,

n = 1, 2, . . . ,N − 2.

Also, we present a new two-term recurrence relation to com-
pute the coefficients of R̂n(a+ N − 1) in the last column

R̂n+1(a+ N − 1) = (16)√
(N−n−1) (α+β+2n+3) (α+β+n+1)

(n+1) (2a+N+α+n+1) (α+β+2n+1)
×

×

√
(α+n+1) (2 a+N−β−n−1)
(N+α+β+n+1) (n+1)

R̂n(a+ N − 1) ,

n = 1, 2, . . . ,N − 2.
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(a) (b)

FIGURE 2: The plot of the initial value (a) R̂0(a), and (b) R̂0(N − 1 + a).

The peak value at the first column s = a is the index

ind0 = argmax
n=0,1,...N−1

R̂n(a) , (17)

while the peak value at the last column s = a+ N − 1 is the
index

indN−1 = argmax
n=0,1,...N−1

R̂n(a+ N − 1) . (18)

The border between Part 1 and Part 2 is the straight line
segment connecting the points with the coordinates (a, ind0)
and (a+ N − 1, indN−1).

D. THE COEFFICIENTS FOR PART 1

The coefficients in Part 1 are computed using the three-term
recurrence algorithm in the n-direction

R̂n(s) = Θ1 R̂n−1(s) + Θ2 R̂n−2(s) , (19)

where

Θ1 =
Θ11

Θ0

√
Θ12, Θ2 =

Θ21

Θ0

√
Θ12Θ22 (20)

and

Θ0 =
n (α+ β + n)

(α+ β + 2n− 1) (α+ β + 2n)
(21)

Θ11 =s(s+1)−1

4

(
a2+b2+(a−β)2 +(b+α)2−2

)
+

1

8
((α+β + 2n−2) (α+β+2n))−

1

2

(β2−α2
) (

(b+α/2)2− (a−β/2)2
)

(α+β+2n−2) (α+β+2n)

 (22)

Θ21 =− (α+n−1) (β+n−1)
(α+ β+2n−2) (α+ β+2n−1)

×((
a+b+

α−β
2

)2

−
(
n−1+α+ β

2

)2
)
×((

b−a+α+ β

2

)2

−
(
n−1+α+β

2

)2
)

(23)

Θ12 = (24)
n (α+ β + n) (α+ β + 2n+ 1)

(α+ n) (β + n) (α+ β + 2n− 1) (a− b− α− β − n)
×

× 1

(a+b+α+n) (a+b− β − n) (a− b+n)

Θ22 = (25)
(n− 1) (α+ β + n− 1) (α+ β + 2n− 1)

(α+n−1) (β+n−1) (α+β+2n−3) (a−b−α−β−n+1)
×

1

(a+b+α+n−1) (a+b−β−n+1) (a−b+n−1)
.

The border between Part 1 and Part 2 is created by the index
inds defined as

inds = round

(
ind0 +

indN−1 − ind0
N − 1

(s− a)
)
, (26)

where round(·) is rounding to the nearest integer, i.e.
round(x) = ⌊x + 0.5⌋1, while the indices ind0 and indN−1

are defined in Eqs. (17) and (18) respectively. The recurrence
algorithm is applied for s = a, a + 1, . . . , a + N − 2 and
n = 2, 3, . . . , inds − 1.

1⌊·⌋ is the function floor, while ⌈·⌉ is the function ceiling.
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N−1
0

0

N−1

Part 2

Part 1

Part 3

R0(s)
R1(s)

R
n
(
N

−
1
+

a
)

i
n
d
e
x

(
m

a
x
(R

n
(
N

−
1
+

a
) ) )

FIGURE 3: The matrix of DRPs for the case a = α = β = 0.

E. THE COEFFICIENTS FOR PART 2
The coefficients in Part 2 are computed using the same three
term recurrence algorithm in the n-direction as in (19). After
computation of each value, the following stabilizing condition
is applied for each order n

R̂n(s) = 0 if
∣∣∣R̂n(s)

∣∣∣<10−5∧
∣∣∣R̂n(s)

∣∣∣> ∣∣∣R̂n−1(s)
∣∣∣ , (27)

where ∧ means the logical AND operation. The recurrence
algorithm in Part 2 is applied in the range s = a, a+1, . . . , a+
N − 2 and n = inds, inds + 1, . . . ,N − 1.

F. SPECIAL CASE OF RACAH POLYNOMIALS
In this section, a special case of DRPs is presented. The
parameter β affects on the energy compaction as its value

becomes larger than 0. So, the case R̂
(
0,0
0,b

)

n (s), where a =
α = β = 0, has special significance. Then, we can derive the
the following symmetry relation

R̂
(
0,0
0,b

)

s (n) = (−1)(s−n)R̂
(
0,0
0,b

)

n (s) , (28)

see Appendix B for the proof.
Thus, from (28), we can compute the coefficients for 50%

and the rest of the coefficients using the symmetry relation. In

other words, the coefficients are computed in the range n =
0, 1, . . . ,N − 1 and s = n, n+ 1, . . . ,N − 1 (Parts 1 and 3).
The rest of the coefficients are computed using the symmetry
relation (Part 2) as shown in FIGURE 3.
Then Eq. (19) becomes

R̂n(s) = Θ10 R̂n−1(s) + Θ20 R̂n−2(s) , (29)

where

Θ10 =

(
2s(s+1)+n (n−1)−N 2+1

)√
4n2 − 1

n(N−n)(N+n)
(30)

Θ20 = − (n−1) (N−n+1) (N+n−1)
n (N−n) (N+n)

√
2n+1

2n−3
. (31)

G. IMPLEMENTATION OF THE PROPOSED ALGORITHM
Here, the implementation is described by pseudo codes. The
pseudo code of the proposed algorithm for the general case
is presented in Algorithm 1, while the pseudo code for the
special case (a = α = β = 0) is given in Algorithm 2.
The values of the Racah polynomials for a = 800, b =

1800, α = 400, and β = 100 (i.e. N = b − a = 1000) in
artificial colors are shown in FIGURE 4.
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-0.18

-0.033

-0.0093

0.002

0.013

0.036

0.18

FIGURE 4: The Racah polynomials for a = 800, b = 1800, α = 400, and β = 100.

IV. APPLICATIONS

This section shows some applications of the Racah polynomi-
als. We also compared the proposed algorithm for DRP with
the existing algorithms. Three evaluation procedures are car-
ried out to check the performance of the proposed algorithm
which are: maximum size generated, computational cost, and
signal reconstruction. The experiments were carried out using
MATLAB version 2019b on the computer with the processor
Intel(R) Core(TM) i9-7940X CPU with frequency 3.10GHz,
memory 32 GB, and with 64-bit Windows 10 Pro.

A. THE DEFINITION OF DISCRETE RACAH MOMENTS

The discrete Racah moments (DRMs) represent the projec-
tion of a signal (e.g. speech or images) on the basis of DRPs.
The computation of the DRMs (ϕnm) for a 2D signal, f (x, y),
with a size of N1 × N2 is performed by

ϕnm =

N1−1∑
x=0

N2−1∑
y=0

f (x, y)R̂
(
α1,β1
a1,b1

)

n (x;N1) R̂
(
α2,β2
a2,b2

)

m (y;N2)

(32)

n = 0, 1, . . . ,N1 − 1; m = 0, 1, . . . ,N2 − 1.

The reconstruction of the 2D signal (image) from the Racah
domain (moment) into the spatial domain can be carried out
by

f̂ (x, y) =
N1−1∑
n=0

N2−1∑
m=0

ϕnmR̂
(
α1,β1
a1,b1

)

n (x;N1) R̂
(
α2,β2
a2,b2

)

n (y;N2)

(33)

x = 0, 1, . . . ,N1 − 1; y = 0, 1, . . . ,N2 − 1.
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Algorithm 1 Computation of the DRP coefficients using the
improved stabilization.

Input: Ord , a, b, α, β
Ord is the maximum degree of DRP, Ord < b− a.
a, b, α, β represents the parameter of DRP.

Output: R̂n(s)
1: N ← b− a ▷ N represents the size of DRP
2: Θ = 10−5 ▷ Threshold for stabilizing condition
3: Compute R̂0(N − 1 + a) using (12)
4: for s = a+ N − 2 : a do
5: Compute R̂0(s) using (13)
6: end for
7: for s = a : a+ N − 1 do
8: Compute R̂1(s) using (14)
9: end for
10: for n = 1 : Ord − 1 do
11: Compute R̂n(a) using (15)
12: Compute R̂n(N − 1 + a) using (16)
13: end for
14: ind0 ← index(max(R̂n(a))) ▷ Find the index of the

maximum value in R̂n(a)
15: indN−1 ← index(max(R̂n(a+ N − 1))) ▷ Find the

index of the maximum value in R̂n(a+ N − 1)
16: for s = a : a+ N − 1 do ▷ Part 1
17: Compute inds using (26) ▷ Border between Part 1

and Part 2
18: for n = 2 : inds − 1 do
19: Compute R̂n(s) using (19)
20: end for
21: end for
22: for s = a : a+ N − 1 do ▷ Part 2
23: Compute inds using (26) ▷ Border between Part 1

and Part 2
24: for n = inds : Ord do
25: Compute R̂n(s) using (19)
26: if

∣∣∣R̂n(s)
∣∣∣ < Θ ∧

∣∣∣R̂n(s)
∣∣∣ > ∣∣∣R̂n−1(s)

∣∣∣ then
27: R̂n(s) = 0
28: Exit inner loop
29: end if
30: end for
31: end for

B. MAXIMUM DEGREE
We searched the maximum signal size N , where the orthog-
onality error E is less than 0.001. We changed the parameter
values a, α and β as ratios of N . It has an advantage, that the
pattern of non-zero values looks similar and does not moved.
The orthogonality error is defined

E = max
n,m=0,1,...,N−1

∣∣∣∣∣
b−1∑
s=a

R̂n(s) R̂m(s)− δnm

∣∣∣∣∣ . (34)

The results are shown in TABLE 1.
In the first column, when a = 0, α = 0, and β = 0,

Algorithm 2 is used, in the other cases, Algorithm 1 is used.

Algorithm 2 Computation of the DRP coefficients using the
improved stabilization for the special case a = α = β = 0.

Input: N ,Ord
N represents the size of the DRP,
Ord is the maximum degree of the DRP, Ord<N .

Output: R̂n(s)
1: Θ = 10−5 ▷ Threshold for stabilizing condition

2: R̂0(N − 1)←
√
2N − 1

N
3: for s = N − 2 : 0 do

4: R̂0(s)←
√

2s+ 1

2s+ 3
R̂0(s+ 1)

5: end for
6: for s = 1 : Ord do
7: R̂s(0)← (−1)sR̂0(s)
8: end for
9: for s = 0 : N − 1 do

10: R̂1(s)← −
(N 2 − 2s2 − s2− 1)

√
3

N 2 − 1
R̂0(s)

11: end for
12: for s = 2 : Ord do
13: R̂s(1)← (−1)s−1R̂1(s)
14: end for
15: for n = 1 : Ord − 1 do

16: R̂n+1(N−1)←
N−n−1
N+n+1

√
2n+3

2n+1
R̂n(N−1)

17: end for
18: indN−1 ← index(max(R̂n(N − 1))) ▷ position of

maximum in R̂n(N − 1)
19: for n = 2 : indN−1 − 1 do ▷ Part 1
20: for s = n : N − 1 do
21: Compute R̂n(s) using (29)
22: end for
23: end for
24: for n = indN−1 : Ord do ▷ Part 3
25: for s = n : N − 1 do
26: Compute R̂n(s) using (29)
27: if

∣∣∣R̂n(s)
∣∣∣ < Θ ∧

∣∣∣R̂n(s)
∣∣∣ > ∣∣∣R̂n−1(s)

∣∣∣ then
28: R̂n(s) = 0
29: Exit inner loop
30: end if
31: end for
32: end for
33: for s = 3 : Ord do ▷ Part 2
34: for n = 2 : s− 1 do
35: R̂s(n)← (−1)s−nR̂n(s)
36: end for
37: end for

The limitN = 56000 is not the limit of our algorithm, it is the
memory limit of our computer. We are not able to check the
orthogonality error because of the ‘‘Out of memory’’ error.

Another problem is the long computation of GSOP. In the
case a = α = β = 0 andN = 56000, the error of orthogonal-
ity E was also under the threshold 0.001, but the computation
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TABLE 1: Maximum sizes N of the Racah polynomials reachable by various algorithms. Usually, the limit is the algorithm
precision, i.e. the orthogonality error E ≤ 10−3, † the limit is computing time≤1 hour, ‡ the limit is computer memory 32 GB.

a = 0 a = ⌈N/10000 + 0.5⌉ a = ⌊N/4 + 0.5⌋ a = ⌊N/2 + 0.5⌋
α = 0 α = N/10000 α = ⌊N/8 + 0.5⌋ α = ⌊N/2 + 0.5⌋
β = 0 β = N/10000 β = ⌊N/16 + 0.5⌋ β = ⌊N/4 + 0.5⌋

Zhu n 23 25 37 32
Zhu s 21 26 35 32
Daoui 1165 4 65 53
GSOP 9649† 9834† 1075 504
ImSt 56000‡ 25580 6770 4659

of GSOP took 15 days. We cannot test the precise maximum
size when the computing times are such long. That is why
we added another criterion, the result must be available in
the time less than one hour. The sizes of GSOP in the first
two columns are limited by this condition. However, to get
more explanation about the relation between the initial value
calculation and themaximum size of the polynomial, the limit
is calculated empirically as shown in FIGURE 6. Different
values of DRP parameters have been considered by increasing
the size until we reached 106 and the initial value is computed
until this size. From FIGURE 6, most of the tested parameters
are computable up to N = 106. However, two cases shows
less size. The first case when a = 200, α = 200andβ = 100,
the limit of the algorithm is N = 630000. And the second
case when a = 200, α = 200andβ = 200, the maximum
size of the polynomial reached is 970000.

C. COMPUTING TIME
In this section, the computing time has been tested. There is
one problem, the maximum sizes of Daoui and particularly
Zhu algorithms are low, that sufficient analysis of computing
times is not possible. Therefore, we tested these algorithms
even if the error of orthogonality was higher than our thresh-
old. We choose these values of the parameters: n = N − 1,
a = max(N/4, 1), b = a+N , α = N/8, and β = N/16. We
repeated each computation ten times, and took average time.
The results are in FIGURE 5.

The fastest algorithm is Zhu’s recurrence over the degree,
our algorithm ImSt is based on the similar principle, it is only
a little bit slower. Daoui’s algorithm is a little bit slower than
ours and Zhu’s recurrence over the coordinate is significantly
slower, but it has still computing complexity O(N 2), only
with worse constant. The computing complexity O(N 3) of
GSOP is clearly visible in the graph; from beginning, it is
fast, but it cannot be used for high values of polynomial size
(N ). The detailed computational complexity analysis of the
proposed algorithm is as follows:

1) The computation of the initial value has a constant time
complexity, denoted as O(1).

2) The first and second loops used to compute the initial

set (R̂0(s)) for N coefficients. The time complexity of
this loop is O(N ).

3) The third loop runs from n = 1 to Ord − 1, iterating
Ord − 1 times, which has operations for computing
R̂n(a) and R̂n(N − 1 + a). The time complexity of
this loop is O(Ord).

4) The forth loop (starts at step 16 and ends at step 21
in Algorithm 1) computes the coefficients of Part 1.
The computational complexity for the coefficients is
∼ (indN−1·N+(ind0−indN−1)·N/2)

N2 O(N · Ord).
5) The fifth loop (starts at step 22 and ends at step 31

in Algorithm 1) computes the coefficients of Part 2.
The computational complexity for the coefficients is
∼ ((N−ind0)·N+(ind0−indN−1)·N/2)

N2 O(N · Ord).
6) T o sum up, the overal computational complexity is
O(N · Ord). When the order (Ord) equals to N , the
computational complexity is O(N 2).

D. RESTRICTION ERROR ANALYSIS
The distribution of moments is diverse from each other based
on the discrete transforms [36]. To correctly reconstruct the
signal information, the sequence of moments is important
and should be recognized. Therefore, the moment energy
distribution of DRP is examined first; then the signal recon-
struction analysis is performed. To acquire the distribution of
moments, the procedure presented by Jian [37] is followed.
The procedure is given in Algorithm 3.
The covariance matrix Σ is used as the signal. Then the

matrix multiplication R × Σ × RT can be used for moment
computation, R is the matrix of Racah polynomials, Rn,s−a =
R̂n(s). For the covariance coefficients, three values are used,
ρ = 0.90, ρ = 0.95, and ρ = 0.98 with length N = 16;
then, the results are reported in TABLE 2. It can observed
from TABLE 2 that the maximum value of DRP is found at
ℓ = 0 and the values are descendingly ordered. It declares
that the DRP moment order used for signal reconstruction is
n = 0, 1, . . . ,N − 1.
The energy compaction property of the discrete transfor-

mation based on orthogonal polynomials is considered one
of the important properties. It is the fraction of the number
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FIGURE 5: The computing times of the Racah polynomials for n = N − 1, a = max(N/4, 1), b = a + N , α = N/8, and
β = N/16.

FIGURE 6: The initial value plot for different values of DRP parameters with maximum N = 10× 105 = 106.

of coefficients that reflect most of the signal energy to the
total number of coefficients. This characteristic is used to
assess a DRP’s ability to reconstruct a significant portion of
the signal information from a very small number of moment
coefficients. To examine the impact of the DRP parameters a,
α and β on the energy compaction, the restriction error, Jm,
is used as follows [37]

Jm =

N−1∑
k=m

σ2
k

N−1∑
k=0

σ2
k

; m = 0, 1, 2, . . . ,N − 1, (37)

where σ2
k represents diagonal values of the transform coeffi-

cients ordered descendingly. In our case, the coefficients are
already ordered, i.e. k = ℓ. FIGURE 7 shows the restriction
error using covariance coefficient (ρ = 0.95) with DRP
parameters of a = α and β = 0. From FIGURE 7, it is
noticed that the DRP parameters affect the restriction error,
which reveals that DRPs with parameters a = α = 30 and
β = 0 shows better energy compaction than other parameter
values in the range of m < 96. However, when a = α = 50
and β = 0 presents better energy compaction compared to
other DRP parameters in the range m > 96.
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TABLE 2: The values of transform coefficient for different values of covariance coefficients.

ρ = 0.9 ρ = 0.95 ρ = 0.98
a = 0 a = 10 a = 30 a = 50 a = 0 a = 10 a = 30 a = 50 a = 0 a = 10 a = 30 a = 50
α = a α = a α = a α = a α = a α = a α = a α = a α = a α = a α = a α = a

ℓ β = 0 β = 0 β = 0 β = 0 β = 0 β = 0 β = 0 β = 0 β = 0 β = 0 β = 0 β = 0
0 9.159 9.832 2.742 2.249 11.325 12.401 2.923 2.362 12.975 14.407 3.039 2.434
1 2.912 2.856 2.388 2.045 2.232 1.907 2.500 2.125 1.527 0.916 2.568 2.174
2 1.278 1.136 2.074 1.854 0.843 0.612 2.137 1.908 0.532 0.249 2.173 1.941
3 0.702 0.591 1.794 1.675 0.440 0.300 1.822 1.708 0.272 0.120 1.836 1.727
4 0.446 0.366 1.543 1.506 0.273 0.182 1.545 1.522 0.168 0.072 1.543 1.530
5 0.311 0.252 1.313 1.345 0.188 0.124 1.298 1.347 0.115 0.049 1.286 1.347
6 0.233 0.188 1.101 1.190 0.139 0.092 1.072 1.180 0.084 0.036 1.053 1.173
7 0.183 0.147 0.900 1.037 0.109 0.072 0.862 1.018 0.065 0.028 0.838 1.005
8 0.149 0.120 0.707 0.884 0.088 0.059 0.663 0.856 0.053 0.023 0.637 0.839
9 0.125 0.101 0.523 0.725 0.074 0.050 0.477 0.691 0.044 0.020 0.450 0.671
10 0.108 0.088 0.357 0.560 0.063 0.043 0.313 0.523 0.037 0.017 0.287 0.500
11 0.095 0.077 0.224 0.396 0.055 0.038 0.183 0.357 0.032 0.015 0.159 0.334
12 0.085 0.070 0.133 0.250 0.049 0.034 0.096 0.213 0.028 0.013 0.075 0.190
13 0.077 0.063 0.083 0.142 0.044 0.031 0.051 0.108 0.025 0.012 0.031 0.088
14 0.071 0.058 0.062 0.082 0.040 0.028 0.032 0.051 0.023 0.011 0.015 0.033
15 0.066 0.054 0.055 0.058 0.037 0.027 0.027 0.030 0.021 0.010 0.011 0.014

FIGURE 7: Results of the restriction error for different values of Racah parameters (a = α and β = 0).

FIGURE 8: Results of the restriction error for different values of Racah parameters (a, α = {0, a/2}, and β = {0, a/2}).

FIGURE 8 shows the restriction error of DRP with pa-
rameters of a, α = {0, a/2} and β = {0, a/2}. It can be
observed from FIGURE 8 that DRPs with parameters a = 50,
α = 25 and β = 0 shows better energy compaction than

other parameter values in the range of m < 96. However,
when a = 100, α = 50 and β = 0 presents better energy
compaction compared to other DRP parameters in the range
m > 96.
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FIGURE 9: Results of the restriction error for different values of Racah parameters (a, α = a, and β = {0, a/2, a}).

Algorithm 3 Find the moment order of DRM.
Input: ρ=covariance coefficient
Output: Degree of DRP.
1: Generate the covariance matrix Σ with zero mean and

length N

Σ =


1 ρ · · · ρN−1

ρ 1
...

...
. . . ρ

ρN−1 · · · ρ 1

 (35)

2: Transform the covariance matrixΣ into the domain of the
discrete Racah moment (M ) using

M = R× Σ× RT , (36)

where R is the DRP matrix.
3: Find the diagonal coefficients σ2

ℓ = Mℓℓ of the discrete
Racah moments M .

4: Find the order of moments according to the values of the
diagonal coefficients.

5: return result

On the other hand, FIGURE 9 shows the restriction error
for DRP with parameters of a, α = a, and β = {0, a/2, a}.
The best energy compaction occurs at DRP parameters is a =
50,α = 50, and β = 0 for the entire range of retained samples
m.

E. ANALYSIS OF RECONSTRUCTION ERROR
In this section, the reconstruction error analysis is carried out
using real images. The test images, shown in FIGURE 10, are
taken from LIVE dataset [38], [39], [40]. The size of the test
images are cropped and resized to 512× 512. Various values
of DRP parameters (a, α, β) were considered in the analysis
as shown in the following groups :

1) a and α = {0, a/2} with β = 0,
2) a and α = {0, a/2} with β = {0, a/2},
3) a and α = a with β = {0, a/2, a}.

DRPs (R) are generated first using the proposed sets of
parameters. Then, DRMs (M ) of the test images are com-
puted. After that, the image is reconstructed using the finite
number of calculated moments. The normalized mean square
error (NMSE), which compares the input image to the recon-
structed version of the image, is then calculated. The NMSE
is expressed as

NMSE(I , Ir) =

∑
x,y

[I(x, y)− Ir(x, y)]2∑
x,y
I(x, y)2

, (38)

where I and Ir represent the original grayscale image and
the reconstructed grayscale image, respectively. NMSE is
defined as the reconstruction error.
First, the reconstruction error analysis is carried out for

α = a and β = 0. The order of moments used to recon-
struct the image is varied in the set {1, 32, 64, . . . , 512}. The
obtained results are depicted in FIGURE 11. The obtained
results show that at the moment order of 64, the best NMSE
is occurred at DRP parameters of a = 10, α = a, β = 0 with
NMSE of 0.03276. The next three best NMSE are 0.03388,
0.03706, and 0.04627 for DRP parameters a = 30, α =
a, β = 0, a = 0, α = a, β = 0, and a = 50, α = a, β = 0,
respectively. However, for moment order of 128, the NMSE
are 0.0160, 0.0163, 0.01634, and 0.01649 for DRP parameters
a = 80, α = a, β = 0, a = 50, α = a, β = 0,
a = 100, α = a, β = 0, and a = 30, α = a, β = 0,
respectively.
Moreover, for moment order of 256, the best NMSE is oc-

curred at DRP parameters a = 10, α = a, β = 0 with NMSE
of 0.0052. From these values, the most suitable parameters
of the proposed polynomial are determined, and the desired
signal can be found by inspecting the lowest NMSE between
the reconstructed signal and the original signal. For better
inspection, visual reconstruction error and PSNR between the
original image and the reconstructed image is computed for
different values of DRP parameters as shown in FIGURE 12.
The DRP parameter values in the range (a and α =
{0, a/2} with β = {0, a/2}) are used to perform the recon-
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FIGURE 10: Test images used for reconstruction error analysis.

FIGURE 11: Results of the reconstruction error using real image for different values of Racah parameters values (a, α = a, and
β = 0).

struction error analysis. The same moment orders of the first
experiment are used in this experiment. FIGURE 13 shows
the obtained NMSE results of the second experiment. From
FIGURE 13, the results demonstrate that at moment order of
64, the best NMSE is 0.03169 for DRP parameters of a = 50,
α = 25, β = 0. The second best NMSE appears at a = 50,
α = 0, β = 0 with NMSE of 0.03255; while the third best
NMSE occurs at a = 100, α = 0, β = 0 with NMSE of
0.03263. For the moment order of 128, the best NMSE is
0.01878 for DRP parameters a = 100, α = 50, β = 0.
The best NMSE for a moment order of 256 occurred at DRP
parameters a = 200,α = 100, β = 0with NMSE of 0.00786.
For the sake of clarity, the visual reconstruction error between
the original and the reconstructed image is acquired and the
PSNR is reported for different values of DRP parameters as

shown in FIGURE 14 to evaluate the performance of the
proposed work.
Another range of DRP parameters values has been used

to determine the higher performance. The DRP parameter
values in the range (a and α = a with β = {0, a/2, a}) are
used to carry out the reconstruction error analysis. FIGURE
15 shows the reported NMSE results. From FIGURE 15,
the results demonstrate that at moment order of 64, the best
NMSE is 0.04446 for DRP parameters of a = 50, α = 50,
β = 0. The second best NMSE appears at a = 100, α = 100,
β = 0 with NMSE of 0.1027; while the third best NMSE
occurs at a = 50, α = 50, β = 25 with NMSE of 0.1741.
For moment order of 128, the best NMSE is 0.0185 for DRP
parameters a = 100, α = 100, β = 0 and 0.0186 at a = 100,
α = 100, β = 0. In addition, the best NMSE for the moment
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FIGURE 12: Visual result of the reconstruction error using real image for different values of Racah parameters values (a and
α = (a) with β = {0, a/2}).

FIGURE 13: Result of the reconstruction error using a real image for different values of Racah parameters values (a and α =
{0, a/2} with β = {0, a/2}).

order 256 occurred at DRP parameters a = 200, α = 200,
β = 0 with NMSE of 0.00751, and at DRP parameters
a = 200, α = 200, β = 100 with NMSE of 0.00752.

The visual reconstruction error between the original and the
reconstructed image is acquired and the PSNR is reported for
different values of DRP parameters as shown in FIGURE 16.
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FIGURE 14: Visual result of the reconstruction error using real image for different values of Racah parameters values (a and
α = {0, a/2} with β = {0, a/2}).

FIGURE 15: Result of the reconstruction error using a real image for different values of Racah parameters values (a and α = a
with β = {0, a/2, a}).

From the results, the best performance is achieved at different
DRP parameters as discussed earlier. In addition, choosing
the parameters for best performance depends significantly on

the type of used application and its requirements.
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FIGURE 16: Visual result of the reconstruction error using real image for different values of Racah parameters values (a and
α = a with β = {0, a/2}).

V. CONCLUSION

This paper presents a novel algorithm for computing the co-
efficient values of Discrete Racah Polynomials (DRPs). The
algorithm utilizes the logarithmic gamma function to compute
initial values, enabling efficient computation for a wide range
of DRP parameter values and large polynomial sizes. Addi-
tionally, a new formula is employed to calculate the values of
the initial sets based on the initial value. The remaining DRP
coefficients are computed by partitioning the DRP plane into
two parts. In the first part, the values are computed using a re-
currence relation in the "n" direction. To mitigate propagation
errors, a stabilizing condition is enforced in the second part.
The performance of the proposed algorithm is evaluated using
different DRP parameter values and compared with existing
algorithms. The experimental results demonstrate that the
proposed algorithm significantly reduces computational costs
compared to the existing algorithms. Moreover, the proposed
algorithm successfully generates DRPs for large sizes without
propagation errors. Furthermore, restriction error and recon-
struction error analyses are conducted to assess the impact of
the chosen parameter values. These analyses provide insights
into the influence of the parameter values on the accuracy and

quality of the generated DRPs.
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APPENDIX
A. THE STATE-OF-THE-ART ALGORITHMS
We can find significant algorithms of two authors in the
literature, the original Zhu’s paper and Daoui’s approach.

1) Zhu’s algorithms
Zhu et al. in [25] published two algorithms for Racah polyno-
mial computation: recurrence over the order n and recurrence
over the index s. The recurrence formula of weighted Racah
polynomials over the order n is

R̂n+1(s) =
(
B

dn
dn+1

R̂n(s)− C
dn−1

dn+1
R̂n−1(s)

)
/A (39)

with initial conditions
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R̂0(s)=

√
ϱ(s)
d2n

(2s+ 1), (40)

R̂1(s)=(
−ϱ(s+1)(s+1−a)(s+1+b)(s+1+a−β)(b+α−s−1)

ϱ(s)(2s+1)

+
ϱ(s)(s−a)(s+b)(s+a−β)(b+α−s)

ϱ(s)(2s+1)

)√
ϱ(s)
d2n

(2s+1),

where

A = (n+1)(α+β+n)
(α+β+2n+1)(α+β+2n+2) ,

B =s(s+1)− a2+b2+(a−β)2+(b+α)2

4 + (α+β+2n)(α+β+2n+2)
8

− (β2−α2)[(b+α/2)2−(a−β/2)2]
2(α+β+2n)(α+β+2n+2) ,

C = (α+n)(β+n)
(α+β+2n)(α+β+2n+1)

[(
a+b+

α−β
2

)2
−
(
n+

α+β
2

)2]
×

×
[(

b−a+
α+β
2

)2
−
(
n+

α+β
2

)2]
.

(41)
The second algorithm is recurrence over the index s

R̂n(s) =
(2s−1)[σ(s−1)+(s−1)τ(s−1)−2λs(s−1)]

(s−1)[σ(s−1)+(2s−1)τ(s−1)]

√
ρ(s)(2s+1)

ρ(s−1)(2s−1)R̂n(s−1)

− 2σ(s−1)
(s−1)[σ(s−1)+(2s−1)τ(s−1)]

√
ρ(s)(2s+1)

ρ(s−2)(2s−3)R̂n(s−2) ,
(42)

where

σ(s)= (s+ a− β(b+ α− s))(s− a)(s+ b)
τ(s)= a(α+ 1)(a− β) + b(b+ α)(β + 1)−

−(α+ 1)(β + 1)− s(s+ 1)(α+ β + 2)
λ= n(n+ 1 + α+ β).

(43)

The initial values declared in the original paper [25] does not
work. We can use either the recurrence over n for s = a and
s = a+ 1 or one of the following algorithms can be used.

2) Daoui’s algorithms
Daoui et al. in [35] proposed more stable algorithm for
DRP computation with two modifications. One problem is
overflow of the initial value R̂0(a) for high values of the
parameter β. When β is integer, we can compute R̂0(a) by
recurrence

F(0) =
α+ 1

(a+ b)(α+ b− a)
(44)

F(k) =
(α+ k + 1)(2a− k + 1)

(a+ b− k)(b− a+ α+ k)
F(k − 1),

k = 1, 2, . . . , β

R̂0(a) =
√
F(β)(2a+ 1) .

The other values are obtained by the recurrence relation over
n as in Eq. (39). It is called Algorithm 1 in the paper [35].

Another algorithm is based on the recurrence over s. It
begins by the same way, computation of R̂0(a) by Eq. (44).
The initial values of higher degrees follow

R̂n(a) =
(a−b+n)(β+n)(a+b+α+n)

n

√
D R̂n−1(a) ,

D = n(α+β+2n+1)(α+β+n)
(α+n)(β+n)(b−a+α+β+n)(a+b+α+n)×
× 1

(α+β+2n−1)(a+b−β−n)(b−a−n) .

(45)

The rest of the initial values is computed as

R̂n(a+ 1)=E

√
ρ(a+ 1)

ρ(a)
· 2a+ 3

2a+ 1
R̂n(a) , (46)

where

E =
(
1− 2λ(a+1)

τ(a)

)
=(

1+ 2n(α+β+n+1)(a+1)
(α+1)(β+1)+a(a+1)(α+β+2)−a(α+1)(a−β)−b(β+1)(b+α)

)
,

(47)
and
ρ(a+ 1)

ρ(a)
=

(2a+ 1)(β + 1)(b+ α+ a+ 1)(b− a− 1)

(b+ α− a− 1)(2a− β + 1)(a+ b+ 1)
.

(48)
In the paper [35], these initial conditions are not written
precisely.
Finally, Daoui et al. use the stabilizing condition. When

R̂n(s) is computed by Eq. (42), the new value is tested. When

n > N/6&
∣∣∣R̂n(s)

∣∣∣ < 10−6 &
∣∣∣R̂n(s)

∣∣∣ > ∣∣∣R̂n(s− 1)
∣∣∣ ,
(49)

the value of R̂n(s) is substituted by zero. It erases sense-
lessly high values distorted by propagated error. It is called
Algorithm 3 in the paper [35]. We will use it, after the error
correction, as the reference algorithm.

3) Gram-Schmidt Orthogonalization
Gram-Schmidt orthogonalization process (GSOP) is a way,
how to change a set of functions to another set of orthog-
onal functions. It can be used for derivation of completely
new orthogonal polynomials, e.g. GSOP applied on a set
{1, x, x2, . . .} in the interval ⟨−1, 1⟩ gives Legendre polyno-
mials, see e.g. [41]. We can use GSOP also for increasing
precision of orthogonal polynomials computed by another
method. Here we have computed R̂n(s), but we are not sure,
if it is sufficiently precise. We can compute correction

T (s)=
n−1∑
k=0

R̂k(s)

(
a+N−1∑
i=a

R̂n(i) R̂k(i)

)
, (50)

s = a, a+ 1, . . . , a+ N − 1.

This correction is then subtracted from the original value

Řn(s) = R̂n(s)−T (s), s = a, a+1, . . . , a+N − 1. (51)

Then we must correct also the norm

R̃n(s)=Řn(s) /


√√√√a+N−1∑

i=a

Řn(s)
2
+ε

 , (52)

s=a, a+1, . . . , a+N−1,
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where ε is some small value preventing division by zero. In
Matlab ε = 2.2204 · 10−16. R̃n(s) is now version of R̂n(s)
with increased precision.

GSOP works well, its main disadvantage is a high com-
puting complexity O(N 3) (if we compute all the degrees
up to n = N − 1), while the computing complexity of all
other algorithms mentioned in this paper is O(N 2). It is big
limitation of this method, the computing time may not be
acceptable for very high N .

B. PROOF OF THE SYMMETRY RELATION

The proof of the symmetry relation (28) in the case a = α =

β = 0 is here. The R̂
(
0,0
0,b

)

n (s) is then given as follows

R̂
(
0,0
0,b

)

n (s) =
(b+1)n(1)n(−b+1)n

n!
× 4F3

(
−n,−s, s+1, n+1
1, b+1,−b+1

∣∣∣∣ 1)×
√√√√ Γ(s+1)Γ(b+s+1)Γ(b−s)Γ(s+1)

Γ(b+s+1)Γ(b−s)Γ(s+1)Γ(s+1)

Γ(n+1)Γ(n+1)Γ(b+n+1)Γ(b+n+1)
(2n+1)Γ(n+1)Γ(b−n)Γ(n+1)Γ(b−n)

(2s+1)

=
(b+1)n(1)n(−b+1)n

n!
× 4F3

(
−n,−s, s+1, n+1
1, b+1,−b+1

∣∣∣∣ 1)×
√

(2n+ 1)Γ(b− n)Γ(b− n)
Γ(b+ n+ 1)Γ(b+ n+ 1)

(2s+1)

=
(b+1)n(1)n(−b+1)n

n!
× 4F3

(
−n,−s, s+1, n+1
1, b+1,−b+1

∣∣∣∣ 1)× Γ(b− n)
Γ(b+ n+ 1)

√
(2n+ 1)(2s+1)

=
Γ(b+n+1)n!Γ(−b+1+n)

n!Γ(b+1)Γ(−b+1)
× 4F3

(
−n,−s, s+1, n+1
1, b+1,−b+1

∣∣∣∣ 1)× Γ(b− n)
Γ(b+ n+ 1)

√
(2n+ 1)(2s+1)

=
Γ(b− n)Γ(−b+ 1 + n)
Γ(b+ 1)Γ(−b+ 1)

× 4F3

(
−n,−s, s+1, n+1
1, b+1,−b+1

∣∣∣∣ 1)×√(2n+ 1)(2s+1) . (53)

Roman [42] shows the property of factorial

c!(−c− 1)! = (−1)c+(c<0), (54)

where

(c < 0) =

{
1 if c < 0
0 if c ≥ 0.

(55)

It is well known that c! = Γ(c+1); thus (54) can be written
by this way

Γ(c+ 1)Γ(−c) = (−1)c+(c<0). (56)

Using (56), the term Γ(b− n)Γ(−b+1+ n) from (53) can
be expressed as follows

Γ(b− n)Γ(−b+ 1 + n) = Γ(b− n)Γ(−(b− n) + 1)

= (−1)−(b−n)+1 = −(−1)−b(−1)n. (57)

Also, the term Γ(b + 1)Γ(−b + 1) from (53) can be
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expressed as follows

Γ(b+ 1)Γ(−b+ 1) = Γ(b+ 1)Γ(−b)(−b) =
= (−b)(−1)b+0 = −b(−1)−b. (58)

From (57), (58), and (53), R̂
(
0,0
0,b

)

n (s) can be expressed as
follows

R̂
(
0,0
0,b

)

n (s) =
−(−1)−b(−1)n

−b(−1)−b

√
(2n+1)(2s+1) × (59)

× 4F3

(
−n,−s, s+1, n+1
1, b+1,−b+1

∣∣∣∣ 1) =

=
(−1)n

√
(2n+ 1)(2s+1)

b 4F3

(
−n,−s, s+1, n+1
1, b+1,−b+1

∣∣∣∣ 1) .
For (59), replacing n by s, we obtain:

R̂
(
0,0
0,b

)

s (n) =
(−1)s

√
(2s+1)(2n+1)

b
×

4F3

(
−s,−n, n+1, s+1
1, b+1,−b+1

∣∣∣∣ 1) . (60)

By comparing (59) with (60), we obtain the symmetry
relation

R̂
(
0,0
0,b

)

s (n) = (−1)(s−n)R̂
(
0,0
0,b

)

n (s) . □ (61)
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