IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 24 September 2024, accepted 1 November 2024, date of publication 13 November 2024,
date of current version 5 December 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3497589

==l RESEARCH ARTICLE

Knowledge Transfer in Deep Reinforcement
Learning via an RL-Specific GAN-Based
Correspondence Function

MARKO RUMAN "1 AND TATIANA V. GUY 12, (Senior Member, IEEE)

! Department of Adaptive Systems, Institute of Information Theory and Automation, Czech Academy of Sciences, 182 00 Prague, Czech Republic
2Department of Information Engineering, Faculty of Economics and Management, Czech University of Life Sciences, 165 00 Prague, Czech Republic

Corresponding author: Marko Ruman (ruman@utia.cas.cz)
This work was supported in part by the Joint Ustav teorie informace a automatizace (UTIA)-Provozn& ekonomicki fakulta (PEFT)

Laboratory TALISMAN, and in part by the European Cooperation in Science and Technology through COST Action under Grant
CA21169.

ABSTRACT Deep reinforcement learning has demonstrated superhuman performance in complex decision-
making tasks, but it struggles with generalization and knowledge reuse—key aspects of true intelligence.
This article introduces a novel approach that modifies Cycle Generative Adversarial Networks specifically
for reinforcement learning, enabling effective one-to-one knowledge transfer between two tasks. Our method
enhances the loss function with two new components: model loss, which captures dynamic relationships
between source and target tasks, and Q-loss, which identifies states significantly influencing the target
decision policy. Tested on the 2-D Atari game Pong, our method achieved 100% knowledge transfer in
identical tasks and either 100% knowledge transfer or a 30% reduction in training time for a rotated task,
depending on the network architecture. In contrast, using standard Generative Adversarial Networks or Cycle
Generative Adversarial Networks led to worse performance than training from scratch in the majority of
cases. The results demonstrate that the proposed method ensured enhanced knowledge generalization in
deep reinforcement learning.

INDEX TERMS Deep learning, Markov decision process, reinforcement learning, transfer learning,
knowledge transfer.

NOTATION USED

S State at the 7-th time step. r O-loss
Ty Reward received at the #-th time step. EQ Mo del.loss

. . M .
as Af:tlon chosen at the 7-th time step. Acye Weight of cycle-consistency loss.
y Discount factor. r Weight of O-loss
R Reward function. . :
0 O-function. Ay Weight of model loss.
C Correspondence function.
F Environment model. Ag%/?NYMS Decision making
II\(/I gnowkdge gained from a task. GAN Generative Adversarial Network.

Xperience memory. CycleGAN Cycle-Consistent GAN.
Gs Generator from source to target task. MDP Markov decision process
Gr Generator from target to source task. MuJoCo Multi-Joint dynamics with Contact.
Leav GANloss. PlaNET Deep Planning Network.
Lcye Cycle-consistency loss. RL Reinforcement learning.
TL Transfer learning.
The associate editor coordinating the review of this manuscript and UNIT Unsupervised Image-to-Image Trans-
approving it for publication was Prakasam Periasamy . lation Networks.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
177204 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-9349-377X
https://orcid.org/0000-0003-1017-0727
https://orcid.org/0000-0002-2471-6375

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning

IEEE Access

I. INTRODUCTION

The inherent ability of Reinforcement learning (RL) to
dynamically learn complex policies through trial and error
has shown great potential in solving diverse decision
problems. Deep RL, which combines the advantages of RL
with the power to handle high-dimensional data, has recently
brought many advances. For instance, model-free methods
have shown significant results in Multi-Joint dynamics
with Contact (MuJoCo) environments [1], real-world robotic
applications [2], and have demonstrated an ability to achieve
super-human performance in Atari games [3], [4]. Model-
based deep RL methods such as AlphaZero [5] and Deep
Planning Network (PIaNET) [6] have also made significant
progress. However, RL remains unsuitable for many real-
world tasks, as errors can be extremely costly. One promising
way to address this issue is through Transfer learning (TL)
[7], [8], where skills and knowledge collected from similar
tasks are applied to the current problem. Additionally, TL
plays a crucial role in: developing agents capable of lifelong
learning [9], multi-task learning [10], enabling simulation-to-
real knowledge transfer in robotics [11], [12], [13], [14], [15],
and advancing the development of general Al [16], [17].

Despite many advances, the use of transfer learning in
RL, especially in deep RL, remains limited due to several
challenges:

o Weak ability of the RL agent to generalize to unobserved
tasks. For example, the output of a deep convolutional
network for image data can be dramatically altered by
a 1-pixel perturbation of the input image, [18]. This
issue extends to RL, as image data often form the
observable states in RL tasks. For instance, 1-pixel
perturbations can lead to ineffective policies, [19]. RL
methods frequently fail to reuse previously acquired
knowledge even in similar tasks when the original image
is rotated or when some colours are changed. It has
also been shown that learning from scratch can be
more efficient than fine-tuning a previously obtained
model [20]. This significantly contrasts with the human
ability to generalize and reuse previously acquired
knowledge.

o Challenging transfer of knowledge and experience from
previously solved tasks to unseen ones. A decision
policy learnt from similar tasks may not always be
effective in solving the current decision task. For
example, optimal policies for driving a motorcycle in
racing conditions are unsuitable and even dangerous for
public roads.

The objective of this paper is to create an efficient method
for one-to-one knowledge transfer between different RL
tasks, with the aim of improving the agent’s performance on
the target task and reducing the training time required. The
primary motivation is that any transferred object (skills or
knowledge) is typically task- and policy-specific.! To ensure
that the transferred skills are relevant and effective, we focus

IThe environment dynamics and rewards of RL tasks may differ.

VOLUME 12, 2024

on identifying and transferring the most informative patterns.
This approach enhances the RL agent’s ability to generalize
across tasks, thereby improving performance in the target
task.

An additional, but important, reason why TL may fail
is that the tasks involved can differ significantly in their
dynamics and rewards. The proposed method addresses this
by considering the matching of the dynamics of the involved
RL tasks to ensure that appropriate behaviour patterns are
transferred.

The proposed solution adopts a cyclic paradigm and is
formulated as an RL-specific modification of CycleGAN.
It introduces two new components to the loss function:
model loss and Q-loss. The model loss captures the essential
dynamic relationship between the involved RL tasks, while
Q-loss prioritises states that affect learning the policy of the
target RL task.

A. MAIN CONTRIBUTIONS OF THE PAPER

e Introduction of an efficient method for knowledge
transfer. We propose a novel method for knowledge
transfer between two different RL tasks based on an RL-
specific modification of Cycle-Consistent Generative
Adpversarial Network (CycleGAN), designed to enhance
generalization and reduce training time across tasks.

e Establishment of a correspondence function. We
develop a correspondence function that learns and
reveals the similarities between source and target RL
tasks. This function plays a key role in facilitating
efficient and accurate knowledge transfer.

e Development of a four-component loss function.
Our four-component loss function incorporates model
loss, Q-loss, and two additional components to better
reflect task dynamics and account for the actual
policy being used. This design improves the transfer
of relevant knowledge and enhances the learning
process.

¢ Generalization of Generative Adversarial Network
(GAN) and CycleGAN methods. By introducing two
new components to the loss function, we extend and
generalize the GAN and CycleGAN methods. Our
approach demonstrates that these standard techniques
are special cases of our proposed framework, providing a
broader, more powerful solution for knowledge transfer
in RL.

e Complete knowledge reuse in Pong tasks. We achieve
100% knowledge reuse in experiments transferring
between the original Pong and a rotated Pong environ-
ment, highlighting the method’s ability to fully transfer
learned skills without requiring re-training.

e Handling of challenging tasks where standard meth-
ods fail. Our method successfully handles tasks that
are problematic for traditional GAN and CycleGAN
methods, allowing for faster learning and improved
performance where the only alternative would be to learn
from scratch.

177205

IEEE Access

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning

1) ADVANTAGES OF THE PROPOSED METHOD

o No reliance on paired data: Unlike many transfer
learning techniques, our approach does not require
paired datasets, making it broadly applicable across
various domains and tasks.

o Task and domain independence: The method is
independent of the nature of the RL tasks involved,
meaning it can be applied to diverse domains without
task-specific manual engineering.

o Flexible data formats: It works with different data
formats for states (e.g., images, sounds, numerical
vectors), ensuring versatility and applicability to a wide
range of applications. The method can be adapted to
various RL tasks by selecting an appropriate network
architecture tailored to the specific data format, not
limited to image data alone.

The paper layout is as follows. Section II recalls the
necessary background and formulates the considered TL
problem. Section III constructs the correspondence function
and proposes a novel method of its learning. Section IV
describes the experimental evaluation of the proposed
approach and compares it with baseline methods. Section V
provides concluding remarks and outlines future research
directions.

B. RELATED WORKS

Survey [8] systematically analyses recent advances in transfer
learning for deep RL. Our research approach falls within
the category of methods that employ mapping functions
between the source and target tasks to facilitate knowledge
transfer. A notable subset of this research focuses on
learning shared features across RL tasks that are transferable.
As demonstrated in [21], policies trained on intermediate-
level features, referred to as mid-level features, exhibit
superior generalization compared to policies trained directly
on raw image observations. Work [22] leverages general
features of two RL tasks with different dynamics. However,
the method is based on paired image observations which
are hard or impossible to obtain in practice. Work [23]
achieved success in tasks differing in reward function by
maintaining successor features and decoupling environment
dynamic and reward function. Approach [24] introduces
task similarity criterion and builds TL framework based on
knowledge shaping, where for similar tasks, efficient transfer
is theoretically guaranteed.

The pioneering work that used task correspondence was
based on unsupervised image-to-image translation models
CycleGAN, [25], and Unsupervised Image-to-Image Transla-
tion Networks (UNIT), [26]. Approach [20] achieved results
on a specific set of tasks by finding correspondence between
states of two RL tasks. The application potential of the
approach is rather limited as problems like mode-collapse are
present. Works [12] and [13] improved the approach proposed
in [20] by introducing Q-function or object detection into
the learning of the task correspondence. One of the recent
approaches, [27], considers an environment model while

177206

learning the task correspondence, which is strongly inspired
by the video-to-video translation model, [28].

Il. BACKGROUND AND NOTATION
This section briefly recalls RL formalism and introduces the
considered problem.

A. NOTATION

Throughout the text, sets are denoted by bold capital letters
(e.g. X), N and R are sets of natural and real numbers
respectively. ||x|| is the L1 norm of x. x; is the value of x at
discrete time ¢ € N. Ej[x] denotes the expected value of x
with respect to a probability density p (if provided). Specific
notations are provided at the beginning of the article.

We formalise the transfer problem in a general way by
considering two RL tasks - the source task, S, and the rarget
task, T, characterised by their respective task domains. Sy x
Ag and ST x A7, with S and A denoting a set of states and a
set of actions respectively.

B. REINFORCEMENT LEARNING

Reinforcement learning (RL) considers an agent purposefully
interacting with an environment by selecting actions. RL
agent models its environment as Markov decision process
(MDP), [29] consisting of discrete sets of observable states S
and actions A. Set S x A is referred to as the rask domain.
At each time ¢, the agent observes environment state s; €
S and takes action ¢; € A. Executing action a; at state
s;: 1) causes a transition of the environment to state s,4|
according to transition function that describes p(s;+1|s;, ar),
and ii) provides reward ry, i. e. the value of reward function
R(st+1,as, 5t) : S X A x S +— R. The agent’s goal is to learn
policy : S — A that maximises the accumulated reward.

The solution of a MDP task is the optimal policy 7 *:

N
7% = argmax E |:Z Y'R(s 11, m(sy), st):| ,

mell =1
where IT = {n(st)}ﬁvzl (H

with decision horizon N € N U {oo} and discount factor
y € (0,1). The RL agent learns to act optimally within
MDP when the transition function and reward function are
unknown. A good RL modifies 7 over time to gradually
get it closer to an optimal policy. Q-learning, a model-free
RL algorithm, is one of the traditional solution approaches.
It aims to learn Q-function (aka state-action-value function)
that quantifies the expected value of future discounted reward
over the states induced by 7* for given starting state s and
action a.

N
O(s, a) = Ex+ [Z V' Ri(Se41, T (51), 80)|s1 = 5,01 = a} .

t=1

(@)

Discount factor y expresses the agent’s preferences towards
immediate reward over future ones. The estimate of (2),

VOLUME 12, 2024

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning

IEEE Access

Q(s, a), can be gradually learnt on the stream of data records
(s¢, ar, s, s;4+1) using for instance, temporal difference
learning, [30]:

Qr+1(st.ar) = (1= a)Qi(st. ar) + a(ry + y max Qy(si1, a),
3)

where a € (0, 1) is a parameter called learning rate and r; =
R(S¢+1, as, st). The learning starts with an initial estimate of
the Q-function, Qy(s, a). The learned, approximately optimal,
decision rule is then

¥ (s | Q) = argmax Q(s, a).)

aca

C. DEEP Q-LEARNING
Whenever the state space is huge, for instance, when the state
is given by a video frame, efficient learning of Q-function
calls for numerical approximation. The state-of-the-art in
function approximation points to deep neural networks
(DNN) as a suitable methodology, [31].

Deep O-networks (DQN), [32], use a standard off-policy
Q-learning, [30], and DNN to estimate the Q-function (2).

DQN approximates Q-function by a deep neural network
with parameters that can be trained similarly to the supervised
learning, [3]. However, the supervised learning assumes i. i. d.
input data. Moreover, output values are expected to be the
same for the same inputs, [33]. Neither of these assumptions
is met in RL tasks. The consecutive states are usually highly
correlated (e. g. video frames) and thus very far from being
i. i. d. Output values also contain learned Q-function that
evolves during learning. This makes the learning process
unstable. To enable data reuse and stabilise the learning, DQN
uses an experience replay technique to remove correlations
in the observed sequence and employs an additional target
network? to stabilise the output values, see [3] for details.

Experience replay technique considers that the last ny,
data records (so-called experience memory, denoted as M)
are stored in a memory buffer. At each learning step, a mini-
batch of length np € N is randomly sampled from the
memory buffer and is used to update the neural network that
approximates Q-function. It brings the learning data closer to
being i. i. d.

Target network is an additional network® serving for sta-
bilising the learning. The idea is as follows. The parameters of
the original network are updated at every learning step, while
target network is used to retrieve output values and stays
static, i.e. its parameters do not change. Every nyy € N steps,
the original and target networks are synchronised. Details on
the DQN algorithm, see Appendix.

D. CYCLE-CONSISTENT GAN

CycleGAN, [25], is based on GAN, [34], and was originally

proposed for image-to-image translation. The idea behind
2Note that name target network in DQN generally does not refer to target

task.

3That has the same architecture as the original network.

VOLUME 12, 2024

cycle consistency is that data that has been translated to a new
domain and then recovered from it, should not change.

CycleGAN operates with two mappings Gs and Gr called
generators*

Gs: Ss—S7r and Gr: St — Sg. (@)

They are learnt as two GANS, that is, simultaneously with the
corresponding discriminators Dg and Dr. Generators learn to
map states from Sg to S7 and vice-versa, while discriminators
learn to distinguish a real state from a state mapped by a
generator. Mappings Gs, Gr, Ds and Dr are constructed as
neural networks with their architecture depending on the data
format. For instance if states are images, convolutional layers
are often used.

Learning in CycleGAN minimises a two-component loss.
The first is adversarial loss, Lgany comes from GAN and is
given by

Lean =
Eqq [logDs(ss)] + Es; [log (1 — Ds (Gt (s7)))]
+ Ey; [logDr(s7)] + Eyq [log (1 — Dr (Gs (s5)))] (6)

The adversarial training encourages mappings Gs and Gt (5)
to produce outputs indistinguishable from the real ones, i. e.
respective sets Sg and S7. However, minimising Lgay does
not prevent the network from mapping the same set of input
images to any permutation of images in the target domain.

The second component is cycle-consistency loss, Lcyc, that
has the following form:

Leye = Eg [IIGT (Gs (s5)) — ssll]
+ Eg; [IIGs (Gr (s7)) — s7ll]. 7

Minimisation of cycle-consistency loss Lcy. ensures that
every state ss € Sg must be recoverable after mapping it back
to St, i.e. Gr(Gs(ss)) =~ ss. The same requirement applies
to every state s € Sr.

Ill. TRANSFER LEARNING FOR RL

Humans have a remarkable ability to generalise. They do not
learn everything from scratch but rather reuse earlier acquired
knowledge to a new task or domain.> Generally, finding
common patterns between different tasks and effectively
transferring the concepts learned from one task to another
is an essential characteristic of high-level intelligence. Thus,
the efficient solution of transfer learning will allow for
the creation of intelligent agents that can mimic human
thinking and solve problems in a much more explainable
way. Moreover, efficient reusing the acquired knowledge
may accelerate the learning process and make complex tasks
learnable.

4That translate data between source and target domains.

5Developmenta1 psychologists have shown that as early as 18 months
old, children can infer intentions and imitate the behaviour of adults, [35].
The imitation is complex as children must infer a match between their
observations and internal representations, effectively linking the two diverse
domains.

177207

IEEE Access

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning

This section, we formalises a problem of transfer learning
between two RL tasks, empirically introduces a correspon-
dence function reflecting the similarity of two RL tasks
and proposes an RL-specific modification of CycleGAN
algorithm that realises knowledge transfer between two RL
tasks. The proposed transfer i) considers behaviours, which
are most useful for the target task; ii) captures and respects
common patterns in transition dynamics of the involved RL
tasks.

A. PROBLEM FORMULATION

We consider two RL tasks: the source task, S, and the
target task, T with their respective task domains Sg x Ag
and S7 x Ar. Each of the tasks corresponds to MDP with
its own environmental dynamics and reward function, see
Section II-B. Transition functions of the tasks as well as theirs
reward functions may be different.

Intuitively, the success of transfer between two RL tasks
depends on the degree of similarity between these tasks. If the
tasks are dissimilar, the transfer of inappropriate knowledge
may significantly worsen the resulting performance in the
target task. Therefore, the success of the transfer broadly
depends on the existence of some common properties
between the source and target tasks. The similarity can be
perceived from various perspectives, such as sharing the same
environment, obeying similar laws of physics, or involving
similar objects for interaction. For instance, when driving
a motorcycle, encountering an animal on the road may
correspond to pulling the brake levers, just as when driving a
car, the sight of a person crossing the road can lead to pressing
the brake pedal.

This work uses an abstract notion of similarity, inspired
by human learning when tackling related problems. Two
tasks are similar if they share some common properties, and
the knowledge acquired in one task proves to be beneficial
in solving the other. This empirical definition can be more
formally introduced as follows.

Definition 3.1 (Correspondence function): Consider source
S and target T tasks with respective domains Sg x Ag and
St x Ar. A correspondence function, C : (St x Ar) —
(Ss x Ag), is a mapping, which reveals the similarity of the
involved RL tasks in terms of the dynamics of the tasks’
environments and the associated Q-functions.

It is clear that function C establishes the relationship
between similar patterns in behaviour of the target and source
tasks that are necessary for knowledge transfer. So, if Qg is
the optimal Q-function for the source task, then Q-function

0s(C(.,.): St x A — R ®)

gives better performance® on the target task than a random
policy.

Let us assume (for brevity) that the action spaces of the
source and the target RL task are identical, i.e. Ag =
Ar. Let mutually corresponding actions be found using

6performance is measured by average reward per time.

177208

identity mapping regardless of the current state.” Thus,
we need to learn a mapping indicating corresponding states,
i. e. the correspondence function for states. The searched
correspondence function C is then obtained as follows:

C(st,ar) = (Gr(st), I(ar)), Y(st,ar) € St x Ar,

&)

where Gr is the generator from (5) mapping states from the
target task to states from the source task and I(.) is an identity
mapping.

The correspondence function is unknown to RL agent and
the next section describes how to learn it.

B. LEARNING OF CORRESPONDENCE FUNCTION

The proposed learning is inspired by CycleGAN, see
Section II-D, where the learning minimises a discriminative
loss function, which makes the similarity metric small for
similar patterns and large otherwise. Even direct application
of CycleGAN to the states brought some success in policy
transfer, see for instance [20]. However, data records in
experience memories comprise richer yet unused information
that may be helpful for the transfer of knowledge. We propose
to include additional components into the loss function
minimised in CycleGAN learning. They will consider unused
information and make the learned correspondence entirely
relevant to RL. The proposed loss will ensure that the learnt
function C captures all patterns significant for the intended
TL. In particular, the loss should respect both the dynamics
and Q-function of the source task.

This work proposes adding two new components to the

CycleGAN losses, (6), (7):

e Q-loss Lp - a loss that reflects how the Q-function
learned from the source task, Qg, copes with imprecise-
ness in learned generators Gr and Gg.

o Model-loss Ly - a loss that reflects the influence of the
environment model of the source task.

Let us explain the reasons for introducing the new compo-
nents and their forms.

1) 0—LOSS
The Q-function, Qgs, plays a central role in RL as it defines
the optimal policy for the source task. When transferring
knowledge from a source task S to a target task T, it is
essential to preserve the Q-function’s accuracy for states
relevant to the decision making (DM) process. This motivates
the introduction of Q-loss, Lg, which ensures that the learned
correspondence function, C, maintains consistency between
the value estimates of corresponding states in both domains.
The cycle-consistency loss (7) ensures that the generators
Ggs and Gr map between the source and target domains in
a consistent way. However, cycle-consistency alone does not
prioritize the states that are most critical for decision-making

"More specifically, all actions of the source and target task have the same
labels and meanings (e.g. @ = 1 stands for “up’’). Therefore, no mapping
between source and target task action spaces is necessary.

VOLUME 12, 2024

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning

IEEE Access

in RL. The Q-loss directly incorporates the Q-function,
encouraging the generators to focus on the states that matter
most for choosing optimal actions. Mathematically, the
Q-loss is defined as:

Lo =Ea [11Qs (Gr (Gs (s5)) , @) — Qs (ss, a)[[] ~ (10)

This loss minimizes the difference between the Q-function
values of state sg in the source task and its mapped counter-
part after a round-trip through the generators (Gr(Gs(ss))).
In simpler terms, this forces the correspondence function C
to retain the critical information from the states in the source
domain that is essential for determining the optimal policy,
ensuring that this information is preserved after mapping
between tasks S and T'.

The rationale behind this is that for effective knowledge
transfer in RL, it is not enough for the state representations to
be similar visually or structurally; they must also be similar
in terms of their impact on decision-making, as captured
by the Q-function. By focusing on states that are important
for action selection, the Q-loss makes the correspondence
function more suitable for transferring policies between tasks.

2) MODEL LOSS

In reinforcement learning, tasks are inherently dynamic,
meaning that a state’s importance often depends on the
actions taken and how the state evolves over time. This
dynamic nature introduces a key challenge for transferring
knowledge between tasks, as it is not just the individual states
that matter but the transitions between them. To address this,
we introduce the model loss, Ly, which ensures that the
correspondence function respects the underlying dynamics of
the source and target tasks.

While losses like Lgan, Lcye, and L focus on individual
state mappings, they do not ensure that the temporal dynamics
of the target task align with those of the source task. In other
words, even if individual states match, the transitions between
states (due to actions taken) might not be consistent. The
model loss addresses this by incorporating the environment
model Fs of the source task. The model Fs predicts the next
state based on the current state and action:

Fs : (81, a;) = siq1 (1D

To ensure that the learned correspondence function, C,
captures the dynamic relationships between the source and
target tasks, we define the model loss Ly as:

EM :ESTtvaTtvSTH—I [”FS (GT (ST),‘)) aTt) - GT (sTt-‘rl)”]
(12)

This loss ensures that the transitions in the target task are
consistent with those in the source task when mapped through
the correspondence function. Specifically, if an action ar
taken in the target task leads to a state transition from sz; to
STr+1, the model loss ensures that this transition corresponds
to a valid transition in the source task. In other words,
applying ary to the mapped state Gr(s7;) should lead to a state

VOLUME 12, 2024

Gr(sTr+1) that is predicted by the source task’s environment
model Fy.

Intuitively, this means that the correspondence function not
only matches individual states between the source and target
tasks but also ensures that the way states evolve over time
(due to actions) is consistent. This is crucial for transferring
knowledge about dynamic tasks, where the sequence of states
and actions is key to solving the problem.

In summary, the model loss ensures that the correspon-
dence function respects the temporal dynamics of both the
source and target tasks, making it suitable for transferring
policies between dynamic RL tasks. Together, the Q-loss and
model loss guarantee that the transferred knowledge is useful
both for individual states and for the dynamic relationships
between them.

3) TOTAL LOSS

The proposed total loss comprises all the compo-
nents (6), (7), (10) and (12) and, thus, has the following form:

L = LGan + AcyeLoye +roLlo + ALy, (13)

where Acye, Ag and Ay are loss parameters that define
relative influence (weight) of the respective components.

The proposed approach, which minimises 4-component
loss (13), generalises GAN, [34], and CycleGAN, [25],
methods often used for transfer learning. It is easy to see
that GAN and CycleGAN can be obtained by setting some
of parameters Ap, Ay, Acye in (13) to zeros as follows:

e Ao = Am = Acye = 0 (for GAN),

e Ag = Ay = 0 (for CycleGAN).

Source task
(S,.A,.T..R) (S, AL T,.R)

GOAL: Solve Target task more effectively after solving Source task

Learn Source task
output: K, = (Q,, M)
Q.: (542 R

Collect Experience memory M, using
random decision rule

output: K, = (M,)

Learn C using the proposed method with Q_, M, M,

C
output: C
p SS AS ST AT

FIGURE 1. The proposed TL between tasks S and T.

177209

IEEE Access

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning

C. TRANSFER LEARNING: ALGORITHM
The main steps of the proposed algorithm:

Step 1 The agent first solves task S by the DQN algorithm
(see Section II-C). The obtained knowledge,
Ks = (Qs, Mg), consists of learned Q-function,
QOs, and collected experience memory Mg =
((St, Ay St+1, rt)?ill)-

Step 2 The agent applies a random decision rule to task 7',
collects experience memory Mr. Further the agent
uses My together with knowledge Kg, to solve
target task T more efficiently, see Figure 1.

Step 3 The assumed similarity of the tasks S and 7' guaran-
tees the existence of correspondence function C (see
Definition 3.1). The agent uses knowledge Kg =
(Qs, Mg) and memory M7 to learn correspondence
function C. Hence the correspondence function is
used to transform state-action pairs from the target
task to the source task.

Step 4 Existence of a correspondence function C, allows
to express Q-function of the target task, Qr, via
QO-function of the source task, Qg, and learnt
correspondence function C as follows:

Or(st,ar) = Qs(C(st, ar)), Y(st,ar) € (ST x Ar).
(14)

Then the agent can use Q-function Qg of the source task to
choose the optimal actions in the target task.

1) NOTE ON IMPLEMENTATION

Similarly to GAN, in the considered case of TL we have two
experience memories with mutually unpaired entries: Mg for
the source task and My for the target task. The proposed
algorithm learns the correspondence function, C, that will
match them.

The experience memory Mg is obtained as a by-product
of DQN algorithm used for learning the optimal QO-function
QOs. However, the proposed method does not strictly require
usage of DQN. It is important that it can be applied to any
algorithm giving Mg and Qs (where Qg is a differentiable
function).

2) NOTE ON THE USE

This paper considers using the transfer learning method
just once, in the beginning of interaction with the target
task. Other ways, however, might be explored such as when
partially optimal strategy is found to further improve it.

IV. EXPERIMENTAL PART

To test the efficiency of the proposed approach, two
experiments on the Atari game Pong, [36], were conducted.
The performance of the approach was evaluated based on an
average accumulated reward per game. GAN and CycleGAN
were used as baseline methods.

177210

FIGURE 2. Standard pong, [36].

FIGURE 3. Pong rotated by 90 degrees, [36].

A. DOMAIN DESCRIPTION

Pong is a two-dimensional game simulating table tennis.
There are six available actions (‘do nothing’, ‘fire’, ‘move
up’, ‘move down’, ‘move up fast’, ‘move down fast’). The
last four observed image frames served as a task state. The
agent learned to play the game using the DQN algorithm,
Section II-C, and, thus, learned the Q-function. To test the
approach described in Section III-B, the agent also learned
environment model F.

B. EXPERIMENT DESCRIPTION AND SETUP
The proposed TL method was tested in two experiments.
Experiment 1: The source and target tasks were the same,
i.e. game Pong (screenshot is shown in Figure 2). The main
aim of this experiment was to verify the ability of the
proposed approach to find the identity transformation.
Experiment 2: The source task was the original Pong
while the target task was rotated Pong (see screenshot in
Figure 3). The game remained the same, but all image frames
were rotated by 90 degrees.
Each experiment consists of the following steps:

1) The agent played the source task (standard Pong),
learned the optimal policy by DQN and obtained the
optimal Q-function Qg, environment model F and
experience memory Mg containing 10000 data entries
collected at the end of the game.

2) The agent played the target task (standard Pong
in Experiment 1 or rotated Pong in Experiment 2)
using random policy and obtained data for experience
memory My containing 10000 data entries.

3) The agent started learning the correspondence func-
tion C using the method from Section III with the

VOLUME 12, 2024

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning IEEEACCGSS

—20.21 —— Average reward 20 4
(0] ("]
£ a0 g M ﬂ
© ©
O —20.4 1 O 104
n n
I 2050 L=
ke k]
5 2061 5 Ot Average reward
2 2
L —20.7 | o
g -20.8 4 g -101
© ©
]]
2 209 e b
< <
0 10 A a0 s0 60 70 80 0 10 20 30) 60 70 80
1000s of steps 1000s of steps
a) GAN b) CycleGAN
Acse = Ao = Ay =0 Ace = 10,00 = Ay = 0
12 4
—— Average reward —— Average reward
n -18.0 4 wn
1} U
g % ~14 4
g -18.5 - >
N n
£l £
164
e °
© -195 1 ©
5 3
o -200 o]
g g
o —20.5 5
> —20 1
E: 3
=21.0 1
0 10 20 30 a0 50 50 70 a0 0 10 20 0 a0 50 60 70 80
1000s of steps 1000s of steps
c) Loss (13) with Acye = 0, A\p =1, Ayy = 0 d) Loss (13) with Agye = 0, A\g = 0, \yy = 10
20 A
wn
i}
£
o
o 10
N
£
Tl
©
=
g
g 10
o
o
>
< —-20 1 —— Average reward

T T T
0 10 20 30 40 50 60 70 80

1000s of steps
e) Loss (13) with Adcye = 1, Ap =1, Ay =1
FIGURE 4. Experiment 1: Average accumulated reward per game when playing five games with the transformed Q-function (14). The agent
paused the correspondence function learning each 1000 learning steps and played five games where the average reward gained per game is

displayed. The performance is shown for different values of loss parameters ¢y, 1q and 1. Figure 4a and 4b show the baselines using GAN
and CycleGAN methods.

QO-function Qg, environment model F' and experience 4) For every 1000 learning steps, the agent:
memories Mg and Mr, « suspends learning of correspondence function C,

VOLUME 12, 2024 177211

IEEE Access

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning

after O steps

after 30 000 steps

after 60 000 steps

after 80 000 steps

a) GAN A\cye = 0,00 =0, Ay =0

after 0 steps after 30 000 steps

after 60 000 steps after 80 000 steps

b) CycleGAN)\Cyc = 10,)\Q = 0,)\M =0

after O steps after 30 000 steps

after 60 000 steps after 80 000 steps

C)/\CyCZO,AQZI,AMZO

after O steps

after 30 000 steps

after 60 000 steps after 80 000 steps

d) Acye = 0, A0 = 0, Ay = 10

after O steps after 30 000 steps

after 60 000 steps after 80 000 steps

e)ACyC:]-v)\Q:]-’)\M:]-

FIGURE 5. Experiment 1: Screenshots of the game depicting the progress of learning correspondence function C, (9), after 0, 30000, 60000 and
80000 steps. The results are shown for different values of parameters 1¢yc, 1q and Ay (13). The left parts are game frames of the target task serving as
states, and the right parts are the same states mapped by the learned correspondence function, C.

« uses learnt C and the Q-function transformed from
the source task, see (14), to play five games of the
target task, and

« computes the average accumulated reward per
game.

5) The agent played the target task while using the learned
correspondence® and Q-function Qg transferred from

8The correspondence function that achieved the highest average accumu-
lated reward per game in the previous step was used here.

177212

the source task. At the same time the agent uses DQN
and fixed C to continuously fine-tune Q-function Q7 of
the target task.

The key metric to evaluate the success of the knowl-
edge transfer was the average accumulated reward per
game.

Baseline methods: The results are compared with two
baselines—using GAN and CycleGAN methods [25], [34],
which have recently been applied for knowledge transfer in
similar settings [20]. Experiment 2 also includes fine-tuning

VOLUME 12, 2024

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning

IEEE Access

Average reward obtained in the last 20 games

20 4 e ——
10 4
=t
g2 o
&
—104
— Without TL
—204 with TL
T T T T T T T T
0 50 100 150 200 250 300 350

Number of games

FIGURE 6. Moving average of reward per game computed from the last
20 games depending on the number of Pong games played. The blue line
denotes learning from scratch, i. e. without TL. The orange line denotes
the case with TL, i.e. when the agent learns the correspondence function
and uses the transformed Q-function (14). The Q-function Qs is
continuously learned during the game in both cases.

the Q-function from the source task as a baseline, as it is a
commonly used transfer learning method.

The following sections provide the key details of the
experiments performed and their results.

C. EXPERIMENT 1
This experiment aimed to test transfer learning when source
and rarget tasks are identical.

Gy and Gt generators (see Section I1I-B) were constructed
as neural networks with convolutional layers. Their specific
architecture was taken from [37]. The discriminators Dg
and Dy were also constructed as neural networks with
convolutional layers with the architecture as in [38].

The parameters of all of the networks were initialized
from Gaussian distribution N (0, 0.02). The transfer learning
with the loss (13) was tested for all the combinations of
the parameters: Acye € {0,1,10}, 2o € {0,1} and
rm € {0, 1, 10}.

1) RESULTS
The results presented in Figure 4 - Figure 6 highlight
the effectiveness of the proposed method in comparison to
baseline models. After every 1000 learning steps, the agent
pauses to play five games, and the average reward per game
is recorded.

In Figure 4, the best results are observed when all loss
components (Lcye, Lo, and Lyy) are included in the total
loss function (13) with parameters Acye = Ag = Ay = 1,
as shown in Figure 4e. This configuration achieves nearly the
maximum reward (21), indicating that the method transfers
knowledge effectively and optimizes performance.

The significance of the new components is demonstrated
by Figure 4c and Figure4d. When only one of the new
components (Lo or Ly) is included, the performance drops
noticeably. This result emphasizes that both components are

VOLUME 12, 2024

critical to achieving successful knowledge transfer. Other
parameter combinations did not yield meaningful results and
are therefore not presented here.

In contrast, the baseline methods perform poorly. The GAN
baseline (Figure 4a) fails to yield meaningful results, while
the CycleGAN baseline (Figure 4b) shows initial success, but
its performance quickly becomes unstable, indicating that it
cannot maintain an effective correspondence function over
time. The fluctuations observed in the CycleGAN curve in
Figure 4b stem from the adversarial nature of the training
process, and adding the proposed losses appears to help
mitigate this instability.

Figure 4 visually demonstrates the correspondence
between the source and target tasks, confirming that the
best performance is obtained when all components of the
loss function are active. Although the CycleGAN baseline
shows some visual accuracy, its inconsistency is evident in
the unstable reward progression.

Finally, Figure 6 compares the performance of an agent
learning from scratch with one that transfers knowledge
using the proposed method. The agent that reuses previ-
ously learned knowledge reaches high performance almost
immediately, while the agent learning from scratch requires
much more time to reach the same level. This highlights the
efficiency of our method both in transferring knowledge and
reducing training time.

D. EXPERIMENT 2
In Experiment 2, the target task is the original Pong with
image frames rotated by 90 degrees (see Figure 3).
Generators Gg and G7, (see (5) and Section III-B) are
constructed as neural networks. Two types of generators were
used in the experiment. The architecture of the first one,
referred to here as the resnet generator, was taken from [37]
and then followed by a rotation layer, see [39]. The second
type, referred to as the rotation generator, was composed of
the mentioned rotation layer only. Discriminators Dg and Dr
are constructed by neural networks with convolutional layers
with the architecture as in [38].

1) RESULTS

The proposed approach was tested with various values
of the loss parameters Acye, Ag, and Ay (from (13)).
Figure 7 - Figure 9 present the best-achieved performance
of our method, compared to baseline methods.

Figure 7 depicts the average reward per game over five
games. Similar to Experiment 1, after every 1000 learning
steps, the agent pauses the learning of the correspondence
function and plays five games of the target task. The results
show that the rotation generator achieves nearly perfect
knowledge transfer, with rewards approaching the maximum
score of 21. This indicates that the rotation generator can
establish an effective correspondence between the source and
target tasks, enabling high-performance transfer.

177213

IEEE Access

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning

In contrast, although the resnet generator did not yield
perfect results, it still learned a reasonable correspondence

177214

» 200 —— Average reward
o
£
(]
D _20.5 4
[Te]
£
kel
E —21.0 4
=
[
% -21.5
o
g
<
—22.0 A
6 lb 2b 30 4‘0 5‘0
1000s of steps
a) Rotation generator
using GAN
200 —— Average reward
o
1S
©
D 20,5 4
[fe]
£
o
E —21.0 4
S
e
% -21.5 4
o
g
4
—22.0 1
0 1b 20 30 4‘0 5‘0
1000s of steps
¢) Rotation generator
using CycleGAN
201
9 —— Average reward V;’
£
(]
o 104
n
£
T o
o
=
2
g -10
o
g
I
20

20 Sb
1000s of steps

e) Rotation generator
with >\Cyc =)\Q =0,y =10

—19.6

-19.8

-20.0 4

—20.2 A

—20.4

=20.6

-20.8 4

Average reward in 5 games

—21.0 A

—— Average reward

20
1000s of steps

T U
30 40 50

b) Resnet generator
using GAN

—19.0

=19.5 A

—20.0 A

=20.5 A

Average reward in 5 games

=21.0 A

—— Average reward

o
= |
S

20 30
1000s of steps

40 50

d) Resnet generator
using CycleGAN

| | | |
— = = =
© 53 =} o

Average reward in 5 games
&

|
N
[

—— Average reward

20 30
1000s of steps

f) Resnet generator
with)‘Cyc = 17>‘Q =0,y =1

FIGURE 7. Average accumulated reward in five games when playing Rotated Pong with the transformed Q-function (14). The agent
paused the correspondence function learning each 1000 learning steps and played five games where the average reward gained per
game is displayed. The results are shown for the rotation and the resnet generator with the best settings of the loss parameters in
each case (e, f) as well as with using GAN and CycleGAN baselines (a-d).

function, particularly after 50,000 steps, as shown in Figure 8.
This partially successful correspondence was then used to

VOLUME 12, 2024

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning I E EEACCGSS

IHAR RN

after O steps after 15 000 steps after 30 000 steps after 50 000 steps

a) Rotation generator using GAN

after 15 000 steps after 30 000 steps after 50 000 steps

after O steps

b) Rotation generator using CycleGAN

after O steps after 15 000 steps after 30 000 steps after 50 000 steps

¢) Rotation generator with Acye = 0, Ag = 0, A\yy = 10

after O steps after 15 000 steps after 30 000 steps after 50 000 steps

d) Resnet generator using GAN

after 15 000 seps after 30 000 steps after 50 000 steps

after O steps

e) Resnet generator using CycleGAN

after 15 000 steps after 30 000 steps after 50 000 steps

after O steps .
f) Resnet generator with A¢cye = 1,00 =0, Ay =1

FIGURE 8. Experiment 2: Screenshots of the game depicting progress in learning the correspondence function C (9) after 0, 15000, 30000 and

50000 steps. The results are shown for the rotation and the resnet generators with the best settings of parameters i¢,c, 1o and iy (13) as well as with

using GAN and CycleGAN baselines. The left parts of the pictures are game frames of the target task representing the states, and the right parts are the
same states transformed by the correspondence function C.

VOLUME 12, 2024 177215

IEEE Access

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning

Average reward obtained in the last 20 games

20 4

10 +

Reward
o

—— From Scratch
With TL, resnet gen.

—— With TL, rotation gen.

—— Source Q for the taget task

—204

0 50 100 150 200 250 300 350
Number of games

FIGURE 9. Moving average of reward per game computed from the last
20 games depending on the number of played games for the game
rotated Pong for four different agents - an agent learning the game from
scratch (blue line), an agent using the correspondence function learned
with the resnet generator (orange line), an agent using the
correspondence function learned with the rotation generator (green line)
and an agent reusing only the Q-function without any correspondence
function (red line). The agents were continuously learning the Q-function.

fine-tune the Q-function for the target task. Importantly,
this fine-tuning process led to much better results than
training the O-function from scratch, demonstrating that even
an imperfect correspondence can significantly accelerate
learning. G The baseline methods, using standard GAN and
CycleGAN, failed to produce any usable correspondence for
knowledge transfer. This is clearly illustrated in Figure 7a and
Figure 7b, where the agent’s poor performance highlights the
limitations of these methods for reinforcement learning tasks.

Figure 8a illustrates the progression of the correspondence
function learned by the rotation generator, which consistently
mapped the source task to the target task correctly. In contrast,
Figure 8b indicates the slower, but ultimately reasonable,
progress made by the resnet generator, further emphasizing
the benefits of the rofation generator in establishing task
similarity.

Lastly, Figure 9 compares the performance of the agent in
the rotated Pong task under different conditions:

1) When learning from scratch, performance improves

slowly over time.

2) When using the correspondence function learned by the
resnet generator, performance improves much faster at
the start.

3) When using the rotation generator, the agent achieves
immediate reuse of prior knowledge and performs at a
high level from the beginning.

4) When fine-tuning the Q-function from the source
task without considering correspondence, performance
was worse than learning from scratch, likely due to
overfitting to the source task.

This comparison highlights the advantages of the pro-
posed method, which enables seamless knowledge transfer,
significantly reduces training time, and improves initial
performance. In contrast, fine-tuning the Q-function (used
as one of the baselines) without proper alignment between

177216

tasks leads to poor results, underscoring the importance of
task-specific correspondence functions.

V. CONCLUSION AND DISCUSSION

This paper presented a novel method for efficient one-
to-one knowledge transfer between reinforcement learning
tasks. Our approach modifies CycleGAN specifically for
reinforcement learning by incorporating a new loss function
that includes the Q-function and environment model from
the source task. Through experiments on the 2-D Atari game
Pong, we demonstrated that our method outperforms baseline
models such as GAN and CycleGAN, providing faster
learning and better performance, particularly in scenarios
where task environments differ.

One of the key findings of this work is the importance of
the network architecture when learning the correspondence
function. While both the rotation-based and convolutional
generators achieved reasonable results, the rotation-based
generator yielded superior performance. This suggests that
convolutional layers, commonly used in image-based tasks,
may not be optimal for reinforcement learning transfer
learning tasks. Future research should explore other architec-
tures, such as transformers, [40], which may further improve
generalisation.

In comparison to other knowledge transfer methods, our
approach has the advantage of being applicable to a variety
of domains without the need for paired data, allowing it
to handle diverse RL tasks with varying state formats.
However, we acknowledge some limitations. The current
method struggles with tasks that have low similarity, and we
have not yet explored transferring knowledge from multiple
source tasks or automatically selecting the most relevant
source task.

Future Directions:

1) Expanding the validation: testing the proposed
method on a broader range of RL tasks to assess its
generalization ability and robustness.

2) Knowledge transfer in low-similarity tasks: investi-
gating how to transfer knowledge between tasks with
low similarity.

3) Identifying relevant knowledge: exploring methods
to identify and transfer relevant knowledge from
multiple source tasks.

4) Source task selection: developing strategies for select-
ing the most relevant source tasks for transfer.

5) Alternative network architectures: researching
alternative network architectures, like transformers,
to enhance correspondence learning.

In conclusion, our approach represents a significant
advancement toward practical and flexible knowledge trans-
fer in reinforcement learning. However, several challenges
remain that future work must address to enhance the
robustness and adaptability of such systems.

Method implementation: The method implementation in
Python is available at https://github.com/marko-ruman/RL-
Correspondence-Learner

VOLUME 12, 2024

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning

IEEE Access

Data availability statement: The datasets generated
and/or analysed during the current study are available from
the corresponding author on reasonable request.

Ethical approval: This article does not contain any studies
with human participants performed by any of the authors.

Vi. DQN ALGORITHM

Algorithm 1 summarises the DQN algorithm used in the text
(see Section II-C for details). 6 denotes parameters of the
source network and 67 are parameters of the target network.
Both networks have the same architecture.

VII. IMPLEMENTATION DETAILS

A. CYCLEGAN GENERATOR ARCHITECTURES

The architectures of generators Gs and Gt in Experiment 1
(Section IV-C) and the resnet generators Gs and Gr in
Experiment 2 (Section IV-D) were taken from [25]. The
9 residual blocks version was used. Below, we follow the
naming convention used in [25].

Let c7s1-f denote a 7 x 7 Convolution-BatchNorm-
ReLU layer with f filters and stride 1. df denotes a 3 x
3 Convolution-BatchNorm-ReLU layer with f filters and
stride 2. Reflection padding was used to reduce artefacts.
Rf denotes a residual block that contains two 3 x 3 convo-
lutional layers with the same number of filters () on both
layers. uf denotes a 3 x 3 fractional-strided-Convolution-
BatchNorm-ReL U layer with f filters and stride 2.

The network architecture consisted of:

c7s1-64,d128,d256,R256,R256,R256,R256,
R256,R256,R256,R256,R256,ul28,u64,c7s1-3

The rotation generator contained just one rotation layer,
see [39].

B. DISCRIMINATOR ARCHITECTURES
For discriminator networks Dg and D7 in all the experiments,
70 x 70 PatchGAN was used, see [38]. Let Cf denote a4 x 4
Convolution-BatchNorm-LeakyReL U layer with f filters and
stride 2. After the last layer, a convolution to produce a 1-
dimensional output was used. Leaky ReLUs were used with
a slope of 0.2.
The discriminator architecture was:
C64,Cl128,C256,C512.

C. Q-FUNCTION ARCHITECTURE

QO-function had architecture taken from [3]. Let c—k—s—f

denote a k x k Convolution-ReLU layer with stride s and

f filters and £-o is a Fully connected-ReLU layer with o

outputs. The Q-function architecture was:
c-8-1-32,c-4-2-64,c-3-1-64,£-512, f-6.

D. ENVIRONMENT MODEL ARCHITECTURE

The environment model F' had the same architecture as the

generators Gs and G7 with one difference: the fifth residual

block received one-hot encoded actions as an additional input.
The architecture of the environment model was then as

follows:

VOLUME 12, 2024

Algorithm 1 DQN

Input: initial parameters 6 of Q-function Q(s, a, 6), learning
rate « € (0, 1), discount factor y € (0, 1), exploration
rate € € (0, 1), size of the experience memory nyy, size
of the learning mini-batch np, number of steps for target
network synchronization ny

1: Initialize experience memory size ny,

2: Set parameters of the target network 67 = 6

3: forr=1,2,..., till convergence do

4: With exploration € perform random action a; other-
wise select a; = argmax Q(s, a | 6)

5. Get next state s;41 3%’21 reward r;

6: If the memory is full, remove the oldest data record

7: Store (s, at, 1, Sy+1) in experience memory M

8: Sample a random mini-batch of size np

(87> @), 1, Sj+1)jeRand(ng) € M
9: for every j do

10: if 57, is a terminal state then
11: target; = r;
12: else
13: target; = rj + y max O(sjy1.d | 07)
14: end if
15: end for
16: Perform a gradient descent on
2 .
target: — Q(sj, a; | 0) with Huber
((g J Q(I |)) j€Rand(np)

loss, [41], with respect to parameters 6
17: Every ny steps set 67 =0
18: end for
Output: Q-function Q(s, a), experience memory M

c7s1-64,d128,d256,R256,R256,R256,R256,
R262,R262,R262,R262,R262,ul28,u64,c7s1-3.

VIII. TRAINING
All the networks are trained from scratch with weights
initialized from a Gaussian distribution N (0, 0.02).

The environment model, F, was trained with Adam
optimizer, [42], with the learning rate of 0.001, batch size of
16 and it was trained for 50 epochs.

For the training of the Q-function, RMSprop optimiser,
[43], was used. The learning rate was 0.0001, and the
batch size was 32. The other parameters of Q-learning were
identical to those in [3].

Generators Gg and Gy and discriminators Dg and Dr
were jointly trained using Adam optimizer with an initial
learning rate of 0.0002 which was linearly decayed to zero.
The training took four epochs.

REFERENCES

[1] T.P.Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
2015, arXiv:1509.02971.

[2] A. R. Mahmood, D. Korenkevych, and G. Vasan, ‘“Benchmarking
reinforcement learning algorithms on real-world robots,” in Proc. Conf.
Robot Learn., 2018, pp. 561-591.

177217

IEEE Access

M. Ruman, T. V. Guy: Knowledge Transfer in Deep Reinforcement Learning

[3]

[4]

[5]

[6]

[71
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with deep reinforcement
learning,” 2013, arXiv:1312.5602.

Y. Hu, S. Sun, X. Xu, and J. Zhao, “Attentive multi-view reinforcement
learning,” Int. J. Mach. Learn. Cybern., vol. 11, no. 11, pp. 2461-2474,
Nov. 2020.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play,” Science, vol. 362, no. 6419,
pp. 1140-1144, Dec. 2018.

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in Proc.
Int. Conf. Mach. Learn., May 2019, pp. 2555-2565.

S.J.Panand Q. Yang, ““A survey on transfer learning,” IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345-1359, Jan. 2009.

Z. Zhu, K. Lin, A. K. Jain, and J. Zhou, “Transfer learning in
deep reinforcement learning: A survey,” [EEE Trans. Pattern Anal.
Mach. Intell., vol. 45, no. 11, pp. 13344-13362, Nov. 2023.

H. B. Ammar, E. Eaton, J. M. Luna, and P. Ruvolo, “Autonomous
cross-domain knowledge transfer in lifelong policy gradient reinforcement
learning,” in Proc. 24th Int. Joint Conf. Artif. Intell., 2015, pp. 1-7.

N. V. Varghese and Q. H. Mahmoud, “A hybrid multi-task learning
approach for optimizing deep reinforcement learning agents,” IEEE
Access, vol. 9, pp. 44681-44703, 2021.

S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz,
S. Levine, R. Hadsell, and K. Bousmalis, ‘“Sim-to-real via sim-to-sim:
Data-efficient robotic grasping via randomized-to-canonical adaptation
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 12619-12629.

D. Ho, K. Rao, Z. Xu, E. Jang, M. Khansari, and Y. Bai, “RetinaGAN: An
object-aware approach to sim-to-real transfer,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2021, pp. 10920-10926.

K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari, “RL-
CycleGAN: Reinforcement learning aware simulation-to-real,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 11154-11163.

W. Zhu, X. Guo, D. Owaki, K. Kutsuzawa, and M. Hayashibe, ““A survey
of sim-to-real transfer techniques applied to reinforcement learning for
bioinspired robots,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 7,
pp. 3444-3459, Jul. 2023.

M. Ranaweera and Q. H. Mahmoud, “Bridging the reality gap between
virtual and physical environments through reinforcement learning,” IEEE
Access, vol. 11, pp. 19914-19927, 2023.

D. Silver, S. Singh, D. Precup, and R. S. Sutton, “Reward is enough,” Artif.
Intell., vol. 299, Oct. 2021, Art. no. 103535.

J. Clune, “AI-GAs: Al-generating algorithms, an alternate paradigm for
producing general artificial intelligence,” 2019, arXiv:1905.10985.

J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 828-841,
Oct. 2019.

X. Qu, Z. Sun, Y.-S. Ong, A. Gupta, and P. Wei, “Minimalistic attacks:
How little it takes to fool deep reinforcement learning policies,” IEEE
Trans. Cognit. Develop. Syst., vol. 13, no. 4, pp. 806-817, Dec. 2021.

S. Gamrian and Y. Goldberg, “Transfer learning for related reinforcement
learning tasks via image-to-image translation,” in Proc. Int. Conf.
Mach. Learn., 2019, pp. 2063-2072.

B. Chen, A. Sax, G. Lewis, I. Armeni, S. Savarese, A. Zamir, J. Malik, and
L. Pinto, “‘Robust policies via mid-level visual representations: An exper-
imental study in manipulation and navigation,” 2020, arXiv:2011.06698.
A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, ‘“‘Learning invariant
feature spaces to transfer skills with reinforcement learning,” 2017,
arXiv:1703.02949.

A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van Hasselt,
and D. Silver, “Successor features for transfer in reinforcement learning,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 30,2017, pp. 1-11.

X. Gao, J. Si, and H. Huang, “Reinforcement learning control with
knowledge shaping,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 3,
pp. 3156-3167, Mar. 2024.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2242-2251.

M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image
translation networks,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1-9.

177218

(27]

(28]

[29]

(30]
(31]

[32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

[40]

[41]

(42]

(43]

Q. Zhang, T. Xiao, A. A. Efros, L. Pinto, and X. Wang, “Learning cross-
domain correspondence for control with dynamics cycle-consistency,”
2020, arXiv:2012.09811.

A. Bansal, S. Ma, D. Ramanan, and Y. Sheikh, “Recycle-GAN:
Unsupervised video retargeting,” in Proc. Eur. Conf. Comput. Vis. (ECCV),
2018, pp. 119-135.

M. L. Puterman, ‘“Markov decision processes,” in Handbooks in
Operations Research and Management Science, vol. 2. New York, NY,
USA: Wiley, 1990, pp. 331-434.

C.J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. §,no. 3,
pp. 279-292, May 1992.

B. C. Csdji, “Approximation with artificial neural networks,” Fac. Sci.,
Etvs Lornd Univ., Hung., vol. 24, no. 48, p. 7, 2001.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and
G. Ostrovski, “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529-533, Feb. 2015.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 27, 2014, pp. 1-9.

A. N. Meltzoff, “Understanding the intentions of others: Re-enactment of
intended acts by 18-month-old children,”” Develop. Psychol., vol. 31, no. 5,
pp- 838-850, 1995.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, ““The arcade
learning environment: An evaluation platform for general agents,” J. Artif.
Intell. Res., vol. 47, pp. 253-279, Jun. 2013.

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in Proc. 14th Eur. Conf. Comput. Vis.
(ECCV). Amsterdam, The Netherlands: Springer, Oct. 2016, pp. 694-711.
P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 5967-5976.

M. Jaderberg, K. Simonyan, and A. Zisserman, “Spatial transformer
networks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 28, 2015, pp. 1-9.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 30,2017, pp. 1-11.

P. J. Huber, “Robust estimation of a location parameter,” in Breakthroughs
in Statistics. Berlin, Germany: Springer, 1992, pp. 492-518.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

S. Ruder, “An overview of gradient descent optimization algorithms,”
2016, arXiv:1609.04747.

MARKO RUMAN received the Ing. (equiva-
lent to M.Sc.) degree in mathematical engineer-
ing from Czech Technical University, Prague,
Czech Republic, in 2018, where he is cur-
rently pursuing the Ph.D. degree in mathematical
engineering.

He is also a Research Assistant with the Depart-
ment of Adaptive Systems, Institute of Information
Theory and Automation, Czech Academy of
Sciences. His main research interests include

knowledge transfer and reinforcement learning.

TATIANA V. GUY (Senior Member, IEEE)
received the Dipl.-Eng. degree in control and
automation from Kiev Polytechnic Institute, and
the Ph.D. degree in cybernetics from Czech
Technical University, Prague.

She is currently with the Institute of Information
Theory and Automation, Prague. Since 2013,
she has been the Head of the Adaptive Systems
Department. She has also an appointment as an
Associate Professor with Czech University of Life

Sciences. Her current research interests include distributed decision making,
nature-inspired cooperation, and transfer learning.

VOLUME 12, 2024

