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Axiomatic fully probabilistic design (FPD) of optimal decision rules strictly extends the decision 
making (DM) theory represented by Markov decision processes (MDP). This means that any MDP 
task can be approximated by an explicitly found FPD task whereas many FPD tasks have no MDP 
equivalent. MDP and FPD model the closed loop — the coupling of an agent and its environment 
— via a joint probability density (pd) relating the involved random variables, referred to as 
behaviour. Unlike MDP, FPD quantifies agent’s aims and constraints by an ideal pd. The ideal 
pd is high on the desired behaviours, small on undesired behaviours and zero on forbidden ones. 
FPD selects the optimal decision rules as the minimiser of Kullback-Leibler’s divergence of the 
closed-loop-modelling pd to its ideal twin. The proximity measure choice follows from the FPD 
axiomatics.

MDP minimises the expected total loss, which is usually the sum of discounted partial losses. The 
discounting reflects the decreasing importance of future losses. It also diminishes the influence of 
errors caused by:

▶ the imperfection of the employed environment model;

▶ roughly-expressed aims;

▶ the approximate learning and decision-rules design.

The established FPD cannot currently account for these important features. The paper elaborates 
the missing discounted version of FPD. This non-trivial filling of the gap in FPD also employs an 
extension of dynamic programming, which is of an independent interest.

1. Introduction

An agent — a human, a device or a mixed group of both, referred to as “it” — chooses its actions in order to meet its aims. This 
is the core of any decision making that always runs under uncertainty. The inspected prescriptive Bayesian DM theory has its roots 
in [1,2]. It underlies the theory of Markov decision processes [3], which is the standard way of designing optimal, action-generating, 
decision rules. Stochastic control does the same [4,5] but its stress and vocabulary differ. They are often used interchangeably or 
jointly1 [6].
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The MDP design often employs discounting, which perceives DM results at a distant future as less important [7–9]. This weakens 
the adverse impact of imprecision (of any origin) on the design of decision rules [10,11]. It also simplifies the error analysis of various 
approximate designs of decision rules [12,13].

This text and [14] show that FPD, an abstract axiomatic version [14,15] of the model reference control [16], strictly extends 
MDP. Discounted FPD has not been yet developed regardless of its rich history [17–21], its tight connection with the independently 
proposed KL control2 [23–26] and with the KL regularised control [27,28]. The paper fills this gap by elaborating the discounted 
FPD.

MDP tasks mapped on FPD tasks, see Proposition 3 below, naturally come with discounting. However, FPD tasks with no MDP 
equivalents lack it. The discounting extension to any FPD task is highly desirable to reach its positive effects.

The choice of the discounting rate is hard even if it has a monetary interpretation [29]. A sound choice is vital especially when DM 
is connected with sensitive aspects, say health [9]. The choice is even harder when discounting copes with doubts about persistency 
of the used environment model or of the quantified aims.

The importance of a sound choice of the discounting rate lies in the impact of the effective shortening of the design horizon. It 
may decrease the DM quality up to the closed-loop instability [30]. On the other hand, the optimisation without discounting may 
excite modelling errors and lead to poor DM quality up to the instability [31]. Sec. 4 illustrates the positive effect of discounting on 
diminishing the consequences of modelling errors.

The choice of the discounting rate is expected to be easier for FPD. The unified probabilistic language of FPD concerns both the 
closed-loop modelling and the aim expression. Thus FPD inputs, including the discounting rate, are quantified by probabilities. The 
meaning and role of the discounting rate in the design part is fully analogical to the data and time varying forgetting rate used in 
learning [32,33]. At the same time, the on-line learning of the forgetting rate is feasible [34]. These facts open a way to a data-based 
choice of the discounting rate within FPD. Due to the inclusion of MDP tasks in the set of FPD tasks this will help to choose the 
discounting rate for MDP as well. Initial attempts are in [35].

Layout

Sec. 2 recalls FPD and refines its relation to MDP. A generalisation of the usual dynamic programming [4] arises during this refine-

ment. This overture serves to core Sec. 3, which presents the discounted FPD. Sec. 4 illustrates the impact of the theory numerically. 
Sec. 5 provides the concluding remarks.

Notation

The text uses decorated mnemonic labels: 𝑎 action, 𝖣 and 𝖽 divergences, 𝖼 closed-loop model, 𝖤 expectation, ℎ horizon, 𝗆 model, 
𝖭 and 𝗇 normalisations, 𝖫 loss, 𝑝 pointer, 𝗋 decision rule(s), 𝑠 state, 𝑡 time, 𝗏 value function, 𝗐 weight. Sanserif fonts mark mappings. 𝖼, 
𝗆 and 𝗋 are probability densities (pds3). Bold fonts mark the set: 𝒙 is the set of 𝑥s and is defined only if needed. 𝒙ℎ is Cartesian product 
of ℎ sets 𝒙, ℎ is a natural number. ∶= defines the left-hand side by assigning the right-hand side. ∝ is proportionality. 𝖿 (𝑥𝑡) ∶= 𝖿𝑡(𝑥𝑡), 
the double time subscript 𝑡 ∈ 𝒕 is dropped. 𝗋𝑡 ∶= (𝗋(𝑎𝑡|𝑠𝑡−1))𝑎𝑡∈𝒂,𝑠𝑡−1∈𝒔 are decision rules.4 The initial state 𝑠0 ∈ 𝒔 implicitly conditions 
all pds. Superscript i concerns the ideal pd, o indicates optimality.

2. Preliminaries

The FPD recall makes the paper self-reliant. The proved version of the dynamic programming generalises the usual one. It is 
applicable to a total loss with partial losses dependent on the optimised decision rules.

Note that works [24,37,38] provide rich commented lists of references to a wide range of FPD-related results.

2.1. Fully probabilistic design

DM concerns the closed loop consisting of an agent and its uncertain environment. The agent gradually applies actions 𝑎𝑡 ∈ 𝒂 ≠ ∅
at time epochs 𝑡 ∈ 𝒕 ∶= {1, … , ℎ}, ℎ ≤∞, influencing the closed loop. They stimulate a transition of the closed-loop state 𝑠𝑡−1 ∈ 𝒔 ≠ ∅
to the state 𝑠𝑡 ∈ 𝒔. The states and actions, thought up to the decision horizon ℎ, form the closed-loop behaviours

𝑏 ∶= (𝑠ℎ, 𝑎ℎ,… , 𝑠1, 𝑎1) ∈ 𝒃 ∶= (𝒔,𝒂)ℎ.

The agent selects chooses (𝑎𝑡)𝑡∈𝒕 via randomised decision rules

𝗋 ∈ 𝗿 ∶=
{
𝗋(𝑏) ∶=

∏
𝑡∈𝒕

𝗋(𝑎𝑡|𝑠𝑡−1)}.
The conditional pds 𝗋(𝑎𝑡|𝑠𝑡−1) model the causal decision rules 𝗋. The decision-rules-dependent joint pd 𝖼𝗋(𝑏) completely describes 
random behaviours 𝑏 ∈ 𝒃. The state definition and the chain rule for pds [39] imply the factorised closed-loop model

𝖼𝗋(𝑏) =
∏
𝑡∈𝒕

𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑠𝑡−1) ∶=𝗆(𝑏)𝗋(𝑏). (1)

2 KL stands for Kullback-Leibler’s divergence [22]. The use of KL control is adopted.
3 Pd is Radon-Nikodým’s derivative with respect to either Lebesgue’s or counting measure [36]. Lebesgue’s notation is taken as the generic one.
2

4 As usual, | separates conditions in pds as well as in expectations.
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The known environment model 𝗆(𝑏) ∶=
∏

𝑡∈𝒕𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) consists of the conditional pds 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1), 𝑠𝑡, 𝑠𝑡−1 ∈ 𝒔, 𝑎𝑡 ∈ 𝒂, 𝑡 ∈ 𝒕, 
modelling state transitions.

Remark 1 (On the Closed-Loop State Relevance). Many DM setups neglect the need to use the closed-loop state whenever the envi-

ronment model results from on-line estimation [39]. Indeed, if learning and acting run in parallel, the state includes values of the 
used statistic as actions influence them. The optimal decision rules thus balance exploration and exploitation efforts [40]. Without a 
reflection of this fact, the exploration becomes the extra challenging task requiring sophisticated ad hoc techniques [41]. □

FPD quantifies agent’s aims and constraints by an ideal (desired) joint pd 𝖼i(𝑏), 𝑏 ∈ 𝒃. The pd 𝖼i(𝑏) assigns high values to desired 
behaviours 𝑏, small values to undesired 𝑏s and zero to forbidden 𝑏s. The ideal closed-loop model factorises in the same way as the 
pd 𝖼𝗋(𝑏) in (1)

𝖼i(𝑏) =
∏
𝑡∈𝒕

𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑠𝑡−1) ∶=𝗆i(𝑏)𝗋i(𝑏). (2)

The agent-selected ideal environment model

𝗆i(𝑏) ∶=
∏
𝑡∈𝒕

𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1), 𝑠𝑡, 𝑠𝑡−1 ∈ 𝒔, 𝑎𝑡 ∈ 𝒂,

combines the conditional pds 𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1), 𝑡 ∈ 𝒕, modelling the desired state transitions. The agent-selected ideal decision rules

𝗋i(𝑏) ∶=
∏
𝑡∈𝒕

𝗋i(𝑎𝑡|𝑠𝑡−1), 𝑎𝑡 ∈ 𝒂, 𝑠𝑡−1 ∈ 𝒔

consist of the desired decision rules given by the pds 𝗋i(𝑎𝑡|𝑠𝑡−1). Note that the definition of 𝗆i(𝑏) in (2) implies the normalisation 
used in Sec. 2.2

∫
𝒔ℎ

𝗆i(𝑏) d(𝑠ℎ,… , 𝑠1) = 1. (3)

The FPD-optimal decision rules 𝗋o ∈ 𝗿 [14] minimise Kullback-Leibler’s divergence (KL, [22]) 𝖣(𝖼𝗋||𝖼i) of 𝖼𝗋 to 𝖼i

𝗋o ∈Argmin
𝗋∈𝗿

𝖣(𝖼𝗋||𝖼i) ∶= Argmin
𝗋∈𝗿 ∫

𝒃

𝖼𝗋(𝑏) ln
( 𝖼𝗋(𝑏)
𝖼i(𝑏)

)
d𝑏. (4)

Dynamic programming [4] provides the optimal decision rules 𝗋o (4). They are designed in a few steps using the following lemmas.

Lemma 1 (Additive Form of KL). For decision rules 𝗋 ∈ 𝗿 and the function

𝖫𝗋𝖣(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) ∶= ln
( 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑠𝑡−1)
𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑠𝑡−1)

)
,

the functional 𝖣 in (4) is the decision-rules-dependent expectation (𝖤𝗋) of the total loss 𝖫ℎ𝗋
𝖣

with the decision-rules-dependent addends 𝖫𝗋𝖣. 
KL in (4) reads

𝖣(𝖼𝗋||𝖼i) =∑
𝑡∈𝒕 ∫

(𝒔,𝒂,𝒔)

𝖼𝗋(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1)𝖫𝗋𝖣(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) d(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1)

=
∑
𝑡∈𝒕 ∫

𝒔

𝖼𝗋(𝑠𝑡−1)
[
∫

(𝒔,𝒂)

𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑠𝑡−1)

× ln
( 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑠𝑡−1)
𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑠𝑡−1)

)
d(𝑠𝑡, 𝑎𝑡)

]
d𝑠𝑡−1 ∶= 𝖤𝗋[𝖫ℎ𝗋𝖣 ]. (5)

The employed marginal pd 𝖼𝗋(𝑠𝑡−1) of 𝖼𝗋(𝑏) is independent of the decision rules 𝗋(𝑎𝜏 |𝑠𝜏−1) with time indices 𝜏 ≥ 𝑡.

Proof. Formula (5) follows from:

▶ the product in the ratio 𝖼𝗋(𝑏)∕𝖼i(𝑏), see (1), (2), yielding the sum of logarithms;

▶ linearity of the integration in its argument;

▶ the dependence of 𝖫𝗋𝖣(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) on (𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) allows other entries of 𝑏 ∈ 𝒃 to integrate out of the joint pd 𝖼𝗋(𝑏) reducing it to 
the marginal pd 𝖼𝗋(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1);
▶ the chain rule for pds applied to 𝖼𝗋(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) using definitions of 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1), 𝗋(𝑎𝑡|𝑠𝑡−1), see (1), and of 𝖼𝗋(𝑠𝑡−1);
3

▶ Fubini’s theorem for multiple integrals [36].
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The marginal pd 𝖼𝗋(𝑠𝑡−1) results from the next multiple integration that runs over variables listed in differentials

𝖼𝗋(𝑠𝑡−1) = ∫
(𝒔ℎ−1 ,𝒂ℎ)

∏
𝜏∈𝒕

𝗆(𝑠𝜏 |𝑎𝜏 , 𝑠𝜏−1)
× 𝗋(𝑎𝜏 |𝑠𝜏−1) d(𝑠ℎ, 𝑎ℎ,… , 𝑠𝑡, 𝑎𝑡, 𝑎𝑡−1, 𝑠𝑡−2, 𝑎𝑡−2,… , 𝑠1, 𝑎1).

The pds for 𝜏 ≥ 𝑡 integrate to unity. This shows the independence of 𝖼𝗋(𝑠𝑡−1) of 𝗋(𝑎𝜏 |𝑠𝜏−1), 𝜏 ≥ 𝑡. □

The expression (5) and the proved independence allow us to find the optimal decision rules (4) using the backward induction 
known as dynamic programming [4]. It provides the desired, causal, optimal decision rules. We need its slight generalisation, which 
considers the minimisation of the decision-rules–dependent expectation of the total loss 𝖫ℎ𝗋 with its addends dependent on the optimised 
decision rules. The optimal randomised decision rules 𝗋o are

𝗋o ∈Argmin
𝗋∈𝗿 ∫

𝒃

∑
𝑡∈𝒕

𝖫𝗋(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1)𝖼𝗋(𝑏) d𝑏 ∶= Argmin
𝗋∈𝗿

𝖤𝗋[𝖫ℎ𝗋], (6)

with the partial loss 𝖫𝗋(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) dependent on the rules 𝗋(𝑎𝜏 |𝑠𝜏−1) with 𝜏 ≤ 𝑡.

Lemma 1 shows that the optimisation (4) is a subcase of (6). The existence of other cases might be important, see Remark 2. The 
next lemma solves the task (6).

Lemma 2 (Dynamic programming). Let there exist stabilising decision rules ̄𝗋, making the expected total loss 𝖤𝗋[𝖫ℎ𝗋] in (6) finite. Let us define 
the value functions

𝗏(𝑠𝑡−1) ∶= min
(𝗋𝜏∈𝗿)𝜏≥𝑡

∑
𝜏≥𝑡

𝖤𝗋[𝖫𝗋(𝑠𝜏 , 𝑎𝜏 , 𝑠𝜏−1)|𝑠𝑡−1], 𝑠𝑡−1 ∈ 𝒔, 𝑡 ∈ 𝒕. (7)

Then, 𝗏(𝑠𝑡−1) is bounded, 𝗏(𝑠ℎ) = 0, and the next functional recursion holds

𝗏(𝑠𝑡−1) =min
𝗋𝑡∈𝗿 ∫

(𝒔,𝒂)

𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑠𝑡−1)[𝖫𝗋(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) + 𝗏(𝑠𝑡)
]
d(𝑠𝑡, 𝑎𝑡). (8)

The optimal decision rules 𝗋o (6) are minimisers 𝗋o𝑡 in (8) and

𝗏(𝑠0) = 𝖤𝗋
o [
𝖫ℎ𝗋

o ]
. (9)

Proof. The existence of stabilising decision rules validates the next manipulations. For any 𝑡 ∈ 𝒕, the minimisation in (6) unfolds as 
min(𝗋𝜏∈𝗿)𝜏<𝑡

[
min(𝗋𝜏∈𝗿)𝜏≥𝑡 𝖤

𝗋
[
𝖫ℎ𝗋

]]
. The inner minimisation reduces to

𝜁𝑡−1 ∶= min
(𝗋𝜏∈𝗿)𝜏≥𝑡

𝖤𝗋
[∑
𝜏≥𝑡

𝖫𝗋(𝑠𝜏 , 𝑎𝜏 , 𝑠𝜏−1)
]
= 𝖤𝗋[𝗏(𝑠𝑡−1)]. (10)

The second equality in (10) follows from:

▶ the chain rule for expectation 𝖤𝗋[∙] = 𝖤𝗋
[
𝖤𝗋[∙|𝑠𝑡−1]] [36];

▶ the independence of 𝖼𝗋(𝑠𝑡−1) from (𝗋𝜏 )𝜏≥𝑡, which implies the commutativity of the outer unconditional expectation and the min-

imisation over (𝗋𝜏 )𝜏≥𝑡;
▶ the value-function definition (7).

The smallest total expected loss in (6) coincides with 𝜁0. Thus, the minimising rules in the 𝜁0 definition (10) form the optimal 
decision rules. Moreover, the implicit conditioning by the known 𝑠0 makes 𝗏(𝑠0) = 𝜁0. This proves (9). It remains to prove the validity 
of the recursion (8).

The independence of 𝖫𝗋(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) from rules (𝗋)𝜏>𝑡 implies

𝗏(𝑠𝑡−1) = min
𝗋𝑡∈𝗿

[
𝖤𝗋[𝖫𝗋(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1)|𝑠𝑡−1] + min

(𝗋𝜏∈𝗿)𝜏>𝑡

∑
𝜏>𝑡

𝖤𝗋[𝖫𝗋(𝑠𝜏 , 𝑎𝜏 , 𝑠𝜏−1)|𝑠𝑡−1]
]

=min
𝗋𝑡∈𝗿

[
𝖤𝗋
[
𝖫𝗋(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) + min

(𝗋𝜏∈𝗿)𝜏>𝑡

∑
𝜏>𝑡

𝖤𝗋[𝖫𝗋(𝑠𝜏 , 𝑎𝜏 , 𝑠𝜏−1)|𝑠𝑡]|||𝑠𝑡−1
]]

=min
𝗋𝑡∈𝗿

𝖤𝗋[𝖫𝗋(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) + 𝗏(𝑠𝑡)
|||𝑠𝑡−1].

The justification of the respective equalities above is as follows.

▶ The first equality uses (7) and the independence of 𝖤𝗋[𝖫𝗋(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1)|𝑠𝑡−1] from the rules (𝗋𝜏 )𝜏>𝑡.
▶ The second equality utilises the chain rule for expectations and the state definition. They imply 𝖤𝗋[∙|𝑠𝑡−1] = 𝖤𝗋

[
𝖤𝗋[∙|𝑠𝑡, 𝑠𝑡−1]|||𝑠𝑡−1] =[ ]
4

𝖤𝗋 𝖤𝗋[∙|𝑠𝑡]|||𝑠𝑡−1 .
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▶ The third equality results from the fact that the minimisation over (𝗋𝜏 )𝜏>𝑡 and the outer expectation in 𝖤𝗋
[
𝖤𝗋[∙|𝑠𝑡]|||𝑠𝑡−1] commute, 

and repetitive application of the definition (7). □

Remark 2 (On Possible FPD Generalisations). The FPD axiomatics [14] singled out KL among all f-divergences [42]. It avoids an 
unjustified coupling of optimal decision rules of two completely independent DMs solved as a single DM task. If this degenerate case 
is avoided by the problem formulation, then the axiomatics and Lemma 2 allow us to use any divergence in the role of the expected 
partial loss. This opens a way to a rich generalisation of FPD [43]. □

Lemmas 1, 2 serve to the novel proof of the solution of FPD. For an alternative proof, see [17].

Proposition 1 (FPD). The backward induction reduces to the next backward functional recursion for 𝗇(𝑠𝑡−1) ∈ [0, 1], 𝑠𝑡−1 ∈ 𝒔, 𝑡 ∈ 𝒕, with 
𝗇(𝑠ℎ) ∶= 1, and 𝑎𝑡 ∈ 𝒂,

𝖽(𝑎𝑡, 𝑠𝑡−1) ∶= ∫
𝒔

𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) ln( 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)
𝗇(𝑠𝑡)𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)

)
d𝑠𝑡

𝗇(𝑠𝑡−1) ∶= ∫
𝒂

𝗋i(𝑎𝑡|𝑠𝑡−1) exp[−𝖽(𝑎𝑡, 𝑠𝑡−1)] d𝑎𝑡. (11)

The reached minimum is 𝗏(𝑠0) ∶= − ln(𝗇(𝑠0)) = 𝖣(𝖼𝗋o ||𝖼i) in (4). The optimal decision rules are

𝗋o(𝑎𝑡|𝑠𝑡−1) = 𝗋i(𝑎𝑡|𝑠𝑡−1) exp[−𝖽(𝑎𝑡, 𝑠𝑡−1)]
𝗇(𝑠𝑡−1)

∝ 𝗋i(𝑎𝑡|𝑠𝑡−1) exp[−𝖽(𝑎𝑡, 𝑠𝑡−1)]. (12)

Proof. For non-negative KL, the value function 𝗏(𝑠𝑡−1) ≥ 0. Thus, it can be expressed in the form − ln(𝗇(𝑠𝑡−1)) ∶= 𝗏(𝑠𝑡−1). The non-

negativity of 𝗏(𝑠𝑡−1) and the identity 𝗏(𝑠ℎ) = 0 give 𝗇(𝑠𝑡) ∈ [0, 1] and 𝗇(𝑠ℎ) = 1. For the addends 𝖫𝗋(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) ∶= 𝖫𝗋
𝖣
(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) in the 

expression (5), and for 𝗋𝑡 ∶= 𝗋(𝑎𝑡|𝑠𝑡−1), 𝑎𝑡 ∈ 𝒂, 𝑠𝑡−1 ∈ 𝒔, the recursion (8) gets the form

𝗏(𝑠𝑡−1) =min
𝗋𝑡∈𝗿 ∫

(𝒔,𝒂)

𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)

× 𝗋(𝑎𝑡|𝑠𝑡−1)[ ln( 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑠𝑡−1)
𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑠𝑡−1)

)
+ 𝗏(𝑠𝑡)

]
d(𝑠𝑡, 𝑎𝑡).

The definition 𝗏(𝑠𝑡) ∶= − ln(𝗇(𝑠𝑡)) and the fact that the pd 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) integrates to one over the states 𝑠𝑡 in the set 𝒔 imply

𝗏(𝑠𝑡−1) =min
𝗋𝑡∈𝗿 ∫

𝒂

𝗋(𝑎𝑡|𝑠𝑡−1)
[
ln
( 𝗋(𝑎𝑡|𝑠𝑡−1)
𝗋i(𝑎𝑡|𝑠𝑡−1)

)

+ ∫
𝒔

𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) ln( 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)
𝗇(𝑠𝑡)𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)

)
d𝑠𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝖽(𝑎𝑡,𝑠𝑡−1)∶=

]
d𝑎𝑡.

The second integral above is the function 𝖽(𝑎𝑡, 𝑠𝑡−1) used in the proposition formulation. The final recursion for the value function 
uses this function and a few elementary manipulations

𝗏(𝑠𝑡−1) = min
𝗋𝑡∈𝗿

[
∫
𝒂

𝗋(𝑎𝑡|𝑠𝑡−1) ln( 𝗋(𝑎𝑡|𝑠𝑡−1)
𝗋o(𝑎𝑡|𝑠𝑡−1)

)
d𝑎𝑡

− ln
(
∫
𝒂

𝗋i(𝑎𝑡|𝑠𝑡−1) exp(−𝖽(𝑎𝑡, 𝑠𝑡−1)) d𝑎𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝗇(𝑠𝑡−1)∶=

)]

=min
𝗋𝑡∈𝗿 ∫

𝒂

𝗋(𝑎𝑡|𝑠𝑡−1) ln( 𝗋(𝑎𝑡|𝑠𝑡−1)
𝗋o(𝑎𝑡|𝑠𝑡−1)

)
d𝑎𝑡 − 𝗏(𝑠𝑡−1).

In the first equality above, just the logarithm ln(𝗇(𝑠𝑡−1)) of the 𝗋(𝑎𝑡|𝑠𝑡−1)-independent normalisation factor 𝗇(𝑠𝑡−1) is added and 
subtracted. Then, KL of the optimised pd 𝗋(𝑎𝑡|𝑠𝑡−1) to 𝗋o(𝑎𝑡|𝑠𝑡−1) (12) of 𝑎𝑡 ∈ 𝒂, conditioned on 𝑠𝑡−1 ∈ 𝒔, appears. It gets its smallest 
5

zero value for 𝗋(𝑎𝑡|𝑠𝑡−1) = 𝗋o(𝑎𝑡|𝑠𝑡−1) and provides the value function 𝗏(𝑠𝑡−1) = − ln(𝗇(𝑠𝑡−1)) ≥ 0. □
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2.2. Mutual relationship of FPD and MDP

Introduction claimed that the FPD tasks strictly extend the class of MDP tasks. This subsection proves this claim and primarily 
points to a “normalisation problem” similar to that faced when formulating the discounted FPD in Sec. 3.

Propositions 2, 3 below motivate the way to the discounted FPD, Sec. 3. They are of an independent interest. Proposition 2 was 
proved in [44]. It shows how FPD reduces to MDP. The novel observation warns that this reduction cannot be directly inverted. 
Proposition 3 slightly refines the claim of [14] that the set of FPD tasks densely extends the set of MDP tasks. Thus, an FPD task can 
be found to each MDP task providing the decision rules arbitrarily close to the MDP-optimal ones.

FPD uses the ideal pd 𝖼i, which is the product (2) of the ideal environment model 𝗆i and the ideal decision rules 𝗋i. Often, the 
agent is unwilling or unable to specify some factors forming them. In this case, it is wise to let FPD to identify these factors with their 
counterparts in 𝖼𝗋. When applied to a decision rule, then this leave-to-the-fate option (LTF, [44]) reads

𝗋i ∶= 𝗋 ⇔ the ideal decision rule equals to the optimised one. (13)

Proposition 2 (FPD under LTF (13) becomes MDP). Under LTF, FPD (4) reduces to MDP with the total, decision-rules-independent,5 loss

𝖫ℎ𝖣(𝑏) ∶=
∑
𝑡∈𝒕

𝖫𝖣(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) ∶=
∑
𝑡∈𝒕

ln
( 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)
𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)

)
. (14)

The MDP-optimal decision rules 𝗋o, assigned to the sum of arbitrary decision-rules-independent partial losses 𝖫(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) (including 𝖫𝖣), 
are deterministic. They generate the minimising arguments 𝑎o(𝑠𝑡−1) in

𝗏(𝑠𝑡−1) ∶= min
𝑎𝑡∈𝒂∫

𝒔

[𝖫(𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1) + 𝗏(𝑠𝑡)]𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) d𝑠𝑡. (15)

The backward functional recursion (15) coincides with the usual dynamic programming [4] and 𝗏(𝑠ℎ) = 0 initiates it.

Proof. Under LTF, decision rules 𝗋 and ideal decision rules 𝗋i cancel in the logarithm used in the definition (4). The minimised KL 
becomes the expectation (given by the closed-loop model 𝖼𝗋 = 𝗆𝗋 (1)) of the total loss 𝖫ℎ

𝖣
(𝑏) (14). The formulation coincides with 

the MDP in which the optimised functional (8) is linear in the optimised 𝗋𝑡. This implies the standard deterministic solution (15), 
[4]. □

Proposition 2 seemingly shows that any MDP, determined by the environment model 𝗆(𝑏) and by its given total loss 𝖫ℎ(𝑏), can be 
seen as a special case of FPD that:

▶ applies LTF (13), and;

▶ uses the ideal environment model 𝗆i of the form

𝗆i(𝑏) ∝𝗆(𝑏) exp
[
− 𝖫ℎ(𝑏)

]
. (16)

This conclusion is invalid as the normalisation factor 𝖭 in (16), guaranteeing the normalisation (3), depends on actions

𝖭(𝑎ℎ,… , 𝑎1) = ∫
𝒔ℎ

𝗆(𝑏) exp
[
− 𝖫ℎ(𝑏)

]
d(𝑠ℎ,… , 𝑠1).

Thus, the choice of the ideal model (16) for LTF (13) leads to the minimisation of

𝖣(𝖼𝗋||𝗆i𝗋) = 𝖤𝗋[𝖫ℎ] + 𝖤𝗋[ln(𝖭)], (17)

instead of the desired minimisation of 𝖤𝗋[𝖫ℎ] made within MDP. The good news is that any MDP task, given by an environment model 
𝗆(𝑏) and a total loss 𝖫ℎ(𝑏), 𝑏 ∈ 𝒃, can be arbitrarily well approximated by a specific FPD task.

Proposition 3 (FPD Strictly and Densely Extends MDP).

1. There are FPD tasks having no MDP equivalent.

2. Any MDP with a decision-rules-independent total loss 𝖫ℎ and stabilising decision rules 𝗋 making 𝖤𝗋[𝖫ℎ] <∞ can be approximated to an 
arbitrary precision by an FPD task with the same environment model 𝗆(𝑏) and the ideal pd

𝖼i𝜆(𝑏) ∶=
�̃�(𝑏) exp[−𝖫ℎ(𝑏)∕𝜆]

∫
𝒃
�̃�(𝑏) exp[−𝖫ℎ(𝑏)∕𝜆] d𝑏

. (18)

It is given by 𝜆 > 0 and a pd �̃�(𝑏) > 0 on 𝒃 making
6

5 It explicitly depends on the behaviour realisation, not on the decision rules that influenced it.
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𝑖) the pd 𝖼i𝜆(𝑏) (18) a proper one with ∫
𝒃

�̃�(𝑏) exp[−𝖫ℎ(𝑏)∕𝜆] d𝑏 <∞

𝑖𝑖) 𝖣(𝗆𝗋||𝑐) <∞ for deterministic decision rules 𝗋 with 𝖤𝗋[𝐿ℎ] <∞. (19)

Proof. ad 1. The randomised nature of the FPD optimal decision rules, see Proposition 1, implies that they cannot be optimal for 
any MDP with a unique minimiser 𝑎o(𝑠𝑡−1) in dynamic programming, see Proposition 2.

ad 2. The following decision rules 𝗋o, 𝗋o𝜆 ∈ 𝗿 are well-defined, for 𝜆 > 0 and the pd �̃�(𝑏) > 0 used in (18),

𝗋o ∈Argmin
𝗋∈𝗿

𝖤𝗋[𝖫ℎ], which guarantees 𝖤𝗋
o [𝖫ℎ] ≤ 𝖤𝗋[𝖫ℎ] <∞

𝗋o𝜆 ∈Argmin
𝗋∈𝗿

[
𝖤𝗋[𝖫ℎ] + 𝜆𝖣(𝗆𝗋||�̃�)] =

⏟⏟⏟
(18)

Argmin
𝗋∈𝗿

𝖣(𝗆𝗋||𝖼i𝜆). (20)

The joint pd 𝖼i𝜆(𝑏) (18) exists due to the assumption (19) 𝑖). The definitions (20) of 𝗋o and 𝗋o𝜆 imply the next inequalities for the 
induced expected losses

0

(20)
⏞⏞⏞≤ 𝖤𝗋

o𝜆 [𝖫ℎ] − 𝖤𝗋
o [𝖫ℎ]

𝜆𝖣(∙||∙)≥0
⏞⏞⏞≤ 𝖤𝗋

o𝜆 [𝖫ℎ] + 𝜆𝖣(𝗆𝗋o𝜆||�̃�) − 𝖤𝗋
o [𝖫ℎ]

(20)
⏞⏞⏞≤ 𝖤𝗋

o [𝖫ℎ] + 𝜆𝖣(𝗆𝗋o||�̃�) − 𝖤𝗋
o [𝖫ℎ] = 𝜆𝖣(𝗆𝗋o||�̃�)→𝜆→0+ 0.

The assumption 𝑖𝑖) in (19) yields 𝖣(𝗆𝗋o||�̃�) < ∞. Thus, the expected loss 𝖤𝗋o𝜆 [𝖫ℎ], for the FPD-optimal decision rules 𝗋o𝜆 (20), is 
arbitrarily close (for 𝜆 → 0+) to the expected loss 𝖤𝗋o [𝖫ℎ] with the optimal decision rules 𝗋o (20). □

Remark 3 (On Generalisation of Proposition 3). The proof of Proposition 3 adds the positive term 𝜆𝖣(∙||∙). 𝜆-multiple of another f-
divergence [42], say 𝛼-divergence [45,46], could be used to prove that the gained FPD generalisation, see Remark 2, densely extends 
MDP. The extension will be strict due to the non-linearity of the optimised criterion with respect to the decision rules making the 
optimal decision rules randomised. □

3. Main result: discounted FPD

First, the quest for the discounted FPD is shown to be nontrivial. Then, the presentation provides the DM formulation leading to 
the discounted FPD.

3.1. Unsuccessful attempt

The additive expression of the optimised KL, employing the expectation functional 𝖤𝗋[∙] introduced in (6),

𝖣(𝖼𝗋||𝖼i) = 𝖤𝗋
[∑
𝑡∈𝒕

ln
( 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑠𝑡−1)
𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑠𝑡−1)

)]
(21)

together with LTF (13), hint a way to the discounted FPD. It seems that it suffices to apply a partial LTF to factors forming the ideal 
closed-loop model and to use the weighted ideal pd

𝖼i𝗐(𝑏) ∶=
∏
𝑡∈𝒕

𝗇𝗋𝗐(𝑠𝑡−1)−1[𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑠𝑡−1)]𝗐(𝑠𝑡−1)
× [𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑠𝑡−1)]1−𝗐(𝑠𝑡−1)

𝗇𝗋𝗐(𝑠𝑡−1) ∶= ∫
(𝒔,𝒂)

[𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑠𝑡−1)]𝗐(𝑠𝑡−1)
× [𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑠𝑡−1)]1−𝗐(𝑠𝑡−1) d(𝑠𝑡, 𝑎𝑡) (22)

with weights 𝗐 ∶=
(
𝗐(𝑠𝑡−1) ∈ [0, 1], 𝑠𝑡−1 ∈ 𝒔

)
𝑡∈𝒕. It uses the ideal pds 𝗆i(𝑏), 𝗋i(𝑏) from (2). Inserting (22) into (21) in the place of 𝖼i(𝑏)

yields

𝖣(𝖼𝗋||𝖼i𝗐) = 𝖤𝗋
[∑
𝑡∈𝒕

𝗐(𝑠𝑡−1) ln
( 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑠𝑡−1)
𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑠𝑡−1)

)
+ ln(𝗇𝗋𝗐(𝑠𝑡−1))

]
. (23)

Above, the first addend after the summation sign has the desired form of the weighted partial loss but the unwanted logarithm of the 
normalisation 𝗇𝗋𝗐(𝑠𝑡−1) appears as the second addend. Thus, the same problem as that met in connection with Proposition 2 (17), 
7

appears: careless handling of the ideal pd changes the optimised functional in an undesired way.
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3.2. Successful approach

This part provides the remedy of the above problem. It formulates and solves the relevant FPD.

The adopted approach stems from the recognition that discounting partially gives up the full optimisation in order to avoid amplifying 
errors caused either by an imprecise model [31] and (or) imprecisely quantified aims [29].

Here, this “giving-up the full optimisation” is achieved by introducing a random optional pointer. In each optimisation epoch, it 
decides whether the selected decision rule should take the current partial loss into account or not. The LTF option allows to neglect 
the partial loss, see Sec. 2.2. It will be shown that the probability of the employed optimisation acts as the discounting rate. The found 
optimal solution exhibits the expected properties of DM under discounting.

Let us proceed in the outlined way. Let us introduce optional random pointers 𝑝𝑡 ∈ 𝒑 ∶= {0, 1}, 𝑡 ∈ 𝒕, influencing the factors of the 
constructed ideal pd 𝖼i(𝑏) (2) in the way leading to the discounted FPD

𝗆i(𝑠𝑡|𝑎𝑡, 𝑝𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑝𝑡, 𝑠𝑡−1) ∶=
{

𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑠𝑡−1) if 𝑝𝑡 = 1
𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑝𝑡, 𝑠𝑡−1) if 𝑝𝑡 = 0 . (24)

The value 𝑝𝑡 = 1 says that the 𝑡-th addend in (21) is to be optimised and 𝑝𝑡 = 0 omits the addend from the optimisation.

Pointers (𝑝𝑡)𝑡∈𝒕 extend the behaviour 𝑏 ∈ 𝒃 to 𝑏 ∶= (𝑠𝑡, 𝑎𝑡, 𝑝𝑡)𝑡∈𝒕. The closed-loop model of the extended behaviour becomes

𝖼𝗋𝗐(𝑏) ∶=
∏
𝑡∈𝒕

𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑝𝑡, 𝑠𝑡−1)𝗐𝑝𝑡 (𝑠𝑡−1)(1 −𝗐(𝑠𝑡−1))1−𝑝𝑡 , with

𝗐(𝑠𝑡−1) ∶= 𝗋(𝑝𝑡 = 1|𝑠𝑡−1) ∈ [0,1]. (25)

The form (25) uses the assumption that 𝑠𝑡−1 is the state, i.e. the pointer 𝑝𝑡 brings no information regarding the state transition

𝗆(𝑠𝑡|𝑎𝑡, 𝑝𝑡, 𝑠𝑡−1) ∶=𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1). (26)

The assumption (26) of no influence of 𝑝𝑡 on 𝑠𝑡, if 𝑎𝑡, 𝑠𝑡−1 are given, is a version of natural conditions of control [39].

The pointer 𝑝𝑡 ∈ {1, 0} should ideally behave according to a chosen ideal pd 𝗐i(𝑠𝑡−1) ∶= 𝗋i(𝑝𝑡 = 1|𝑠𝑡−1) ∈ [0, 1], 𝗋i(𝑝𝑡 = 0|𝑠𝑡−1) =
1 −𝗐i(𝑠𝑡−1). The ideal pd on the extended behaviour 𝑏 ∈ 𝒃 then gets the form implied by (24)

𝖼i𝗐
i (𝑏) ∶=

∏
𝑡∈𝒕

𝗆i(𝑠𝑡|𝑎𝑡, 𝑝𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑝𝑡, 𝑠𝑡−1)𝗋i(𝑝𝑡|𝑠𝑡−1) =∏
𝑡∈𝒕

[
𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)

× 𝗋i(𝑎𝑡|𝑠𝑡−1)𝗐i(𝑠𝑡−1)
]𝑝𝑡 [𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑝𝑡, 𝑠𝑡−1)(1 −𝗐i(𝑠𝑡−1))

]1−𝑝𝑡 . (27)

Using (25), (27) and the definitions of 𝗐(𝑠𝑡−1), 𝗐i(𝑠𝑡−1), the optimised KL reads

𝖣(𝖼𝗋𝗐||𝖼i𝗐i ) = 𝖤𝗋
[∑
𝑡∈𝒕

ln
( 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑝𝑡, 𝑠𝑡−1)𝗋(𝑝𝑡|𝑠𝑡−1)
𝗆i(𝑠𝑡|𝑎𝑡, 𝑝𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑝𝑡, 𝑠𝑡−1)𝗋i(𝑝𝑡|𝑠𝑡−1)

)]

= 𝖤𝗋
[∑
𝑡∈𝒕

ln
(𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑝𝑡 = 1, 𝑠𝑡−1)𝗐(𝑠𝑡−1)

𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑠𝑡−1)𝗐i(𝑠𝑡−1)

)
𝗐(𝑠𝑡−1)

+ ln
( 1 −𝗐(𝑠𝑡−1)
1 −𝗐i(𝑠𝑡−1)

)
(1 −𝗐(𝑠𝑡−1))

]
.

By separating the weights from the first logarithm the KL of the weights-vector to its ideal counterpart appears. The overall KL gets 
the discounted form

𝖣(𝖼𝗋𝗐||𝖼i𝗐i ) = 𝖤𝗋
[∑
𝑡∈𝒕

𝗐(𝑠𝑡−1) ln
(𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋(𝑎𝑡|𝑝𝑡 = 1, 𝑠𝑡−1)

𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)𝗋i(𝑎𝑡|𝑠𝑡−1)
)

+𝖣
(
[𝗐(𝑠𝑡−1),1 −𝗐(𝑠𝑡−1)]

|||||| [𝗐i(𝑠𝑡−1),1 −𝗐i(𝑠𝑡−1)]
)]

. (28)

The possible choice 𝗋i(𝑝𝑡 = 1|𝑠𝑡−1) ∶= 𝗐i(𝑠𝑡−1) ∶= 𝗐(𝑠𝑡−1) = 𝗋(𝑝𝑡 = 1|𝑠𝑡−1) mimics LTF introduced in (13). It eliminates KL diver-

gence of the rule generating the pointer 𝗋(𝑝𝑡|𝑠𝑡−1) to 𝗋i(𝑝𝑡|𝑠𝑡−1). Then, (28) gives the discounted FPD with the weight 𝗐(𝑠𝑡−1) ∶= 𝗋(𝑝𝑡 =
1|𝑠𝑡−1) =𝗐i(𝑠𝑡−1).

Generally, the pointer-generating rule 𝗋(𝑝𝑡|𝑠𝑡−1) ∶=𝗐(𝑠𝑡−1)𝑝𝑡 (1 −𝗐(𝑠𝑡−1))1−𝑝𝑡 can be optimised, as well. It suffices to apply Propo-

sition 2 for finding the optimal rules 𝗋o(𝑎𝑡, 𝑝𝑡|𝑠𝑡−1) = 𝗋o(𝑎𝑡|𝑝𝑡, 𝑠𝑡−1)𝗋o(𝑝𝑡|𝑠𝑡−1) for the extended actions (𝑎𝑡, 𝑝𝑡). The optimal weight 
𝗐o(𝑠𝑡−1) = 𝗋o(𝑝𝑡 = 1|𝑠𝑡−1) is obtained by integrating 𝗋o(𝑎𝑡, 𝑝𝑡|𝑠𝑡−1) over the actions 𝑎𝑡 ∈ 𝒂.

Proposition 4 (Main Result: Discounted FPD). Let the closed-loop model

𝖼𝗋𝗐(𝑏) (25) operate on the extended behaviour 𝑏 made of the preserved states 𝑠𝑡 ∈ 𝒔 (26) and of the extended actions (𝑎𝑡, 𝑝𝑡) ∈ (𝒂, {0, 1}), 
𝑡 ∈ 𝒕. Let the ideal pd 𝖼i𝗐i (𝑏) have the form (27). Then (28) holds. It implies that:

▶ the term −𝖤𝗋[ln(𝗇𝗋𝗐(𝑠𝑡−1))], as seen in (23), does not appear;
8

▶ the extra KL in (28) expresses the proximity of 𝗐(𝑠𝑡−1) to 𝗐i(𝑠𝑡−1);
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▶ the optimal rule 𝗋o(𝑎𝑡|𝑝𝑡, 𝑠𝑡−1) and the weight (the pointer-generating rule)

𝗋o(𝑝𝑡 = 1|𝑠𝑡−1) ∶=𝗐o(𝑠𝑡−1) evaluate as follows

𝗋o(𝑎𝑡|𝑝𝑡 = 1, 𝑠𝑡−1) =
𝗋i(𝑎𝑡|𝑠𝑡−1) exp[−𝖽(𝑎𝑡, 𝑠𝑡−1)]

𝗇i(𝑠𝑡−1)

𝗇i(𝑠𝑡−1) ∶= ∫
𝒂

𝗋i(𝑎𝑡|𝑠𝑡−1) exp[−𝖽(𝑎𝑡, 𝑠𝑡−1)] d𝑎𝑡
𝖽(𝑎𝑡, 𝑠𝑡−1) ∶= ∫

𝒔

𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) ln [ 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)
𝗇(𝑠𝑡)𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)

]
d𝑠𝑡.

𝗋o(𝑎𝑡|𝑝𝑡 = 0, 𝑠𝑡−1) selects 𝑎o(𝑠𝑡−1) ∈ Argmin
𝑎𝑡∈𝒂

𝖪(𝑎𝑡, 𝑠𝑡−1) with

𝖪(𝑎𝑡, 𝑠𝑡−1) ∶= ∫
𝒔

𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) ln [ 1
𝗇(𝑠𝑡)

]
d𝑠𝑡

𝗇(𝗌𝑡−1) = 𝗇i(𝑠𝑡−1)𝗐i(𝑠𝑡−1) + 𝗄(𝑠𝑡−1)(1 −𝗐i(𝑠𝑡−1)),

𝗄(𝑠𝑡−1) ∶= exp[−𝖪(𝑎o(𝑠𝑡−1), 𝑠𝑡−1)],

𝗐o(𝑠𝑡−1) =
𝗇i(𝑠𝑡−1)𝗐i(𝑠𝑡−1)

𝗇i(𝑠𝑡−1)𝗐i(𝑠𝑡−1) + 𝗄(𝑠𝑡−1)(1 −𝗐i(𝑠𝑡−1))
.

This backward recursion, 𝑡 = ℎ, ℎ − 1, … , 1, is initiated by 𝗇(𝑠ℎ) = 𝗇i(𝑠ℎ) = 1.6

Proof. The optimal decision rules, dealing with extended actions 𝑎𝑡, 𝑝𝑡, have to be found. Proposition 1 provides the optimal rules

𝖽(𝑎𝑡, 𝑝𝑡, 𝑠𝑡−1)

(11)
⏞⏞⏞

= ∫
𝒔

𝗆(𝑠𝑡|𝑎𝑡, 𝑝𝑡, 𝑠𝑡−1) ln [ 𝗆(𝑠𝑡|𝑎𝑡, 𝑝𝑡, 𝑠𝑡−1)
𝗇(𝑠𝑡)𝗆i(𝑠𝑡|𝑎𝑡, 𝑝𝑡, 𝑠𝑡−1)

]
d𝑠𝑡

(24),(26)
⏞⏞⏞

= 𝑝𝑡 ∫
𝒔

𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) ln [ 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)
𝗇(𝑠𝑡)𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)

]
d𝑠𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝖽(𝑎𝑡,𝑠𝑡−1)

+ (1 − 𝑝𝑡)∫
𝒔

𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) ln [ 1
𝗇(𝑠𝑡)

]
d𝑠𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝖪(𝑎𝑡,𝑠𝑡−1)∶=

. (29)

The weight 𝗐i(𝑠𝑡−1) influences the value-function 𝗏(𝑠𝑡−1) = − ln(𝗇(𝑠𝑡−1)) (11) via

𝗇(𝑠𝑡−1) = ∫
(𝒂,𝒑)

𝗋i(𝑎𝑡, 𝑝𝑡|𝑠𝑡−1) exp[−𝖽(𝑎𝑡, 𝑝𝑡, 𝑠𝑡−1)] d(𝑎𝑡, 𝑝𝑡)
(24),(29)
⏞⏞⏞

= 𝗐i(𝑠𝑡−1)∫
𝒂

𝗋i(𝑎𝑡|𝑠𝑡−1) exp[−𝖽(𝑎𝑡, 𝑠𝑡−1)] d𝑎𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝗇i(𝑠𝑡−1)∶=

+ (1 −𝗐i(𝑠𝑡−1))∫
𝒂

𝗋o(𝑎𝑡|𝑝𝑡 = 0, 𝑠𝑡−1) exp
[
− 𝖪(𝑎𝑡, 𝑠𝑡−1)

]
d𝑎𝑡.

LTF applied for 𝑝𝑡 = 0 implies that the optimal decision rule is deterministic and selects

𝑎o(𝑠𝑡−1) ∈ Argmin
𝑎𝑡∈𝒂

𝖪(𝑎𝑡, 𝑠𝑡−1) = Argmin
𝑎𝑡∈𝒂∫

𝒔

𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) ln [ 1
𝗇(𝑠𝑡)

]
d𝑠𝑡.

The recursion for the function 𝗇(𝑠𝑡−1) then gets its final form
9

6 𝖪 resembles Kerridge’s inaccuracy [47] and 𝗄 is its transformation.
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𝗇(𝑠𝑡−1) ∶=𝗐i(𝑠𝑡−1)𝗇i(𝑠𝑡−1) + (1 −𝗐i(𝑠𝑡−1))𝗄(𝑠𝑡−1) with

𝗄(𝑠𝑡−1) ∶= exp[−𝖪(𝑎o(𝑠𝑡−1), 𝑠𝑡−1)].

The optimal rule generating the extended actions (𝑎𝑡, 𝑝𝑡) reads

𝗋o(𝑎𝑡, 𝑝𝑡|𝑠𝑡−1)
(12)

⏞⏞⏞
=

𝗋i(𝑎𝑡, 𝑝𝑡|𝑠𝑡−1) exp[−𝖽(𝑎𝑡, 𝑝𝑡, 𝑠𝑡−1)]
𝗇(𝑠𝑡−1)

(30)

=
𝑝𝑡𝗋

i(𝑎𝑡|𝑠𝑡−1) exp[−𝖽(𝑎𝑡, 𝑠𝑡−1)]𝗐i(𝑠𝑡−1)
𝗇(𝑠𝑡−1)

+
(1 − 𝑝𝑡)𝗋o(𝑎𝑡|𝑝𝑡 = 0, 𝑠𝑡−1) exp[−𝖪(𝑎𝑡, 𝑠𝑡−1)](1 −𝗐i(𝑠𝑡−1))

𝗇(𝑠𝑡−1)
.

The second equality uses the chain rule 𝗋i(𝑎𝑡, 𝑝𝑡|𝑠𝑡−1) = 𝗋i(𝑎𝑡|𝑝𝑡, 𝑠𝑡−1)𝗋i(𝑝𝑡|𝑠𝑡−1) and the definition 𝗐i(𝑠𝑡−1) = 𝗋i(𝑝𝑡 = 1|𝑠𝑡−1).
Let us consider 𝑝𝑡 = 1. The marginalisation of (30) yields

𝗋o(𝑝𝑡 = 1|𝑠𝑡−1) ∶=𝗐o(𝑠𝑡−1) =
𝗇i(𝑠𝑡−1)
𝗇(𝑠𝑡−1)

𝗐i(𝑠𝑡−1)

=
𝗇i(𝑠𝑡−1)𝗐i(𝑠𝑡−1)

𝗇i(𝑠𝑡−1)𝗐i(𝑠𝑡−1) + 𝗄(𝑠𝑡−1)(1 −𝗐i(𝑠𝑡−1))
, while

𝗋o(𝑎𝑡|𝑝𝑡 = 1, 𝑠𝑡−1) ∝ 𝗋o(𝑎𝑡, 𝑝𝑡 = 1|𝑠𝑡−1) implies

𝗋o(𝑎𝑡|𝑝𝑡 = 1, 𝑠𝑡−1) =
𝗋i(𝑎𝑡|𝑠𝑡−1) exp[−𝖽(𝑎𝑡, 𝑠𝑡−1)]

𝗇i(𝑠𝑡−1)
.

It remains to find explicitly the deterministic optimal decision rule for 𝑝𝑡 = 0. A direct check confirms that the equality

𝗋o(𝑎𝑡|𝑝𝑡 = 0, 𝑠𝑡−1) =
𝗋o(𝑎𝑡, 𝑝𝑡 = 0|𝑠𝑡−1)
𝗋(𝑝𝑡 = 0|𝑠𝑡−1)

is met for any 𝑎o(𝑠𝑡−1) minimising 𝖪(𝑎𝑡, 𝑠𝑡−1). □

Remark 4 (On Proposition 4). ▶ For 𝗐i(𝑠𝑡−1) = 1, the last addend in (28) is finite only for

𝗐o(𝑠𝑡−1) =𝗐i(𝑠𝑡−1) = 1 as otherwise 𝖣
(
[𝗐(𝑠𝑡−1),1 −𝗐(𝑠𝑡−1)]

|||||| [1,0]
)

=𝗐(𝑠𝑡−1) ln(𝗐(𝑠𝑡−1)) +(1 −𝗐(𝑠𝑡−1)) ln
(
(1 −𝗐(𝑠𝑡−1))∕0

)
=∞. Thus, the non-discounted FPD, see Proposition 1, recovers for 𝗐i(𝑠𝑡−1) =

1.

▶ The optimal rule 𝗋o(𝑎𝑡|𝑝𝑡 = 1, 𝑠𝑡−1) coincides with the rule in the non-discounted FPD, see Proposition 1. Discounting influences 
the value function via 𝗇(𝑠𝑡−1) as expected. □

4. Illustrative experiment

The example illustrates that the designed, randomly switching off, the optimisation leads to the discounted FPD that counteracts 
adverse consequences of imprecise modelling and acts as expected and desirable.

The simulation had three state values 𝑠 ∈ 𝒔 ∶= {1, 2, 3} and started from 𝑠0 = 1. The environment was stimulated by actions with 
two values 𝑎 ∈ 𝒂 ∶= {1, 2} generated by stationary discounted FPD-optimal decision rules applied up to the horizon ℎ = 200. Table 1

describes the used ideal environment model and the ideal decision rule, both time-invariant. The FPD ran with the environment model 
𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) ∝√

𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1). The modelling error was introduced by simulating the environment with the transition pd derived 
from 𝗆(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) by swapping the pd values with entries (𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) = (3|2, 2) and (𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) = (2|2, 3).

Fig. 1 shows the expected influence of the discounting by comparing the cases with 𝗐i(𝑠𝑡−1) = 0.4 and 𝗐i(𝑠𝑡−1) = 1.0 (no discount-

ing). The strongly preferred state 𝑠𝑡 = 3 is reached more often with the discounting rate 𝗐i(𝑠𝑡−1) = 0.4.

All simulation options are presented to allow a cross-check of our results. Their choice has no deeper meaning. It just fits the 
illustrative purpose.

The practical choice of the discounting rate is non-trivial and the discounted FPD is expected to help in this respect. It is necessary 
to conduct a further applied research. Thesis [35] reflects its current state. At present, it is too soon for a meaningful comparative 
study. It will be done and published elsewhere after combining the derived decision rules with on-line learning [48] and the related 
10

quantification of the ideal closed-loop model [21].
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Table 1

The Ideal Environment Model and the Ideal Decision Rule.

𝗆i(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) 𝑎𝑡 = 1 𝑎𝑡 = 2

𝑠𝑡 = 1, 𝑠𝑡−1 = 1 0.316 0.043

𝑠𝑡 = 1, 𝑠𝑡−1 = 2 0.307 0.080

𝑠𝑡 = 1, 𝑠𝑡−1 = 3 0.377 0.016

𝑠𝑡 = 2, 𝑠𝑡−1 = 1 0.263 0.053

𝑠𝑡 = 2, 𝑠𝑡−1 = 2 0.373 0.069

𝑠𝑡 = 2, 𝑠𝑡−1 = 3 0.330 0.027

𝑠𝑡 = 3, 𝑠𝑡−1 = 1 0.421 0.904

𝑠𝑡 = 3, 𝑠𝑡−1 = 2 0.320 0.851

𝑠𝑡 = 3, 𝑠𝑡−1 = 3 0.292 0.957

𝗋i(𝑎𝑡|𝑠𝑡−1) 𝑎𝑡 = 2

𝑠𝑡−1 = 1 0.933

𝑠𝑡−1 = 2 0.930

𝑠𝑡−1 = 3 0.957

Fig. 1. The demonstration of the discounting influence under mismodelling. The left panel reflects the discounting with 𝗐i(𝑠𝑡−1) = 0.4, the right one reflects no 
discounting, 𝗐i(𝑠𝑡−1) = 1.0. Recall: the most desired state is 𝑠 = 3 and the most desired action is 𝑎 = 2.

5. Concluding remarks

The paper pushes further on the support of DM of agents exploiting FPD and thus MDP. It offers them its novel discounted 
version, Proposition 4. Its usefulness relies on an operational specification of the ideal weights {𝗐i(𝑠𝑡−1)}𝑡∈𝒕. The unified, pd-based, 
formulation of FPD, opens a direct way of their choice.

The weights act as forgetting rates in estimation [32]. They can directly be estimated using Bayesian estimation paradigm, at least 
on discrete grid [33]. The probabilistic interpretation, so useful in preference elicitation [49,50], then allows us to use such estimates 
as data-dependent choices of the discounting weight.

The running research [35] tries to:

▶ relate tightly the discounting to forgetting;

▶ admit different weights to the environment models and decision rules;

▶ find the conditions under which the designed decision rules converge and stabilise closed loop [13] if the horizon is unbounded.

Authors will be happy if the paper will encourage readers to convert the presented advanced theory into a practically useful tool.
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