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A B S T R A C T

This paper characterizes dynamic linkages arising from shocks with heterogeneous degrees of persistence. Using
frequency domain techniques, we introduce measures that identify smoothly varying links of a transitory and
persistent nature. Our approach allows us to test for statistical differences in such dynamic links. We document
substantial differences in transitory and persistent linkages among US financial industry volatilities, argue that
they track heterogeneously persistent sources of systemic risk, and thus may serve as a useful tool for market
participants.
1. Introduction

Firms and economic units create connections through a variety
of channels (see e.g. Garvey et al., 2015; Herskovic et al., 2020;
Richmond, 2019).1 These connections are dynamic and vary over time
with changing states of an economy, as both stable and uncertain
periods are associated with different shocks. At the same time, an
increasing number of authors argue that economic variables are driven
by shocks that influence their future value with heterogeneous levels
of persistence (Bandi, Chaudhuri, Lo, & Tamoni, 2021; Dew-Becker &
Giglio, 2016). Connectedness and the subsequent network structures
that emerge from these relationships are central to risk measurement
and management, as well as to understanding macroeconomic risks that
emerge over business cycles.

The main objective of this paper is to introduce measures capable
of identifying the smoothly varying persistence structure of such link-
ages. As an interesting and important example, we provide an analysis
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1 Richmond (2019) measures connections through consumption growth. Garvey, Carnovale, and Yeniyurt (2015) tracks connections that describe the supply
chain, and Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2020) studies network connections between firm volatilities.

2 Some propose measures derived from correlations or coefficient estimates (see e.g. Calabrese & Osmetti, 2019; Engle & Kelly, 2012; Geraci & Gnabo, 2018),
while others track links between individual companies and broader market/economic movements (see e.g. Acharya, Engle, & Richardson, 2012; Acharya, Pedersen,
Philippon, & Richardson, 2017; Adrian & Brunnermeier, 2016) .

3 The subsequent literature has widely adopted the Diebold and Yilmaz (2014) approach to address a variety of issues in finance and economics (e.g. Baruník,
Bevilacqua, & Tunaru, 2020; Yang & Zhou, 2017).

of US sectors, with a focus on the financial sector, and identify a
heterogeneous persistence structure of systemic risk.

There are a variety of ways to measure connectedness.2 In partic-
ular, Diebold and Yilmaz (2014) provides a unifying framework for
measuring connectedness and other network properties using variance
decompositions from an approximate model. Variance decompositions
track how shocks affect the future variation of variables within a
system, and are therefore a natural choice for inferring network con-
nectedness from data.3 However, the time evolution of such measures
typically involves the estimation of static models that require co-
variance stationarity and roll through a time series of data. More
importantly, such measures aggregate shocks and mask the persistence
structures of a network.

In this paper, we provide the tools to identify dynamic connect-
edness and other key network measures from variance decompositi-
ons. We argue that different levels of connectedness can form around
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transitory and persistent components of shocks within a system of
financial data. To capture the time-varying nature of such transi-
tory and persistent components of connectedness, we further consider
time-varying variance decomposition matrices from vector autoregres-
sions (VARs) as dynamic adjacency matrices. To identify the persis-
tence structure of the network, we propose to use localized spectral
decompositions4 of variance error forecasts.

The main contribution of our paper is to provide a novel framework
for measuring dynamic relationships that relate to different horizons of
interest in multivariate time series models. We use a locally stationary
Bayesian time-varying parameter VAR model, which is readily available
in high-dimensional settings. We also develop a test for differences in
connectedness over different horizons and show how to infer differ-
ences over time. We provide Monte Carlo evidence that our measures
are able to reliably track connections from different data generating
processes (DGPs), including those that are non-Gaussian. Finally, we
make computationally efficient packages DynamicNets.jl in JU-
LIA and DynamicNets in MATLAB that allows one to obtain our
measures on data the researcher desires.5

Our approach provides a solution to the problems of using rolling
windows (see e.g. Demirer, Diebold, Liu, & Yilmaz, 2018) that does not
suffer from dimensionality issues or inference problems. The Bayesian
nature of our framework incorporates prior shrinkage and provides in-
formation about estimation uncertainty from the posterior distribution
of the connectedness measures. This is in sharp contrast to conventional
studies that only provide point estimates and rely on bootstrapping for
confidence intervals. Our measures are also readily available for ap-
plications with large data systems. This extends the pairwise approach
in Geraci and Gnabo (2018) to study linkages between firms.

The linkages that form over different horizons with heterogeneous
persistence are important for a number of reasons. First, economic
theory suggests that the marginal utility of agents’ preferences depends
on cyclical components of consumption (see e.g. Bandi & Tamoni, 2017;
Giglio, Maggiori, & Stroebel, 2015) and also on investment horizons in
their risk attitudes (Dew-Becker & Giglio, 2016). Such behaviour can
be observed, for example, under myopic loss aversion, where an agent’s
decision depends on the valuation horizon.

Second, unanticipated shocks or news have the capacity to alter
these preferences and can therefore generate transitory and persistent
linkages of different strengths. For example, a shock that has an impact
at longer horizons may reflect permanent changes in expectations of fu-
ture price movements. Such a shock may lead to a permanent change in
a firm’s future dividend payments (Balke & Wohar, 2002). Conversely, a
shock that affects shorter horizons may suggest temporary changes in
future price movements. For example, suppose that the shock relates
only to a change in an upcoming dividend payment. This would likely
result in a very short term change, reflecting the transitory nature of
the news.

Third, firms have different short-run and long-run objectives, and
investors view short-run and long-run risks differently (see e.g. Drech-
sler & Yaron, 2011; Gerrard, Kyriakou, Nielsen, & Vodička, 2022).
This behaviour motivates the long-run risk asset pricing literature
pioneered by Bansal, Kiku, and Yaron (2010), Bansal and Yaron (2004).
The implication here is that investment horizons may be a source of
systematic risk that investors demand compensation for (contributions
on this topic include e.g. Brennan & Zhang, 2018; Chaudhuri & Lo,
2019).

4 Note that frequency domain techniques are useful tools for denois-
ng (Haven, Liu, & Shen, 2012; Sun & Meinl, 2012) and forecasting (Barunik,
rehlik, & Vacha, 2016; Sévi, 2014) financial time series.

5 The packages are available at https://github.com/barunik/DynamicNets.jl
nd https://github.com/ellington/DynamicNets
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Identifying network structures that form due to idiosyncratic shocks
is also relevant because they can determine aggregate fluctuations (Ace-
moglu, Carvalho, Ozdaglar, & Tahbaz-Salehi, 2012). These links be-
tween individual or firm-level entities create systemic risks for sec-
tors and the economy as a whole (Acemoglu, Ozdaglar, & Tahbaz-
Salehi, 2017; Billio, Getmansky, Lo, & Pelizzon, 2012). Such risks drive
changes in uncertainty, which can be key factors in business cycles
and financial distress (Bloom, Floetotto, Jaimovich, Saporta-Eksten, &
Terry, 2018). Gabaix (2011) shows that sectoral co-movements are
salient features of business cycles. Meanwhile, Atalay (2017) finds that
the lion’s share of variation in output growth is due to idiosyncratic
industry-level shocks.

However, an understanding of the potential longevity of risks aris-
ing from these linkages and their importance in driving financial tur-
moil or business cycles is incomplete. We show how our approach
provides measures of transitory and persistent linkages using the daily
realized firm-level volatilities of S&P500 constituents. We classify the
constituents into their eleven main sectors according to the Global In-
dustry Classification Standard (GICS) and measure network connections
from the transitory and persistent components of volatility shocks.

Our empirical results document substantial heterogeneities in tran-
sient and persistent measures of connectedness that reveal the nature
of systemic risks arising from networks. Specifically, we document:
(i) spikes in persistent network connectedness when long-lasting fi-
nancial and economic events occur; and (ii) statistically significant
differences between transitory and persistent network connectedness
across sectors. Our network measures can serve as an online monitoring
tool for sectoral uncertainty in markets of interest to macroprudential
supervisors and investors alike.

The rest of the paper proceeds as follows. Section 2 derives our
measures from locally stationary processes, discusses estimation, and
proposes a test procedure for statistical differences in transitory and
persistent connectedness. Section 3 provides Monte Carlo evidence that
our measures are able to reliably track linkages and correctly identify
statistical differences. In Section 4, we examine the links between
firm-level volatilities of S&P500 sector constituents and assess the
information content of sector connectedness measures beyond leading
measures of uncertainty. Finally, Section 5 concludes.

2. Measuring transitory and persistent connections

Here we show how one can measure connectedness using the time-
varying spectral decompositions. Our measures of connectedness are
based on locally stationary processes. This assumes that the process is
approximately stationary over a short time interval, which allows us to
incorporate time variation into our analysis. This in turn allows us to
construct our measures of frequency-dependent, time-varying network
connectedness.

Formally, consider a doubly indexed 𝑁-variate time series
(𝑿𝑡,𝑇 )1≤𝑡≤𝑇 ,𝑇∈N with components 𝑿𝑡,𝑇 = (𝑿1

𝑡,𝑇 ,… ,𝑿𝑁
𝑡,𝑇 )

⊤ that describe
all variables in an economy. Here 𝑡 refers to a discrete time index
and 𝑇 is an additional index indicating the sharpness of the local
approximation of the time series (𝑿𝑡,𝑇 )1≤𝑡≤𝑇 ,𝑇∈N by a stationary one.
Coarsely speaking, we can consider (𝑿𝑡,𝑇 )1≤𝑡≤𝑇 ,𝑇∈N to be a weakly lo-
ally stationary process if, for a large 𝑇 , given a set 𝑆𝑇 of sample indices
uch that 𝑡∕𝑇 ≈ 𝑢 over 𝑡 ∈ 𝑆𝑇 , the sample (𝑿𝑡,𝑇 )𝑡∈𝑆𝑇

approximates the
ample of a weakly stationary time series depending on the rescaled
ocation 𝑢. Note that 𝑢 is a continuous time parameter referred to as
he rescaled time index, and 𝑇 is interpreted as the number of available
bservation, hence 1 ≤ 𝑡 ≤ 𝑇 and 𝑢 ∈ [0, 1], see Dahlhaus (1996) for
urther details.

We assume that the economy follows a locally stationary TVP-VAR
f lag order 𝑝 as
𝑡,𝑇 = 𝜱1(𝑡∕𝑇 )𝑿𝑡−1,𝑇 +⋯ +𝜱𝑝(𝑡∕𝑇 )𝑿𝑡−𝑝,𝑇 + 𝝐𝑡,𝑇 , (1)

https://github.com/barunik/DynamicNets.jl
https://github.com/ellington/DynamicNets
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where 𝝐𝑡,𝑇 = 𝜮−1∕2(𝑡∕𝑇 )𝜼𝑡,𝑇 with 𝜼𝑡,𝑇 ∼ 𝑁𝐼𝐷(0, 𝑰𝑀 ) and 𝜱(𝑡∕𝑇 ) =
𝜱1(𝑡∕𝑇 ),… ,𝜱𝑝(𝑡∕𝑇 ))⊤ are the time varying autoregressive coefficients.
n a neighbourhood of a fixed time point 𝑢0 = 𝑡0∕𝑇 , we approximate the
rocess 𝑿𝑡,𝑇 by a stationary process �̃�𝑡(𝑢0) as

̃ 𝑡(𝑢0) = 𝜱1(𝑢0)�̃�𝑡−1(𝑢0) +⋯ +𝜱𝑝(𝑢0)�̃�𝑡−𝑝(𝑢0) + 𝝐𝑡, (2)

with 𝑡 ∈ Z and under suitable regularity conditions |𝑿𝑡,𝑇 − �̃�𝑡(𝑢0)| =
𝑂𝑝

(

|𝑡∕𝑇 − 𝑢0| + 1∕𝑇
)

which justifies the notation ‘‘locally stationary
process’’. Crucially, the process has time varying VMA(∞) representa-
tion (Dahlhaus et al., 2009; Roueff & Sanchez-Perez, 2016)

𝑿𝑡,𝑇 =
∞
∑

ℎ=−∞
𝜳 𝑡,𝑇 (ℎ)𝝐𝑡−ℎ (3)

where 𝜳 𝑡,𝑇 (ℎ) ≈ 𝜳 (𝑡∕𝑇 , ℎ) is a stochastic process satisfying sup𝓁 ‖𝜳 𝑡 −
𝜳𝓁‖

2 = 𝑂𝑝(ℎ∕𝑡) for 1 ≤ ℎ ≤ 𝑡 as 𝑡 → ∞. Specifically, 𝜳 𝑡,𝑇 (ℎ) =
[

𝜱𝑡,𝑇 (ℎ)
]−1, which is key to understanding dynamics. Since 𝜳 𝑡,𝑇 (ℎ) con-

tains an infinite number of lags, we approximate the moving average
coefficients at ℎ = 1,… ,𝐻 horizons (see the detailed discussion below).
The network characteristics rely on variance decompositions, which are
transformations of the impulse response functions, 𝜳 𝑡,𝑇 (ℎ), and permit
the measurement of the contribution of shocks to the system.

Since a shock to a variable in the model does not necessarily appear
alone, i.e. orthogonally to shocks to other variables, an identification
scheme is crucial in calculating variance decompositions. We adapt the
generalized identification scheme in Pesaran and Shin (1998) to locally
stationary processes. A natural way to disentangle connections that
form over transitory and persistent components of shocks is to consider
a spectral representation of the approximating model.6 Hence instead of
impulse responses, we propose to use the (local) frequency response of
a shock. The building block of our measures consider a time-varying
frequency response function 𝜳 𝑡,𝑇 (𝑒−𝑖𝜔) =

∑

ℎ 𝑒
−𝑖𝜔ℎ𝜳 𝑡,𝑇 (ℎ) which we

obtain from a Fourier transform of the coefficients with 𝑖 =
√

−1.
Before introducing our network measures, we define the time vary-

ing spectral density of 𝑿𝑡,𝑇 at frequency 𝜔 which is locally the same
as the spectral density of �̃�𝑡(𝑢) at 𝑢 = 𝑡∕𝑇 as a Fourier transform of
VMA(∞) filtered series as

𝑺𝑿 (𝑢, 𝜔) =
∞
∑

ℎ=−∞
E
[

�̃�𝑡+ℎ(𝑢)�̃�
⊤
𝑡 (𝑢)

]

𝑒−𝑖𝜔ℎ =
{

𝜳 (𝑢, 𝑒−𝑖𝜔)
}

𝜮(𝑢)
{

𝜳 (𝑢, 𝑒+𝑖𝜔)
}⊤

.

(4)

The time-varying spectral density is a key quantity for understand-
ing frequency dynamics. It describes the distribution of the time varying
covariance of 𝑿𝑡,𝑇 over frequency components 𝜔. The local spectral
density captures the influence of the time-varying parameters through
the impulse transfer functions 𝜳 (𝑢, 𝑒−𝑖𝜔), 𝜳 (𝑢, 𝑒+𝑖𝜔) above. Using the
spectral representation for the local covariance that is associated with
the local spectral density,

E
[

�̃�𝑡+ℎ(𝑢)�̃�
⊤
𝑡 (𝑢)

]

= ∫

𝜋

−𝜋
𝑺𝑿 (𝑢, 𝜔)𝑒𝑖𝜔ℎ𝑑𝜔 (5)

we can naturally introduce time-varying frequency domain counter-
parts of variance decompositions. This is important since, as Diebold
and Yilmaz (2014) note, we can view the variance decomposition
matrix as an adjacency matrix forming asymmetric connections among
a system of variables. In our case, this allows us to define dynamic
adjacency matrices with different degrees of persistence.

2.1. A route towards transitory and persistent connectedness

Variance decompositions are transformations of impulse responses
𝜳 𝑡,𝑇 (ℎ) that allow us to measure the contribution of shocks to the

6 Baruník and Křehlík (2018) disentangle long-run and short-run uncondi-
ional network connections using standard VAR models.
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system and thus to characterize the networks that form in response
to shocks. While it may seem natural to choose a forecast horizon
ℎ = 1,… ,𝐻 of interest, this choice is costly in terms of information
aggregation and hence loss. In contrast to the cumulative information
with increasing ℎ, the spectral representation of the impulse responses
𝜳 𝑡,𝑇 (𝑒−𝑖𝜔) contains much richer and more precise information. Switch-
ing to the frequency domain allows one to trace network connections
arising from transitory and persistent components of shocks.

To illustrate, consider a simple bivariate system in which the links
between two variables are of interest. Specifically, we are interested
in how variable 𝑏 responds to two different shocks to variable 𝑎.7 The
irst is a transitory shock that causes the variable 𝑏 to rise by one unit in
eriod 1 and fall by one unit in period 2, before returning to zero from
eriod onwards. Here we expect the proportion of error variation to be
arge at short horizons and small at long horizons due to the purely
ransitory effect.

The second is a persistent shock that results in a unit increase in the
ariable 𝑏 and a gradual decrease to zero over the impulse horizon. In
his case, the fraction of error variation is expected to be large at longer
orizons and smaller at shorter horizons. How these quantities in the
ime and frequency domain capture the responses to these two shocks
s the main motivation for our measures.

Fig. 1 shows the impulse response functions of variable 𝑏 to shocks
o variable 𝑎 in the left panel, the corresponding fraction of forecast
rror variances in the middle panel, and their corresponding spectral
ecompositions of forecast error variance fractions in the right panel.
ote that one can hardly identify persistence of the shock from the
lmost indistinguishable forecast error variance shares (variance de-
ompositions) in the time domain depicted by the middle panel of
ig. 1. A persistent shock results in a slightly larger value of forecast
rror variation relative to the variation due to a transitory shock. At the
ame time, if we were to estimate these quantities from the data and
ake into account the uncertainty of the estimates (the figure plots the
heoretical values of a simple example), they would become statistically
ndistinguishable.

In contrast, the spectral representation of the forecast error variance
hares in the right-hand panel of Fig. 1 accurately captures the hetero-
eneous impact of the two shocks across frequencies. The transitory
hock in the variable 𝑎 has a negligible impact at low frequencies
i.e. close to 𝜔 = 0), indicating that this shock has no importance for
he long-run variation of the variable 𝑏, and larger weights at higher
requencies, showing the transitory nature of the link established by
his shock. Conversely, the persistent shock affects low frequencies and
orrectly identifies a persistent link between the variables.

The main implication is that we can construct network measures
hat take into account the nature of the shocks that form such links.
hus, using spectral decompositions, we are able to identify transitory
nd persistent network links that are not apparent in the time domain.

.2. Measuring connectedness

The following proposition establishes the time-varying spectral rep-
esentation of the variance decomposition of shocks from variable 𝑗 to

variable 𝑘. This is central to the existence of network measures in the
time–frequency domain.8

7 In this example, we assume that the impact of own shocks on variable 𝑏
ncreases by 1 unit and is persistent. This means that the impact of a 1 unit
hock to variable 𝑏 affects the value of 𝑏 up to 20 horizons after we observe
he shock. Note that our analysis in Fig. 1 remains the same if the own shocks
re transitory.

8 Note to notation: [𝑨]𝑗,𝑘 denotes the 𝑗th row and 𝑘th column of matrix
denoted in bold. [𝑨]𝑗,⋅ denotes the full 𝑗th row; [𝑨]⋅,𝑗 denotes the full 𝑗th

olumn. A ∑

𝐴, where 𝐴 is a matrix that denotes the sum of all elements of

he matrix 𝐴.
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Fig. 1. Impulse Response Functions and Variance Decompositions in time and frequency domain.
Notes: This figure reports impulse response functions (left), variance decompositions in time domain (middle) and the corresponding spectral representation of the forecast error
variance decompositions (right), of a variable 𝑏 within a bivariate system with respect to a shock in the variable 𝑎. We consider two types of shocks, a transitory shock (triangles)
nd a persistent shock (dots) impacting horizon ℎ = 1,… ,𝐻 and frequency 𝜔 ∈ {0,… , 𝜔}.
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roposition 1 (Dynamic Adjacency Matrix). Suppose 𝑿𝐭,𝐓 is a weakly

ocally stationary process with 𝜎−1𝑘𝑘

∞
∑

ℎ=0

|

|

|

|

[

𝜳 (𝑢, ℎ)𝜮(𝑢)
]

𝑗,𝑘

|

|

|

|

< +∞,∀𝑗, 𝑘. Then

the time–frequency variance decompositions of the 𝑗th variable at a
rescaled time 𝑢 = 𝑡0∕𝑇 due to shocks in the 𝑘th variable on the frequency
band 𝑑 = (𝑎, 𝑏) ∶ 𝑎, 𝑏 ∈ (−𝜋, 𝜋), 𝑎 < 𝑏 form a dynamic adjacency matrix
defined as

[

𝜽(𝑢, 𝑑)
]

𝑗,𝑘
=

𝜎−1𝑘𝑘 ∫

𝑏

𝑎

|

|

|

|

|

[

𝜳 (𝑢, 𝑒−𝑖𝜔)𝜮(𝑢)
]

𝑗,𝑘

|

|

|

|

|

2

𝑑𝜔

∫

𝜋

−𝜋

[

{

𝜳 (𝑢, 𝑒−𝑖𝜔)
}

𝜮(𝑢)
{

𝜳 (𝑢, 𝑒+𝑖𝜔)
}⊤

]

𝑗,𝑗

𝑑𝜔

(6)

where 𝜳 (𝑢, 𝑒−𝑖𝜔) =
∑

ℎ 𝑒
−𝑖𝜔ℎ𝜳 (𝑢, ℎ) is local impulse transfer function or

frequency response function computed as the Fourier transform of the local
impulse response 𝜳 (𝑢, ℎ)

roof. See Appendix A. □

It is important to note that
[

𝜽(𝑢, 𝑑)
]

𝑗,𝑘
is a natural disaggregation of

traditional variance decompositions to time-varying frequency bands.
This is because a portion of the local error variance of the 𝑗th variable
at a given frequency band due to shocks in the 𝑘th variable is scaled by
the variance of the 𝑗th variable. Note that while the Fourier transform
of the impulse response generally takes on complex values, the quantity
in proposition 1 is the squared modulus of weighted complex numbers,
thus producing a real quantity.

This relationship is an identity which means the integral is a linear
operator, summing over disjoint intervals covering the entire range
(−𝜋, 𝜋) recovers the time domain counterpart of the local variance
decomposition for ℎ → ∞. The following remark formalizes this fact.

Remark 1 (Aggregation of Adjacency Matrix). Denote by 𝑑𝑠 an interval
on the real line from the set of intervals 𝐷 that form a partition of the
interval (−𝜋, 𝜋), such that ∩𝑑𝑠∈𝐷𝑑𝑠 = ∅, and ∪𝑑𝑠∈𝐷𝑑𝑠 = (−𝜋, 𝜋). Due to
the linearity of integral and the construction of 𝑑𝑠, we have
[

𝜽(𝑢)
]

𝑗,𝑘
=

∑

𝑑𝑠∈𝐷

[

𝜽(𝑢, 𝑑𝑠)
]

𝑗,𝑘
.

Remark 1 is important as it establishes the aggregation of network
connectedness measures across different frequency bands to its time
396

domain, total counterpart. Hence one can easily obtain time varying v
network measures across any horizon of interest using frequency bands
that will always sum up to an aggregate time domain counterpart.

As the rows of the time–frequency network connectedness do not
necessarily sum to one, we normalize the element in each by the
corresponding row sum
[

�̃�(𝑢, 𝑑)
]

𝑗,𝑘
=
[

𝜽(𝑢, 𝑑)
]

𝑗,𝑘

/ 𝑁
∑

𝑘=1

[

𝜽(𝑢)
]

𝑗,𝑘
(7)

Our notion that we can approximate well the process 𝑿𝑡,𝑇 , by a
tationary process �̃�𝑡(𝑢) in a neighbourhood of a fixed time point
= 𝑡∕𝑇 , means that all associated local quantities approximate well

heir time varying counterparts. Following the arguments in Dahlhaus
1996), and using mild assumptions, one can easily see that local
ariance decompositions at a frequency band �̃�(𝑢, 𝑑) approximate well
he time-varying variance decompositions of the process 𝑿𝑡,𝑇 .

Note that the local generalized variance decompositions form a dy-
amic adjacency matrix that defines a time-varying network at a given
requency band. Thus, we can directly use our measures as time-varying
etwork characteristics that contain richer information in comparison
o typical network analysis. In our notion, variance decompositions can
e viewed as weighted links showing the strengths of connections. In
ddition, the links are directional, meaning that the 𝑗 to 𝑘 link is not
ecessarily the same as the 𝑘 to 𝑗 link, and hence the adjacency matrix
s asymmetric. Even more important, the adjacency matrix is time-
arying and frequency specific that allows the study of time-varying
etwork characteristics at various frequency bands of the user’s choice.
he simplest is to measure transitory network connections over the
hort-run and persistent ones over the long-run.

Now we can define network connectedness measures that charac-
erize a time-varying and frequency specific network. We define local
etwork connectedness measures at a given frequency band as the ratio
f the off-diagonal elements to the sum of the entire matrix

(𝑢, 𝑑) = 100 ×
𝑁
∑

𝑗,𝑘=1
𝑗≠𝑘

[

�̃�(𝑢, 𝑑)
]

𝑗,𝑘

/ 𝑁
∑

𝑗,𝑘=1

[

�̃�(𝑢)
]

𝑗,𝑘
(8)

his measures the contribution of forecast error variance attributable
o all shocks in the system, minus the contribution of own shocks
ver frequency band 𝑑 and infers system-wide connectedness over
uch frequency band. We can also define measures that reveal when
n individual variable in the economy is a transmitter or receiver of
hocks. Local directional connectedness measures how much of each

ariables’s 𝑗 variance is due to shocks in other variables 𝑘 ≠ 𝑗 in the
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economy over frequency band 𝑑 is given by

𝑗←∙(𝑢, 𝑑) = 100 ×
𝑁
∑

𝑘=1
𝑘≠𝑗

[

�̃�(𝑢, 𝑑)
]

𝑗,𝑘

/ 𝑁
∑

𝑗,𝑘=1

[

�̃�(𝑢)
]

𝑗,𝑘
, (9)

defining the so-called from connectedness. One can precisely interpret
this quantity as from-degrees (often called out-degrees in the network
literature) associated with the nodes of the weighted directed network
represented by the variance decompositions matrix generalized to a
time-varying frequency specific quantity. Likewise, the contribution of
variable 𝑗 to variances in other variables is computed as

𝑗→∙(𝑢, 𝑑) = 100 ×
𝑁
∑

𝑘=1
𝑘≠𝑗

[

�̃�(𝑢, 𝑑)
]

𝑘,𝑗

/ 𝑁
∑

𝑘,𝑗=1

[

�̃�(𝑢)
]

𝑘,𝑗
(10)

and is the so-called to connectedness. Again, one can precisely interpret
this as to-degrees (often called in-degrees in the network literature)
associated with the nodes of the weighted directed network represented
by the variance decompositions matrix. These two measures show how
other variables contribute to the variation of variable 𝑗, and how
variable 𝑗 contributes to the variation of others, respectively, in a
time varying fashion at a chosen frequency band. We note here that
taking the difference between to connectedness and from connectedness
summarizes information regarding directional connections in net-terms.
Further, one can track pairwise connections over frequency bands in
an analogous manner to the above as differences between the 𝑗 − 𝑘th
element and 𝑘 − 𝑗th elements.

Importantly, the following proposition shows one can always re-
construct time domain network connectedness measures from our
frequency-dependent networks.

Proposition 2 (Reconstruction of Dynamic Network Connectedness). De-
note by 𝑑𝑠 an interval on the real line from the set of intervals 𝐷 that form
a partition of the interval (−𝜋, 𝜋), such that ∩𝑑𝑠∈𝐷𝑑𝑠 = ∅, and ∪𝑑𝑠∈𝐷𝑑𝑠 =
(−𝜋, 𝜋). We then have that

(𝑢) =
∑

𝑑𝑠∈𝐷
(𝑢, 𝑑𝑠)

𝑗←∙(𝑢) =
∑

𝑑𝑠∈𝐷
𝑗←∙(𝑢, 𝑑𝑠)

𝑗→∙(𝑢) =
∑

𝑑𝑠∈𝐷
𝑗→∙(𝑢, 𝑑𝑠)

(11)

where (𝑢) are local network connectedness measures aggregated over
frequencies.

Proof. See Appendix A. □

In light of the above, all local frequency connectedness measures
(𝑢, 𝑑) for 𝑢 = 𝑡∕𝑇 approximate well the time-varying frequency
connectedness of the process 𝑿𝑡,𝑇 .

.3. Obtaining transitory and persistent network measures

In light of the assumptions that underpin our measures, we con-
ecture that the economy follows a stable time-varying parameter het-
roskedastic VAR (TVP-VAR) model as in (1). We follow Petrova (2019)
ho establishes a Quasi Bayesian Local-Likelihood approach for infer-
nce in the presence of time-varying parameters.

For consistent estimation under the QBLL approach, let 𝑿𝑡,𝑇 be
time-series we observe with log probability density 𝑙𝑡

(

𝑿𝑡,𝑇 |𝑿𝑡−1,𝑇 ,
�̃�(𝑡∕𝑇 )

)

, �̃�(𝑡∕𝑇 ) stacks the time-varying autoregressive coefficient ma-
rices into a finite-dimensional vector that satisfies one of the following
onditions.

(i) �̃�𝑡 = �̃�(𝑡∕𝑇 ) is a deterministic process where 𝜱(.) is a piecewise
differentiable function.
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a

(ii) �̃�(𝑡∕𝑇 ) is a stochastic process satisfying: sup𝑗∶|𝑗−𝑡|≤ℎ ‖�̃�𝑡−�̃�𝑗‖
2 =

𝑂𝑝(ℎ∕𝑡) for 1 ≤ ℎ ≤ 𝑡, 𝑡 → ∞.

Both of the above indicate that the parameter sequence drafts
gradually over time. The first condition is standard of Dahlhaus (2000)
for locally stationary processes which requires the parameter process
is a piecewise smooth deterministic function; thus allowing for breaks
in parameters. The second condition is a generalization of the first to
include stochastic parameter processes exhibiting degrees of persistence
necessary for consistent estimation of stochastic driven time-variation.
Such condition includes bounded random walk processes and some
fractionally integrated processes. The parameters may feature any com-
bination of deterministic trends and/or breaks satisfying conditions (i)
and (ii) above. Our data generating processes (DGPs) in Section 3 are
examples of such DGPs.9

To obtain the time-varying coefficient estimates at a fixed time point
𝑢 = 𝑡0∕𝑇 , �̂�1(𝑢),… , �̂�𝑝(𝑢), and the time-varying covariance matrices,
�̂�(𝑢), we follow the QBLL approach of Petrova (2019). Specifically,
this approach uses a kernel weighting function that provides larger
weights to observations that surround the period whose coefficient and
covariance matrices are of interest. Using conjugate priors, the (quasi)
posterior distribution of the parameters of the model are analytical.
This alleviates the need to use a Markov Chain Monte Carlo (MCMC)
simulation algorithm and permits the use of parallel computing. Note
also that in using (quasi) Bayesian estimation methods, we obtain a
distribution of parameters that we use to construct network measures
that provide confidence bands. Details of the model and estimation
algorithm are in Appendix B.10 We provide a computationally efficient
package DynamicNets.jl in JULIA and DynamicNets in MAT-
LAB that allows one to obtain our measures on data the researcher
desires.11

To estimate the elements of dynamic adjacency matrix, we first need
to truncate the infinite VMA(∞) representation of the approximating
model with a choice of finite horizon 𝐻 . Here we note that in the
frequency domain quantities, 𝐻 serves only as an approximation factor,
and it has no interpretation as in the time domain. Hence in the
applications we advise setting the 𝐻 sufficiently high to obtain a better
approximation, particularly when lower frequencies are of interest. We
obtain horizon specific measures using Fourier transforms and set our
truncation horizon 𝐻 = 100. Note, we run all results in this paper for
𝐻 ∈ {50, 100, 200}, they are qualitatively similar and available upon
request.

Next, estimating dynamic network measures requires the user to
choose a kernel and its bandwidth. Typically the larger the bandwidth,
the smoother time-evolution of our frequency specific network mea-
sures. Therefore, prior to tracking dynamic network connections, it is
important the user considers the time-series properties of their data.
For example if common peaks (troughs) in the time-series occur fre-
quently and are transient, then a shorter bandwidth may be necessary.
Conversely, if tracking network connections among data that evolves
gradually over time, like interest rates, a larger bandwidth may be
more appropriate. In the context of our study, we use a Normal kernel
and explore the implication of bandwidth choice for a variety of data
generating processes (DGPs) in Section 3.

9 Figure 1 of Petrova (2019) provides figures of examples and provides
urther discussion around conditions the parameter sequences must satisfy for
onsistent estimation.
10 Unlike traditional TVP VARs time-variation evolves in a non-parametric
anner thus making no assumption on the laws of motion within the model.
ypically, the model of Primiceri (2005), and many extensions, assume
arameters evolve as random walks or autoregressive processes.
11 The packages are available at https://github.com/barunik/DynamicNets.jl

nd https://github.com/ellington/DynamicNets.

https://github.com/barunik/DynamicNets.jl
https://github.com/ellington/DynamicNets
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It is noteworthy to mention that the choice of a two-sided kernel
can come at a cost; especially if one wishes to use network measures
for forecasting purposes. In these cases one may wish to: (i) estimate
the dynamic network recursively throughout time such that the Normal
kernel truncates to use only past values at the time 𝑇 estimate; or (ii)
choose a one-sided kernel such as those in Barigozzi, Hallin, Soccorsi,
and von Sachs (2020), Hahn, Todd, and Van der Klaauw (2001). In
practice, we encourage researchers to experiment with a variety of
bandwidths to ensure results are not driven by its selection. We also
encourage authors to use reasonable bandwidths given the data for
their application. For example, if one was using these measures for
forecasting daily stock return volatilities, a researcher might consider
combination forecasts using Bayesian Model averaging to trade on.
Alternatively one might look to use variance minimizing kernels in an
attempt to reduce uncertainty around the forecast.12

We estimate the 𝑗, 𝑘 element of our dynamic adjacency matrix at
time 𝑢 = 𝑡0∕𝑇 and horizon 𝑑 = (𝑎, 𝑏) ∶ 𝑎, 𝑏 ∈ (−𝜋, 𝜋) and 𝑎 < 𝑏 such that
it corresponds to the transitory (high frequency band) and persistent
(low frequency band) element of the adjacency matrix respectively as:

[

�̂�(𝑢, 𝑑)
]

𝑗,𝑘
=

𝜎−1𝑘𝑘

∑

𝜔∈𝑑

(

[

�̂� (𝑢, 𝜔)�̂�(𝑢)
]

𝑗,𝑘

)2

∑

𝜔∈(−𝜋,𝜋)

[

�̂� (𝑢, 𝜔)�̂�(𝑢)�̂�
⊤
(𝑢, 𝜔)

]

𝑗,𝑗

, (12)

where �̂� (𝑢, 𝜔) =
∑𝐻−1

ℎ=0
∑

ℎ �̂� (𝑢, ℎ)𝑒−𝑖𝜔ℎ is an estimate of the impulse
transfer function from Fourier frequencies 𝜔 ∈ {𝑎𝐻∕2𝜋,… , 𝑏𝐻∕2𝜋}
of impulse response functions that cover a specific horizon.13 From
this, estimates of Eqs. (8)–(10) directly follow. For example if the
application uses daily data, one may define transitory (short-term)
as horizons corresponding to 1–5 days and persistent (long-term) as
horizons corresponding to horizons greater than 5 days. This would
require defining the band as (𝑎, 𝑏) = (2𝜋∕5, 2𝜋) for the transitory and
(𝑎, 𝑏) = (0, 2𝜋∕5) for the persistent networks.

2.4. Testing for statistical differences in connectedness

We now consider how one can determine, from a statistical per-
spective, differences between connectedness. We discuss in detail here
how one can test for differences in connectedness one computes over
different frequency bands.

In a Bayesian setting there are three alternatives for hypothesis
testing. The first is the Bayes factor, the second uses posterior credible
intervals, and the third follows statistical decision theory. We follow
the latter and utilize the work of Li, Liu, and Yu (2015), Li, Zeng,
and Yu (2014) and Liu, Li, Yu, and Zeng (2022).14 These studies
focus on developing test statistics of a point null hypothesis using

12 In the context of our empirical application below where we look at daily
ealized volatilities of stock returns, we use a bandwidth equal to 8. We
lso estimate the models using bandwidths of 12, 18, and

√

𝑇 =
√

3278 ≈
7. Increasing the bandwidth smooths our network connectedness measures
ecause it assigns larger weights to more distant observations.
13 Note that 𝑖 =

√

−1.
14 Bayes factors involve comparing the marginal likelihoods of two com-

peting models and extensively appear in the literature (see e.g. Chan, 2020;
Koop, Leon-Gonzalez, & Strachan, 2010). This is not appropriate in our setting
because the network connectedness measures come from a manipulation of a
sequence of posterior parameters from the same model; we have no alternative
model to specify the marginal likelihood. Using posterior credible intervals
is possible and something we consider in the spirit of Cogley, Primiceri, and
Sargent (2010). In particular we use the joint posterior distribution of network
connectedness measures to compute the probability that connectedness across
one frequency band is larger than an analogous measure across another
frequency band. These results are in Appendix C.
398
the posterior distribution of parameters from a Bayesian model. The
approach requires only the posterior distribution of parameters and has
various advantages. First, they overcome the problem of the Jeffreys-
Lindley paradox. Second, are not sensitive to the prior and are pivotal
quantities. Third, they are easy to compute. Crucially, these statistics
directly come from quadratic loss functions, as with classical test statis-
tics, and therefore possess the same distributions as their frequentist
counterparts.

Li et al. (2015) develop a Bayesian Lagrange-Multiplier (LM) type
test that is asymptotically equivalent to a classical LM test. Using
similar assumptions, Liu et al. (2022) develop a Bayesian Wald type test
that is asymptotically equivalent to a classical Wald test and requires
only the posterior mean and posterior variance of parameters under
the null hypothesis.15 Noting that the VMA(∞) representation of the
VAR are nothing more than a transformation of the VAR parameters,
we follow the assumptions in Liu et al. (2022) and therefore establish a
Bayesian Wald type test for differences between network connectedness
across frequency bands. We emphasize our network connectedness
measures are manipulations of the VAR parameters themselves and
possess a posterior distribution.16

We test the null hypothesis, H0 ∶ (𝑢, 𝑑𝑎) = (𝑢, 𝑑𝑏) that network
onnectedness across frequency band 𝑑𝑎 and 𝑑𝑏 are equivalent against
he alternative, H1 ∶ (𝑢, 𝑑𝑎) ≠ (𝑢, 𝑑𝑏). This is equivalent to testing
0 ∶ (𝑢, 𝑑𝑎) − (𝑢, 𝑑𝑏) = 0 against H1 ∶ (𝑢, 𝑑𝑎) − (𝑢, 𝑑𝑏) ≠ 0. The

ollowing proposition establishes the test statistic and its asymptotic
istribution under the null. We outline the regularity conditions in
ppendix A along with a brief discussion on the importance of such
onditions.

roposition 3 (Testing for Heterogeneities in Network Connectedness). Let
̄ (𝑢) and 𝐕

(

̄(𝑢)
)

denote the time 𝑢 posterior mean and variance of the
ifference between network connectedness across frequency band 𝑑𝑎 and 𝑑𝑏.
hen the test statistic under H0
(

𝑿,0(𝑢)
)

= 𝑞 +
(

̄(𝑢) −0(𝑢)
)⊤ [𝐕

(

̄(𝑢)
)]−1 (̄(𝑢) −0(𝑢)

)

(13)

= 𝑞 +𝐖𝐚𝐥𝐝 (14)

here 𝐖𝐚𝐥𝐝 =
(

̄(𝑢) −0(𝑢)
)⊤ [

𝐕
(

̄(𝑢)
)]−1 (̄(𝑢) −0(𝑢)

)

, 𝑞 is the
number of restrictions, and 0(𝑢) = (𝑢, 𝑑𝑎) − (𝑢, 𝑑𝑏) = 0.

𝐖
(

𝑿,0(𝑢)
)

− 𝑞 = 𝐖𝐚𝐥𝐝 + 𝑂𝑝(1) →𝑑 𝜒2 (𝑞
)

roof. See Appendix A. □

It is important to note that it is straightforward to generalize
q. (13) to include multiple restrictions. This may be applicable if one
equires testing equivalence among more than two frequency bands.
e also note that one may also wish to utilize the above to test for

ifferences between directional network connections over frequency
ands. In the context of the above one would take the difference be-
ween net-directional connections, or pairwise directional connections,
ver frequency bands and compute the test in an analogous manner to
elow.

For estimation purposes, the test statistic only requires the posterior
ean and the posterior variance of (𝑢), ̄(𝑢) and 𝐕

(

̄
)

. Let
{

[𝑟]}𝑅
𝑟=1

denote the posterior draws such that [𝑟] = ̂[𝑟](𝑢, 𝑑𝑎) − ̂[𝑟](𝑢, 𝑑𝑏) is
the 𝑟th posterior draw of the difference between estimates of network
connectedness over frequency band 𝑑𝑎 and 𝑑𝑏. Then, the estimate of
our test statistic for heterogeneities between network connectedness is

15 They also show asymptotic equivalence between their Wald-type test the
LM type test in Li et al. (2015).

16 Lütkepohl (1990) provide the asymptotic distribution for impulse response
functions from conventional VAR models one estimates using OLS Petrova
(2019).
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given by

𝐖 (𝑿,(𝑢) = 0) =
1
𝑅
∑𝑅

𝑟=1
(

[𝑟](𝑢)
)2

1
𝑅
∑𝑅

𝑟=1

(

[𝑟](𝑢) − ̄̄(𝑢)
)2

, with ̄̄(𝑢) = 1
𝑅

𝑅
∑

𝑟=1
[𝑟](𝑢)

(15)

Under the null, we have 𝐖
(

𝑿,0(𝑢)
)

− 𝑞 →𝑑 𝜒2 (𝑞
)

with 𝑞 = 1
n this particular case.17 Thus, we only need to compare 𝐖 (𝑿,(𝑢) = 0)

to the critical values of the 𝜒2 (1) distribution. Rejecting the null implies
that the time 𝑢 network connectedness over frequency band 𝑑𝑎 is sta-
tistically different to the corresponding time 𝑢 network connectedness
over frequency band 𝑑𝑏.

It may also be pertinent to test for differences in connectedness over
time. Here we fix the frequency band, and now consider differences
over time. In this case we test the null hypothesis, H0 ∶ (𝑢1, 𝑑) =
(𝑢2, 𝑑) that network connectedness at time 𝑢1 and 𝑢2 across frequency
band 𝑑 are equivalent against the alternative, H1 ∶ (𝑢1, 𝑑) ≠ (𝑢2, 𝑑).
This is equivalent to testing H0 ∶ (𝑢1, 𝑑) − (𝑢2, 𝑑) = 0 against
H1 ∶ (𝑢1, 𝑑) − (𝑢2, 𝑑) ≠ 0. Now letting ̄(𝑠) and 𝐕

(

̄(𝑠)
)

denote
the posterior mean and variance of the difference between network
connectedness at times 𝑢1 and 𝑢2 and replacing ̄(𝑢) and 𝐕

(

̄(𝑢)
)

in Proposition 3 with these quantities delivers a Wald-type test statistic
following a 𝜒2 (1) distribution. Again, all we need to do is compare the
test statistic with critical values of the 𝜒2 (1) distribution.

3. Monte Carlo study

In this section, we conduct a Monte Carlo exercise to understand
the finite sample properties of our connectedness measures. In order to
motivate the need to focus on connections forming conditional on the
persistence of shocks, we generate data with different levels of persis-
tence throughout time and also changes in the covariance structure.
This will induce differences in network connectedness measures we
compute over different frequency bands. Here we concentrate on low
and high frequency bands and consider four different data generating
processes (DGP) to highlight their uses.

For simplicity, we focus on bivariate VAR(2) models with time-
varying parameters and time-varying covariance matrices:

𝑿𝑡,𝑇 = 𝜱0(𝑢) +𝜱1(𝑢)𝑿𝑡−1,𝑇 +𝜱2(𝑢)𝑿𝑡−2,𝑇 + 𝝐𝑡,𝑇 ,

𝝐𝑡,𝑇 = 𝜮−1∕2(𝑢)𝜼𝑡,𝑇 , 𝜼𝑡,𝑇 ∽
(

0, 𝐈2
)

where 𝜱0(𝑢) contains the time-varying intercepts and 𝜱1(𝑢) and 𝜱2(𝑢)
contain the time-varying autoregressive parameters. The time-varying
covariance matrix 𝜮(𝑢) = 𝐀−1(𝑢)𝐇(𝑢)

(

𝐀−1(𝑢)
)⊤ with 𝐀−1(𝑢) being a

lower triangular matrix with a unit diagonal and 𝐇(𝑢) is a 2 × 2
diagonal matrix.

DGPI: Our first DGP has residuals such that, 𝜼𝑡,𝑇 ∽ NID
(

0, 𝐈2
)

. The
time-varying intercepts follow the process:

[

𝜱0(𝑢)
]

𝑗 = 0.0025 sin (0.004𝜋𝑡) + 0.15
𝑡

∑

𝑖=1

𝜈𝑖
√

𝑡
, 𝜈𝑖 ∽ NID

(

0, 0.0012
)

, 𝑗 = 1, 2

For the time-varying autoregressive parameters, we have
[

𝜱𝑔(𝑢)
]

𝑗,𝑘 =

17 In the classical setting one uses Wald tests to check a variety of restric-
ions, such as a parameter of interest being equal to zero, or equivalence
etween two parameters of interest under the null hypothesis. When one tests
he latter, the resulting Wald test is ∽ 𝜒2(1).
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⎧

⎪

⎪

⎪

⎪

⎨

⎪
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⎪

⎪

⎩

0.05 sin (0.002𝜋𝑡) + 0.75
𝑡

∑

𝑖=1

𝜅𝑖
√

𝑡
, 𝑡 ∈ {1,… , 500} ∀𝑔, 𝑗, 𝑘 = 1, 2

0.45 sin (0.002𝜋𝑡) + 0.75
𝑡

∑

𝑖=1

𝜅𝑖
√

𝑡
, 𝑡 ∈ {501,… , 1000} 𝑗 = 𝑘 = 1, 𝑗 = 𝑘 = 2

0.05 sin (0.002𝜋𝑡) + 0.75
𝑡

∑

𝑖=1

𝜅𝑖
√

𝑡
, 𝑡 ∈ {501,… , 1000} 𝑗 = 1, 𝑘 = 2 & 𝑗 = 2, 𝑘 = 1

with 𝜅𝑖 ∽ NID
(

0, 0.00012
)

. The (2,1) element of 𝐀(𝑢) have the
following dynamics:

[𝐀(𝑢)]2,1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.03 sin (0.002𝜋𝑡) + 0.7
𝑡

∑

𝑖=1

𝜐𝑖
√

𝑡
, 𝑡 ∈ {1,… , 500}

1.5 sin (0.002𝜋𝑡) + 0.7
𝑡

∑

𝑖=1

𝜐𝑖
√

𝑡
, 𝑡 ∈ {501,… , 1000}

with 𝜐𝑖 ∽ NID
(

0, 0.32
)

. The diagonal elements of 𝐇(𝑢) follow

log [𝐇(𝑢)]𝑗,𝑗 = 𝜇𝑗 + 𝜆𝑗
(

log [𝐇(𝑢 − 1)]𝑗,𝑗 − 𝜇𝑗
)

+ 𝜉𝑗,𝑡

where 𝜉𝑗,𝑡 ∽ NID
(

𝜇𝑗 , 0.12∕(1 − 𝜆𝑗 )
)

, 𝜇𝑗 = 0.01, 𝜆𝑗 = 0.95.
This DGP has little to no dependence for the first 500 observations

which means connectedness at both high and low frequency bands will
be low and close to zero. The latter half of the sample sees the AR
coefficients in each equation become persistent as the sin wave becomes
negative. Note also that the contemporaneous relationship intensifies.
This induces connections at high frequency bands while connections
at low frequency bands should be low and close to zero. Note we also
allow for non-Gaussian residuals in this DGP such that we draw 𝜼𝑡,𝑇
from a multivariate student-𝑡 distribution with 5 degrees of freedom.
These results are in Appendix C.

DGPII: For our second DGP, the time-varying intercepts follow the
process:

[

𝜱0(𝑢)
]

𝑗 = 0.25 sin (0.004𝜋𝑡) + 0.15
𝑡

∑

𝑖=1

𝜈𝑖
√

𝑡
, 𝜈𝑖 ∽ NID

(

0, 0.12
)

, 𝑗 = 1, 2

and the time-varying autoregressive parameters follow:

[

𝜱𝑔(𝑢)
]

𝑗,𝑘 = 0.25 sin (0.004𝜋𝑡) + 0.75
𝑡

∑

𝑖=1

𝜅𝑖
√

𝑡
,∀𝑔, 𝑗, 𝑘 = 1, 2

with 𝜅𝑖 ∽ NID
(

0, 0.32
)

. The (2,1) element of 𝐀(𝑢) and the diagonal
elements of 𝐇(𝑢) follow the processes:

[𝐀(𝑢)]2,1 = 0.3 sin (0.008𝜋𝑡) + 0.7
𝑡

∑

𝑖=1

𝜐𝑖
√

𝑡
log [𝐇(𝑢)]𝑗,𝑗 = 𝜇𝑗 + 𝜆𝑗

(

log [𝐇(𝑢 − 1)]𝑗,𝑗 − 𝜇𝑗
)

+ 𝜉𝑗,𝑡,

where 𝜐𝑖 ∽ NID
(

0, 0.32
)

and 𝜉𝑗,𝑡 ∽ NID
(

𝜇𝑗 , 0.12∕(1 − 𝜆𝑗 )
)

, 𝜇𝑗 =
0.01, 𝜆𝑗 = 0.95.

This DGP induces two distinct periods of persistence during obser-
vations 100-200 and 600-700 which amplifies connectedness at the low
frequency band.

DGPIII: Our third DGP is the same as DGPII but relaxes the assump-
ion that 𝜼𝑡,𝑇 are Gaussian. Instead we assume that the residuals follow
multivariate student-𝑡 distribution with 5 degrees of freedom.
DGPIV: Our fourth DGP is the same as DGPII, but increases the peri-

dicity of the sin functions in the time-varying autoregressive matrices
rom sin (0.004𝜋𝑡) to sin (0.006𝜋𝑡). This generates three distinct periods
f persistence during observations 50-150, 300-450, and 700-850.

For each of the four DGPs, we generate 100 simulations of length
= 1000 and compute the network connectedness measures. We use

he median over these simulations as the true network connectedness.
hen, for each of the 100 simulations of DGPI–DGPIV, we fit the
VP-VAR model we outline in Section 2.3. In fitting this model we
ake 1000 draws from the posterior distribution, calculate our network
onnectedness measures and then save the posterior median. For this
xercise, we compute network connectedness on two frequency bands
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Fig. 2. Dynamic network connectedness measures: True and fitted values.
Notes: This figure plots the true network connectedness measures for three data generating processes following bi-variate TVP VAR(2) models along with the median and 95%
quantiles of estimated network connectedness measures with bandwidth 𝑊 = 8. The left columns report network connectedness on the low-frequency band, 𝑑 ∈ (0, 𝜋∕5), the
middle columns show network connectedness on the high-frequency band, 𝑑 ∈ (𝜋∕5, 𝜋), and the right columns show the aggregate network connectedness such that 𝑑 ∈ (0, 𝜋). DGPI
(top row) is a TVP VAR(2) model with Gaussian errors, we introduce a break in the time-varying autoregressive matrices and contemporaneous relations from observation 500
that induces large connections across the high frequency band. DGPII (second row) is a TVP VAR(2) where time-varying intercepts and autoregressive matrices following sin wave
functions with a stochastic error, time-varying covariance matrix where the off-diagonals follow sin wave functions with a stochastic error, and the diagonal elements follow a
stationary AR(1) processes. DGPIII (third row) is a TVP VAR(2) model with student-𝑡 errors, time-varying intercepts and autoregressive matrices following sin wave functions with
a stochastic error, time-varying covariance matrix where the off-diagonals follow sin wave functions with a stochastic error, and the diagonal elements follow a stationary AR(1)
processes. DGPIV (bottom row) is the same as DGPII, but with an increase in the periodicity of the respective sin wave functions the time-varying intercepts and autoregressive
matrices follow.
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that cover the spectrum. The low-frequency band, which empirically
pertains to persistent network connections, is 𝑑 ∈ (0, 𝜋∕5), and the high-
requency band, pertaining to transitory network connections, is 𝑑 ∈
(𝜋∕5, 𝜋). For completeness, we compute the aggregate connectedness
measures that considers the entire spectrum such that 𝑑 ∈ (0, 𝜋); this
corresponds to a dynamic version of the Diebold and Yilmaz (2014)
connectedness measure.

A final noteworthy point is the choice of bandwidth, 𝑊 , for the ker-
nel weights that induce time-variation into the TVP-VAR model. In this
exercise, we consider 𝑊 = {8, 12, 18}. However, for ease of exposition,

e only report plots of the network connectedness measure estimates
sing 𝑊 = 8 in the main text, results of fitted values from 𝑊 = {12, 18}
re in Appendix C. The larger the bandwidth, the smoother the network
easures become. This is because larger bandwidths assign weights

o a higher number of observations around the one of interest. In
eneral, we find that larger 𝑊 results in poorer fit. This highlights
he importance of selecting an appropriate bandwidth for the kernel
eights relative to the data application.

As we discuss in 2.3, from a practical perspective, we encourage
esearchers to explore the robustness of their results to different band-
idths. For example, consider a low frequency forecaster looking to
redict returns one-month ahead today, using our network connected-
ess measures, would likely place zero weight on data from the burst
f the dot-com bubble and 2008 recession. Likewise, a high frequency
nvestor would likely place little to no weight on data from one-year
rior. As we show in Appendix C, lengthening the bandwidth in our
400
onte Carlo experiment causes the surges in estimates of connectedness
o be more gradual.

If the data is low frequency data such as monthly yields, then
ne could argue to use a wider bandwidth as changes in these data
re far smoother than returns or return volatility. If one is looking
o describe the nature of connections that form on persistent and
ransitory components of shocks then we encourage researchers to
se multiple bandwidths to check how these dynamics are influenced
y such changes. We do not suspect these changes would drastically
hange the conclusions or results in most applications.

In Appendix C, we conduct further robustness checks for our simula-
ion analysis. In Appendix C.3 we provide analysis on the performance
f rolling VAR models for our DGPs. These results show that such
onnectedness estimates less accurate relative to our approach. In
articular, estimates are highly sensitive to the window size and fail
o accurately capture the peaks and troughs in connectedness; the
atter is prominent as the complexity of the DGP increases (e.g. DGPII-
GPIV). Meanwhile in Appendix C.4 we conduct a Monte Carlo study
n larger scale VAR models under DGPI containing 𝑁 = 10 and 𝑁 = 25
ariables respectively. These results show that our approach is robust to
ncreasing the number of variables and tracks connections well within
arger-scale models.

Fig. 2 reports the true network connectedness measures and the
edian and 95% quantiles of corresponding estimates from the TVP
AR model using a kernel bandwidth of 𝑊 = 8. We report network
onnectedness over the low-frequency-band, the high-frequency-band,
nd aggregate, in the left, middle, and right columns respectively.
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Fig. 3. Tests for differences between network connectedness across different frequency bands.
Notes: This figure plots the test statistics and +∕− 2 × the numerical standard errors for heterogeneities between network connectedness measures across different frequency bands
from four DGPs. The test statistic is 𝐖

(

𝑿𝑡,𝑇 ,(𝑢) = 0
)

−1 where (𝑢) = ̂(𝑢, 𝑑)− ̂(𝑢, 𝑐) with 𝑑 ∈ (0, 𝜋∕5) corresponding to the low frequency band and 𝑐 ∈ (𝜋∕5, 𝜋) corresponding to
he high frequency band. The dashed black line is the 5% critical value from the 𝜒2(1) distribution = 3.84. Values greater than 3.84 reject the null hypothesis of equivalent network
onnections across frequency band 𝑑 and 𝑐 in favour of differences. DGPI (top left panel) is a TVP VAR(2) model with Gaussian errors, we introduce a break in the time-varying
utoregressive matrices and contemporaneous relations from observation 500 that induces large connections across the high frequency band. DGPII (top right panel) is a TVP
AR(2) where time-varying intercepts and autoregressive matrices following sin wave functions with a stochastic error, time-varying covariance matrix where the off-diagonals

ollow sin wave functions with a stochastic error, and the diagonal elements follow a stationary AR(1) processes. DGPIII (bottom left panel) is a TVP VAR(2) model with student-𝑡
rrors, time-varying intercepts and autoregressive matrices following sin wave functions with a stochastic error, time-varying covariance matrix where the off-diagonals follow sin
ave functions with a stochastic error, and the diagonal elements follow a stationary AR(1) processes. DGPIV (bottom right panel) is the same as DGPII, but with an increase in

he periodicity of the respective sin wave functions the time-varying intercepts and autoregressive matrices follow.
he top row corresponds to DGPI, and the second, third and fourth
ows results from DGPII, DGPIII, and DGPIV respectively. As we can
ee, the distribution of estimates for each DGP track the true values
emarkably well. In almost all cases, the true value lies within the
5% quantiles of the distribution from model estimates. This plot shows
hat our method provides an accurate representation of horizon specific
etwork connectedness, even when the underlying process has complex
ynamics and the true error distribution is non-Gaussian.

Fig. 3 further reports the estimates, and numerical standard error
ounds of our test for heterogeneities between high frequency band
nd low frequency band network connectedness measures (Eq. (15)) for
ach of the four DGPs we use in the Monte Carlo study. Specifically,
or each observation we test the null hypothesis (𝑢) = 0 where
(𝑢) = ̂(𝑢, 𝑑) − ̂(𝑢, 𝑐) with 𝑑 ∈ (0, 𝜋∕5) corresponding to the low

requency band and 𝑐 ∈ (𝜋∕5, 𝜋) corresponding to the high frequency
and. In each plot, we also report the 5% critical value from the 𝜒2(1)
istribution of 3.84. Test statistics exceeding this value reject the null
n favour of heterogeneities between network connectedness measures
cross frequency bands.18 As we can see, our test statistic identifies
ignificant differences between low and high frequency band network

18 We obtain numerical standard errors in a similar manner to Li et al.
2015).
401
connectedness measures that correspond with the peaks we observe in
Fig. 2 for each DGP. We can see with the non-Gaussian DGP, DGPIII
the estimates of the test statistics are smaller relative to the analogous
Gaussian DGP, DGPII. However, there are still clear rejections.

We now test for differences in connectedness measures across the
same frequency band over time. To do so, we test the first time period
against all remaining 999 observations from our DGPs, 𝑢1 = 1, 𝑢2 =
{2, 3,… , 1, 000}. We do this for both the low-frequency band, 𝑑 ∈
(0, 𝜋∕5), and the high-frequency band, 𝑑 ∈ (𝜋∕5, 𝜋). Fig. 4 reports the
estimates of the test statistics, their numerical standard error and the
corresponding 95% critical value. First, considering DGPI, it is clear
that connectedness across the high frequency band exhibits significant
differences between the first observation when we increase connections
at observation 500. It is noteworthy to mention that we also see this
for the low frequency band. This is expected as we can see that the
estimates from our simulations exhibit slight bias here. However, for
DGPII–DGPIV we have rejections relative to the first observation at the
corresponding periods where we create connectedness across the low
frequency band, and no rejections across the high frequency band.

Overall, this shows that our testing procedure indicates rejections of
equality in connectedness forming over different frequency bands, and
over time for connectedness across the same frequency band, where we
should expect to see such differences.
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Fig. 4. Tests for differences between network connectedness over time.
Notes: This figure plots the test statistics and +∕− 2 × the numerical standard errors for heterogeneities between network connectedness measures across different frequency bands
from four DGPs. The test statistic is 𝐖

(

𝑿𝑡,𝑇 ,(𝑠) = 0
)

−1 where (𝑢) = ̂(𝑢1 , 𝑑) − ̂(𝑢2 , 𝑑) with 𝑢1 = 1, 𝑢2 = {2, 3,… , 1, 000}. Here 𝑑 ∈ (0, 𝜋∕5) corresponds to the low frequency band
LHS plots) and 𝑑 ∈ (𝜋∕5, 𝜋) corresponds to the high frequency band (RHS plots). The dashed black line is the 5% critical value from the 𝜒2(1) distribution = 3.84. Values greater

than 3.84 reject the null hypothesis of equivalent network connections at time 𝑢1 , 𝑢2 across frequency band 𝑑. DGPI (top row) is a TVP VAR(2) model with Gaussian errors, we
introduce a break in the time-varying autoregressive matrices and contemporaneous relations from observation 500 that induces large connections across the high frequency band.
DGPII (second row) is a TVP VAR(2) where time-varying intercepts and autoregressive matrices following sin wave functions with a stochastic error, time-varying covariance matrix
where the off-diagonals follow sin wave functions with a stochastic error, and the diagonal elements follow a stationary AR(1) processes. DGPIII (third row) is a TVP VAR(2)
model with student-𝑡 errors, time-varying intercepts and autoregressive matrices following sin wave functions with a stochastic error, time-varying covariance matrix where the
off-diagonals follow sin wave functions with a stochastic error, and the diagonal elements follow a stationary AR(1) processes. DGPIV (fourth row) is the same as DGPII, but with
an increase in the periodicity of the respective sin wave functions the time-varying intercepts and autoregressive matrices follow.
4. Monitoring persistence in uncertainty networks using S&P500
stocks

Changes in uncertainty can play a key role in driving business cycles
nd financial turmoil (Bloom et al., 2018). Identifying the sources of
uch risks is a focus for researchers and practitioners. Some quantify
ystemic risks emanating from financial markets and sectors (e.g. Ace-
oglu, Ozdaglar, & Tahbaz-Salehi, 2015; Billio et al., 2012), while

thers examine how sectoral shocks affect aggregate fluctuations (e.g.
cemoglu et al., 2017; Atalay, 2017; Gabaix, 2011). Related to the
bove, and in response to financial crises, many countries are im-
lementing policies to monitor systemic risk and financial stability.
herefore, we use our framework to identify new measures of transitory
nd persistent linkages for S&P500 constituents. In Section 4.1, we
xamine sectoral connectedness as well as network structures at a
ranular level for financial firms.

We use high-frequency tick data for all stocks listed on the S&P500
rom 5 July 2005 to 31 August 2018 and compute realized volatil-
ty (RV) for all stocks in the sample. To obtain firm-level RVs, we
estrict our analysis to five-minute returns during New York Stock
xchange (NYSE) trading hours (i.e. 09:30-16:00). The data are time-
ynchronized using the same timestamps, eliminating transactions exe-
uted on Saturdays and Sundays, US holidays, 24-26 December and 31
ecember to 2 January due to low activity on these days. This leaves
s with 3278 trading days. After cleaning the data, we are left with a
ross section of 496 stocks.
402
To obtain our network connectivity measures, we estimate a TVP
VAR model on 𝑁 = 496 stocks with 𝑝 = 2 lags on our 𝑇 = 3278 days of
data. We estimate our horizon-specific dynamic network measures on a
48-core server. For each 𝑡 ∈ {1, 2,… , 𝑇 }, we generate 500 simulations
of the (quasi) posterior distribution, resulting in a total estimation
time of 10 days. We define transitory (short-term) network links as
those that form over a 1-5 day horizon, and persistent (long-term)
network links at horizons greater than 5 days (i.e. 5 days to the ∞
horizon). Our choice of these horizons stems from the existing literature
on volatility modelling using high-frequency data, which shows that
daily and weekly fluctuations contain salient information for future
volatility (e.g. Corsi & Renò, 2012).19

Fig. 5 plots measures of transitory and persistent network con-
nectedness from 5 July 2005 to 31 August 2018. Overall, there are
significant differences in the level of horizon-specific connectedness
across our estimation sample. In general, long-term linkages are muted
during periods of economic/financial calm. However, it is clear that
long-term connectedness spikes during periods of economic recession or
major stock market events. For example, long-term connectedness starts
to rise in 2006 and continues to rise during the 2007–2009 recession.
In addition, we can see that long-term connectedness increases during
2010–2012. This may be due to fears of contagion from the European

19 In this case, due to the size of the system, we diagonalize the covariance
matrix of the VAR as an additional precaution to avoid overfitting. For the
sectoral network measures in Section 4.1, we use a full covariance matrix.
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Fig. 5. Horizon specific dynamic total network connectedness for S&P500 constituents.
This figure plots the posterior median and 1-standard deviation percentiles of horizon
specific dynamic total network connectedness, (𝑢, 𝑑), 𝑑 ∈ {S, L} from July 5, 2005 to
August 31, 2018. S refers to the short-term, transitory connectedness, which we define
as 1 day to 1 week; and L refers to long-term, persistent connectedness, which we
define as horizons > 1 week. The spectrum with which the horizons stem from link to
the frequency with which we observe the data.

sovereign debt crisis, the 2010 flash crash and when the S&P500
entered a bear market in 2011, albeit a short-lived one. We can also see
an increase in short- and long-term connectedness in mid-to-late 2015,
which is consistent with the stock market sell-off starting in August
2015; this may also be related to fears of contagion from the Chinese
stock market crash in late 2015. Overall, we see that long-term network
connectedness increases during periods of high systemic risk across our
sample.

4.1. Transitory and persistent network connectedness of S&P500 sectors

Here we focus on the overall network connectedness driven by
transitory and persistent shocks to companies in a given sector. We
classify stocks into eleven main sectors according to the Global Industry
Classification Standard (GICS).20 These are: Consumer Discretionary
(COND) with 73 stocks; Consumer Staples (CONS) with 34 stocks;
Health Care (HLTH) with 53 stocks; Industrials (INDU) with 73 stocks;
Information Technology (INFT) with 67 stocks; Materials (MATR) with
33 stocks; Real Estate (REAS) with 29 stocks; Financials (SPF) with 66
stocks; Energy (SPN) with 36 stocks; Communication Services (TELS)
with 6 stocks; and Utilities (UTIL) with 26 stocks. Further details, in-
cluding descriptive statistics (Table D.1 of Appendix D) for annualized
daily RVs, which we compute as 100×

√

252 × 𝑅𝑉𝑡 pooling information
cross companies within each sector over the sample period from 5
uly 2005 to 31 August 2018, are reported in Appendix D. The energy
ector has the highest mean, while the financial sector has the highest
tandard deviation, skewness and kurtosis. Overall, we can see that
hese sectoral RVs show significant differences in terms of the first four
oments as well as the minimum and maximum values.

For each of the 11 sectors, we obtain dynamic network measures by
stimating a TVP VAR model on all stocks with two lags on our 3278
ays of data. On each day, we take 500 draws from the (quasi) posterior

20 GICS is an industry taxonomy developed by MSCI and Standard & Poor’s
or use by the global financial community.
403
distribution.21 We define transient and persistent network connectivity
in the same way as above.

In Fig. 6 we plot the posterior median and 95% confidence bands
for transitory and persistent network connectivity for each sector as
in Eq. (8). These follow directly from the manipulations of the estimates
of the dynamic adjacency matrices (see Eq. (12)). Grey bars in these
figures represent periods where there are statistically significant differ-
ences at the 5% level between transient and persistent network con-
nectivity.22 Overall, we observe significant differences between these
horizon-specific networks for each sector. In general, network con-
nectedness due to the persistent component of shocks exceeds that
due to the transitory component of shocks during periods of market
turbulence. Then, during periods of calm, the transitory part of the
networks becomes more pronounced.

Comparing these measures across sectors, we can see from the
real estate and financial sectors that surges in network connectedness
driven by persistent shocks drive uncertainty in the sector for much
longer periods of time during the Great Recession relative to other
sectors, e.g. CONS and HLTH. In addition, the magnitude of persistent
network connectedness from the real estate and financial sectors is
much greater. Note also that throughout this period we observe much
more frequent evidence in favour of statistical differences between
networks driven by transitory and persistent shocks for these sectors;
particularly relative to COND, CONS, HLTH and MATR. Although the
other sectors show spikes in persistent network connectedness, these
do not occur until around February 2008. This highlights how long-
term systemic risks within the real estate and financial sectors intensify
during this period and are stronger relative to other sectors.

We also see clear spikes in persistent sectoral network connect-
edness in May–October 2011 and again in 2015–2016. The former
coincides with the S&P500 entering a bear market and the latter
with declines in major stock markets around the world. In 2015–
2016, we see much lower long-term connectedness of consumer staples,
utilities, real estate and telecoms relative to other sectors. We expect
the long-term linkages of industrials, materials, energy, information
technology and financials to be strong during this period, as the decline
in global equity markets is linked to falling commodity prices and the
depreciation of Asian currencies against the US dollar.

In terms of sectoral network linkages due to transitory shocks, the
main differences we observe are in the size of the linkages. Note,
however, that there are subtle differences in the time profiles. For each
sector, we see that transitory linkages are much stronger during periods
of uncertainty at the firm level than persistent linkages during periods
of calm.

Digging deeper into our investigation of whether there are signif-
icant differences between transitory and persistent network connect-
edness for each sector, two main points emerge. First, we document
significant heterogeneity in persistence over substantial periods of time.
Fig. 6 shows that during periods of tranquillity, transitory network
linkages between sectors are stronger relative to linkages from persis-
tent shocks. During periods of turbulence, however, our results show
that persistent linkages intensify in all sectors, but their magnitude
differs considerably.23 Second, statistical differences between transitory
and persistent connectedness in one sector do not necessarily imply
differences in other sectors. For example, over the 2014–2017 period,
we see clear differences in the rejections that transitory and persistent
connectedness are equivalent in REAS, SPF, SPN and UTIL. In general,
the temporal nature of our results aligns well with Bianchi, Billio,

21 We estimate our horizon-specific dynamic network measures on a 64-core
server, resulting in a total estimation time of about 4–5 h to obtain network
estimates from the 11 sectors.

22 We plot the values of these test statistics in Figure D.1 in Appendix D.
23 From Figure D.1 in Appendix D we also document that the magnitude of
the differences evolves substantially over time.
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Fig. 6. Dynamics and Persistence in the U.S. Uncertainty Networks.
This figure plots the (quasi) posterior median and 95% confidence bands of network connectedness specific to the transitory, or short-term (in blue) and persistent, or long-term
(in red) shocks to realized volatility of the S&P500 sectors: Consumers Discretionary (COND), Consumer Staples (CONS), Health Care (HLTH), Industrials (INDU), Information
Technology (INFT), Materials (MATR), Real Estate (REAS), Financials (SPF), Energy (SPN), Communication Services (TELS), and Utilities (UTIL) from July 8, 2005 to August 31,
2018. We define transitory (short-term), as connections made over the 1 day to 1 week horizon; we characterize connections greater than 1 week as persistent (long-term). Grey
bars indicate periods with significant differences in transitory and persistent connectedness. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Casarin, and Guidolin (2019), which documents a regime dependent
impact of systemic risk on financial markets. They also provide empiri-
cal support for Gabaix (2011) and Acemoglu et al. (2012), and uncover
new measures of sectoral uncertainties (or sector-wide risks). Testing
for statistical differences between transitory and persistent sectoral net-
work connectedness adds further substance to our suggestion that one
should consider dynamic network structures that form across frequency
bands.

For researchers, our measures of network connectedness may con-
tain useful information for real economy or forecasting purposes; there
is already evidence that network connectedness contains predictive
content for the real economy (e.g. Baruník et al., 2020). For practition-
ers, tracking persistence in sectoral networks can be useful for inform-
ing macroprudential policy. This is because one can use these measures
as online monitoring tools to study the evolution and persistence of
sectoral network connectedness.

Although we provide evidence of substantial heterogeneity in the
persistence of network structures, there are commonalities in the time
profiles. We attribute this to the high degree of correlation between the
data used to proxy uncertainty in our investigation. Herskovic, Kelly,
Lustig, and Van Nieuwerburgh (2016) exploits the correlation structure
of idiosyncratic return volatilities and shows that a common factor
among the drivers of firm-level volatilities has pricing implications. Our
network connectedness measures, by definition, refer to this correlation
structure and provide an aggregate description of the network at each
point in time. However, our network measures are more informative.
We are able to obtain measures that contain information about the
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overall network structure. These may relate to directional connections
(in and out degrees) or concentration (i.e. a high influence of a small
number of firms/nodes on the overall network); both of which have
been shown to contain information with economic implications (see e.g.
Herskovic, 2018; Herskovic et al., 2020).

4.2. Network connections at a granular level

By focusing on shocks to a single financial institution that af-
fect the wider system, our research contributes to the large literature
on measuring systemic risk. Many understand systemic risk as many
market participants realizing severe losses as a result of propagation
throughout the (financial) system.24 During periods of financial turbu-
lence, uncertainty shocks, the drying up of liquidity, and insolvencies
have the ability to spread rapidly affecting many institutions across
the market. Lessons from recent financial crises spur the demand for
financial regulations in order to mitigate firm behaviours consistent
with increasing systemic risk.

From a prudential perspective, safeguarding against this type of risk
requires quantifying systemic risk. The existing literature offers many
measures of such types of risk, these include: the expected shortfall
measure of Acharya et al. (2017); Co-Value-at-Risk (CoVaR) (Adrian
& Brunnermeier, 2016); and network connectedness measures (see e.g.

24 For a comprehensive review of the literature on systemic risk, see Benoit,
Colliard, Hurlin, and Pérignon (2017).



European Journal of Operational Research 314 (2024) 393–407J. Baruník and M. Ellington
Fig. 7. Transitory and persistent networks of finance: 24 October 2008.
The left (right) figure shows the network connections between the assets comprising the SPF sector driven by transitory (persistent) shocks on 24 October 2008, corresponding
to the day when the VIX peaked. Arrows indicate the direction of the connections and the strength of the lines indicates the strength of the connections. Grey (black) vertices
indicate firms that receive (send) more shocks than they send (receive). The size of the vertices indicates the net amount of shocks. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Demirer et al., 2018). The former measures relate to specific risk
channels and as such can aid in calibrating regulatory tools. The latter
approach permits one to quantify the overall influence of individual
institutions to overall systemic risk, and hence identify systemically
important financial institutions (SIFIs).

Our approach relates closely with the above. However, under our
framework one can characterize SIFIs, or important variables for dif-
ferent applications, throughout time as well as understanding whether
the influence is persistent or transitory in nature. The benefit of this
is twofold. First, enhancing prudential authorities’ understanding of
whether SIFIs influence are transient or long lasting can help refine
policies in order to mitigate adverse firm behaviour. For example, one
could tailor policies by increasing the capital requirements of SIFIs
for those who transmit persistent shocks that contribute significantly
to systemic risk. Second, since systemic risk threatens the stability of
the entire financial sector, knowing the frequency-specific sources of
instability facilitates monitoring of changes to the such risks.

To illustrate how policy makers might use our approach, we exam-
ine the network structures of the financial sector at the granular level
of 65 firms. Since our application uses daily data we have transitory
and persistent network structures at every observation in our sample.
We therefore focus on two different dates. Fig. 7 shows the network
structures driven by transitory and persistent shocks for the SPF sector
on October 24, 2008. This date corresponds to the start of the global
financial crisis. Fig. 8 reports the corresponding network structures
one year later on October 24, 2009. For each plot, arrows indicate
the direction and strength of the connections, while a transparent (full
colour) vertex indicates a stock that sends (receives) more shocks than
it receives (sends). The size of the vertices indicates the net direction
of the connections.

We can see that on 24 October 2008, the persistent links are
larger relative to the transitory ones, suggesting that shocks within the
financial sector create links that relate to the long-term. This suggests
that systemic risk within the systems stems from persistent network
structures. Now looking one year later, it is clear that connections are
far weaker across both transitory and persistent network structures and
systemic risk is relatively lower. The main takeaway from these plots
is the strong differences in the overall structure of the horizon-specific
networks.
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In Appendix D, we plot heatmaps showing the strength of financial
institutions connections across persistent and transitory network struc-
tures for these same two dates in Figures D.2–D.3. Persistent shocks
tend to drive the links with greater strength, and so we focus our
discussion here. Zooming in to examine the contribution of specific
firms, we can see that Truist Financial Corp (BBT), Franklin Resources
(BEN), Loews Corporation (L), SPY, or Wells Fargo & Co (WFC) trans-
mitted persistent shocks to the financial sector and thus are identified
as SIFIs that affected the system with persistent shocks. We can follow
the contributions from the columns of the heatmap in Figure D.2.
The impact of a bank increases with the number of rows containing
a stronger and warmer red colour. As we can see, those banks we
name above affect many other financial institutions at the start of the
financial crisis, and such impacts are long-lasting.

Conversely, Metlife (MET), Moody’s (MCO), Unum (UNM), H&R
Block (HRB) and Assurant (AIZ) receive the most shocks on 24 Oc-
tober 2008. One year later, we can see that the structure changes
dramatically. While WFC, SPY and L seem to be strong SIFIs, BEN
is a nearly non-contributing bank. This highlights how our approach
tracks dynamics of key financial institutions within the system and
their influence across persistent and transitory network structures. For
completeness, we rank all institutions in the financial sector according
to the strength of transitory and persistent shocks they transmit/receive
during the same two dates in Table D.2 in Appendix D.

Overall, these network structures show how the role of a firm
can change not only over time, but also in terms of persistence. Re-
searchers may wish to use these network structures to assess the pricing
implications of such risks. For example, users could assess the role
of directional linkages in an empirical asset pricing application that
builds on the theoretical work of Branger, Konermann, Meinerding,
and Schlag (2020). Our framework also allows one to track dynamic
network structures that would complement studies such as (Herskovic,
2018) and Gofman, Segal, and Wu (2020). The advantage of our
approach is that one does not have to rely on monthly or annual data to
capture such networks. Finally, looking at dynamic adjacency matrices
can help economists understand how shocks dynamically determine
network structures in models of monetary policy (e.g. Pasten, Schoenle,

& Weber, 2020) or the Phillips curve (e.g. Rubbo, 2020).
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Fig. 8. Transitory and Persistent Network of Financials: 24 October 2009.
The left (right) figure shows the network connections between the assets that make up the SPF sector by transitory (persistent) connectedness. Arrows indicate the direction of the
connections and the strength of the lines indicates the strength of the connections. Grey (black) vertices denote firms that receive (send) more shocks than they send (receive).
The size of the vertices indicates the net amount of shocks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
5. Conclusion

This paper proposes a novel framework for measuring dynamic
network connections in a multivariate data system. We track dynamic
connections driven by different degrees of persistence using a spectral
decomposition of time-varying variance decomposition matrices. Our
approach properly accounts for the characteristics of the shocks that
create such links. We outline a procedure that allows one to test for
statistical differences in connectedness over time and frequency. We
provide Monte Carlo evidence that our measures are able to reliably
track connectedness and correctly identify statistical differences from
different data generating processes.

Empirically, we show that transitory and persistent measures of
network connectedness improve our understanding of systemic risks
arising from uncertainty networks. This is because our approach allows
one to track connectedness across the transitory and persistent compo-
nents of shocks. This is particularly useful during periods of heightened
uncertainty, as our measures indicate whether systemic risks from net-
work connections are transitory or persistent in nature. Ultimately, this
could lead to better decision-making by macroprudential supervisors
and investment decisions by market participants.

Disclosure statement

Jozef Baruník and Michael Ellington have nothing to disclose.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ejor.2023.11.023.

References

Acemoglu, D., Carvalho, V. M., Ozdaglar, A., & Tahbaz-Salehi, A. (2012). The network
origins of aggregate fluctuations. Econometrica, 80(5), 1977–2016.

Acemoglu, D., Ozdaglar, A., & Tahbaz-Salehi, A. (2015). Systemic risk and stability in
financial networks. American Economic Review, 105(2), 564–608.

Acemoglu, D., Ozdaglar, A., & Tahbaz-Salehi, A. (2017). Microeconomic origins of
macroeconomic tail risks. American Economic Review, 107(1), 54–108.

Acharya, V., Engle, R., & Richardson, M. (2012). Capital shortfall: A new approach to
ranking and regulating systemic risks. American Economic Review, 102(3), 59–64.
406
Acharya, V. V., Pedersen, L. H., Philippon, T., & Richardson, M. (2017). Measuring
systemic risk. The Review of Financial Studies, 30(1), 2–47.

Adrian, T., & Brunnermeier, M. K. (2016). CoVaR. American Economic Review, 106(7),
1705–1741.

Atalay, E. (2017). How important are sectoral shocks? American Economic Journal:
Macroeconomics, 9(4), 254–280.

Balke, N. S., & Wohar, M. E. (2002). Low-frequency movements in stock prices: A
state-space decomposition. The Review of Economics and Statistics, 84(4), 649–667.

Bandi, F. M., Chaudhuri, S. E., Lo, A. W., & Tamoni, A. (2021). Journal of Financial
Economics, 142(1), 214–238.

Bandi, F., & Tamoni, A. (2017). Business-cycle consumption risk and asset prices.
Available at SSRN 2337973.

Bansal, R., Kiku, D., & Yaron, A. (2010). Long run risks, the macroeconomy, and asset
prices. American Economic Review, 100(2), 542–546.

Bansal, R., & Yaron, A. (2004). Risks for the long run: A potential resolution of asset
pricing puzzles. The Journal of Finance, 59(4), 1481–1509.

Barigozzi, M., Hallin, M., Soccorsi, S., & von Sachs, R. (2020). Time-varying general
dynamic factor models and the measurement of financial connectedness. Journal of
Econometrics.

Baruník, J., Bevilacqua, M., & Tunaru, R. (2020). Asymmetric network connectedness
of fears. The Review of Economics and Statistics, 1–41.

Baruník, J., & Křehlík, T. (2018). Measuring the frequency dynamics of financial
connectedness and systemic risk. Journal of Financial Econometrics, 16(2), 271–296.

Barunik, J., Krehlik, T., & Vacha, L. (2016). Modeling and forecasting exchange
rate volatility in time-frequency domain. European Journal of Operational Research,
251(1), 329–340.

Benoit, S., Colliard, J.-E., Hurlin, C., & Pérignon, C. (2017). Where the risks lie: A
survey on systemic risk. Review of Finance, 21(1), 109–152.

Bianchi, D., Billio, M., Casarin, R., & Guidolin, M. (2019). Modeling systemic risk with
Markov switching graphical SUR models. Journal of Econometrics, 210(1), 58–74.

Billio, M., Getmansky, M., Lo, A. W., & Pelizzon, L. (2012). Econometric measures of
connectedness and systemic risk in the finance and insurance sectors. Journal of
Financial Economics, 104(3), 535–559.

Bloom, N., Floetotto, M., Jaimovich, N., Saporta-Eksten, I., & Terry, S. J. (2018). Really
uncertain business cycles. Econometrica, 86(3), 1031–1065.

Branger, N., Konermann, P., Meinerding, C., & Schlag, C. (2020). Equilibrium asset
pricing in directed networks. Review of Finance, 25(3), 777–818.

Brennan, M. J., & Zhang, Y. (2018). Capital asset pricing with a stochastic horizon.
Journal of Financial and Quantitative Analysis, 1–45.

Calabrese, R., & Osmetti, S. A. (2019). A new approach to measure systemic risk: A
bivariate copula model for dependent censored data. European Journal of Operational
Research, 279(3), 1053–1064.

Chan, J. C. (2020). Large Bayesian VARs: A flexible Kronecker error covariance
structure. Journal of Business & Economic Statistics, 38(1), 68–79.

Chaudhuri, S. E., & Lo, A. W. (2019). Dynamic alpha: A spectral decomposition
of investment performance across time horizons. Management Science, 65(9),
4440–4450.

https://doi.org/10.1016/j.ejor.2023.11.023
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb1
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb1
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb1
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb2
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb2
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb2
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb3
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb3
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb3
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb4
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb4
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb4
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb5
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb5
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb5
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb6
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb6
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb6
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb7
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb7
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb7
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb8
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb8
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb8
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb9
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb9
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb9
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb10
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb10
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb10
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb11
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb11
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb11
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb12
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb12
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb12
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb13
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb13
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb13
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb13
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb13
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb14
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb14
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb14
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb15
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb15
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb15
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb16
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb16
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb16
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb16
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb16
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb17
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb17
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb17
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb18
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb18
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb18
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb19
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb19
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb19
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb19
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb19
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb20
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb20
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb20
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb21
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb21
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb21
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb22
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb22
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb22
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb23
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb23
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb23
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb23
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb23
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb24
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb24
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb24
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb25
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb25
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb25
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb25
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb25


European Journal of Operational Research 314 (2024) 393–407J. Baruník and M. Ellington
Cogley, T., Primiceri, G. E., & Sargent, T. J. (2010). Inflation-gap persistence in the
US. American Economic Journal: Macroeconomics, 2(1), 43–69.

Corsi, F., & Renò, R. (2012). Discrete-time volatility forecasting with persistent leverage
effect and the link with continuous-time volatility modeling. Journal of Business &
Economic Statistics, 30(3), 368–380.

Dahlhaus, R. (1996). On the Kullback-Leibler information divergence of locally
stationary processes. Stochastic Processes and Their Applications, 62(1), 139–168.

Dahlhaus, R. (2000). A likelihood approximation for locally stationary processes. The
Annals of Statistics, 28(6), 1762–1794.

Dahlhaus, R., Polonik, W., et al. (2009). Empirical spectral processes for locally
stationary time series. Bernoulli, 15(1), 1–39.

Demirer, M., Diebold, F. X., Liu, L., & Yilmaz, K. (2018). Estimating global bank
network connectedness. Journal of Applied Econometrics, 33(1), 1–15.

Dew-Becker, I., & Giglio, S. (2016). Asset pricing in the frequency domain: theory and
empirics. The Review of Financial Studies, 29(8), 2029–2068.

Diebold, F. X., & Yilmaz, K. (2014). On the network topology of variance decompo-
sitions: Measuring the connectedness of financial firms. Journal of Econometrics,
182(1), 119–134.

Drechsler, I., & Yaron, A. (2011). What’s vol got to do with it. The Review of Financial
Studies, 24(1), 1–45.

Engle, R., & Kelly, B. (2012). Dynamic equicorrelation. Journal of Business & Economic
Statistics, 30(2), 212–228.

Gabaix, X. (2011). The granular origins of aggregate fluctuations. Econometrica, 79(3),
733–772.

Garvey, M. D., Carnovale, S., & Yeniyurt, S. (2015). An analytical framework for
supply network risk propagation: A Bayesian network approach. European Journal
of Operational Research, 243(2), 618–627.

Geraci, M. V., & Gnabo, J.-Y. (2018). Measuring interconnectedness between financial
institutions with Bayesian time-varying vector autoregressions. Journal of Financial
and Quantitative Analysis, 53(3), 1371–1390.

Gerrard, R., Kyriakou, I., Nielsen, J. P., & Vodička, P. (2022). On optimal constrained in-
vestment strategies for long-term savers in stochastic environments and probability
hedging. European Journal of Operational Research.

Giglio, S., Maggiori, M., & Stroebel, J. (2015). Very long-run discount rates. Quarterly
Journal of Economics, 130(1), 1–53.

Gofman, M., Segal, G., & Wu, Y. (2020). Production networks and stock returns:
The role of vertical creative destruction. The Review of Financial Studies, 33(12),
5856–5905.

Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and estimation
of treatment effects with a regression-discontinuity design. Econometrica, 69(1),
201–209.
407
Haven, E., Liu, X., & Shen, L. (2012). De-noising option prices with the wavelet method.
European Journal of Operational Research, 222(1), 104–112.

Herskovic, B. (2018). Networks in production: Asset pricing implications. The Journal
of Finance, 73(4), 1785–1818.

Herskovic, B., Kelly, B., Lustig, H., & Van Nieuwerburgh, S. (2016). The common
factor in idiosyncratic volatility: Quantitative asset pricing implications. Journal
of Financial Economics, 119(2), 249–283.

Herskovic, B., Kelly, B., Lustig, H., & Van Nieuwerburgh, S. (2020). Firm volatility in
granular networks. Journal of Political Economy, 128(11), 4097–4162.

Koop, G., Leon-Gonzalez, R., & Strachan, R. W. (2010). Dynamic probabilities of
restrictions in state space models: an application to the phillips curve. Journal of
Business & Economic Statistics, 28(3), 370–379.

Li, Y., Liu, X.-B., & Yu, J. (2015). A Bayesian chi-squared test for hypothesis testing.
Journal of Econometrics, 189(1), 54–69.

Li, Y., Zeng, T., & Yu, J. (2014). A new approach to Bayesian hypothesis testing. Journal
of Econometrics, 178, 602–612.

Liu, X., Li, Y., Yu, J., & Zeng, T. (2022). Posterior-based wald-type statistics for
hypothesis testing. Journal of Econometrics, 230(1), 83–113.

Lütkepohl, H. (1990). Asymptotic distributions of impulse response functions and
forecast error variance decompositions of vector autoregressive models. The Review
of Economics and Statistics, 116–125.

Pasten, E., Schoenle, R., & Weber, M. (2020). The propagation of monetary policy
shocks in a heterogeneous production economy. Journal of Monetary Economics,
116, 1–22.

Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear
multivariate models. Economics Letters, 58(1), 17–29.

Petrova, K. (2019). A quasi-Bayesian local likelihood approach to time varying
parameter VAR models. Journal of Econometrics.

Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary
policy. Review of Economic Studies, 72(3), 821–852.

Richmond, R. J. (2019). Trade network centrality and currency risk premia. The Journal
of Finance, 74(3), 1315–1361.

Roueff, F., & Sanchez-Perez, A. (2016). Prediction of weakly locally stationary processes
by auto-regression. arXiv preprint arXiv:1602.01942.

Rubbo, E. (2020). Networks, phillips curves and monetary policy. Available https:
//economics.yale.edu/sites/default/files/rubbo_jmp.pdf.

Sévi, B. (2014). Forecasting the volatility of crude oil futures using intraday data.
European Journal of Operational Research, 235(3), 643–659.

Sun, E. W., & Meinl, T. (2012). A new wavelet-based denoising algorithm for high-
frequency financial data mining. European Journal of Operational Research, 217(3),
589–599.

Yang, Z., & Zhou, Y. (2017). Quantitative easing and volatility spillovers across
countries and asset classes. Management Science, 63(2), 333–354.

http://refhub.elsevier.com/S0377-2217(23)00864-0/sb26
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb26
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb26
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb27
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb27
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb27
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb27
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb27
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb28
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb28
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb28
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb29
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb29
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb29
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb30
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb30
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb30
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb31
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb31
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb31
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb32
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb32
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb32
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb33
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb33
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb33
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb33
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb33
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb34
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb34
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb34
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb35
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb35
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb35
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb36
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb36
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb36
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb37
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb37
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb37
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb37
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb37
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb38
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb38
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb38
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb38
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb38
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb39
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb39
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb39
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb39
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb39
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb40
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb40
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb40
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb41
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb41
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb41
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb41
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb41
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb42
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb42
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb42
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb42
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb42
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb43
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb43
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb43
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb44
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb44
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb44
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb45
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb45
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb45
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb45
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb45
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb46
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb46
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb46
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb47
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb47
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb47
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb47
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb47
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb48
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb48
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb48
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb49
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb49
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb49
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb50
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb50
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb50
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb51
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb51
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb51
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb51
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb51
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb52
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb52
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb52
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb52
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb52
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb53
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb53
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb53
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb54
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb54
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb54
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb55
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb55
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb55
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb56
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb56
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb56
http://arxiv.org/abs/1602.01942
https://economics.yale.edu/sites/default/files/rubbo_jmp.pdf
https://economics.yale.edu/sites/default/files/rubbo_jmp.pdf
https://economics.yale.edu/sites/default/files/rubbo_jmp.pdf
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb59
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb59
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb59
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb60
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb60
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb60
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb60
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb60
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb61
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb61
http://refhub.elsevier.com/S0377-2217(23)00864-0/sb61

	Persistence in financial connectedness and systemic risk
	Introduction
	Measuring Transitory and Persistent Connections
	A Route Towards Transitory and Persistent Connectedness
	Measuring Connectedness
	Obtaining Transitory and Persistent Network Measures
	Testing for Statistical Differences in Connectedness

	Monte Carlo Study
	Monitoring Persistence in Uncertainty Networks using S&P500 Stocks
	Transitory and Persistent Network Connectedness of S&P500 Sectors
	Network Connections at a Granular Level

	Conclusion
	Appendix A. Supplementary data
	References


