International Review of Financial Analysis 96 (2024) 103573

International
Review of
Financial

Analysis

Contents lists available at ScienceDirect

International Review of Financial Analysis

journal homepage: www.elsevier.com/locate/irfa

Risks of heterogeneously persistent higher moments™

Jozef Barunik *, Josef Kurka

Charles University, Institute of Economic Studies, Opletalova 26, 110 00, Prague, Czech Republic
The Czech Academy of Sciences, IITA, Pod Voddrenskou VézZi4, 182 08, Prague, Czech Republic

ARTICLE INFO ABSTRACT

JEL classification: Using intraday data for the cross-section of individual stocks, we show that both transitory and persistent
C14 fluctuations in realized market and average idiosyncratic volatility, skewness and kurtosis are differentially
C22 priced in the cross-section of asset returns, implying a heterogeneous persistence structure of different sources
G11 of higher moment risks. In particular, we find that both idiosyncratic transitory shocks to volatility and
Gl2 idiosyncratic persistent shocks to skewness share strong commonalities that are relevant to investors.
Keywords:

Higher moments

Transitory

Persistent

Cross-section of returns

1. Introduction

Higher moments, which capture non-normalities in return distri-
butions, have long been recognized as an important source of risk
in pricing securities (Fama, 1965). More recent work suggests that
additional features of the payoff distribution of individual securities
may be relevant to understanding differences in asset returns. For
example, Amaya et al. (2015) and Neuberger and Payne (2021) argue
that the time variation of moments is an important aspect that induces
changes in the investment opportunity set by changing the expectation

across frequencies, which severely constrains risk measurement across
horizons (Bandi et al., 2021). In contrast to this assumption, recent
literature documents both theoretical and empirical evidence? that
investor preferences are frequency-specific (Bandi et al., 2021; Dew-
Becker & Giglio, 2016; Neuhierl & Varneskov, 2021). It remains an
open question how different sources of risk for an investor are high-
frequency (low-frequency) fluctuations of higher moments such as
skewness or kurtosis associated with transitory (persistent) risks.

The main contribution of this paper is to systematically investi-
gate how transitory and persistent higher moments fluctuations are

of future market returns or by changing the risk-return trade-off.! In
addition, the risk premium associated with idiosyncratic and systemic
counterparts is documented to affect an investor’s pricing kernel un-
equally (Langlois, 2020). However, these risks associated with higher
moments of return distributions are exclusively modelled as constant

priced into the cross-section of expected stock returns. Since these
moment-based risks are highly time-varying and have both transitory
(short-term) and persistent (long-term) components, we aim to identify
the role of these components using recent advances in financial econo-
metrics, coupled with newly available high-frequency intraday data
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2019 for many useful comments, suggestions, and discussions. We gratefully acknowledge the support from the Czech Science Foundation under the EXPRO
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1 See also Ang et al. (2006), Harvey and Siddique (2000) and Kelly and Jiang (2014). Amaya et al. (2015) show that realized skewness measures computed
from intraday return data on individual stocks can be used to sort stocks into portfolios with significantly different excess returns, while Boyer et al. (2009)
and Conrad et al. (2013) show that high idiosyncratic skewness in individual stocks is also correlated with positive returns. Ghysels et al. (2016) present similar
results for emerging market indices.

2 The importance of horizon-specific investor decisions has been recognized in the literature for decades. Horizon choice significantly affects model results in
terms of asset pricing (Levhari & Levy, 1977), portfolio selection (Tobin, 1965) and portfolio performance (Levy, 1972). Such findings emphasized the importance
of capturing heterogeneous investor preferences across investment horizons. Models incorporating such an assumption began to emerge shortly afterwards (Gressis
et al., 1976; Lee et al., 1990), but the increased attention to modelling horizon-specific risks is a very recent phenomenon (Bandi et al., 2021; Dew-Becker &
Giglio, 2016; Neuhierl & Varneskov, 2021).
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that allow accurate measurement of the time-varying higher moments.
The results will be relevant to the three main strands of the empirical
asset pricing literature, namely those dealing with the pricing implica-
tions of higher moment risk, the persistence structure of different types
of risk, and the literature dealing with the importance of systemic and
idiosyncratic risk. We discuss these aspects in the following sections,
while Section 2 provides a more detailed discussion of the recent
literature and how it relates to our research.

Higher moments of the return distribution exhibit strong time dy-
namics (Amaya et al.,, 2015), implying that they contain important
transitory and permanent sources of risk. For example, skewness risk,
which is often perceived as a manifestation of tail risk or crash risk,
may have both transitory and permanent components that can be
well linked to the transitory and permanent shocks in the economy,
creating heterogeneously persistent risk. Our work is closely related
to Neuberger and Payne (2021), who suggest how to compute higher
moments of long-horizon returns from daily returns. In contrast, we
use a cyclical decomposition of fluctuations from intraday data, which
provides a full decomposition of information to any frequency band of
interest, and we exploit both transitory and persistent components of
the higher moments. We see this decomposition as a natural way to
explicitly model heterogeneous investment horizons and fully describe
their dynamics.

Why should an investor have heterogeneously persistent preferences
for higher instantaneous risks? Risk varies across investment styles
as well as frequencies (Bandi et al., 2021), so models that assume
constant risk across investment horizons generally fail to describe a
number of key features, including the pricing of cross-sections, when
confronted with data. While long-run risk models (Bansal & Yaron,
2004) suggest that persistent components of risk are the ones that
matter, empirical evidence is mixed, suggesting that they do not fully
capture the dynamics in returns. In contrast, Neuhierl and Varneskov
(2021) argue that a key feature of an asset pricing model should be the
ability to decompose risk into frequency-specific components.

More generally, returns and risks can be decomposed into elements
with different degrees of persistence (Adrian & Rosenberg, 2008). In
their seminal work, Bansal and Yaron (2004) suggest frequency de-
composition of consumption and dividend growth processes as a key to
explaining various puzzles in asset markets. Shocks to consumption at
different frequencies have different implications for model outcomes;
they enter the pricing kernel with different weights (Dew-Becker &
Giglio, 2016), have different effects on asset returns (Ortu et al., 2013;
Yu, 2012) and lifetime utility (Bidder & Dew-Becker, 2016), and the
exposure of firms’ cash flows to shocks of different persistence varies (Li
& Zhang, 2016). Bandi et al. (2021) decompose the betas in the
consumption CAPM model, thus disentangling the effect of exposure
to market risk for different horizons. Kamara et al. (2016) identify the
sources of transitory and persistent risks in five cornerstone factors
(MKT, SMB, HML, MOM, LIQ) by observing their power to explain the
cross-section of expected returns over different horizons.

Investors’ different preferences over different horizons justify a
certain degree of horizon dependence in their attitude to risk. Several
theoretical concepts explain such investor behaviour. For example,
myopic loss aversion links an individual’s willingness to participate in
an investment (alternatively, in a bet, game, etc.) with the valuation
horizon (for details see Benartzi & Thaler, 1995) and thus perceives
investor decision making as horizon-specific. Commonly used prefer-
ences, e.g. Epstein and Zin (2013), are described by a discount factor
and a risk aversion parameter. Under horizon-dependent risk aversion,
the representation of investor preferences needs to be adjusted by
adding a patience coefficient (Gonzalo & Olmo, 2016). To prevent the
results of our model from being driven by the choice of a specific utility
function (Dittmar, 2002), we approximate the stochastic discount factor
using the model-free approach (e.g., Chabi-Yo, 2012; Dittmar, 2002).
The empirical model we propose disentangles the short- and long-
term characteristics of investors’ risk attitudes associated with different
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sources of transitory and persistent risk by empirically decomposing
higher moment risks into different horizons.

Assuming that idiosyncratic risk can be fully diversified, the lit-
erature has long assumed that only market risk enters investors’ de-
cision making. However, it has been documented both theoretically
and empirically (e.g., Amaya et al., 2015; Jondeau et al., 2019)
that idiosyncratic risk is also priced into asset returns. The reason
for this may well be that idiosyncratic risk can only be diversified
away in an unconnected system of stocks. As argued by Barunik and
Ellington (2024) and Elliott et al. (2014), investors require risk premia
for idiosyncratic risk when stocks form a connected network. Another
important reason for the relevance of idiosyncratic risk comes from the
deliberate under-diversification of investors who, for example, do not
hold fully diversified portfolios because they want to take advantage
of the extreme positive returns from positively skewed assets. These
investors, in turn, are exposed to average idiosyncratic risk due to the
network structure of stock markets and their documented behaviour,
which violates rational decision-making in the traditional sense.

While considerable research has examined the time-series relation-
ship between idiosyncratic moments and the cross-section of returns,
less attention has been paid to how aggregate moments affect the
cross-section of expected returns. The literature documents that while
idiosyncratic skewness risk is important, systematic skewness of returns
also provides defencive returns in bad times (Langlois, 2020), and aver-
age market skewness is priced into the cross-section of returns (Jondeau
et al., 2019). Our work is related to this recent debate, and we further
explore how the two sources of risk are priced by investors with
heterogeneously persistent preferences.

Our main contribution is to document how the higher moments
are priced by investors with heterogeneous investment horizons. We
obtain our main empirical results for a cross-section of US firms, using
returns on all stocks in the Center for Research in Securities Prices
(CRSP) database. The departures from normality in the asset return
distribution are most pronounced in the smallest market capitalization
deciles (Harvey & Siddique, 2000), so we must not limit our attention
to large-cap firms in order to fully assess how the heterogeneously
persistent higher moments are priced in the cross-section of stocks.
The sample, collected over the period January 2000 to December
2022, uses high frequency data to compute realized moments using
one-minute sample prices filtered to 5-minute prices, and we build a
database of daily returns and moment factors to test the conditional
asset pricing models. We find that both market and idiosyncratic higher
moment risks are priced into the cross-section of asset returns with
heterogeneous persistence.

2. Persistence of the higher order moments risks

The empirical search for explanation of why different assets earn
different average returns centres around risk factor models arising
from the Euler Equation. Whereas literature documents large num-
ber of factors, their overall poor performance (Harvey et al., 2016;
McLean & Pontiff, 2016) supports the focus on risk factors capturing
the properties of asset returns such as moments of distribution. At
the same time, researchers document puzzling results when studying
volatility, skewness and kurtosis as proxies for risk. We believe that
one of the important reasons is that researchers assume homogeneous
preferences of investors over different investment horizons. In contrast,
we believe investors price these risks with heterogeneous persistence.
Below, we provide theoretical discussion connecting persistence in
higher moments risks with the cross-section of asset returns and we
show how to extract the transitory and persistent components of these
risks from high-frequency data.

2.1. Higher moments risks in asset pricing

Volatility is widely perceived as the main indicator of risk on the
financial markets and is incorporated in many asset pricing models
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while higher moments, specifically skewness and kurtosis add crucial
information about risk contained in the tails of asset returns distribu-
tion. Importance of the tails of distribution in asset pricing is soundly
based in the literature and it is manifested mainly by the fact that
downside risk plays a pivotal role in predicting returns of multiple asset
classes (Farago & Tédongap, 2018; Lettau et al., 2014).

Normality of the data is a convenient and widely used assumption
while higher moments are highly informative once data depart from
normality. Non-normalities of return distribution have been recognized
in the literature empirically (Bakshi et al., 2003; Fama, 1976, 1996),
hence the tails of distribution expressed by the higher moments may
be able to explain problems documented by standard asset pricing
and portfolio selection models like equity premium puzzle,® deliberate
underdiversification* or failures of CAPM® (Harvey & Siddique, 2000).
More generally, investors deciding under risk often depart from the
expected utility framework as they reveal preferences over positively
skewed assets (Barberis & Huang, 2008), therefore the preferences of
investors are better modelled by the cumulative prospect theory that
gives higher weight to the tails of the distribution.®

The literature documents that higher moments play a significant
role in the process of determining the stocks prices. The three-moment
CAPM (Kraus & Litzenberger, 1976) analytically links the skewness
preference with the expected asset returns, Dittmar (2002) shows that
a pricing kernel incorporating investors preferences over both skewness
and kurtosis is necessary to eliminate counterintuitive risk taking,
while Chabi-Yo (2012) derives a pricing kernel containing stochastic
volatility, skewness and kurtosis risk. The theoretical concepts linking
skewness and/or kurtosis to asset returns also find support in the
data. There is evidence that skewness and kurtosis are priced in the
financial cross-sections (Agarwal et al., 2009; Chang et al., 2013; Kraus
& Litzenberger, 1976) along with volatility, yet the overall results
present various puzzles and we still fail to understand the exact mech-
anisms propagating these relationships. We believe that building the
asset pricing models assuming investors with homogeneous investment
horizons is among the prominent reasons for not being able to fully
explain the mechanisms underlying the asset pricing process.

2.2. Idiosyncratic and market moments

Another important aspect of the discussion is the type of moment
based risk we use in the analysis. A traditional view in the literature
is that idiosyncratic moments risks can be diversified away, and only
systematic components of moments should be rewarded (Harvey &
Siddique, 2000). However, enormous literature emphasizes the ability
of idiosyncratic risks to predict subsequent returns. Recently, Jondeau
et al. (2019) document that average monthly skewness across firms
predicts future market returns, and they argue that systematic market
skewness is not the main channel by which investor’s preferences
for skewness affect future market return. In addition, Langlois (2020)
documents that systematic and idiosyncratic skewness are connected

3 Mehra and Prescott (1985) noted that class of general equilibrium models
is not able to explain large average equity risk premia and low risk-free rate
observed on US markets.

4 Investors deliberately hold insufficiently diversified portfolios, although
they would be capable of obtaining a sufficient number of assets to fully
diversify away the idiosyncratic risk. One of the possible explanations is the
desire of investors to hold the “lottery-like” assets offering possible extreme
positive returns which results in fear of foregoing the opportunity to exploit
these returns by becoming completely diversified (Mitton & Vorkink, 2007;
Simkowitz & Beedles, 1978).

5 Harvey and Siddique (2000) note that failures of CAPM are most signifi-
cant for assets in the lowest deciles of market-cap, i.e. the most significantly
skewed assets.

6 Barberis and Huang (2008) claim their model could explain e.g. poor
performance of IPOs or success of momentum strategies.
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with different expected returns across stocks. While stocks with higher
systematic skewness are appealing because they offer defencive returns
during bad times, stocks with positive idiosyncratic skewness attract
investors seeking high returns regardless of broad market movements,
and are connected to a lottery-like payoff.

Empirical ability of idiosyncratic skewness risk to predict the cross-
section of returns has been recognized across many different mea-
sures of skewness, specifically option implied measures (Conrad et al.,
2013), realized measures computed from high-frequency data (Amaya
et al,, 2015), or idiosyncratic skewness forecasted by a time series
model (Boyer et al., 2009). These findings indicate that investors are
willing to accept low returns and high volatility if they are compen-
sated by positive skewness. Such phenomenon is closely connected to
deliberate underdiversification (Mitton & Vorkink, 2007; Simkowitz &
Beedles, 1978) that is driven by “lotto investors” demanding assets with
high upside potential. Moreover, preference of investors over “lottery-
like” assets is connected to strong predictive power of maximum past
returns (Bali et al., 2011), and it plays a central role in explaining the
idiosyncratic volatility puzzle (Hou & Loh, 2016).”

Generally, there is evidence that idiosyncratic higher moments can
help in explaining multiple financial market puzzles. We contribute
to this debate by assessing the role of both market and average id-
iosyncratic moments with respect to their short-term as well as long-
term fluctuations. In other words, we investigate how the transitory
and persistent fluctuations of average idiosyncratic and market higher
moments are priced in the cross-section of stocks.

2.3. Persistence of the higher moment risks

Higher moments are exclusively assumed as a risk that is constant
across investment horizons in the literature. This is too restrictive for
the data, instead the risk factors should be modelled as having hetero-
geneous impact across investment cycles. Our main aim is to investigate
how the transitory as well as persistent fluctuations of higher moments
matter in the cross-section of returns. This endeavour stems from
the recent discussion which points to changing risk attitudes across
investment styles as well as frequencies (Bandi et al., 2021; Neuhierl
& Varneskov, 2021) and suggests that a key feature of an asset pricing
model should be the ability to decompose risk into frequency-specific
components with different persistence.

Decades of research have been devoted to the ability of higher
moments risks to price the cross-section of equity returns, yet the
overall results are still puzzling especially regarding the role of volatil-
ity and kurtosis. As discussed above, risks should not be aggregated
across investment horizons due to the heterogeneity of risk attitudes
connected to different characteristics of investors as well as other
aspects of investor preferences. We propose to allow the heterogeneity
of investors in terms of investment horizons and assess the connection
between the fluctuations in higher moments risks and asset returns
based on the persistence of these fluctuations.

To our knowledge, the ability of the transitory and persistent fluc-
tuations in higher moments to price stocks returns has not been eval-
uated. Similarly to the notion of spectral factor models (Bandi et al.,
2021) that decompose CAPM beta into several frequencies, we decom-
pose the higher moments to heterogeneously persistent components.
Relaxing the assumptions of homogeneous investment horizons and
uncovering the persistence underlying the higher moments risks should

7 Idiosyncratic volatility puzzle is a phenomenon observed by Ang et al.
(2006), who document a negative relationship between idiosyncratic volatility
and returns. This is very puzzling as investors should require positive risk pre-
mia, if any, for idiosyncratic volatility. However, high idiosyncratic volatility
indicates possible high future exposure to idiosyncratic skewness (Boyer et al.,
2009). Preference for right skewed assets along with market frictions holds a
prominent place amongst explanations of idiosyncratic volatility puzzle (Hou
& Loh, 2016).
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be a crucial step towards explaining the ongoing puzzles connected to
the performance of higher moments risk factors.

We are looking at how transitory and persistent shocks to the
different higher moments are priced into the cross-section of stocks. We
are able to identify the persistence of shocks to the particular moment
that plays a role in determining the returns through the pricing kernel.
In the next sections we explain how we can naturally model heteroge-
neous investment horizons and persistence in the higher moments risks
using frequency decomposition. We also show the connection between
the measures of transitory and persistent higher moments risks, and
high-frequency financial data.

2.4. Modelling persistence

Assume that a higher moment M M T, has two orthogonal compo-
nents capturing economic cycles shorter than 2/ periods and longer
than 2/ periods (for example months) for j > 1. These represent the
short-term and long-term components capturing transitory and perma-
nent information respectively. Bandi et al. (2021) show formally that
it is always possible to decompose covariance-stationary time-series in
such a way that these two components are orthogonal, they are non
anticipative, and hence suitable for out of sample applications. These
are key for the purpose of using such factors in asset pricing models.

Assuming the higher moment is a covariance-stationary time-series,
we can decompose a higher moment risk factor into transitory and
persistent components as

MMT, = MMT"” + MMT?"”

MMT? + MMT??, '6))

where M M Tf") captures the transitory component of the moment com-
puted as a sum of the corresponding elements up to j, and MM T,(" er)
captures the persistent component of the moment consisting of the
elements larger than j. In the next subsections, we show how such
decomposition can help us with modelling the persistence of higher
moment risks in relation to the time-series of asset returns. Hence from
now on, we will refer to transitory and persistent components of higher
moment risk within this definition. The two distinct sources of risk will
have heterogeneous impact, and our aim is to find how these risks are
priced in the cross-section of stocks.

2.5. Realized moments

The discussion assumes that higher moments evolve dynamically,
but at the same time we need to realize that higher moments are gen-
erally hard to measure. In this subsection, we provide brief summary of
high-frequency based estimation of higher moment risk measures that
we plug into the model. We rely on recent advances in high-frequency
econometrics to measure the realized volatility, realized skewness and
realized kurtosis and then decompose their fluctuations to transitory
and persistent parts so we define heterogeneously persistent higher
moments.

We compute the daily higher moments M MT, by the means of the
realized measures (Andersen et al., 2001). The daily realized variance
(RDV), realized skewness (RDS), and realized kurtosis (RDK) represent-
ing the second, third, and fourth moment of daily returns distribution
can be computed from 5-minute prices. Using already well-known
arguments of Andersen et al. (2001, 2003) realized variance can be
constructed as sum of the squared high-frequency intraday returns as

K
RDV, =)', )
j=1
where r; . = p; i/ — Pr—1y/x With py/x denoting a natural logarithm
of kth intraday price on day 7. We use five-minute returns so that in
6.5 trading hours we have K = 78 intraday returns. Realized Volatility
(RDVOL) is computed as RDVOL, = \/RDV,.
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Since we are mainly interested in measuring asymmetry and higher
order moments of the daily returns’ distribution, we construct a mea-
sure of ex-post realized skewness based on intraday returns standard-
ized by the realized variance following Amaya et al. (2015) as

K 3
Wzk:l 'tk

RS = oy
t

3
The negative values of the realized skewness indicate that stock’s
return distribution has a left tail that is fatter than the right tail, and
positive values indicate the opposite. In addition, extremes of the return
distribution can be captured by realized kurtosis

K 4
N ¥ Ik

2
RY;

RDK, = (€]
Note that as discussed by Amaya et al. (2015), with increasing sam-
pling frequency K realized skewness in the limit separates the jump
contribution from the continuous contribution to cubic variation and
it captures mainly jump part. This feature is important to note since
the measure does not capture leverage effect arising from correlation
between return and variance innovations. Hence assets with positive
jumps on average will have a positive realized third moment and vice
versa, and higher moments measured by high frequency data are likely
to contain different information from those computed from daily data
or options (see Amaya et al., 2015 for rigorous discussion).

2.6. Average idiosyncratic higher moments

We define the average idiosyncratic higher moments as the cross-
sectional averages of the corresponding realized moments computed for
the individual stocks. Since our sample consists of an unbalanced panel,
we use rolling windows to obtain the measures of average idiosyncratic
moments. Specifically, for each year y in our sample period, we take all
the stocks with a complete history of daily returns in the corresponding
year, and compute RDM, ;, where RDM € {RDVOL,RDS, RDK} for
each stock i and each day ¢ in year y. The average idiosyncratic moment
for day 7 is obtained as

N
RDM" = % > RDM,), (5)
i=1

where i represent stock i and N is the number of stocks with complete
history of daily returns in year y. We repeat the procedure for years
y € {1,...,Y} where Y is the total number of years in our sample
period. The heterogeneously persistent average idiosyncratic higher
moments RDM,(’ M are obtained analogously as

M=

RDOM!? = LY RpM® ©)
N & &
I

where h € {tr, per}.
2.7. Modelling persistence from high-frequency returns

The realized higher-order moments exhibit strong time series dy-
namics (Amaya et al,, 2015) and may thus have unexplored tran-
sitory and persistent components that create heterogeneous types of
risks matching our theoretical expectation. To explore such risks and
work with the assumption of heterogeneous investment horizons, we
decompose the realized measures to their horizon-specific components.

Above we discuss how to decompose an higher moment M MT, to
two orthogonal components capturing economic cycles shorter than
2/ periods (for example months) and longer than 2/ periods for j >
1 capturing transitory and permanent information contained in the
higher moments respectively. A realized higher moment RDM, €
{RDVOL,, RDS,, RDK,} can be decomposed in an identical fashion as

RDM, = RDM” + RDM"*",
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Fig. 1. Decomposition of realized moments vs realized moments of decomposed returns.
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The Figure compares persistence components of realized volatility (RDVOL) and skewness (RDS) estimated on aggregate returns r,, with volatility and skewness of transitory
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(") + r(” “")Transitory and persistent components of volatility and skewness computed on aggregate returns are depicted by solid

line (RDVOL™(r,), RDVOL‘P"”(r,), RDS(")(r,), RDSW”(r,)) and volatility and skewness of decomposed returns are depicted by dashed line (RDVOL(r®), RDVOL(r*"), RDS(r™),

RDS(r")).

= RDM? + RDM?? @)

where RDM;") denotes transitory component of realized moment com-
puted as a sum of the corresponding elements up to j, and RDMt(”e’)
denotes persistent component of realized moment consisting of the
elements larger than j.

A natural question is how can we infer persistence structure of
higher moments from realized measures based on high-frequency data?
Here we motivate the approach with a simple data generating process
to support that the decomposition of realized measures captures the
persistence structure of data. Let us assume returns r,, evolving over
t € {1,...,T} days with two components having different level of
persistence as

P = Bel) + g, (8)
—— ——
(T’) (per)
with n € {1,..., N} denoting the nth observation on day ¢, r(’) nd

r(p”) denoting hlgh-frequency transitory and persistent components of

returns respectively, and e(") ~ SGT (O a:"l),/lg"i,P), and e("") ~

SGT (O ,("‘1'), A:" 6'1'),7)) having Skewed generalized t-distribution with
0',('_) , and /15_)1 being variance and skewness parameters respectively and
P captures the parameters p and ¢.° We simulate a realization of this
process with N = 288° intraday returns over T = 200 days. First, we
compute the realized volatility and skewness on the aggregate returns
r,,, and decompose these to transitory and persistent parts as we will
do later on real data. Second, we compute the realized volatility and
skewness from transitory and persistent components of returns r(") and

" °r) that are of interest, but are usually hidden from an observer. If our
decomposmon identifies the persistence components of the observable

8 The individual variance and skewness processes are formalized in Ap-
pendix B. The p and ¢ parameters are fixed with p = 2 and ¢ -
0.

9 This corresponds to a 5-minute returns data in an 24-hour trading day.

moments on aggregate returns well, it should match the moments of
the persistence return components.

Fig. 1 compares transitory (left) and persistent (right) parts of
volatility (top) and skewness (bottom) decomposition. Specifically, we
compare components of moments estimated from aggregate returns in
solid line to those estimated on true persistence components of returns
in dashed line. We can see that transitory and persistent components of
realized volatility very closely captures the fluctuations of the volatility
of transitory and persistent components of returns. Note that naturally,
the persistent component of realized volatility is smoother than the
Realized Volatility of persistent returns. Capturing the dynamics of
skewness is more difficult since it has substantially lower magnitude
but the patterns are captured precisely.

While this is just single realization of the process and estimates have
considerable estimation error, this example motivates that transitory
and persistent components of realized higher moments capture well the
realized moments of transitory and persistent returns and they are a
valid approximation for the empirical analysis.

2.8. Parametrization of the equity premium

Above, we motivate why persistence in the higher moments risks is
an important aspect of asset pricing and how we can use high-frequency
data to compute measures capturing the higher moments of transitory
and persistent components of returns. We connect these concepts to the
expected asset returns via the Euler equation (Hansen & Jagannathan,
1991) which determines that assets can be priced using a stochas-
tic discount factor (SDF) denoted by M, ,. Based on the discussion,
our pricing kernel should incorporate market and idiosyncratic higher
moments risks, and should allow for decomposition of these risks to
elements operating at different levels of persistence.

Generally, results of many multi-factor or nonlinear pricing ker-
nel'® models stem from arbitrary assumptions about the utility func-
tion (Dittmar, 2002). Making these assumptions is not necessary as

10 Terms stochastic discount factor and pricing kernel both refer to M,,,
from the Euler equation (see Eq. (9)), and we treat them as interchangeable.
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Fig. 2. Daily realized measures for cross-section of stocks.

The top row depicts market (dashed) and average idiosyncratic (black line) realized measures of the cross-section of daily stocks returns. The bottom row depicts the long-term

components that capture fluctuations of all measures longer than half a year.

preferences over higher moments can be motivated by already existing
concepts while maintaining the model-free approach, e.g. motivat-
ing the preference for positive skewness via decreasing risk premia
in wealth (Arditti, 1967). The set of conditions necessary to elim-
inate counterintuitive risk taking by investors consists of risk aver-
sion, decreasing absolute risk aversion and decreasing absolute pru-
dence (Dittmar, 2002). Pricing kernel satisfying these conditions is
comprised of elements representing moments of returns’ distribution up
to the fourth order and implying that investors have preferences over
both skewness and kurtosis.

To formalize the discussion, we build on Chabi-Yo (2012), Dittmar
(2002), Harvey and Siddique (2000) and Maheu et al. (2013), and we
assume that a general utility function U(W,,)"" depending on wealth
W, can be accurately approximated by taking a Taylor expansion up to
the fourth order (Dittmar, 2002). Defining R;‘jr | as the simple net return
on aggregate wealth, we expand U(W,,) around W,(1 + C,), where C,
is an arbitrary return C, = E,(R" ). The pricing kernel is defined as

t+1
M, =U'(W,_,)/U'(W,) and it can be approximated by Maheu (2005)

3
urha+c)
M, ~ - (R

C)
7 +1 t
0 U (1)}1' !

- Cr)Z + g3,y+1(Rw (9)

1

8o,1+1 + gl.r+1(R,Li1 - Cr) + gZ.H—l(Rzu;l Cr)3-

Further, we assume that the return of asset i can be decomposed to
the systemic component and purely idiosyncratic component (Jondeau
et al., 2019), thus we can write

R®

— pm ()
t+1i Ry +R

t+1 t+1°

(10)

where Rm is the systemic (market) component, and R;il is the idiosyn-

cratic component of the return of asset i. If we aggregate for all i, we

11 The restriction we place on the utility function U(W,,,) is that its
derivatives, U™ (W,,,) for n € {1,2,3,4}, exist, and are finite.

can write the return on aggregate wealth as

1
R = R + =

t+1 N (11)

N
2 REZI = Rm + Rgr)l’
i=1

where Rii )1 is the idiosyncratic component of the return on aggregate
wealth, and Rm is the systemic component of the return on aggregate
wealth.

Following from Eq. (1), and assuming that both excess returns of
ith asset Ry, as well as excess returns on aggregate wealth R,
are covariance-stationary time-series, the excess returns on aggregate
wealth can be decomposed to elements consisting of transitory and
persistent fluctuations as

12

N
— () (c0) _ pltr) (per)
Ry = Z RYO+TR =R TR
J=1

where Riﬁ = Z/Ll Rf’:l, and R;’f{) = Rffl) RE_’:J), and choice
of J depends on the economic meaning of transitory and persistent
fluctuations.'?

We employ the pricing kernel from Eq. (9), and decompose to
the market and idiosyncratic components based on Eq. (11), and to
the transitory and persistent components based on Eq. (12). This step
effectively decomposes each higher moment to four components based
on the combination of risk (market or idiosyncratic) and persistence
(transitory or persistent), and yields the following relationship between
returns and higher moments'?

DI

Z ﬂ(rsh)
iV
re{m,I} he{tr,per} re{m,I} he{tr,per}

ri RDVOL"™ + RDS"?

12 Note that due to the equivalence in Eq. (12), the decomposition is not
restricted to two horizons. In fact, we are able to construct components from
arbitrary number of horizons by splitting the sum in intermediate points.

13 The complete and detailed derivation of the model is provided in
Appendix A.
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+ Z Z ﬁfj YRDK!™". (13)
re{m,I} he{tr,per}

Specifically, returns are decomposed to a linear combination of Real-
ized Volatility (RDVOLE”’)), Realized Skewness (RDS,("'")), and Real-
ized Kurtosis (RDK,(”")) of returns on aggregate wealth at a transitory
and persistent level h € {tr, per}. Moreover, r = m denotes market
(systemic) component of returns on aggregate wealth, while r = 1
corresponds to the average idiosyncratic component.

We follow the Fama-Macbeth cross-sectional regression approach
(Fama & MacBeth, 1973) to uncover heterogeneity in the persistence of
the higher moment risks priced in the stocks returns. Eq. (13) is used
to estimate the first-stage regression coefficients expressing the sensi-
tivities to individual sources of risk. After obtaining the coefficients
from Eq. (13), we run the following second-stage regression

L Ay X X AT
re{m,I} he(tr,per} re{m,I} he(tr,per}
X X AR (4

re{m,1} he(tr,per}

Fv1i =

where V' denotes volatility risk, .S denotes skewness risk, and K denotes
kurtosis risk. We use the rolling windows approach to estimate the
coefficients from Eq. (13) and Eq. (14).

2.9. Data

We analyse high-frequency intraday data about all stocks from New
York Stock Exchange (NYSE), the American Stock Exchange (AMEX),
and NASDAQ included in the CRSP database. We record prices every
five minutes starting 9:30 EST and construct five-minute log-returns for
the period 9:30 EST to 16:00 EST for a total of 78 intraday returns. We
construct the five- minute grid by using the last recorded price within
the preceding five-minute period, and we consider excess returns as
required by our empirical model outlined later in the text. A “coarse”
five-minute sampling scheme aims to balance the bias induced by
market microstructure effects and mirrors common practice in the
literature.

After data cleaning, we are left with the cross-section of 12 231
stocks covering the period from 01,/2000 to 12/2022.'* The daily return
of an asset is constructed from dividends and splits adjusted prices
as an excess return of a logarithmic difference between opening and
closing price for a given period. We use the 3-month Treasury Bill rate
as the risk-free rate. We perform the empirical exercise using daily
returns as well as daily measures of higher moments risks since the
daily frequency is crucial to distinguish the transitory and persistent
components and capture especially the transitory fluctuations in the
higher moments risks.

Fig. 2 shows all the computed heterogeneously persistent realized
moments for our sample of stocks. The first row contrasts market
and average idiosyncratic realized volatility, realized skewness and
realized kurtosis of stocks returns. It is visible that the measures of
average idiosyncratic realized volatility and realized kurtosis are larger
in magnitude than the market ones, and that market realized skewness
shows larger fluctuations than average idiosyncratic realized skewness.
The bottom row comparing long-term fluctuations of the market and
average idiosyncratic measures shows similar dynamics of these two
sources of volatility and kurtosis risk with the average idiosyncratic
measures being larger in magnitude again. Meanwhile, we observe
interestingly different dynamics between the persistent fluctuations of
market and average idiosyncratic skewness measures. While market

14 The data cleaning contains following steps. For each month m we omit
stocks with price less than 1USD (we use 5 USD threshold as a robustness
check) on the last trading day of month m — 1. Then, we also omit stocks
whose return fell into the top/bottom percentile of all stocks returns on the
last trading day of month m — 1.
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skewness fluctuates around zero with three large negative spikes during
2004, 2017, and 2021, the average idiosyncratic skewness is positive
for almost the whole period and the fluctuations it displays are of
substantially lower magnitude.

Table 1 further reveals that market realized volatility is strongly
correlated with average idiosyncratic volatility while the relation is
weaker for the realized skewness and almost disappears in case of
kurtosis. This suggests that the average idiosyncratic and market parts
of the third and fourth moments carry substantially different informa-
tion. More importantly, Panel B shows that transitory and persistent
components of market higher moments are generally uncorrelated ex-
cept strong negative correlation between persistent components of
market volatility and kurtosis.

The pattern is not very different in the right part of Panel C where
correlation matrix of heterogeneously persistent components of average
idiosyncratic moments is displayed. While most of the terms are not
correlated, the persistent components of average idiosyncratic volatil-
ity and kurtosis show mild negative correlation. Finally, left part of
Panel C displaying the cross-correlations between the heterogeneously
persistent components of market and average idiosyncratic moments
confirms the previous findings. The values on the diagonal document
that correlation between the corresponding components of the same
moment is strongest in case of volatility, and becomes weaker in case
of skewness and especially kurtosis. Moreover, we observe negative
correlation between persistent components of average idiosyncratic
volatility and market kurtosis.

3. Heterogeneously persistent higher moments and expected re-
turns

The preliminary analysis from the previous section documents that
various types of risks and information are hidden in the transitory and
persistent components of higher moments. Moreover, it implies that
individual assets exhibit different exposures to the heterogeneously per-
sistent components of the higher moments risks, and that there are two
relevant sources of such risk; market and idiosyncratic. Subsequently,
different exposures to the corresponding risk factors yield different
returns on average.

We exploit these findings using Fama—Macbeth type cross-sectional
regressions (Fama & MacBeth, 1973) to evaluate the ability of persistent
and transitory higher moments risks given by Eq. (13) and Eq. (14) to
predict subsequent returns. The first-stage regression has the following
general form

K J
i = Z BrixXix + Z YeijZrj 1s)
k=1 =1

where X, is the kth higher moment variable at time t, and Z, ; is the
Jjth control variable at time t. The second-stage regression is then

K J
Tyl = Z AvibBrig + 2 D i (16)
k=1 j=1

The individual models differ in the content of X = {X,,..., X}, and
Z = {Z,,...,Z;}. We employ rolling windows approach to estimate
Eq. (15) and Eq. (16). Specifically, we use 6 months of daily returns'®
to estimate the f§,; , and y,; ; coefficients from Eq. (15) for each i, k, and
j. Then, we use these coefficients to estimate Eq. (16), where we use
average daily returns over the next week!® as an explained variable.
Once the 4, and ¢,; coefficients are estimated, we roll one week
forward and repeat the procedure.

15 Complete history of returns in the past 6 months is required for stock i
to be included.

16 We use Wednesday through Tuesday as a definition of the week. One valid
observation in the week 7 + 1 is sufficient for stock i to be included.
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Table 1
Correlations.
Panel A RVOL" RS™ RK™ rvoL{" RS RK"
RvoL™
RS™ -0.010
RK™ -0.030 0.117
RVOLY" 0.872 0.014 -0.076
RSY -0.035 0.650 0.095 -0.001
RK" -0.105 0.115 0.298 -0.104 0.122
Panel B RvoL"™ RVOLY"™ RS RSP RK"™ RK™
RVOL!"™
RVOLV™ 0.128
RS -0.025 0.003
RSP 0.041 0.082 0.026
RK™™ 0.064 -0.016 0.123 ~0.004
RK™ -0.075 —0.600 —0.002 -0.236 0.042
Panel C RVOL!"™ RVOLP™ RS RSP RK!"™ RKP"™ RVOL™D RVOLP™ RSP RSP RK"™
RvOL"" 0.804 0.252 0.010 0.086 -0.001 -0.134
RVOLP" 0.126 0.820 0.005 0.010 -0.018 -0.441 0.126
RS -0.037 ~0.004 0.653 0.015 0.096 0.000 0.000 0.001
RSPrD -0.016 ~0.149 0.014 0.104 0.008 0.096 0.006 ~0.030 0.030
RK!"D -0.110 -0.026 0.129 -0.010 0.324 0.039 -0.011 -0.016 0.134 0.005
RK""D -0.074 0.007 -0.003 ~0.002 0.020 ~0.095 ~0.047 -0.293 0.000 0.008 0.039

This table provides the correlation matrix for the realized market and average idiosyncratic realized moments in the Panel A, correlation matrix for the transitory and persistent

realized market and average idiosyncratic moments in the Panel B, and Panel C.

The aim of this paper is to show that decomposing higher mo-
ments risks to the transitory and persistent components is a crucial
step towards understanding how these risks are priced in the cross-
section of stocks returns. Hence, we present models considering the
aggregate measures of higher moments risks and models considering
heterogeneously persistent components of the higher moments risks
separately. The full list of model specifications corresponding to Table 2
is provided in Appendix D.

The estimated models combine the effects of volatility, skewness,
and kurtosis representing different aspects of risk on the financial
markets. Generally, investors with sensible preferences over risk prefer
portfolios with lower volatility, higher skewness, and lower kurto-
sis (Kimball, 1993), hence need to be compensated by higher returns for
accepting portfolios with higher volatility, lower skewness, or higher
kurtosis. However, it is not straightforward to connect these phe-
nomena to the prices of risk. We are able to capture the conditions
under which the price of volatility is positive/negative thanks to the
Intertemporal CAPM (Ang et al., 2006; Campbell, 1996; Chen, 2002;
Merton, 1973).

Market volatility is priced because it serves as a hedge against future
changes on the market. If high volatility is connected to downward
price movements, then an asset whose return has a positive sensitiv-
ity to market volatility is a desirable hedging instrument, hence the
negative price of market volatility in such case. If the opposite holds,
an asset with positive sensitivity to market volatility is undesirable,
hence investors should require compensation for holding such asset.
The sign of market volatility risk price is therefore usually expected to
be negative due to the presence of the leverage effect. Empirically, there
is evidence that innovations to market volatility are negatively priced in
the cross-section of asset returns (Ang et al., 2006; Chang et al., 2013),
and non-robust evidence that idiosyncratic volatility has a positive
effect on subsequent returns on assets in the TAQ database (Bollerslev
et al., 2020).

Price of higher moments risk cannot be determined by observing the
empirical correlations, since such approach would ignore the individual
investors’ risk attitudes like skewness preference. Chabi-Yo (2012) con-
cludes that the prices of market skewness risk, and market kurtosis risk
depend on the fourth and fifth derivative of the utility function which
are essentially hard to sign. Hence, we shall perceive determining the
prices of higher moments risks merely as an empirical exercise. The
transitory and persistent components should be generally priced with

the same sign as the corresponding aggregate risks. However, it cannot
be ruled out that the decomposition will uncover some effects that
are opposite to those prevailing on aggregate for the particular higher
moment.

Lastly, the literature suggests that idiosyncratic risk is priced in
the financial cross-sections on top of market risk (Amaya et al., 2015;
Boyer et al., 2009; Conrad et al., 2013; Jondeau et al., 2019; Langlois,
2020). The preferences of investors over idiosyncratic higher moments
stem largely from asymmetric connectedness on the financial mar-
kets (Barunik & Ellington, 2024; Elliott et al., 2014). Moreover, Fig. 2
documents that average idiosyncratic higher moments carry different
information than market higher moments, whether we concentrate on
the aggregate representation or separate the transitory and persistent
components.

The empirical results provide several new insights. We are able
to disentangle how volatility, skewness and kurtosis are priced in the
cross-section of stocks. Considering the transitory and persistent com-
ponents of these risks separately reveals the types of fluctuations that
are mostly relevant to the investors with regard to the particular higher
moments risks. Decomposing the risks into transitory and persistent
components should be a key feature of an asset pricing model (Neuhierl
& Varneskov, 2021) with potential to help explain the puzzles posed
by previous empirical tests. Controlling for market as well as average
idiosyncratic risk contributes to the recent debate of how these two
sources risk are priced individually as well as jointly.

3.1. Empirical evidence

Below we report the results of the cross-sectional regressions de-
scribed above using daily stock data and predicting average daily
returns over the next week. The main results using a 6-month rolling
window and a USD 1 threshold in the stock data filtering are presented
in Table 2. As a robustness check, we also run the estimation on a
dataset created using a USD 5 threshold in the filtering procedure.!”

17 Additionally, we estimate the models on small cap, and large cap stocks
separately. These results also confirm the robustness of our findings as most of
the predictability is maintained in the sample of small cap stocks which would
be expected as returns predictability is generally much more pronounced for
small cap stocks (Fama & French, 2012; Semenov, 2015). Further robustness
tests connected to temporal dynamics are not employed due to the relatively
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The models incorporating aggregate measures of higher moment risk
are presented in Panel A, the models incorporating heterogeneously
persistent measures of higher moment risk are presented in Panel B. To
uncover the relationship between the market and average idiosyncratic
components of risk, we present results from models incorporating only
market risk'® (model 1 and model 4) and only idiosyncratic risk (model
2 and model 5). The columns labelled 3 and 6 present the full models
including Fama-French 3-factor (FF3) control variables.'’

Panel A, estimated under the assumption of homogeneous prefer-
ences of investors over different investment horizons, shows how the
aggregate shocks to the individual higher moments are priced into the
cross-section of stocks. We find that average idiosyncratic volatility
is priced into the cross-section of stock returns, while the evidence
on market volatility is not straightforward. Specifically, the coefficient
corresponding to idiosyncratic volatility is —0.181 with a significant
t-statistic of —1.96 and —0.201 with a significant t-statistic of —2.14
in models 2 and 3 of Table 2 respectively. Table Al supports the
evidence regarding average idiosyncratic volatility, as it is associated
with significant t-statistics of —1.75 and —2.03 respectively. Meanwhile,
the coefficients associated with market volatility have significant t-
statistics in Table 2, but we do not find any evidence to support the
robustness of this finding in Table Al.

The negative sign of the coefficients associated with average id-
iosyncratic volatility suggests that investors are willing to accept lower
returns for stocks with higher exposure to average idiosyncratic volatil-
ity, i.e. they prefer such stocks. Such investor preferences are consistent
with previous empirical findings (Ang et al., 2006; Chang et al., 2013)
as well as the discussion of the signs of the individual higher mo-
ments above. The importance of market or idiosyncratic volatility in
predicting equity risk premia has been documented in the literature,
but the average idiosyncratic volatility has received less attention.?
Investors should theoretically not display preferences over idiosyncratic
risk as it is diversified away when holding sufficient number of different
stocks. This holds, however, only in an unconnected or symmetrically
connected universe of assets which is not in line with the most recent
empirical findings (Barunik & Ellington, 2024; Elliott et al., 2014).

Hence, perceiving the US stock market as an asymmetrically con-
nected network, shocks to individual stocks can affect the rest of
the market with heterogeneous magnitude. The coefficients associated
with average idiosyncratic higher moments displayed in Table 2 indi-
cate how investors price shocks to the particular idiosyncratic higher
moment. Specifically, we show that average idiosyncratic volatility
is priced into the cross-section of stock returns while controlling for
market volatility with a negative sign that corresponds to previous
empirical results as well as the theoretical discussion above. There
are several implications of such finding. First, we show that aver-
age idiosyncratic volatility carries different information than market
volatility, and that investors display preferences over both these mo-
ments. Second, the displayed preferences over average idiosyncratic

short nature of our sample. First, a shorter length of the rolling window than
6 months could negatively impact reliability of the first stage coefficients
estimates. Longer length of the rolling window shall not be suitable due to
the conditional nature of studied relationships. Second, estimating on shorter
subsamples is not meaningful in the relatively short sample since predictability
of stock returns is driven by infrequent periods of high predictability occurring
especially during recessions (e.g., Henkel et al., 2011; Welch & Goyal, 2008).

18 Note that market returns are approximated by the returns of S&P 500
index.

19 The role of the FF3 control variables (MKT, SMB, HML) is to observe
whether the significance of the coefficients in our models is robust to control-
ling for the financial market anomalies identified. For the sake of clarity, we
do not present the results for these coefficients.

20 In contrast, the importance of average idiosyncratic skewness has been
documented by Jondeau et al. (2019) or Langlois (2020).
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Table 2
Heterogeneously persistent higher moments risks and the cross-section of stocks.
Variable Panel A Panel B
1 2 3 4 5 6
RVOL™  -0.120% -0.128%*
(-1.758) (-2.122)
RS™ -9.586 -1.832
(-1.047) (-0.289)
RK™ —4.844 8.090
(-0.230) (0.458)
RVOL™™ —0.139%* —0.120%*
(-2.079) (~2.160)
RVOL!™" —0.004 -0.012
(-0.206) (~0.686)
RS -8.255 -1.681
(-0.950) (-0.280)
RSP 0.149 0.029
(0.475) (0.102)
RK™™ -15.453 5.208
(-0.807) (0.320)
RK™P" -0.689 -0.665
(-0.292) (-0.325)
RvoLY -0.181%  —0.201**
(-1.956) (-2.142)
RSY -3.024  -0.952
(-1.005) (-0.433)
RK -4.833  -1.150
(-0.918) (-0.252)
rRvOL!"" —0.190**  —0.179**
(-2.146)  (~2.047)
RvOL{!"" -0.016  —0.032
(-0.415)  (-0.954)
RS" -2.961  -0.759
(-1.023)  (-0.357)
RSP -0.196%* —0.187**
(-2.044)  (-2.083)
RK"™ -3.550  -0.535
(-0.736)  (~0.130)
RK"7") -0.990  -0.408
(-0.806)  (-0.358)
Adj. R? 2.980 3.350 5.300 3.840 4.140 6.150

We report the lambda coefficients from the second-stage regression specified
by Eq. (16). The prices of risk specified in Eq. (15) are estimated using daily stocks
data. The full list of model specifications is provided in Appendix D. We use 1 USD
threshold in the data cleaning procedure. The t-statistics displayed in parentheses are
computed using Newey-West standard errors. The average adjusted R-squared from the
second stage regressions is reported in percent. For the sake of clarity, control variables
and the constant are not displayed, and all the coefficients were multiplied by 1000.
Note: Coefficients are marked with *, **, *** for 10%, 5%, 1% significance levels,
respectively.

volatility (and average idiosyncratic higher moments in general) sup-
ports the notion of asymmetrically connected financial markets. Third,
the matching negative sign suggests that the purpose of preferences
over average idiosyncratic volatility corresponds to market volatility,
i.e. hedging. Market volatility captures the volatility risk of large cap
stocks, while average idiosyncratic volatility also captures the volatil-
ity risk of mid cap and small cap stocks. Hedging against the price
movements of such stocks becomes more important as financial markets
become increasingly asymmetrically interconnected.

In contrast to volatility, neither Table 2 nor Table A1l shows ev-
idence of a statistically significant relationship between exposure to
market or average idiosyncratic skewness risk and subsequent stock
returns. Such a finding contrasts with previous empirical findings, as
exposure to market skewness has been shown to be negatively priced
in the cross-section of stocks (Chang et al., 2013; Harvey & Siddique,
2000; Kraus & Litzenberger, 1976). Moreover, average skewness has
also been shown to be a significant predictor of returns in financial
markets (Jondeau et al., 2019; Langlois, 2020). Our setting is different
in that we consider the effects of volatility, skewness and kurtosis,
taking into account both market and average idiosyncratic risk. We
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construct risk factors from these measures and examine how they affect
subsequent stock returns. We find no evidence that either source of
skewness risk is significantly priced into the cross-section of stocks in
such an environment.

Similarly, we find no evidence that either market or average id-
iosyncratic kurtosis risk is priced into the cross-section of CRSP stocks.
The contrast with the literature is less pronounced in the case of
kurtosis, as it has not received the same attention as skewness and,
in particular, volatility. Moreover, the empirical evidence to date on
kurtosis is mixed. Amaya et al. (2015) found evidence that idiosyncratic
kurtosis positively affects subsequent stock returns, but the results were
not robust to model changes. Chang et al. (2013) find little evidence
that market kurtosis risk is priced into the cross-section of stock returns.
In particular, we contribute to the discussion by pointing out that a
factor representing average idiosyncratic kurtosis risk is not priced into
the cross-section of stock returns, thus confirming that kurtosis plays a
minor role in predicting equity risk premia.

The main results are presented in Panel B of Table 2 (and Table
Al), since the main focus of our paper is on how the transitory
and persistent fluctuations of each higher moment affect the cross-
section of stock returns. The main contribution of such an approach
to the literature is twofold. First, treating higher moment risks as
heterogeneously persistent contributes to the debate on the role of
these risks themselves in predicting financial asset returns. We argue
that the ambiguity of the empirical results associated with some of
the moments discussed above stems from the fact that we aggregate
these risks across horizons. Looking at the heterogeneously persistent
shocks to individual moments separately helps to uncover relationships
that would otherwise remain hidden. Second, for each of the higher
moments, we identify the degree of persistence that dominates in terms
of asset pricing. This allows us to uncover the persistence structure of
the fluctuations that play the most important role in the mechanisms
that generate risk premia in stock markets, and thus we make a major
contribution to the literature on long-term risk (e.g., Bandi & Tamoni,
2023; Bansal & Yaron, 2004; Maheu & McCurdy, 2007).

While aggregate measures of skewness are not priced in our sample
of stocks, Panel B of Table 2 shows that the persistent component of
average idiosyncratic skewness is associated with significant changes in
risk premia. It has a coefficient of —0.196 with a significant t-statistic of
—2.04 in model 5 and a coefficient of —0.187 with a significant t-statistic
of —2.08 in model 6, controlling for market risk and FF3 factors. This
clearly illustrates that average idiosyncratic skewness risk is relevant
for the cross-section of stock returns, but we were simply unable to
isolate the informative heterogeneously persistent component from the
aggregated information. The economic intuition about preferences for
skewness is that investors seek extreme positive returns from holding
positively skewed assets. In our setting, the negative price of skewness
risk expresses a preference for assets with higher exposure to average
idiosyncratic skewness risk, i.e. assets that earn high returns when
average idiosyncratic conditional skewness is high.?! It does not come
as a surprise that investors with such preferences are interested mainly
in exposure to average idiosyncratic skewness containing stocks from
the lower quantiles of market cap, i.e. stocks displaying higher degrees
of skewness.

The case of skewness risk shows not only that decomposing shocks
into elements of different persistence is a crucial step in deeply under-
standing the role of risks arising from each higher moment, but also the

21 When we refer to high skewness, we assume that it has a positive value,
and vice versa when we refer to low skewness. This is because skewness tends
to fluctuate around zero. When skewness is negative, investors will want to
avoid assets with high exposure to skewness risk, as these will realize the
highest losses in such a market condition. Consequently, assets with high
exposure to skewness risk would earn higher expected returns if investors’
preferences are associated with the extreme negative returns.
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difficulty of determining the term structures of these risks. Intuition as
well as previous results suggest that the term structure of skewness risk
should be downward sloping (Neuberger & Payne, 2021). However, our
results show that investors tend to prefer the persistent component of
skewness risk, indicating an upward-sloping term structure. Thus, our
results reveal that although investors seek assets earning higher returns
when conditional skewness is high, the preferences over skewness are
not driven by short-term, i.e. speculative, investors.

We further demonstrate the importance of uncovering the persis-
tence structure of individual risks using market volatility as an example.
As reported above, we find evidence that market volatility risk is priced
into the cross-section of stock returns, but we cannot confirm the
significance of such an effect through Table Al. If we consider market
volatility risk as a combination of transitory and persistent components,
we find that the transitory components are robustly priced in both
Table 2 and Table Al. The coefficient associated with the transitory
component of market volatility is —0.139 with a significant t-statistic of
—2.08 and —0.12 with a significant t-statistic of —2.16 in models 4 and 6
of Table 2 respectively. Table Al suggests a qualitatively similar effect
of transitory shocks to market volatility on subsequent stock returns.

Average idiosyncratic volatility shows a robust negative effect on
subsequent stock returns, even after controlling for aggregate risk. The
decomposition into heterogeneously persistent components suggests
that average idiosyncratic risk is a purely transitory phenomenon. The
coefficients associated with transitory average idiosyncratic risk are
—0.19 with a significant t-statistic of —2.15 and —0.179 with a significant
t-statistic of —2.04 in models 5 and 6 of Table 2, respectively. In
contrast, we find no evidence that the persistent components of average
idiosyncratic volatility risk are priced into the cross-section of stock
returns.

Even though we show that the aggregate representation of average
idiosyncratic volatility risk is priced into the cross-section of stocks, it
is still important to decompose this risk to the transitory and persistent
components as we should not expect both components to be evenly
informative. The transitory nature of volatility risk is a novel contribu-
tion to the literature, which predominantly emphasizes the importance
of long-run risk both overall (Bandi & Tamoni, 2023; Bansal & Yaron,
2004; Neuhierl & Varneskov, 2021) and in the case of volatility (Kim &
Nelson, 2013; Maheu & McCurdy, 2007). While Adrian and Rosenberg
(2008) find that both the short-run and the long-run components are
priced into the cross-section of stock returns, we extend this notion
to average idiosyncratic volatility risk, suggesting that investors in the
US stock markets show a preference for the transitory fluctuations of
volatility.

Finally, we find no evidence that either transitory or persistent
components of market and average idiosyncratic kurtosis are priced in
the cross-section of stocks, consistent with Panel A. Our results suggest
that the failure to robustly show that kurtosis is priced in the financial
cross-sections (Amaya et al., 2015; Chang et al., 2013) is not due to the
perception that the shocks to kurtosis are homogeneously persistent.

Overall, the results in Panel B show that the degree of persistence
is an important property of the higher moment risks and that it is not
trivial to assess the term structures of the individual risks. The decom-
position into components with different degrees of persistence appears
to be crucial for uncovering how average idiosyncratic skewness and
market volatility are priced into the cross-section of stock returns.
Identifying the importance of transitory components of market and
average idiosyncratic volatility contributes to the academic literature
that has been concentrating mainly on the long-run risks.

4. Conclusion

We show that transitory and persistent higher moment risks are
important for the cross-section of stock returns. Short- and long-term
fluctuations in realized market and average idiosyncratic volatility, as
well as skewness and kurtosis, are priced differently in the cross-section
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of asset returns, implying a heterogeneous persistence structure of dif-
ferent sources of higher moments risks. We also show that market and
average idiosyncratic higher moments risks carry different information
and that they enter investors’ decision making separately.

Our empirical results have implications among several dimensions.
First, they highlight the importance of disentangling the persistence
structures of each higher moment in order to fully understand how
their fluctuations affect subsequent stock returns. Specifically, we find
no significant effects when looking at aggregate measures of market
volatility and average idiosyncratic skewness. However, treating these
risks as heterogeneously persistent allows us to uncover how they
are priced in the cross-section of stocks. Transient shocks to market
volatility are priced by investors, while they also show preferences for
persistent fluctuations in average idiosyncratic skewness.

Second, the decomposition of risks into heterogeneously persistent
components allows us to assess the term structures of these risks. Thus,
we contribute to the debate on how transitory and persistent risks
affect risk premia in financial markets, which mostly emphasizes the
importance of long-run risks (Bandi & Tamoni, 2023; Bansal & Yaron,
2004; Kim & Nelson, 2013; Maheu & McCurdy, 2007; Neuhierl & Var-
neskov, 2021). On the one hand, we find that both market and average
idiosyncratic volatility are priced as transitory risks in the cross-section
of stocks. On the other hand, we find an upward sloping term structure
of average idiosyncratic skewness risk. Overall, our results suggest that
volatility risk should be perceived as transitory, while skewness risk
should be perceived as persistent.

We also contribute to the debate on the importance of idiosyn-
cratic risks over and above market risks. We can no longer assume
that idiosyncratic risks can be fully diversified away as global finan-
cial markets become increasingly interconnected and local shocks can
spread very quickly around the world. We document that the average
idiosyncratic volatility risk is priced into the cross-section of stocks
more than the market volatility risk, and that it is the more important
of these two sources of risk. Decomposing the higher moment risks into
the heterogeneously persistent components also provides evidence that
average idiosyncratic skewness risk has a greater weight in predicting
equity risk premia than market skewness risk. Thus, we indirectly
confirm that average skewness is also important (Jondeau et al., 2019;
Langlois, 2020) and we extend this notion to average volatility. Finally,
consistent with the results in the literature, we find no evidence that
market or average idiosyncratic kurtosis is priced into the cross-section
of stocks. Our results suggest that the failure to document signifi-
cant effects of kurtosis risk on subsequent stock returns is due to the
assumption of a homogeneous persistence structure of this risk.

Overall, the results of the paper provide new insights into the
sources of asset predictability with respect to the decomposition of
higher moment risks. Our findings pose a highly relevant contribution
to the academic literature as we shed more light on the asset pricing
mechanisms in terms of the relationship between market and average
idiosyncratic higher moment risks, and even more importantly the per-
sistence of these risks entering the decision making of investors. From
the investors’ perspective, our research proves that attention should not
be limited market higher moments, and identifies the specific persis-
tence components of the higher moment risks that should be exploited.
While we show the predictability of a large sample of US stocks based
on the proposed risk factors, future research could concentrate on the
behaviour of these factors on international markets, and among other
asset classes like ETFs, commodities or cryptocurrencies.
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