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Abstract

We propose a deep learning approach to probabilistic forecasting of macroeconomic
and financial time series. By allowing complex time series patterns to be learned from a
data-rich environment, our approach is useful for decision making that depends on the
uncertainty of a large number of economic outcomes. In particular, it is informative for
agents facing asymmetric dependence of their loss on the outcomes of possibly non-
Gaussian and non-linear variables. We demonstrate the usefulness of the proposed
approach on two different datasets where a machine learns patterns from the data.
First, we illustrate the gains in predicting stock return distributions that are heavy
tailed and asymmetric. Second, we construct macroeconomic fan charts that reflect
information from a high-dimensional dataset.
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1 Introduction

Uncertainty at every stage of decision making is key to understanding for financial
operations, central and retail banking, as well as for researchers and practitioners trying to
minimize the risk of their decisions, make appropriate plans, and assist in the design and
implementation of economic policy. Yet even after decades of research, a conditional mean
forecast often serves economists as a convenient tool for measuring the central tendency
of a target variable, or simply as a best guess about the future outcomes of a variable.
The associated variance forecast often serves as a best estimate of uncertainty and future
risk. However, such predictions are not fully informative when a decision maker is faced
with asymmetric dependence of her loss on outcomes of possibly non-Gaussian variables.
Since uncertainty is a key ingredient in economic decision making, the shift to probabilistic
forecasting also shifts our hopes to obtaining better expectations about entire distributions
of economic variables. A non-trivial question is how to make such forecasts, especially
using available data.

Traditionally, distributional forecasts are made using time series models, surveys, or
are collected in real time.1 With rapid improvements in the accessibility and availability
of large datasets, we believe that one can significantly improve the description of uncer-
tainty using methods that focus on learning patterns from data. In line with recent efforts
by economists to move away from exclusive reliance on models to machine learning ap-
proaches (Athey and Imbens, 2019) where it makes sense to use data and improve our
understanding of the problem (Mullainathan and Spiess, 2017), we propose to use deep
machine learning to learn the complex patterns in the data and return to the user a pre-
diction of a full distribution.

Our main contribution to the literature is that we propose how to use deep learning
techniques as a useful tool for approximating and predicting conditional distributions in
data-rich environments. Our distributional neural network takes advantage of deep learn-
ing (especially recurrent neural networks), is capable of predicting a distribution of a time
series, and allows the use of large numbers of variables. We frame our approach as a multi-
output neural network that provides approximate probability functions of the distribution.
The novelty of our approach thus lies in learning the conditional distribution using (deep)
recurrent networks from large data sets. The proposed network is also able to capture
the time variation of distributions, for example when dealing with highly dynamic data,
and to recover longer and more complex time dependence structures present in the data.
Our framework generalizes binary choice models (Foresi and Peracchi, 1995; Anatolyev

1Methods for constructing distributional forecasts are reviewed in a special issue on “Density Forecast-
ing in Economics and Finance” (Timmermann, 2000) and “Probability Forecasting” (Gneiting, 2008) for the
collection of papers.
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and Baruník, 2019) and, together with state-of-the-art machine learning tools, forms a new
toolkit for economists interested in describing future uncertainty of economic variables.
An important contribution is also our novel approach to constructing an objective function
that adjusts the monotonicity of distributional forecasts by introducing a penalty function
for deviating from monotonic behavior.

A key idea of (machine) learning, which can be thought of as inferring plausible models
to explain observed data, has recently attracted a number of researchers who document
how learning patterns from data can be useful (Mullainathan and Spiess, 2017; Sirignano
et al., 2016; Gu et al., 2020; Heaton et al., 2017; Tobek and Hronec, 2020; Bianchi et al., 2021;
Israel et al., 2020; Iworiso and Vrontos, 2020; Feng et al., 2018; Goulet Coulombe et al., 2022;
Berrisch and Ziel, 2022). A burgeoning literature and an increasing number of applications
in economics focus mostly on cross-sectional data and ultimately on point forecasts. While
machines can use such models to make predictions about future data, uncertainty plays
a fundamental role. At the same time, data, which is a key component of all machine
learning systems, is useless on its own unless knowledge or inferences are extracted from
it. Shifting the focus from point forecasting to probabilistic forecasting using big data is an
essential next step for economists who want to explore what computer science has to offer.

We contribute to this debate by developing a machine learning strategy to predict the
probability distributions. We argue that deep learning, in particular recurrent neural net-
works, provides a useful tool for predicting distributions without the need for model spec-
ification, by learning the distributions from the data. While the ability to outperform alter-
native methods on specific data sets in terms of out-of-sample predictive power is valuable
in practice, such performance is rarely explicitly recognized as a goal to be addressed in
econometrics. As Mullainathan and Spiess (2017) points out, some substantive problems
are naturally cast as prediction problems, and assessing their goodness of fit on a test set
may be sufficient for the purposes of the analysis. We believe that the task of predict-
ing distributions in a data-rich environment is one such important problem in economics
where machine learning could be helpful to a researcher, policymaker or practitioner.

What are the specific challenges of probabilistic forecasting of economic variables? Time
series such as stock returns, electricity prices, traffic data or macroeconomic series have dis-
tributions that cannot be captured by a convenient Gaussian distribution and are therefore
not fully characterized by means and variances. These distributions have heavy tails, are
asymmetric and often violate stationarity. The data also contain irregularities, hard-to-
predict peaks and regime shifts. Therefore, complete information about the probability
of future outcomes given past information is needed, which can be mapped into different
representations to construct prediction intervals or probability distribution functions that
reflect the data. Such a fully approximated distribution function provides comprehensive
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information about the uncertainty of future observations.

Why should we believe that machine learning can improve probabilistic forecasting?
Classical time series econometrics (Box et al., 2015; Hyndman et al., 2008) focuses mainly
on predetermined autocorrelation or seasonality structures in data that are parameterized.
With large amounts of time series available to researchers, these methods quickly become
infeasible and unable to explore more complex data structures. Bearing in mind the fa-
mous adage that “all models are wrong..., but some of them are useful.” (Box et al., 1987),
modern machine learning methods can easily overcome these problems. Being a powerful
tool for approximating complex and unknown data structures (Kuan and White, 1994),
these methods can be useful in a number of application problems where data contain
rich information structure and we cannot describe it satisfactorily by a simplifying model.
Overcoming the long-standing problem of computational intensity of such data-driven ap-
proach with advances in computer science adds to the temptation in using these methods
to address new problems such as distribution prediction.

Two different and important economic datasets illustrate how the machine learning
approach to probabilistic forecasting can help a decision maker facing uncertainty. First,
we study the set of the most liquid US stock returns, which have asymmetric and heavy-
tailed, dynamically evolving distributions that are difficult to predict. Second, we use
deep learning to construct data-driven macroeconomic fan charts that reflect information
contained in a large number of variables. Such data-rich fan charts are the first of their
kind to reflect high-dimensional information from 216 relevant variables and are of great
importance to policy makers as they reflect the structures in the data and are not influenced
by the choice of model. A forecasting model, on the other hand, is learned from the data.
Moreover, such data-rich fan charts cannot be obtained using traditional methods.

2 Probabilistic Forecasting via Deep Learning

Consider an economic time series yt collected over t = 1 . . . , T. The main objective
is to approximate the conditional cumulative distribution function F(yt+h|It) as closely as
possible and use it for a h-step ahead probabilistic forecast made at time t with information
It containing past values of yt and possibly past values of other exogenous observable
variables.

Consider a partition of the support of yt by p > 1 fixed thresholds corresponding to a
set of empirical αj quantiles {qαj}p

j=1, where 0 < α1 < α2 < . . . < αp < 1 are p regularly
spaced probability levels on a unit interval [0, 1]. These partitions are also time-varying, so
in general the elements of the partition are implicitly indexed by t.

The main goal then is to approximate a collection of conditional probabilities corre-
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sponding to the empirical quantiles such as
{

F(qα1), . . . , F(qαp)
}
=
{

Pr
(

yt+h ≤ qα1 |It

)
, . . . , Pr

(
yt+h ≤ qαp |It

)}

for the collection of thresholds 1, . . . , p. One convenient way of estimating such quantities is
distributional regression. Foresi and Peracchi (1995) noted that several binary regressions
serve as a good partial description of the conditional distribution. To estimate conditional
distribution, one can simply consider distribution regression model

Pr(yt+h ≤ qαj |It) = Λ(β j), (1)

where Λ : z → [0, 1] is a known (monotonically increasing) link function, such as logit,
probit, linear, log-log functions2 and β(.) is an unknown function-valued parameter to
be determined. In contrast to estimating separate models for separate thresholds, Cher-
nozhukov et al. (2013) considered continuum of binary regressions, and argued it provides
a coherent and flexible model for the entire conditional distribution as well as useful al-
ternative to Koenker and Bassett Jr (1978)’s quantile regression. Alternatively, Anatolyev
and Baruník (2019) propose to tie the coefficients of predictors in an ordered logit model
via smooth dependence on corresponding probability levels. While being able to forecast
entire distribution and keeping 0 < Fj < 1 and 0 < F1(.) < F2(.) < . . . Fp(.) < 1, the
approach still depends on heavy parametrization suited for a specific problem of the time
series considered making it an infeasible approach for larger number of variables.

Such probabilistic forecasts are highly dependent on model parametrization and quickly
become infeasible as the number of covariates increases. Stationarity of the data at hand is
also a requirement that complicates forecasting as it is difficult to achieve in many cases.
In sharp contrast to such an approach, we propose a more flexible and general path to
distributional regression via deep learning. We propose a novel multiple output neural
network, which we refer to as a distribution neural network (DistrNN). Our approach
aims to uncover non-linear and mostly complex relationships of time series without speci-
fying a strict parametric structure and without requiring strict assumptions about the data,
while focusing on the out-of-sample predictive power of the model.

Deep feedforward networks, often called feedforward neural networks or multilayer
perceptrons, are at the heart of deep learning models and are universal approximators that
can learn any functional relationship between input and output variables with sufficient
data Kuan and White (1994). As a class of supervised learning methods, these approaches
are used for classification, recognition and prediction. While increasingly popular in eco-
nomics for solving specific problems Athey and Imbens (2019); Mullainathan and Spiess

2As discussed by Chernozhukov et al. (2013), log-log link nests the Cox model making distribution
regression important.
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(2017), probabilistic forecasting has not yet been explored in the literature.

This motivates us to reformulate distributional regression into a more general and flex-
ible distributional neural network. The functional form of the new network is driven by
the data and we can relax assumptions about the distribution of the data, the parametric
model as well as the stationarity of the data. The proposed distributional neural network,
as a feed-forward network, is a hierarchical chain of layers representing high-dimensional
and/or non-linear input variables with the aim of predicting the target output variable.
Importantly, we approximate the conditional distribution function with multiple outputs
of the network as a set of joint probabilities.

As a first step, we exchange a known link function from Eq. 1 for an unknown general
function g that will be approximated by a neural network:

Pr (yt+h ≤ qαj |It) = gj(·). (2)

Next, we consider a set of probabilities corresponding to 0 < α1 < α2 < . . . < αp < 1 being
p regularly spaced levels that characterize conditional distribution function using set of
predictors zt = (yt, x1

t , ..., xn
t )
>, and model them jointly as

{
Pr
(

yt+h ≤ qα1 |zt

)
, . . . , Pr

(
yt+h ≤ qαp |zt

)}
= gW,b(zt), (3)

where gW,b is a multiple output neural network with L hidden layers that we name as
distributional neural network:

gW,b(zt) = g(L)
W(L),b(L) ◦ . . . ◦ g(1)

W(1),b(1)
(zt) , (4)

where W =
(

W(1), . . . , W(L)
)

and b =
(

b(1), . . . , b(L)
)

are weight matrices and bias vec-

tor. Any weight matrix W(`) ∈ Rm×n contain m neurons as n column vectors W(`) =

[w(`)
·,1 , . . . , w(`)

·,n ], and b(`) are thresholds or activation levels which contribute to the output
of a hidden layer allowing the function to be shifted.

It is important to note that in sharp contrast to the literature, we consider a multiple
output (deep) neural network to characterize collection of probabilities. Before discussing
the details of estimation that allows us to keep monotonicity of probabilities, we illustrate
the framework. Figure 1 illustrates how l ∈ 1, ..., L hidden layers transform input data into
a chain using collection of non-linear activation functions g(1), . . . , g(L). A commonly used
activation functions, g(`)

W(`),b(`)
, used as

g(`)
W(`),b(`)

:= g`
(

W(`)zt + b(`)
)
= g`

(
m

∑
i=1

W(`)
i zt + b(`)i

)
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are a sigmoid g`(u) = σ(u) = 1/(1 + exp(−u)), rectified linear units g`(u) = max{u, 0},
or g`(u) = tanh(u). In case gW,b(zt) is non-linear, neural network complexity grows with
increasing number of neurons m, and with increasing number of hidden layers L and
we build a deep neural network. We use activation function g(L)(·) = σ(·) to transform
outputs to probabilities. Note that for L = 1, neural network becomes a simple logistic
regression.

...

...

... ...

yt

x1
t

x2
t

xn
t

g(1)
w(1)

1,·

g(1)
w(1)

2,·

g(1)
w(1)

3,·

g(1)
w(1)

m−2,·

g(1)
w(1)

m−1,·

g(1)
w(1)

m,·

g(L)

w(L)
1,·

g(L)

w(L)
2,·

g(L)

w(L)
k,·

Pr
(

yt+h ≤ qα1 |zt

)

Pr
(

yt+h ≤ qα2 |zt

)

Pr
(

yt+h ≤ qα3 |zt

)

Pr
(

yt+h ≤ qαp |zt

)

. . .

Input
layer

zt = (yt, x1
t , ..., xn

t )
>

W(1), b(1)

Hidden
layer

g(1)
W(1),b(1)

. . .

W(L), b(L)

Hidden
layer

g(L)
W(L),b(L)

Output
layer

F(yt+h|zt)

Figure 1. Distributional (Deep) Feed-forward Network.

An illustration of a multiple output (deep) neural network gW,b(zt) to model the collection of conditional

probabilities
{

Pr
(

yt+h ≤ qα1 |zt

)
, . . . , Pr

(
yt+h ≤ qαp |zt

)}
with set of predictor variables zt = (yt, x1

t , ..., xn
t )
>.

With large number of hidden layers L the network is deep.

2.1 (Deep) Recurrent Neural Networks

Predictors used by economists often evolve over time, and hence traditional neural
networks assuming independence of data may not approximate relationships sufficiently
well. Instead, a Recurrent Neural Network (RNN) that takes into account time series
behavior may help in the prediction task. Taking into account sequential nature of data
that evolve over time and possess an auto-correlation structure, RNNs are more suitable for
many economic problems. In contrast to plain neural networks, hidden layers in recurrent
networks are being updated in a recurrence for every time step of the sequence meaning
that the weights of the network are shared over the sequential data, and hidden states
remember the time structure.

Formally, RNNs transform a sequence of input variables to another output sequence
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with lagged (memory) hidden states

ht = g(Whht−1 + Wzzt + b0). (5)

Figure 2 illustrates distinctions of weights where dashed lines correspond to Wh and solid
lines to Wz. Intuitively, RNN is a non-linear generalization of an autoregressive process
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... ...

yt

x1
t

x2
t

xn
t

g(1)
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1,·

g(1)
w(1)

2,·
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w(1)

m−2,·
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m−1,·
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m,·
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w(L)
1,·

g(L)

w(L)
2,·

g(L)

w(L)
k,·

Pr
(

yt+h ≤ qα1 |zt

)

Pr
(

yt+h ≤ qα2 |zt

)

Pr
(

yt+h ≤ qα3 |zt

)

Pr
(

yt+h ≤ qαp |zt

)

. . .

Input
layer

zt = (yt, x1
t , ..., xn

t )
>

W(1), b(1)

Hidden
layer

g(1)
W(1),b(1)

. . .

W(L), b(L)

Hidden
layer

g(L)
W(L),b(L)

Output
layer

F(yt+h|zt)

Figure 2. Distributional (Deep) Recurrent Network.

A depiction of a deep recurrent neural network gW,b(zt) capturing the relationship between all nodes (solid
connections) and recurrent paths (dashed connection) in the network at time t to model the collection of

conditional probabilities
{

Pr
(

yt+h ≤ qα1 |zt

)
, . . . , Pr

(
yt+h ≤ qαp |zt

)}
with set of predictor variables zt =

(yt, x1
t , ..., xn

t )
>.

where lagged variables are transformations of the observed variables. Nevertheless, the
structure is only useful when the immediate past is relevant. In case the dynamics are
driven by events that are further back in the past, the nodes of the network require even
more complex structure.

2.1.1 Long Short-term Memory (LSTM)

As a particular form of recurrent networks, an LSTM provides a solution to the short
memory problem by incorporating memory units into the structure (Hochreiter and Schmid-
huber, 1997) and capture potentially long time dynamics in the time series. Memory units
allow the network to learn when to forget previous hidden states and when to update
hidden states given new information. Specifically, LSTM unit has five components: an
input gate, a hidden state, a memory cell, a forget gate, and output gate. The memory
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cell unit combines the previous time step memory cell unit which is modulated by the
forget and input modulation gates together with the previous hidden state, modulated by
the input gate. These components enable an LSTM to learn very complex long-term and
temporal dynamics that a vanilla RNN is not capable of. Additional depth in capturing
the complexity of a tie series can be added by stacking LSTM on top of each other.

Formally, at each time step a new memory cell ct is created taking current input zt

and previous hidden state ht−1 and it is then combined with forget gate that controls an
amount of information kept in the hidden state as

ht = σ


W(o)

h ht−1 + W(o)
z = zt + b(o)0︸ ︷︷ ︸

output gate


 ◦ tanh(ct)

ct = σ


W(g)

h ht−1 + W(g)
z zt + b(g)

0︸ ︷︷ ︸
forget gate


 ◦ ct−1 + σ


W(i)

h ht−1 + W(i)
z + b(i)0︸ ︷︷ ︸

input gate


 ◦ tanh(kt).

The term σ(·) ◦ ct−1 introduces the long-range dependence, kt is new information flow to
the current cell. The forget gate and input gate states control weights of past memory and
new information. In the Figure 2, ct is the memory pass through multiple hidden states in
the recurrent network.

2.2 Loss Function

Since we aim to estimate the cumulative distribution function that is a non-decreasing
function bounded on [0, 1], we need to design an objective function that minimizes dif-
ferences between targets and estimated distribution as well as imposes non-decreasing
property of the output. Since the problem is essentially a more complex classification
problem closely related to logistic regression, we use a binary cross-entropy loss function.
Such a choice of scoring rule dates back to Good (1952) and is widely used in the classifica-
tion problems. To order the predicted probabilities, we introduce a penalty to the multiple
output classification problem.

The loss function is then composed of two parts: traditional binary cross-entropy and a
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penalty adjusting monotonicity of predicted output:

L = − 1
T

T

∑
t

1
p

p

∑
j

(
I{yt+h≤qαj} log

{
ĝW,b,j(zt)

}
+
(

1− I{yt+h≤qαj}
)

log
{

1− ĝW,b,j(zt)
})

︸ ︷︷ ︸
binary cross-entropy

+ λm

T

∑
t

p−1

∑
j=1

(
ĝW,b,j(zt)− ĝW,b,j+1(zt)

)
+

︸ ︷︷ ︸
monotonicity penalty

(6)

where (u)+ is a rectified linear units function, ReLU, (u)+ = max{u, 0}, and I{.} is an
indicator function. The monotonicity penalty is controlled by the penalty parameter λm

and punishes violations of CDF monotonicity condition. The violations are when exist
positive differences between two neighboring values, j and j + 1, of CDF. Furthermore,
it should be noted that, in addition to its simplicity, ReLU is employed for convenience
reasons in order to facilitate its general use.3

2.3 Networks Design and Estimation Steps

The high dimensionality and non-linearity of the problem make estimation of a deep
neural network a complex task. The selection of optimal parameters is crucial for estima-
tion, as it ensures the desired performance and avoids potential risks such as overfitting or
convergence issues. Moreover, it is necessary to exercise caution and make specific, careful
choices in order to minimize the risks associated with each problem and data set. This
section presents a comprehensive overview of the model architectures and their respective
estimations.

2.3.1 Learning, Regularization and Hyper-parameters

The selection of hyper-parameters in combination with regularisation methods plays
a pivotal role in reducing the risk associated with estimation. In particular, the ReLU
activation function is employed to introduce non-linearity to the problem, thereby facil-
itating the convergence of the optimisation algorithm. For the learning process, we use
adaptive gradient algorithm, Adam (Kingma and Ba, 2014) and its modification AdamW
(Loshchilov and Hutter, 2019) that allows for regularization by decoupling the weight de-
cay from the gradient-based update. The regularization is close to L2-regularization with
improved results.4

3This option allows the use of the GPU, thereby enhancing the computational capabilities for more
complex problems. It is not advisable to utilise in-house or non-optimized functions for the GPU, as (u)+ is
a common element in libraries designed for GPUs.

4We keep decay of momentum parameters β1, β2 constant and at default values throughout all estima-
tions, β1 = 0.9, β2 = 0.999.
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Further, the hyper-optimization algorithms employed utilize a random search over a
grid/cube of parameter ranges, which are specific to a given experiment. In some in-
stances, it may be necessary to search over the entire parameter grid, testing all possible
combinations. This approach can be costly. The hyper-optimization approach 5 is used to
select the learning rate of the optimizer, η, the weight decay parameter of AdamW, λW ,
and a Dropout parameter that regularizes models, as described in Srivastava et al. (2014).
This approach represents an efficient method for performing model averaging with neu-
ral networks. In particular, the dropout parameter is employed to disable a proportion of
nodes in the layer of the network at which it is applied, with this proportion being defined
by the parameter φ, which is constrained to the interval (0.0, 1.0). In the training phase,
the model is presented with a specified number of epochs during which it is expected to
learn from the data. The number of epochs is contingent upon the size of the data set and
the batch size employed in the estimation process. Nevertheless, we also employ the early
stopping technique, which assists in regularization and prevents over-fitting. The early
stopping criterion represents the minimum number of epochs that the model is required
to complete before it is permitted to stop learning.

2.3.2 Code Implementation

We have estimated our models on 48 core Intel R© Xeon R© /i7 Gold 6126 CPU@ 2.60GHz,
128 GB of memory, and GeForce 3090 GPU. We implement the models using Flux.jl (Innes
et al., 2018) package in JULIA 1.6.0. language.

2.3.3 Data Preparation and Information set

To predict the distribution function of a time series yt with observations y1, . . . , yT, we
split our time series into several parts. The first partitioning creates, as known in time-
series literature, in-sample [1 : t0] and out-of-sample [t0 + 1 : T] subsamples. Equivalently,
in machine learning jargon, train and test sets. Test subsample is never available to the
learning algorithm while training the model. We further divide the train subsample into
training and validation sets, which are used to cross-validation of our model and model’s
parameters selection. The model selection is based on the value of the loss function on the
validation subsample(s), mainly the binary cross-entropy loss.

One of the crucial parts in estimation of distributional neural networks is the infor-
mation set. The information set It0 is based on the past observation available at time t0.
This is the maximal time-span providing historical information, in our case, up to the last
observation of the validation subsample. The importance here lays in finding the empiri-
cal quantiles, qα, corresponding to the set of probabilities {α1, . . . , αp}, which are used to

5We refer to Julia package HyperOpt.jl (https://github.com/baggepinnen/Hyperopt.jl)
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build the sequence of target values. Given the information about {yt}t0
t=1 and the empirical

quantiles, we are able to model the distribution conditional on the information set up to
time t0. Given the information set, we face the problem with non-variation or updating the
conditional empirical quantiles for the future distributions. Although, we do not assume
a shape of the distribution, we assume, to some extent, small level of shift in the distribu-
tion. Further, choice of empirical quantiles and probability levels faces the same problem
as quantile regression when it comes to small samples of data.

3 Empirical Application: Conditional Distributions of Asset Returns

The vast majority of studies that focus on predicting conditional return distributions
characterize the cumulative conditional distribution by a collection of conditional quantiles
(Engle and Manganelli, 2004; Žikeš and Baruník, 2016). In contrast, Leorato and Peracchi
(2015) argue that a collection of conditional probabilities describing the cumulative dis-
tribution function using a set of separate logistic regressions (Foresi and Peracchi, 1995)
provides a better approach. The following decades resulted in a few contributions explor-
ing distributional regressions (Chernozhukov et al., 2013; Fortin et al., 2011; Rothe, 2012),
including attempts to overcome the problem of monotonicity of predictions (Anatolyev
and Baruník, 2019) using ordered logistic parametrization. Another important strand of
literature focuses on Bayesian forecasting, where uncertainty is automatically character-
ized by probabilities (Geweke and Whiteman, 2006; Lahiri et al., 2010). At the same time,
the literature in computer science attempts to apply machine learning to the prediction of
distributions. These attempts are similar to traditional methods and are usually based on
approximating a pre-specified distribution, such as the first two moments.6 To the best
of our knowledge, the literature has not yet moved to fully non-parametric approaches to
approximate data structures in the context of distributional forecasting in economics and
finance.

6Duan et al. (2019) applies the natural gradient boosting algorithm to estimate parameters for condi-
tional probability distribution, while assuming homoskedasticity. Salinas et al. (2020) build an autoregres-
sive recurrent neural network, which learns mean and standard deviation for Gaussian, and mean and
shape parameter for Negative binomial. Lim and Gorse (2020) classifies price movements for high-frequency
trading via deep probabilistic modelling when optimizing parameters of different families of distribution.
Although similarly to Salinas et al. (2020), Chen et al. (2020) proposes to use a deep temporal convolu-
tional neural network to estimate parameters of Gaussian distribution to model probabilistic forecast, and
they further propose to use the same architecture for non-parametric estimation of quantile regression. The
second approach is distribution-free and can produce more robust results. Another study forecasts distri-
butions via direct quantiles using recurrent neural network, Wen et al. (2017) also perform a multi-horizon
predictions. Quantile function represented by spline combined with recurrent neural network proposed by
Gasthaus et al. (2019) is a distribution-free approach with objective function based on CRPS score (Gneiting
and Raftery, 2007) constructed with respect to monotonicity of quantile function. Hu et al. (2019) build deep
neural networks to obtain distribution-free probability distribution where one of the steps in the procedure
is to obtain cumulative distribution estimates. Januschowski et al. (2020) provide a detailed discussion about
ML methods for forecasting. The text discusses way of distinction between "statistical" and "ML" methods
adapted in time.
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Stock return data are notorious for their heavy tails and low signal-to-noise ratio (Fama,
1965; Israel et al., 2020). Despite the large literature uncovering these empirical properties,
few studies attempt to forecast the distribution of returns.7. Among the few, Anatolyev and
Baruník (2019) parameterize a simple ordered logit to provide the distribution forecasts.

Here, we aim to develop a machine learning based alternative that is capable of explor-
ing a large number of informative variables. We compare the forecasts with the bench-
mark Anatolyev and Baruník (2019) (hereafter AB) model to see how well the machine
learning approach approximates the parametrized model, but we mainly focus on using
more variables that classical models cannot explore due to infeasibility associated with
large parameter space.

This application is therefore a good complement to the previous one, where we used
machine learning for multi-variable forecasting using big data. Liquid equity returns,
on the other hand, are notoriously difficult to predict, so even a small improvement is
valuable.

3.1 Data and Estimation

Our dataset includes 29 most liquid U.S. stocks8 of S&P500. The main reason for this
particular choice is comparability of the results with Anatolyev and Baruník (2019). The
daily data covers the period from July 1, 2005 to August 31, 2018. We preprocessed the
data to eliminate possible problems with liquidity or biases caused by weekend or bank
holidays. The final sample period contains 3261 observations.

We start building the models using the same predictors as in Anatolyev and Baruník
(2019) to make a direct comparison of the model forecasts. Specifically, they use Indt =

I{rt≤qαj} and LogVolt = ln(1 + |rt|) as a proxy to a volatility measure. We will refer to this
first choice as the AB predictors. Next, we prepare five realized measures from one-minute
intra-day high frequency data obtained from TickData.9 The realized measures for each
of 29 asset returns are realized volatility, skewness, kurtosis, and positive and negative
semi-variances labelled as RVolt, RSkewt, RKurtt, RSemiPost, and RSemiNegt. These are
informative about returns distribution and should help the forecast. We will refer to this
set of as RM predictor

In the third model, we combine both sets of predictors to estimate the conditional
distribution of returns, as they are both informative. As the realised measures contain
information about higher moments of the return distribution, they could improve the pre-

7The literature focusing on value-at-risk forecasting has a special interest in a chosen quantile of the
return distribution, mostly the left tail (Engle and Manganelli, 2004)

8Assets selected in the sample: AAPL, AMZN, BAC, C, CMCSA, CSCO, CVX, DIS, GE, HD, IBM, INTC,
JNJ, JPM, KO, MCD, MRK, MSFT, ORCL, PEP, PFE, PG, QCOM, SLB, T, VZ, WFC, WMT, XOM.

9www.tickdata.com
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AB predictors RM predictors AB+RM predictors

Indt - Indt
LogVolt - LogVolt
- RVolt RVolt
- RSkewt RSkewt
- RKurtt RKurtt
- RSemiPost RSemiPost
- RSemiNegt RSemiNegt

Table 1. Sets of predictors used in the three models
Note: The indicator Indt contains J columns of dummy variables.

diction of the conditional return distribution. At the same time, including these predictors
in the original (benchmark) ordered logit model of Anatolyev and Baruník (2019) would
result in an over-parameterised model that is not feasible. This is an important caveat,
as our approach provides a flexible and more general way of predicting distributions in
data-rich settings, while exploring possible non-linearity in the data. Table 1 summarises
the predictors used in the three models.

Prior to estimation, we normalize the input data to a suitable range, which makes
it easier for the algorithm to find a better optimum. This is a standard procedure in
the learning process, as the optimization works on closer ranges while learning in the
network structure. Furthermore, we divide the data into training and test parts with
a ratio of 0.9 and 0.1, respectively, to 2934 and 327 observations. First, we search for
the best set of hyperparameters on the training window, where we perform a fourfold
rolling window forward validation scheme. The model is trained and validated during
the hyperparameter search on each split composed of 90% and 10% partitions - training
and validation. Using a rolling window of size 2934, we predict out-of-sample forecasts
one step ahead, H = 1. The window size is equal to the size of the training sample,
t0 = 2934. On the first rolling window, the training part, we search the grid for the
best parameter set using random and Latin hypercube search algorithms. Table A2 in
Appendix B details the parameter ranges for the learning rate, η, the dropout parameter,
φ, and the weight decay penalty parameter, and λW , on which the hyper-optimization
algorithm searches for the best model hyper-parameters in the space of 50 combinations.
We use the ensemble method for forecasting, i.e. for each rolling window step, the best
model is trained three times, given the best model hyperparameters. Three predictions
are obtained and an average distribution prediction is made for all t in out-of-sample,
t ∈ [2935 : 3261]. In addition, we use the additional regularization technique of early
stopping and table A2 in the appendix B also provides the number of epochs allowed to
train. This is the number of epochs where the model is patient with the algorithm and
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waits for improvement. Finally, we take the model with the best validation loss and use
it to predict out-of-sample distributions. We also study an effect of complexity, which
specifies the size of the neural networks. We set the number of nodes from a shallow to
a deeper DistrNN to [128], [128, 64] and [128, 64, 32]. The output size of the final layer of
the network is p = 10, which correspond to probability forecasts that approximate the
conditional distribution of excess returns given the information set It.

3.2 Statistical Evaluation Measures

We evaluate our probabilistic forecasts using several measures. First, we evaluate the
accuracy of the forecasts using the mean square prediction error, calculated as

MPSE =
1

T − t0

T

∑
t=t0+1

1
p

p

∑
j=1

(
I{yt+h≤qαj} − ĝW,b,j(zt)

)2
, (7)

where the out-of-sample predicted outputs ĝW,b,j(zt) is a matrix keeping dimension of time
[t0 + 1, . . . , T] and conditional probability levels {1, . . . , p}.

To evaluate the compatibility of a cumulative distribution functions with an individual
time series observations we use the continuous ranked probability score (CRPS, Matheson
and Winkler (1976), Hersbach (2000)):

CRPSt = −
∫ ∞

−∞

(
ĝW,b(zt)− I{yt+h≤y}

)2
dy, (8)

where the conditional CDF ĝW,b(zt) is obtained by CDF interpolation (see Appendix A)
while the integral is computed numerically using the Gauss-Chebyshev quadrature for-
mulas (Judd (1998), section 7.2) with 300 Chebychev quadrature nodes on [2ymin, 2ymax].
CRPS score is of the highest value when the distributions are equal. We obtain an average
CRPS score of the out-of-sample forecast as CRPSOOS = 1

T ∑T
t=t0+1 CRPSt.

Another measure for the distributional forecast accuracy is Brier score (Gneiting and
Raftery, 2007). At time t, it calculates a squared difference of binary realization and the
probability forecast,

Bt = −
p+1

∑
j=1

(
I{qαj−1<yt≤qαj} − P̂r{qαj−1 < yt ≤ qαj}

)2
. (9)

We also compute the average value of the Brier score for the out-of-sample period.

We compare proposed models using relative predictive performance of two models,
M1/M2, where Mi is particular measure (MPSE, CRPS, or Brier) corresponding model i.
The model M1 performs better when the ratio is lower than one.
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3.3 Results

Table 2, Figure 3 and Figure A1 in Appendix B provide all out-of-sample results with the
horizon h = 1 comparing sizes of various machine learning models and different variables
used as predictors. The performance for all measures is put relative to the maximum
likelihood ordered logit model, an AB benchmark of Anatolyev and Baruník (2019).

Data Model MSPE Bin.CE CRPS Brier

AB NN:128 14/29 14/29 20/29 11/29
AB NN:128x64 13/29 11/29 15/29 11/29
AB NN:128x64x32 8/29 7/29 8/29 11/29

RM NN:128 25/29 25/29 27/29 25/29
RM NN:128x64 25/29 24/29 27/29 25/29
RM NN:128x64x32 25/29 24/29 26/29 25/29

AB+RM NN:128 22/29 19/29 27/29 19/29
AB+RM NN:128x64 22/29 21/29 26/29 21/29
AB+RM NN:128x64x32 23/29 23/29 27/29 23/29

Table 2. Results according to different scores, assets
The table shows performance of three models with different sizes and of three different input features. All
results are benchmarked to Ordered Logit of Anatolyev and Baruník (2019). The number indicates for how
many assets given model performs better.

Overall, we document that machine learning is able to predict the conditional distribu-
tion of asset returns well and, given informative variables, it delivers improved predictions.
In particular, we observe an average out-of-sample improvement of 1% in the MSPE for
all assets studied compared to the parametric models. The improvement is even greater
in terms of the continuous rank probability score, which assesses the compatibility of the
predicted and data distributions.

It is important to note that in financial forecasting, the relationship between statisti-
cal and economic gains from predictions is not trivial. Campbell and Thompson (2008);
Rapach et al. (2010) Note that a seemingly small statistical improvement can yield large
benefits in practice, which has recently been confirmed for expected returns predicted
by machine learning (Gu et al., 2020; Babiak and Baruník, 2020). Thus, an average 1 %
improvement in the out-of-sample forecasts we document is likely to be of interest to a
practitioner who builds portfolios based on our forecasts. While it is tempting to explore
such a strategy, it is far beyond the scope and space of this text.

More specifically, Table 2 shows that neural networks of all sizes on average brings
improved performance in comparison to parametrized AB model when the same set of
predictors is used in approximately half of tested stocks. This result suggests that data does
not contain any further non-linearities that are not captured by a parametric AB model,
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Figure 3. Comparison of the out-of-samples forecasts of 29 U.S. stocks
The three statistical measures, MSPE (top), CRPS (middle), and Brier score (bottom) are used for the three
set of predictors and three machine learning models depicted as star for 128, diamond for 128x64, and circle
for 128x64x32. Anatolyev and Baruník (2019) ordered logit model is benchmark with value 1. Value lower
than 1 show better better performance of a model in comparison to benchmark.

and since machine learning is more flexible in number of parameters to be estimated, it
learns and approximates the AB parametrization with a small degree of error.

Situation changes with additional predictors when the AB approach becomes infeasible
and machine learning approach offers possibility to explore how informative the predictors
are for forecasts. When additional five realized measures (RM) are used as predictors,
performance increases with respect to all measures. With respect to depth of networks,
the shallow (NN 128) neural network shows best results. This result is similar to Gu et al.
(2020) who find that shallow network performs better than deeper structures one on asset
returns data.
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While the Table 2 provides information on relative counts, Figures A1 and 3 comple-
ment it with all measures reported for individual assets in box-plots. The detailed look
uncovers that machine learning improves performance of individual stocks such as AAPL,
AMZZN, GE, or WMT even more. At the same time, Figure A1 shows that in most cases,
deeper networks shows lower variance for most of stocks.

4 Empirical Application: Macroeconomic Fan Charts

Macroeconomic fan charts are a popular tool for communicating uncertainty about
economic forecasts. Recognizing the need to communicate uncertainty to the public, the
Bank of England began publishing fan charts in 1996 and quickly became a leader in
communicating uncertainty. However, the art and science of such an important tool for
policy making remains on the shoulders of the methods chosen.

The objective is to construct a data-driven macroeconomic fan chart based on a best
approximation model learned from a large number of variables using deep learning. This
approach contrasts with the existing literature, which provides uncertainty estimates for
macroeconomic variables using so-called predictive fan charts, prediction intervals, (Brit-
ton et al., 1998; Stock and Watson, 2017) which are derived from a limited number of
variables using a parametrized and structured model that requires a number of assump-
tions.

4.1 Data

To measure uncertainty, we use a high-dimensional FRED-QD dataset from McCracken
and Ng (2020), available from the Federal Reserve Bank of St. Louis and widely used in
the literature (Goulet Coulombe et al., 2022). We selected 216 quarterly US macroeconomic
and financial indicators observed from 1961Q1 to 2019Q4. Due to the non-stationarity of
several variables, we follow the transformation codes used by McCracken and Ng (2020).
We construct a data-rich fan chart for real GDP growth (GDPC1), inflation (CPIAUCSL)
and unemployment rate (UNRATE), reflecting information from 216 relevant variables. In
comparison to the data-driven fan charts, we use a state-of-the-art macroeconomic model
based on Bayesian vector autoregression that incorporates data-driven factors to incorpo-
rate the big data information (McCracken and Ng, 2020).

4.2 Deep-learning Based Fan Charts

We approach the exercise via direct forecasting scheme in order to obtain a h-step ahead
probabilistic forecast which can be then depicted as a fan chart. For every h-step ahead
forecast we learn distributional networks given the set of inputs zt

ĝ
(1)
W,b(zt), . . . , ĝ(h)W,b(zt). (10)
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We obtain the entire h step-ahead conditional distribution from ĝ
(h)
W,b(zt) by interpolat-

ing the cumulative distribution function, while preserving the monotonicity of the result.
To interpolate, we apply the Fritsch-Carlson monotonic cubic interpolation (Fritsch and
Carlson, 1980), see Appendix A for details, and use the predicted cumulative distribution
function F̂t+h(α|It) to form k− size prediction intervals as

PIk
t+h =

[
F̂−1

t+h(αl|It), F̂−1
t+h(αu|It)

]
, (11)

with the size of the interval k = αu − αl.

To show usefulness of our approach is, we compare the predictions obtained from
the distributional network with the Bayesian vector autoregression (BVAR) with inputs
including four factors formed from the data of McCracken and Ng (2020). BVAR is a
state of the art approach in macroeconomics and it uses the information, via factors, from
the whole dataset, so the forecasts are comparable. To obtain the fan chart (forecast in-
tervals), we use the best performing recursive (iterative) scheme ŷt+h = f (yt+h−1|It),
where the forecast intervals are based on the distribution of the residuals. Formally, if
we assume a normal distribution, we obtain the h-step ahead α prediction interval as
[ŷt+h − φ(1− α/2)σ̂h, ŷt+h + φ(1− α/2)σ̂h], where φ(1− α/2) is the corresponding quan-
tile of the standard normal distribution and, for example, for a naive forecast we have
σ̂h = σ̂

√
h and σ̂h is the residual standard deviation. 10

In this example, we use the quantile or tick loss function (Clements et al., 2008) to
evaluate the h-step-ahead forecasts given by

Lh
α,m = E [(α− I{et+h,m < 0})et+h,m] , (12)

where m is a model and α-quantile, where et+h,m = yt+h − F̂−1
t+h,m(α|It) is the difference

between the true values and α-quantile forecast given the information set, It. To assess the
predictive accuracy of the models statistically, we use the Diebold-Mariano test (Diebold
and Mariano, 1995) with Newey-West variance for h > 1 cases and test the null hypothesis
H0 : Lα,m1 > Lα,m2 against the alternative that m2 is less accurate than m1.

4.3 Setup

In order to compute the h = 1, . . . , 6 horizon forecasts for each quarter of the out-of-
sample period, we utilize quarterly data. This period begins in 2012:Q3 and concludes
in 2019:Q4. The conditional distribution is approximated using j = 1, . . . , 19 empirical
αj = (0.01, ..., 0.99) probability levels. The learning process explores 36 combinations of
hyperparameters to identify the optimal approximating model for each h-step ahead fore-

10Alternatively, prediction intervals or fan charts can be obtained using bootstrap methods, Britton et al.
(1998).
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cast. The hyperparameters space is optimized once on the training data set, and the train-
ing procedure employs a growing-window forward-validation scheme on the training data
set using three folds. The training data set is split while training each fold of validation
on the training and test parts by a ratio of 0.93. The present study presents predictions for
deep recurrent neural networks with two hidden LSTM layers, each comprising a different
number of neurons, which were chosen during the hyper-optimization process.

Table A1 in the Appendix provides a summary of all parameters and details used in
the estimation process. To facilitate comparison of the deep-learning-based fan charts, we
perform the standard estimation procedure for the Bayesian Vector Autoregression (BVAR)
model with factor components, as described in McCracken and Ng (2020). The information
criteria, namely AIC and BIC, were employed to select the model with four lags. Further-
more, the prediction intervals for GDP growth, inflation, and the unemployment rate were
determined. The data for both procedures were transformed in accordance with the Mc-
Cracken and Ng (2020) codes and standardized to a normal distribution with a mean of
zero and a standard deviation of one.

4.4 Results

The discussion begins by presenting the qualitative results of the GDP growth, inflation
and unemployment forecasts in the form of fan charts. Figure 4 shows prediction intervals
of 50%, 68%, 80% and 90% as fan charts over four different periods, produced by both
recurrent distribution neural network and Bayesian vector autoregression approaches. It
highlights the benefits of deep learning based forecasting.

Prediction intervals derived from distributional neural networks exhibit asymmetry, in
contrast to the smoothness observed in traditional time series forecasting, here represented
by BVAR. As uncertainty in the future increases, deep learning continues to extract some
structure from the data, resulting in probability intervals that are less similar to the shape
of “fans”. The intervals are narrower than those produced by BVAR. In the case of the
unemployment rate, the BVAR model is less effective in reducing uncertainty about future
observations. This is probably due to the presence of pronounced peaks and seasonal
factors. In contrast, our DistrNN model with LSTM units is able to capture uncertainty
effectively.

Figure 4 is intended to provide an illustrative overview; however, it only shows a lim-
ited number of periods. To provide a more comprehensive assessment of the benefits of the
deep learning approach, we have quantified the prediction differences for the entire out-
of-sample period. Table 3 presents a quantitative comparison of the predictions from both
models. A comparison of the forecasts at horizons h = 1, . . . , 6 is presented using the tick
loss metric (Eq. 12) for selected quantile levels, α = {0.05, 0.1, 0.16, 0.25, 0.5, 0.75, 0.84, 0.9, 0.95}.
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Figure 4. Deep-learning based (green) and Bayesian VAR (red) fan charts
6-step-ahead quarterly 50%, 68%, 80% and 90% prediction intervals of GDP growth (top), Inflation (middle),
and Unemployment rate (bottom) as obtained by the distributional network (green) and a factor Bayesian
VAR (red). Forecasts are made at the end of the 2012:Q2, 2014:Q2, 2016:Q2 and 2018:Q2 depicted by dashed
vertical lines. Train and test data are plotted by black solid line.

Table 3 shows the relative performance of quantile losses between the two methods,
namely Distributional Recurrent Neural Network (DistrNN) and Bayesian Vector Autore-
gression (BVAR) forecasts. The results cover forecasts of GDP growth, inflation and the un-
employment rate. The deep learning approach provides forecasts with lower error (in bold)
at most of the probability levels and horizons considered. While deep learning provides
more accurate forecasts in the majority of cases, a significant number of these cases show
lower losses for the DistrNN approach than for the traditional BVAR approach, which
are also statistically significant. Notable and significant gains are observed in the right
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Table 3. Relative out-of-sample performance of DistrNN and BVAR

α 0.05 0.1 0.16 0.25 0.5 0.75 0.84 0.9 0.95

GDP
h=1 1.031 1.002 0.952 0.949 0.948 0.784 * 0.763 ** 0.747 ** 0.755 ***
h=2 1.271 0.990 1.026 1.006 1.044 0.779 ** 0.793 *** 0.816 *** 0.873 **
h=3 1.603 1.186 1.142 1.042 0.911 0.909 0.900 0.906 0.890 *
h=4 0.931 0.947 0.905 1.014 0.958 0.765 ** 0.700 *** 0.688 *** 0.738 ***
h=5 0.688 *** 0.844 * 0.884 0.875 * 0.900 0.603 *** 0.597 *** 0.590 *** 0.587 ***
h=6 0.897 1.008 1.029 1.086 0.928 0.623 *** 0.644 *** 0.699 *** 0.740 ***

Inflation
h=1 1.863 ‡ 1.624 ‡ 1.451 ‡ 1.199 0.951 1.122 1.210 1.253 1.350
h=2 0.954 1.151 1.300 ‡ 1.278 ‡ 1.018 0.922 0.918 0.881* 0.935
h=3 0.826*** 0.786*** 0.918 1.044 1.037 1.114 ‡ 1.167 1.200 1.268
h=4 0.920 1.132 1.324 1.311 ‡ 1.131 ‡ 1.037 1.067 1.090 1.084
h=5 1.016 1.153 1.189 1.153 0.991 0.900 0.892 0.941 1.005
h=6 1.231 1.311 1.379 ‡ 1.294 ‡ 1.046 0.941 0.919 0.954 0.967

Unemployment
h=1 0.746 0.987 0.986 0.823 0.704 ** 0.688 *** 0.650 *** 0.691 *** 0.784 ***
h=2 1.410 1.439 1.149 0.926 0.744 *** 0.691 *** 0.680 *** 0.685 *** 0.725 ***
h=3 1.005 1.114 1.227 1.062 0.895 0.854 * 0.855 * 0.966 1.207
h=4 2.195 ‡ 1.531 1.177 0.925 0.733 ** 0.783 * 0.792 * 0.881 1.024
h=5 1.070 0.869 0.830 0.894 0.787 * 0.660 *** 0.625 *** 0.665 *** 0.755 **
h=6 1.195 1.103 0.942 0.867 0.650 *** 0.640 *** 0.652 *** 0.676 *** 0.819 *

Note: The values depict relative performance between the two methods, lower than one means DistrNN is
better than BVAR. Based on the Diebold-Mariano test statistics, with the null hypothesis H0 : Lα,DistrNN >
Lα,BVAR against the alternative, we show when Bayesian VAR is less accurate than the Distributional Recur-
rent Neural Network. Stars indicate statistical significance of of the test that ***, **, * correspond to 1%, 5%,
10% levels, accordingly. Alternatively, ‡ indicates when BVAR loss is statistically lower than the DistrNN
loss. We report the out-of-sample forecasts for 25 quarters for the variables GDP growth (GDP), Inflation,
and Unemployment rate, at quantiles α = {0.05, 0.1, 0.16, 0.25, 0.5, 0.75, 0.84, 0.9, 0.95}, horizons h = 1, . . . , 6,
begining at Q3/2013 and concluding at Q4/2019.

tail of the distributions, where the DistrNN approach significantly outperforms the BVAR
method. It is worth noting that the DistrNN also reduces losses for inflation forecasts,
although this is not statistically significant. There is an exception for inflation forecasts,
where the distributional network also reduces losses, unfortunately without statistical sig-
nificance. We note that the results depend on the use of 25 out-of-sample observations, a
size that may be limiting for the test.

5 Conclusion

In this paper, we present a novel approach to modelling probability distributions of
economic variables using state-of-the-art machine learning methods. The distributional
neural network we propose is flexible and allows the exploration of large datasets contain-
ing variables with non-Gaussian, non-linear and asymmetric structures. The approach is
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shown to be useful in an economic and financial context. At the same time, the approach
is generalisable and can be applied to any other dataset.

Specifically, we show that our distributional neural network improves out-of-sample
distributional accuracy for US stock returns. The distributional NN model learns and
approximates distributions in a data-poor environment such as macroeconomic variables.
We go one step further with the recurrent distributional neural network and show how
deep learning can be used to improve probabilistic forecasting of data that is notoriously
difficult to predict.
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Appendix for

“Learning Probability Distributions of Economic Variables”

A CDF interpolation

The Fritsch–Carlson monotonic cubic interpolation (Fritsch and Carlson, 1980) provides
a monotonically increasing CDF with range [0, 1] when applied to CDF estimates on a finite
grid.

Suppose we have CDF F(y) defined at points (yk, F(yk)) for k = 1, . . . , K, where F(y0) =

0 and F(yK) = 1. We presume that yk < yk+1 and F(yk) < F(yk+1) for all k = 0, . . . , K− 1,
which is warranted by continuity of returns and construction of the estimated distribution.
First, we compute slopes of the secant lines as ∆k = (F(yk+1)− F(yk)))/(yk+1− yk) for k =

1, . . . , K− 1, and then the tangents at every data point as m1 = ∆1, mk = 1
2(∆k−1 + ∆k) for

k = 2, . . . , K− 1, and mK = ∆K−1. Let αk = mk/∆k and βk = mk+1/∆k for k = 1, . . . , K− 1.
If α2

k + β2
k > 9 for some k = 1, . . . , K− 1, then we set mk = τkαk∆k and mk+1 = τkβk∆k, with

τk = 3(α2
k + β2

k)
−1/2. Finally, the cubic Hermite spline is applied: for any y ∈ [yk, yk+1] for

some k = 0, . . . , K− 1, we evaluate F(y) as

F(y) = (2t3 − 3t2 + 1)F(yk) + (t3 − 2t2 + t)hyk + (−2t3 + 3t2)F(yk+1) + (t3 − t2)hmk+1,

where h = yk+1 − yk and t = (y− yk)/h.
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B Additional tables and figures

Hyper parameters Values

Learning rate, η 0.0001, 0.001, 0.005
Dropout rate, φ 0.2, 0.4
L2-decay regularization rate, λW 0.00001, 0.00005
Nodes dimensions 32x32, 64x64, 60x50

Fixed parameters Value

Number of layers 2
Mini batch size 8
Epochs 350
Monotonicity parameter, λm 5.0
Cross-validation, k-folds 3
Train/test ratio 0.93
Ensembles 1

Table A1. Fan chart recurrent DistrNN parameters space for the empirical application, Sec. 4
The hyperoptimization algorithm searches through the whole hyperparameter space and tries all
sets/combinations of hyperparameters to evaluate the model.
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Hyper parameters Minimum value Maximum value

Learning rate, η 0.0001 0.02
Dropout rate, φ 0.0 0.5
L2-decay regularization rate, λW 0.0 0.0018

Fixed parameters Value

Epochs 250
Early stopping patience 25
Monotonicity parameter, λm 0.2
Mini batch size 32
Ensembles 3
Number of layers 1, 2, 3
Nodes dimensions 128, 128x64, 128x64x32

Table A2. DistrNN parameters space for the emprical application, Sec. 3
The hyperoptimization algorithm searches through the hyperparameter space and randomly tries sets of
parameters to evaluate the model.
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Figure A1. Comparison of the out-of-sample forecasts.
The three statistical measures: MSPE (top), CRPS (middle), and Brier (bottom). Each box-plot depicts bench-
mark values of 29 assets of given NN model size. Anatolyev and Baruník (2019) ordered logit model is
benchmark=1. Value lower than 1 states that the purposed model is better that benchmark.
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