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ABSTRACT ARTICLE HISTORY

In this work, we deal with non-stationary multivariate time series, Received 19 June 2023
proposing a method which uses copulas to produce more accurate Accepted 27 April 2024
forecasting. The idea is to apply a copula-based approach to identify KEYWORDS

change points and then split the time series into consecutive seg- Vine copula; dynamic copula;
ments based on these change points. In each segment, we define time series; change point
the best-fitting copula family and forecast values of the time series

of each segment using the corresponding fitting copula. We apply

our model to a financial data set to test the predictive power of

our approach. A simulation study is also presented for a detailed

illustration and assessment of our proposed methodology. Based on

the results of numerical analysis, we observed that our proposed

approach will help us to improve the accuracy of forecasting in com-

parison with other existing methods such as traditional time series

forecasting as well as neural network forecasting.

1. Introduction

With the recent developments in information and communication technologies, the cur-
rently available data have linked together in a complex manner at various levels, and there-
fore, treating such dynamic complex systems has gained increased urgency. In this context,
multivariate time series analysis has become more prominent due to well-established appli-
cations in various domains including environment, health, and economy (Kirchgissner,
Wolters, and Hassler 2012; Liu et al. 2015; Zhang, Zhang, and Khelifi 2018). Although many
popular approaches such as autoregressive moving average (ARMA), multivariate general-
ized autoregressive conditional heteroscedasticity (GARCH), and their mixture (ARMA-
GARCH) have been applied frequently in time series modelling (Mittnik et al. 2007),
the majority of these models are constructed based on the stationarity assumption of the
underlying time series, which is very restrictive in real-world data sets (see, e.g. Kleibergen
and Dijk 1993; Mikosch and Stérica 2004). Therefore, analysis and forecasting in such non-
stationary multivariate time series is a challenging task because of their long/short-term
patterns, and hence, adopting time-varying or dynamic approaches has been proposed in
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the literature. For more details about using dynamic time warping in multivariate time
series classification, we refer to Seto, Zhang, and Zhou (2015) and Li et al. (2019); for
exploring flexible copula models with dynamic dependence, see Krupskii and Joe (2020);
and finally, for causality structures analysis of time-varying behavior of multivariate time
series, see Carlos-Sandberg and Clack (2021).

In order to investigate the dynamic behavior of multivariate time series, determining the
relationship structure between variables is an initial problem for both researchers and prac-
titioners. Many of the traditional methods in the literature assume normality and hence
linear relationships among variables because of its simplicity in calculation and under-
standing. However, despite the popularity, it is well known that this assumption is valid only
within the Gaussian framework (Dou, Haiyan, and Aivaliotis 2019; Embrechts, McNeil,
and Straumann 2002; Patton 2009). For instance, Granger (2003) first reported that the
classical linear multivariate modeling (based on the Gaussian distribution assumption)
clearly fails to explain the nature of the relationship between time series variables, espe-
cially in economic and financial time series (Chen and Fan 2006). Going beyond the linear
relationship between time series arises from the fact that the nature of the most multivariate
time series is indeed complex, nonlinear, and non-normally distributed, so methodologies
modeling nonlinear relationships and focusing on dependence instead of correlation seem
to be the most favorable direction, see e.g. (Liu et al. 2022).

In this context, due to the flexible properties of copulas (Section 2 below) in character-
izing linear and nonlinear relationships between variables, they have been widely used to
modeling multivariate data. Here, the traditional multivariate elliptical copula approach
has been widely used in the literature, among others, by Cherubini, Luciano, and Vecchi-
ato (2004), Renard and Lang (2007), Danaher and Smith (2011), Hofert et al. (2018) and
Sheikhi, Fereshteh, and Radko (2022), but this type of copula lacks flexibility in model-
ing complex high-dimensional dependence, especially in multivariate time series analysis.
In line with the introduction of vine copulas by Harry (1996) as well as Bedford and
Cooke (2001), Aas et al. (2009) have proposed “vine copulas” using pair copulas, namely
pair-copula construction (PCC), to achieve more flexibility. See also (Fischer et al. 2009),
for more information about the better performance of vine copulas as opposed to the
traditional multivariate copulas in modeling the dependence of high-dimensional data.
The recent book of Czado (2019) provides a full illustration of vine copulas and their
applications.

In this work, we apply vine copulas to time-varying multivariate time series analysis.
The use of copula models with time-varying parameters in time series analysis was first
introduced by Patton (2006), and then, several attempts have been made in the litera-
ture to specify time-varying copulas. Stoeber and Czado (2012) investigated modeling
time-varying dependencies with the aid of vine copulas. Acar, Czado, and Lysy (2019)
presented flexible dynamic vine copula models for multivariate time series data. Zhou
and Ji (2021) adopted regular vine copulas to model mortality dependence. Almeida,
Czado, and Manner (2016) used dynamic D-vine copulas to model high-dimensional
time-varying dependence. Among many others, see (Candido and Valls 2019; Kreuzer and
Czado 2019; Pircalabu and Jung 2017; Smith 2015) for the adoption of D- and C-vines in
this field. We refer to Manner and Reznikova (2012) for a survey review of time-varying
copulas, Mejdoub and Ghorbel (2018), Oh and Patton (2018), Krupskii and Joe (2020) and
Nevrla (2020) for applications of time-varying vine copulas in finance; Feng et al. (2022) for
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Li and Li (2021) and Schepsmeier and Czado (2016) for surveys in the context of health-
care time series; Erhardt, Czado, and Schepsmeier (2015) and Ansell and Dalla Valle (2021)
for the use of vine copulas with environmental time series data and finally, Ren, Ma, and
Han (2022), Feng et al. (2022) and Feng et al. (2020) for using machine learning methods
in time series forecasting.

It is known that stationary time series data are easier to forecast and model because it
exhibits consistent patterns and behavior over time; on the other hand, non-stationary time
series data may exhibit trends, seasonality, non-constant mean, variance, and dependen-
cies over time, which is making it more difficult to forecast and model accurately. One
of the most popular approaches to handle time-varying time series data is to compute
“change points”, see, e.g. (Hofert et al. 2018; Xiong and Cribben 2022). Employing cop-
ulas to capture variable dependence, we use the change-point approach to improve the
accuracy of predictions in multivariate time series. Our contribution can be summarized
in the following points:

o exploiting the dependence structure between variables to split the data into segments
based on their relationship;

e improving the accuracy of forecasts compared to other existing methods;

e increase efficiency, especially with big data, by using one part of the time series data,
instead of all data, to calculate predictions.

The rest of the article is organized as follows. We review background and preliminaries
of the work in the next Section. We illustrate the application of our approach to a real data
set as well as simulation studies in Section 3. Finally, Section 4 contains some concluding
remarks.

2. Vine copulas

Inspired by Sklar’s idea (Sklar 1959), if the random vector X = (X1, X>, ..., Xy) follows
the joint multivariate distribution function Hx, x,, x, : R — [0,1] and Fi:R— [0,1],
j=1,2,...,d, are the related marginal distribution functions of Xj, j = 1,2,...,d, there
exists a grounded, uniformly marginal and increasing function

c:[0,11% = [0,1],

such that

Hy, x,,..%x; (X1, X2, . . . s Xq) = C(F1(x1), F2(x2), . . ., Fa(xq)). (1)

If the joint distribution function Hy, x,,. x, is absolutely continuous, then from (1), one
can obtain the joint density f of (X1, .., X) as

d
fl. . xg) =c(Fra)s....Fa @) [ [ fi (o) (2)

j=1

where c is the density of the copula C and Jj-, j =1,..,d, are the respective densities of the
random variables X, ..., Xj.
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There are three main types of vine copulas, namely, D-vine, C-vine and R-vine struc-
tures. For the D-vine, each tree is a path that goes through all the nodes. For the C-vine, for
every layer of the tree there is a central node. The R-vine includes the previous structures,
and also all possible additional structures of vines. A general form of these three structures
can be sequentially obtained as follows. It is known that the joint density function of the
random vector X = (X3, ..., Xy ) can be represented as a product of conditional densities
via Bedford and Cooke (2002) as follows:

F G xg) = fa(%a) - fa—11d (%a=1 | %a) - fijznaGa | %2 oxg). (3)

Again, by the Sklar’s theorem, the conditional density of X;;_; | X can be easily written
as follows:

fa—11d (xa—1 | x4) = ca—1,d4 (Fa=1 (xa—=1) » Fa (xa) 504-1,4) - fa—1 (Xa—1) » (4)

where cj_1 4 is a bivariate copula, with parameter vector 6;_; 5. More generally, for a
generic element X; of the vector X, a general form of of Equation (4), can be represented
as follows:

v (%1 v) =cxvpv_, (ijw_f (x | v—¢),Fv,1v_, (ve | v—é’);oXj,V{;V—E)
v (x5 1 v=e)

where V is the conditioning vector, V¢ is a generic component of V, V_; is the vector
V without the component V. Also, Fx;| v_.(- | -) is the conditional distribution of X;
given v_¢ and cx;,v,;v_, (-, ) is the corresponding conditional bivariate copula density with
parameter 0;,v,;v_, (Ansell and Dalla Valle 2021). Hence, implementing such condition-
als in (3) yields a pair constructed vine copula, which, based on the arrangement of the
conditionals (trees), leads to those three R, D, and C-vines.

For instance, in 3-dimension, the joint density can be written as the product of the
marginal density functions as well as pair-copula densities as follows:

fxu0.%5 (X1, %2, X3) = fi ()2 (x2)f3(x3) c12(F1(x1), F2(x2))
X 23(F2(x2)F3(x3))c13;2 (F1(x1]x2), F2(x3]x2)5 X2)

In this work, we consider the 3-dimensional vine copula-desribed above, as it has a unique
form regardless of R-vine, D-vine or C-vine structures. Czado (2019) . In this work, we
use the vine copula theory to address non-stationary multivariate time series by exploring
their change points.

3. The proposed approach

Time-varying time series data present various challenges, such as seasonality, non-
stationarity, time lags, outliers and heteroscedasticity, that can make analysis and predic-
tion particularly complex. Therefore, the main aim of this section is to provide advanced
modeling techniques to effectively capture the underlying patterns and relationships in the
data (Carlos-Sandberg and Clack 2021). For this purpose, we identify change points and
divide the whole time series into segments to have a more accurate analysis and prediction
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in the segments. Let X;,X>,...,X, be a stretch of a time series. The null hypothesis of
stationarity for copulas can be stated as follows:

Ho : There exists a copula C such that X1,X», . . ., X, are associated with C,

where C is the copula associated with joint distribution function H in Equation (1).
The hypothesis H) is the copula-based test of the so-called tests for change-point detec-
tion (Aue and Lajos 2013). Let us assume that pseudo-observations U',jl, ces U;“l of the
random vectors Xy, . . ., X, are defined by

I—k+1

UM = (Frq (Xit)» -+ > Frrg (Xig)) ———,
= (P (Xin) kld ( ;d))l_k+2

ielk,....1},
where Fy;; is the empirical cdf of X, . . ., Xj;. Then, following (Hofert et al. 2018)), the test
statistic for change-point detection for copulas is given by

n

S¢ = max L Z (]D)E (k/n, Uil”‘))z, (5)

where

DSt u) = /12 (0, 8)2n(t, 1) (Cripne) () — Cine)41yn(®@)) (1) € [0,11%77,

with, 1,,(t,t") = (|nt] — |nt’|)/nfor 0 < t < ¢’ < 1in which |.] denotes the floor func-
tion,and foranyl <k <I<mn

1
1 .
Cri(u) = —k+1 E 1 (Uﬁ-c'l < u) , uel0, l]d
i=k

is the empirical copula of Xy, ..., X, with the convention that Cy; = 0 if ] <k. In the
next section, we use the test statistic (5) to assess the stationarity of a real-world financial
multivariate time series.

Our approach follows copula-based time series forecasting and it is illustrated as follows.
First, using the test statistic (5), we specify the copula-based change point(s) and divide the
data into segments. Then, in each segment, based on the estimated copulas we calculate
predictions. More precisely, for each marginal time series variable, we identify the best-
fitted ARMA, GARCH or ARMA-GARCH model using the following equations:

P q
yi= D ayi+ > bieri+ e
i=1 i=1

r S
& =Jou, of =ao+ zaigf—i + Zﬁiffrz—i (6)
i=1 i=1

where y; is the marginal time series, a;, b;, ag, a; and f; are model parameters, and #; is a
sequence of IID random variables, with mean zero and variance one (Mittnik et al. 2007).
We then extract the residuals of the fitted marginal ARMA-GARCH model. The estimated
vine copula of transformed residuals will be the model to simulate new realizations from.
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Finally, we calculate the predicted values for each simulation, using the inverse cdf and the
relevant fitted marginal models (see, e.g. Ansell and Dalla Valle 2021). Algorithm 1 depicts
the pseudo code of our approach.

Algorithm 1: Forecasting using change-point detection

Data: X;,X>, ..., X, as a stretch of a time series.
Result: Change point(s) and forecasted values of time series
1 Initialization : Number of simulations = #;
2 Finding Change point(s) 0; :
3 Calculate the test statistic: S5 = maxj<x<,—1 % > (]DS (k/n, Uilm))2
4 Determine the change point(s) 6;
5 Split the time series into segments corresponding to the change points 6
6 Forecasting 6, :
7 Fit ARMA-GARCH models to each marginal:
Yr = 25):1 aiyi—i + Ziqzl biei—i + &1, & = /Ot
of =ao+ Xy aiel;+ > i, Biol; and extract their residuals 7
8 Find the best-fitted vine copula for the transformed residuals
9 For each forecasting point, generate n; observation form the fitted vine copula
10 Calculate forecasts 6, using the simulated data and the inverse cdf of the
marginals

4. Numerical results

The following two subsections describe the application of the methodology to a real data
and simulation studies, respectively.

4.1. Real data

The time series that we consider in this work are the daily log-return data for the period
1996-2000 of three well known stocks: Intel, Microsoft, and General Electric, see, e.g.
(McNeil, Frey, and Embrechts 2015). We adopt the abbreviations INTC, MSFT and GE
for Intel, Microsoft, and General Electric, respectively.

For stationarity checking, we follow the approach of Hofert et al. (2018). Applying the
test statistic (5), we deduce that the time series is non-stationary and there is a change-
point at the date of 1999-05-25. Hence, we split the data into two segments 1 and 2,
including the segments before and after the change point, respectively. We make predic-
tion/forecasting of the last 50 points of time series via Algorithm 1 and the difference
between the predicted values and the true values will be our criterion to assess the accu-
racy of the prediction. For this prediction, we set two scenarios. The first scenario makes
a prediction in second segment using the best-fitting copula of the segment; while the
second scenario carries out these predictions by finding the copula of the entire data. In
order to illustrate our approach, we first consider segment 2. We fit ARIMA, GARCH, or
ARIMA-GARCH models to the three marginals in this segment. We find that the best mod-
els in segment 2 are ARIMA(2,0,2)-GARCH(1,4), ARIMA(1,0,2)-GARCH(1,1) for INTC,
MSFT, and GE. On the other hand, the best time series models for these stocks in the whole
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Table 1. Estimated vine copulas with relevant copula families and
Kendall's 7z values using the full series (top panel), segment 1
(central panel) and segment 2 (bottom panel).

Variables copula Estimated copula Estimated 7
Full series

INTC and MSFT 2 BB1 0.42

MSFT and GE 3 BB7 0.229

INTC and GE; MSFT €132 t 0.1
Segment 1

INTC and MSFT 2 t 0.43

MSFT and GE 3 BB1 0.31

INTC and GE; MSFT €132 t 0.1
Segment 2

INTC and MSFT C12 Gaussian 0.41

MSFT and GE 3 BB8 0.21

INTC and GE; MSFT 132 Gumbel 0.08

dataset are estimated as ARIMA(0,0,1)-GARCH(1,1), ARIMA(1,0,0)-GARCH(1,1), and
ARIMA(0,0,2)-GARCH(2,1), respectively for INTC, MSFT, and GE. Via Algorithm 1, after
fitting the time series models for the marginals in segment 2 and the whole time series,
we estimate the vine copula of the transformed marginal residuals via the VineCopula
package (Schepsmeier et al. 2015), and then we simulate M = 20 realizations from the vine
copula. Hence, we calculate the predicted values for each simulation, using the inverse cdf
and the relevant fitted marginal models (see, e.g. Ansell and Dalla Valle 2021). Denoting
the variables INTC, MSFT, and GE as 1, 2, and 3, respectively, the results of vine copu-
las estimation are reported in Table 1. This Table Shows the best superior copula between
variables in each segment as well.

In order to compare the performances of the different scenarios, we compute in-sample
predictions for the last 50 observations of the second segment, see Figure 1. As an alter-
native method, we carry out a neural network forecasting as well. In both forecasting
methods, the criteria for assessing our approach are the root-mean-square error (RMSE) as
well as the the Continuous Ranked Probability Score (CRPS) (Gneiting and Raftery 2007;
Matheson and Winkler 1976).

The results are summarized in Table 2. As this Table reveals, the vine copula and neural
network methods yield similar results. However, the vine copula forecasting is superior in
terms of both RMSE and CRPS, especially after identifying the change point.

4.2. Simulation study

In order to more deeply investigate the results of our approach, in this subsection, we
describe the results of the implementation of a simulation study. We consider the time
series of two random variables with 3 000 data points each, that are split, by construction,
in three segments. We carry out this simulation study by assuming three types of copula
families: Gaussian, Clayton, and Gumbel while the marginals follow a standard normal dis-
tribution. We assume a different copula parameter in each of the three segments and the
difference between true simulated data and their corresponding forecasted values will be
our criterion for the accuracy of the proposed approach. More details about our algorithm
are coming in the sequel.
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Figure 1. Observed time series (in blue) and the corresponding predicted values (in red) using the fitted
copula of the entire series of the INTC stocks. The dotted black vertical line shows the change point.

Table 2. Forecasting the last 50 data points using two methods: vine copulas with relevant copula
families and Kendall’s 7 values and neural networks.

Method RMSE for INTC, MSFT, GE CRPS for INTC, MSFT, and GE
Forecasting using Full series

Vine copula approach 0.053,0.049, 0.026 0.011, 0.009, 0.052

Neural network time series forecasting 0.035, 0.048, 0.024 0.013, 0.009, 0.059
Forecasting using Segment 2

Vine copula approach 0.051,0.048, 0.022 0.010, 0.009, 0.052

Neural network time series forecasting 0.052,0.036, 0.023 0.011,0.011, 0.065

Note: We used the full series (top panel), and segment 2 (bottom panel).

Case 1: Gaussian copulas (positive correlations)

For the first segment, we generate n = 1000 bivariate data (x1,x;) from a Gaussian
copula where the considered correlation value is equal to p = 0.35, that we denote by
Gaussian(0.35), with standard normally distributed marginals. Subsequently, for the sec-
ond segment we generate n = 1000 bivariate data from a Gaussian(0.65), with standard
normal marginals, while for the third segment, we generate n = 1000 bivariate data from a
Gaussian(0.95), with standard normal marginals. In order to assess our approach, we con-
sider two scenarios for making predictions. The first scenario (scenario A) uses different
copulas for each segment separately; while the second scenario (scenario B) uses a single
copula of the entire data. For both scenarios, we fit a mean-variance model for each of the
marginals x; and x, and we obtained an ARIMA(0,0,0) for both marginals.
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Table 3. RMSE and CRPS criteria for estimated copulas and their estimated parameters using the data
of segments 1, 2, and 3 and entire data.

TS NNs Proposal TS NNs Proposal
Data Estimated copula RMSE1 RMSE2 RMSE3 CRPS1 CRPS2 CRPS3
Case 1: Gaussian(0.35), Gaussian(0.65), Gaussian(0.95)
Segment 3 Gaussian(0.95) .99 .99 97 75 .76 73
Entire data t(0.66, 4.46) 1.01 99 .98 71 .76 .70
Case 2: Gaussian(—0.95), Gaussian(0.05), Gaussian(0.95)
Segment 3 Gaussian(0.95) 1.07 1.07 1.04 .85 .85 .82
Entire data t(0.04, 2) 1.14 113 .1 .83 .85 81
Case 3: Clayton(0.1), Clayton(1), Clayton(5)
Segment 3 bb7(4.84,0.15) 93 92 .90 .75 75 68
Entire data bb6(1.2,1.4) .96 .96 .96 75 75 73
Case 4: Gumbel(1.1), Gumbel(2), Gumbel(5)
Segment 3 bb7(5.5,1.9) .88 .87 .85 73 73 72
Entire data t(0.63, 2.18) .89 .88 .87 75 75 73

Note: t(p, v) denotes the t-copula where p and v are, respectively, the correlation coefficient and the degrees of freedom
parameters.

BB1(#, 6), BB6(0, 5) and BB7(6, o) stand for BB1, BB6 and BB7 copulas with parameters  and J (Harry 2014).

RMSE1 denotes the RMSE using traditional times series (TS) forecasting

RMSE2 denotes the RMSE using neural network (NN) times series forecasting

RMSE3 denotes the RMSE using the proposed copula approach.

Similar notation holds for CRPS.

Subsequently, using Algorithm 1, we identify the best-fitted copula of the transformed
residuals of the two marginal models, and we simulate M = 20 realizations from the fitted
copula. As the first part of Table 3 reveals, the estimated copulas for these three segments
are Gaussian(0.35), Gaussian(0.65), and Gaussian(0.95), respectively. Finally, we obtain the
predicted values for each simulation, using the inverse cdfs and the relevant fitted marginal
models for the last 100 points of each segment. More precisely, our predicted values will
correspond to the points from from 2901 to 3 000 using the fitted copula of the third seg-
ment. We consider two other competitor approaches: traditional time series forecasting
and neural network forecasting. Considering RMSE and CRPS, we compare predicted val-
ues and their original simulated values to check the performance of our algorithm against
those two alternatives.

For scenario B, similarly to scenario A, we calculated the predictions for points 2901 to
3 000, but we use the fitted copula for the whole 3 000 observations. As seen in Table 3 the
fitted copula for the entire data is a t copula with the estimated Kendall’s 7 value 7 = 0.45.
In addition, as can be seen from the table, the mean of the RMSEs of the predicted values
of x1 and x; are 0.99, 0.99, and 0.97,respectively, for traditional, neural network and our
approach forecasting in Segment 3. These values, when we use the entire data, are 1.01,
0.99, and 0.98, which shows that vine copula forecasting yields better results compared
to the other two methods. More precisely, the traditional time series and neural network
forecasting perform similarly, while our proposed copula approach overcomes the other
two approaches. However, results improve when we use the last segment instead of all data,
as can be deduced from the CRPS criterion results. See also the first row of Figure 2 for a
visualization of the copulas involved. In the first row of the figure, the left graph (a) shows
the simulated data (scatter points) as well as the fitted copulas (contour plot) for segment
1. Graphs (b), (¢), and (d) are representing the simulated data and their fitted copulas for
segments 2, 3 and the whole data, respectively. Comparing the RMSEs and CRPSs from



10 A. SHEIKHI ET AL.

3 -2 -1 0 1 2 3 3 -2 -1 0 1 2 3 3 -2 -1 0 1 2 3 -3 -2 10 1 2 3

(a) Case 1: Segment 1 (b) Case 1: Segment 2 (C) Case 1: Segment 3 (d) Case 1: Entire

3 -2 -1 0 1 2 3 3 -2 -1 0 1 2 3 3 -2 -1 0 1 2 3

(f) Case 2: Segment 2 (g) Case 2: Segment 3 (h) Case 2: Entire

-3 -2 10 1 2 3 3 3 -2 -1 0 1 2 3 -3 -2 10 1 2 3

(l) Case 3: Segment 1 (k) Case 3: Segment3 (1) Case 3: Entire

3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

(m) Case 4: Segment 1 (n) Case 4: Segment 2 (O) Case 4: Segment 3 (p) Case 4: Entire

Figure 2. Scatterplot of the simulated data and the fitted copula of residuals. The first row shows case
1, the second row case 2, the third row case 3 and the fourth row case 4. (a) Case 1: Segment 1. (b) Case
1: Segment 2. (c) Case 1: Segment 3. (d) Case 1: Entire. (e) Case 2: Segment 1 (f) Case 2: Segment 2. (g)
Case 2: Segment 3. (h) Case 2: Entire. (i) Case 3: Segment 1. (j) Case 3: Segment 2. (k) Case 3: Segment3. (1)
Case 3: Entire. (m) Case 4: Segment 1. (n) Case 4: Segment 2. (0) Case 4: Segment 3 and (p) Case 4: Entire.

the first four rows of Table 3, we observe that considering different copulas in the third
segment improves the accuracy of prediction.

Case 2: Gaussian copulas (negative and positive correlations)

In case 2, we assume Gaussian(—0.95), Gaussian(0.05), and Gaussian(0.95), respec-
tively, for segments 1, 2, and 3. The results are summarized in the second panel of Table 3
and the second row of Figure 2. In the second row of the figure, the graphs (e), (f), (g), and
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(h) depict the simulated data and their fitted copulas for the segments 1, 2, 3 and the whole
data, respectively. Again, the traditional and neural network methods provide the similar
forecasting performance, while the vine copula proposed approach yields better results,
particularly with data split into segments.

Case 3: Clayton copulas

In this case, for the first segment, we generate n = 1000 bivariate data (x;,x;) from
a Clayton copula with parameter equals 0.1, denoted by Clayton(6 = 0.1), with standard
normally distributed marginals. Similarly, we generate the same number of points from
a Clayton(0 = 1) and a Clayton(0 = 5), respectively, with standard normal marginals.
In order to assess our approach, we consider two scenarios for making predictions. The
estimated copula of the residuals of the marginals for the entire series is BB6; while for seg-
ments 1,2, and 3, they are, respectively, BB1, Clayton, and BB7. See the third panel of Table 3
for the estimated parameters as well as RMSEs and CRPSs. The results again indicate the
superiority of the change-point approach compared to the traditional approaches. Also, as
noticed previously, neural networks and traditional time series forecasts yield analogous
results. The copula visualizations are displayed in the third row of Figure 2.

Case 4: Gumbel copulas

In this case, assuming standard normals marginals, we generate n = 1000 bivariate data
from Gumbel copulas. In this regard, we consider Gumbel( = 1.1), Gumbel(@ = 2), and
Gumbel(§ = 5), respectively, for segments 1, 2 and 3. The fitted copulas for the residuals
of the fitted model for the entire data, segment 1, 2, and 3 are reported in the final row of
Figure 2 as well as the fourth panel of Table 3. Comparing the RMSEs and CRPSs it is clear
that using copulas for each segment, as well as using copulas as opposed to traditional time
series or neural networks, improves the accuracy of the prediction.

In addition to the simulation study illustrated above, we implemented a new simulation
to test the flexibility of the vine copula compared to traditional multivariate copulas. Sim-
ilar to the above study, we considered the time series of three random variables with 2 000
data points each, that are split, by construction, in two segments. The first segment con-
sist of 1000 observations from a three-dimensional Clayton copula with parameter 8 = 2
and standard normally distributed marginals. The second segment comprises 1000 obser-
vations from a trivariate Clayton copula with parameter = 5 as well as standard normal
marginals. Here, we only calculate forecasts for the last 100 observations using two types
of copulas: a three-dimensional vine copula and a trivariate Clayton copula. We compared
the results obtained using only the observations of the second segment with those obtained
using the observation of all data. The results are presented in Table 4. As it is clear form
the table, both the RMSE and CRPS criteria are larger with the traditional copula, while
the vine copula yields better results in all cases.

Table 4. Comparing vine copula and traditional multivariate copula.

Vine Copula Traditional Copula Vine Copula Traditional Copula
Data RMSE, RMSE; CRPS, CRPS;
Segment 2 1.08 213 0.38 0.54
Entire data 1.11 245 0.39 0.58

RMSE, denotes the RMSE using vine copula;
RMSE; denotes the RMSE using traditional multivariate copula.
This notation holds for CRPS as well.
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5. Conclusion

In this work, we considered multivariate time series and, in order to produce more accurate
predictions, we applied a copula-based technique to identify change points and split the
time series into consecutive segments. In each segment, we determined the best-fitting
copula and conveyed the predicted values in each segment using the fitted copula. Our
results in real data analysis and simulation studies showed that our approach has a better
performance than traditional methods which use a single copula family of the whole data.

The main contribution of this work is to support researchers to obtain higher accu-
racy for prediction/forecasting. Our approach is based on splitting the data of the time
series into consecutive segments and using the information of each separate segment to
model data dependence. We fitted the best vine copula in each segment and the pre-
dictions demonstrated that our algorithm shows a good performance. In summary, the
proposed approach helped us to improve the accuracy of forecasting in comparison with
other existing methods such as traditional time series forecasting as well as neural network
forecasting. In addition, this study showed that when data are copula related, employing
a part of the time series to calculate forecasts instead of using all data, especially working
with big data, is not only saving time, but improves accuracy.

In addition, this method can be used for nowcasting real-time data streaming and high
frequency data. Based on the results of this work, far nowcasting, it is supposed that the
copula of the last segment will have a better performance compared to the copula of the
entire data. So, when researchers try to carry out a nowcasting, they can use the copula of
the last segment. This will have two benefits: first, more accuracy because of using the best-
fitted copula, and second, less time-consuming because of using the last segment instead
of all data.

To best of our knowledge, this is the first article that implements the approach we
propose, and, however, it can be further extended in many fashions. Although we only con-
sidered the change-point method for splitting the time series, our approach may be useful
in a “sliding window” context (see, for instance, the review work of Miodrag, Milanovi¢,
and Stamenkovi¢ (2014)). In addition, although we used basic univariate marginal distri-
butions as well as basic copula families, with more complex data structures, one may be
interested in adopting mixture univariate distributions and mixture copulas.
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