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A B S T R A C T

Cryptocurrencies exhibit unique statistical and dynamic properties compared to those of
traditional financial assets, making the study of their volatility crucial for portfolio managers
and traders. We investigate the volatility connectedness dynamics of a representative set of
eight major crypto assets. Methodologically, we decompose the measured volatility into positive
and negative components and employ the time-varying parameters vector autoregression (TVP-
VAR) framework to show distinct dynamics associated with market booms and downturns. Our
findings indicate that crypto connectedness reflects important events and oscillates substantially
while reaching lower limit values when compared to traditional financial markets. Periods of
extremely high or low connectedness are clearly linked to specific events in the crypto market
and macroeconomic or monetary history. Furthermore, existing asymmetry from good and
bad volatility indicates that market downturns spill over substantially faster than comparable
market surges. Overall, the connectedness dynamics are driven by a combination of both crypto
(momentum, on-chain activity, off-chain activity) and legacy financial and economic (financial
and economic uncertainty, and financial market performance) factors, while the asymmetry is
more connected to the off-chain crypto activity and the combination of economic, financial, and
monetary factors. In both the total connectedness and asymmetry modeling, these can serve as
hands-on indicators to be further translated into specific portfolio re-balancing decisions, risk
management, and regulatory frameworks.

. Introduction and motivation

Quantification of volatility and assessment of its transfer is central to financial modeling as well as practical applications (Diebold
nd Yilmaz, 2015). Volatility spillovers that materialize into connectedness among cryptocurrencies are particularly intriguing since
he cryptos are characterized by unprecedented levels of volatility, a rich network structure, and complex connections within asset
lasses (Corbet et al., 2018).1 These key features differentiate cryptocurrencies from standard financial assets (Härdle et al., 2020;
uo et al., 2022).
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1 Because the labels for digital assets vary in the literature, we use crypto assets, cryptocurrencies, or ‘‘crypto’’ as a shorthand for terms of interchangeable

eaning. Similarly, we use the terms connectedness and spillovers interchangeably, as both have been used in the literature to describe the same phenomenon
f volatility connectedness, quantifying the dynamic characterization of volatility spillovers among various assets or across markets, modeling them as a network;
ee Diebold and Yilmaz (2015).
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As evidenced by Ji et al. (2019) and supported by our results, cryptocurrencies tend to move together more strongly during
eriods around extreme events compared to traditional assets and experience rather low connectedness during tranquil periods.
his applies to both positive and negative extremes.2 The baseline connectedness of the whole system is weaker but with higher
mplitudes and overall volatile interconnections. Even though this might seem almost standard and trivial from the perspective
f the traditional financial markets concerning portfolio management and risk diversification, the practical implications for crypto
nvestors are different. As the diversification benefits decrease during the extreme events, and more so during the negative extreme
vents, the run towards quality often means a run towards Bitcoin (Katsiampa, 2019). However, the diversification benefits during
he tranquil periods mostly translate not towards lower risk but towards a higher possible return, as separate crypto coins or tokens
end to surge in a way and magnitude not observed in the traditional markets. The deeper into the list of cryptos we go, the closer
o this ‘‘jackpotting’’ behavior we get.

Nevertheless, many questions related to connectedness in the crypto market remain open. How do the connectedness dynamics
volve in a network of key cryptocurrencies? How does it differ for negative and positive shocks? How does the nature of key
vents affect volatility spillovers on the crypto market? What are the key drivers of the qualitatively differing (negative and positive)
onnectedness segments? In our analysis, we answer these questions with a battery of the most recent methodological advances and
over the majority of the crypto market in terms of its capitalization.

Since the seminal papers by Diebold and Yılmaz (2009, 2012, 2014), much of the financial research has been devoted to
tudying the interdependence of returns or return volatilities with the spillover index. This measure quantifies the directional
ropagation of shocks through forecast error variance decomposition of the underlying vector autoregressive (VAR) model, a well-
nown framework estimating interrelationships in multivariate setups (Enders, 2008). A large amount of literature has emerged
ased on the above-mentioned studies in traditional finance as well as in emerging crypto finance.

Our main research objective is to advance beyond the conventional descriptive assessments of total spillovers and directional
nalysis prevalent in financial literature or their frequency dynamics (Baruník and Křehlík, 2018). The goal is not only to calculate
nd describe the spillovers among cryptocurrencies but to fill the research gap and explain their dynamics with the fundamental
mpirical variables available for the cryptocurrency universe. As we have mentioned earlier, the different states of the market
ith respect to connectedness represent different implications for market participants. Hence, identifying and assessing these
eriods through directly observable variables, whether crypto-related or exogenous, can offer valuable real-time insights into
pproaching the current market situation. This knowledge is particularly relevant for portfolio and risk management, encouraging
ore risk-seeking behavior during tranquil periods to capitalize on the unpredictable surges of individual coins or tokens.

To identify and assess the market situation, we integrate various technical measures of blockchain activity and off-chain exchange
ctivity, along with external macroeconomic factors, to reveal the key drivers of the qualitatively differing negative and positive
onnectedness segments. The adopted approach is motivated by Kristoufek (2015) but ventures into the connectedness domain
eyond Bitcoin as the single asset of interest. Building upon our findings, we propose a few examples of potential innovative
pplications to extend and motivate the significance of our research for practitioners. For traders, the identified key empirical drivers
f connectedness can be utilized to develop predictive models for significant crypto market events or to create early warning systems
o anticipate periods of heightened connectedness. New DeFi or blockchain-based instruments and products that dynamically adjust
heir risk exposure to good and bad volatility can be developed by financial innovators. Finally, our empirically driven modeling
pproach based on publicly available data can be integrated by regulatory authorities, especially as cryptocurrencies become more
tandardized financial products.

The key methodological tool is the time-varying parameters vector autoregression (TVP-VAR) framework, which generalizes the
raditional moving-window estimation technique by estimating a full VAR model in each time period of the sample (Antonakakis
t al., 2020). Further, as in Baruník et al. (2016) we decompose the measured volatility into its positive and negative components
o describe distinct dynamics behind connectedness associated with market surges and downturns. We also qualitatively analyze the
mpact of exogenous news on connectedness and asymmetry. Exploring the asymmetry connectedness brings additional insights
nto understanding the underlying dynamics of the network. Good and bad volatility have different transmission mechanisms.
ood volatility typically propagates through optimism and positive news, while bad volatility spreads through fear, uncertainty,
nd negative news, often resulting in contagion. Market participants tend to react differently to positive and negative news. Also,
nvestors and portfolio managers have various strategies with respect to their interest in different types of events and different levels
f risk. Focusing solely on the total connectedness might average out the connectedness in the separate volatilities, leading to less
fficient portfolio and trading strategies (Chen et al., 2024).

The above approach is even more important for crypto asset portfolios, where dynamic properties are more extreme compared
o traditional financial markets. As the crypto assets are on their way to becoming more integrated into the portfolios of various
inancial institutions, they will become of interest to regulators and stress testing, which emphasizes the understanding of the
pillover effects in negative times (Charfeddine et al., 2020).3 As one recent example, Albrecht and Kočenda (2024) revealed

that Cardano and Ripple are the most effective options for optimizing portfolio weights and hedging ratios in cryptocurrency risk
management.

2 Example of a positive extreme can be the New York Stock Exchange (NYSE) launching Bitcoin futures on the Intercontinental Exchange (ICE) or exchange-
raded fund (ETF) approval, while the global meltdown of the financial markets at the beginning of the COVID-19 pandemic, the Terra-Luna collapse, or the
TX exchange filing for bankruptcy represent negative extremes.

3 The argument is supported by the spot Bitcoin and Ethereum ETFs that will likely be, sooner or later, followed by spot ETFs of at least some of the other

ost capitalized altcoins.
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In sum, we (i) analyze the connectedness dynamics of the representative set of crypto assets, (ii) assess how news affects volatility
pillovers among them, including their impact on bad and good volatility, and (iii) determine the set of influential drivers of
rypto-connectedness. The combination of the three contributions clearly separates our study from the preceding ones. We not
nly describe the connectedness dynamics and possible implications but we explore and describe the dynamics via other factors.
ne needs to realize that the most used and most recent methodological approaches towards connectedness and spillovers build
n kernels, smoothing, and similar techniques. Therefore, connectedness and spillovers are often available only ex-post, with a
ag, sometimes a considerable one (Gabauer and Gupta, 2018; Antonakakis et al., 2019b). However, the time lag can be of utmost
mportance, specifically for the crypto markets with their swift dynamics and abrupt turns of events. Understanding the sources
nd drivers of connectedness can provide signs and signals of an upcoming change in connectedness that would be quantitatively
vailable only later. Hence, our approach provides some sort of ‘‘qualitative nowcasting’’.

Overall, we show that crypto market connectedness oscillates substantially but reaches lower limit values when compared to
raditional financial markets. Most periods of extremely high or low connectedness can be linked to specific historical events of
macroeconomic and monetary nature or to influential events in the history of crypto markets. Furthermore, the study of good

nd bad volatility spillover asymmetry uncovers that crypto market crashes usually spill over substantially faster than comparable
arket upturns. Our findings can thus be utilized to dynamically tailor existing risk management strategies within the cryptocurrency

egment with respect to the observed asymmetry in connectedness. This would enable the enhancement of portfolio resilience for
rypto investors and fund managers, particularly during market downturns. Moreover, our qualitative analysis of the impact of
xogenous news contributes to the methodological discussion on price endogeneity in crypto markets (Jiang et al., 2018; Kristoufek,
018; Mark et al., 2022), as we observe the so-called ‘‘excess volatility puzzle’’ (Shiller, 1981) when large price movements occur
ithout a pertinent flow of news.

From a data-driven point of view, while total connectedness is influenced by a combination of various types of factors, the
symmetry largely depends on the macroeconomic state of the global markets. This knowledge may be essential for future regulatory
ttempts in the cryptocurrency industry. For portfolio and risk management, it is important to follow the whole set of indicators —
rypto market momentum, on-chain activity, off-chain (exchanges) activity, and financial and economic uncertainty — that point
owards increasing or decreasing underlying connectedness, with clear implications for diversification and related strategies. For
egulators, our results indicate that most care should be directed towards situations when the legacy markets are calm and start
alling abruptly. Such events quickly translate into strengthened asymmetry in good and bad volatility connectedness in cryptos,
ikely leading to large corrections.

The rest of the paper is organized as follows. The next Section 2 reviews the key related literature. Section 3 describes the
ethodology used to estimate the measure of volatilities and, consequently, their connectedness. We also discuss specific parameters

f our setup therein. Section 4 presents the dataset, and we explain the origin of relevant variables. Section 5 provides a qualitative
nalysis of the events associated with connectedness dynamics. We analyze the determinants of connectedness and its asymmetry
n Section 6, and finally, Section 7 concludes.

. Related literature

The principal research on the financial characteristics of crypto assets can be traced to studies by Barber et al. (2012), Meiklejohn
t al. (2013) or Kristoufek (2013). At that time, most of the research understandably focused on Bitcoin as the original and sole
ominant player on the market. With additional crypto assets entering the market, studies covering the structure of linkages in the
rypto market have become more frequent. Corbet et al. (2019) or Härdle et al. (2020) provide a comprehensive overview of the
elevant crypto literature and its progress from Bitcoin-dominant topics to current research avenues.

Regarding the impact of news on connectedness, we provide a detailed qualitative analysis of recent historical events pertaining to
onnectedness dynamics during a relatively long period between 2019 and 2024. This is an important topic in the recent literature
here the effect of the news on Bitcoin price is analyzed in depth by Corbet et al. (2020b), who explain Bitcoin’s returns with
n index of headline sentiment, economic surprises, and the business cycle. They find that Bitcoin’s returns react negatively to
ositive news about unemployment and durable goods and conclude that Bitcoin might serve as a hedging device against this type
f macroeconomic risk. In a companion research, Corbet et al. (2020a) examine the impact of Fed’s Federal Open Market Committee
acroeconomic announcements regarding the U.S. Federal Fund interest rate and quantitative easing. Furthermore, Sapkota (2022)

ssesses the impact of media sentiment on Bitcoin’s RV and finds that news tends to have a long-term effect on the volatility of
itcoin. Using quantile regression, Suleman et al. (2023) analyze the opposite direction of the impact and conclude that the Bitcoin

nvestors’ Sentiment Index (BSI) moderates the connectedness due to positive and negative volatility for eleven U.S. industrial sectors.
However, the literature offering a similar analysis while covering a larger and more representative set of crypto assets is still

ery scarce. Our sample thus includes eight of the consistently largest crypto assets and covers a dominant proportion of the
arket’s liquidity for the last five years. Abubakr Naeem et al. (2022) bring valuable evidence that is conceptually the closest

o our contribution and compute volatility spillovers and asymmetries for eight cryptocurrencies between 2018 and 2020. However,
heir dataset is shorter and covers an earlier period than ours. Further and understandably, they do not cover the full COVID-19
andemic period and the Russo-Ukrainian War. While being a valuable contribution, their study focuses on quantitative directional
etwork analysis but does not discuss the qualitative impact of specific historical events except for the spread of COVID-19 in 2020
nd does not attempt to assess empirical drivers beyond the quantified connectedness measures. Next, Corbet et al. (2018) analyze
he volatility spillovers between three major crypto coins and a variety of financial assets, Yi et al. (2018) explore static and dynamic

olatility connectedness between eight major cryptocurrencies, and Andrada-Félix et al. (2020) study the total connectedness among
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the four main cryptocurrencies and four traditional fiat currencies. Finally, Ji et al. (2019) calculate return and volatility spillovers
among six large cryptos and consider positive and negative returns separately. They find that the net positions of the assets do not
depend on their relative sizes and that the connectedness of negative returns is stronger than that of positive returns. We arrive at
a roughly similar conclusion based on modeling the interrelation of realized semivariances instead of returns.

The literature on the drivers behind connectedness among crypto assets is still in its infancy. Walther et al. (2019) identify the
lobal Financial Stress Index or Chinese Policy Uncertainty Index as good predictors of volatility spillovers in the crypto market and
onclude that crypto assets appear to be driven by the global business cycle and variables pertaining to global financial conditions. Ji
t al. (2019) argue that determinants of spillovers stem from the trading volume, the Global Financial Stress Index, the U.S. CBOE
mplied Volatility Index (VIX), and commodity prices, particularly energy, and gold. Regarding more specific drivers, Andrada-Félix
t al. (2020) find that, instead of standard financial market variables, connectedness among crypto assets is driven by crypto-
pecific variables, such as Wikipedia searches, the market capitalization of the respective assets, and the total trade volume of
pecific coins. On the other hand, Charfeddine et al. (2022) omit crypto-specific factors and using the Diebold and Yılmaz (2012,
014) approach, they find that primarily the volumes of traded coins and the VIX are statistically significant predictors of total
onnectedness. Finally, Wang et al. (2023) analyze drivers that improve forecasting of Bitcoin’s volatility from a macroeconomic
nd technical-analysis perspective. Their results show the general superiority of macro factors, such as the RV of the S&P 500 index,
ver technical factors. However, they suggest that the momentum and the trading volume stand out among the technical factors.

. Methodology

Volatility connectedness is estimated based on realized measures of asset price variation defined for a continuous-time stochastic
rocess of log prices, denoted as 𝑝𝑡, which evolves within a time horizon [0 ≤ 𝑡 ≤ 𝑇 ]. This assumed process consists of a continuous

component and a pure jump component, as expressed by the equation:

𝑝𝑡 = ∫

𝑡

0
𝜇𝑠𝑑𝑠 + ∫

𝑡

0
𝜎𝑠𝑑𝑊𝑠 + 𝐽𝑡, (1)

here 𝜇 represents a locally bounded predictable drift process, 𝜎 denotes a strictly positive volatility process, and 𝐽𝑡 represents the
jump part. All these components are adapted to a common filtration  . The quadratic variation of 𝑝𝑡 is given by:

[𝑝𝑡, 𝑝𝑡] = ∫

𝑡

0
𝜎2𝑠𝑑𝑠 +

∑

0<𝑠≤𝑡
(𝛥𝑝𝑠)2, (2)

where 𝛥𝑝𝑠 = 𝑝𝑠 − 𝑝𝑠− represents the jumps if they occur. The first component in Eq. (2) corresponds to integrated variance, while
the second term captures jump variation. Andersen and Bollerslev (1998) introduced the concept of RV by proposing an estimator
that involves summing squared returns to estimate quadratic variation. This estimator is consistent under the assumption that there
is no noise contamination in the price process.

Intraday returns, denoted as 𝑟𝑘, are defined as the difference between intraday log prices 𝑝𝑘 and 𝑝𝑘−1, which are equally spaced
over the interval [0, 𝑡]. The RV is then defined as the sum of squared intraday returns:

𝑅𝑉 =
𝑛
∑

𝑘=1
𝑟2𝑘. (3)

As the number of observations 𝑛 approaches infinity, the RV converges in probability to the quadratic variation [𝑝𝑡, 𝑝𝑡].
Furthermore, Barndorff-Nielsen et al. (2010) decomposed the RV into two components of realized semivariances (𝑅𝑆), which

capture the variation attributed to negative (𝑅𝑆−) or positive (𝑅𝑆+) price changes (returns), respectively. This decomposition allows
for an interpretation of asymmetries in volatility, following the established terminology by Patton and Sheppard (2015): ‘‘bad and
good volatility’’. The realized semivariances are defined as follows:

𝑅𝑆− =
𝑛
∑

𝑘=1
I(𝑟𝑘 < 0)𝑟2𝑘, (4)

𝑅𝑆+ =
𝑛
∑

𝑘=1
I(𝑟𝑘 ≥ 0)𝑟2𝑘. (5)

The realized semivariance provides a comprehensive breakdown of the RV, resulting in:

𝑅𝑉 = 𝑅𝑆− + 𝑅𝑆+. (6)

As the number of observations increases, the realized semivariance converges towards two main components: half of the integrated
variance, represented by 1∕2 ∫ 𝑡

0 𝜎2𝑠𝑑𝑠, and the sum of jumps related to negative and positive returns (Barndorff-Nielsen et al., 2010).
The negative and positive semivariances provide information about the variability linked to extreme movements in the underlying
variable’s tails, and as such, they offer valuable metrics for assessing the downside and upside risks, respectively.

To estimate the connectedness measures, we consider an 𝑁-dimensional vector of 𝑅𝑉 , 𝑅𝑆−, or 𝑅𝑆+ to follow a locally stationary
VP-VAR of order 𝑝. This observed process is approximated around some fixed point 𝑢0 = 𝑡0∕𝑇 as a stationary process 𝑿̃𝑡(𝑢0) under
he regularity conditions |𝑿𝑡,𝑇 − 𝑿̃𝑡(𝑢0)| = 𝑂𝑝(|𝑡∕𝑇0 − 𝑢0| + 1∕𝑇 ) as follows:

𝑿̃ (𝑢 ) = 𝜱 (𝑢 )𝑿̃ (𝑢 ) +⋯ +𝜱 (𝑢 )𝑿̃ (𝑢 ) + 𝝐 , (7)
𝑡 0 1 0 𝑡−1 0 𝑝 0 𝑡−𝑝 0 𝑡
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where 𝝐𝑡 = 𝛴− 1
2 (𝑢0)𝜼𝑢0 and 𝜼𝑢0 ≈ 𝑁𝐼𝐷(0, 𝑰𝑀 ) and 𝜱(𝑢0) = (𝜱1(𝑢0),… ,𝜱𝑝(𝑢0))𝑇 are the time-varying autoregressive coefficients.

In parallel with the standard VAR, this TVP-VAR process has a time-varying 𝑉𝑀𝐴(∞) representation due to Dahlhaus (1996) as

𝑿𝑡,𝑇 =
∞
∑

ℎ=−∞
𝜳 𝑡,𝑇 (ℎ)𝝐𝑡−ℎ, (8)

where ∑∞
ℎ=−∞ 𝜳 𝑡,𝑇 (ℎ) ≈ 𝜳 (𝑡∕𝑇 , ℎ) is a bounded stochastic process at a finite horizon ℎ = 1,… ,𝐻 . Following Baruník and Ellington

(2020, 2024), our calculations adapt the generalized identification scheme of Pesaran and Shin (1998) to a locally stationary process
𝑿̃𝑡(𝑢0) defined above. Thus, in the underlying TVP-VAR model, the connectedness measures are invariant to variable ordering.

3.1. Total spillovers

We compute the total spillover index, as introduced by Diebold and Yılmaz (2012), by using the 𝐻-step-ahead generalized
forecast error variance decomposition matrix. This matrix consists of elements denoted by 𝜃𝐻𝑗𝑘, in which ℎ ranges from 1 to the
desired forecast horizon 𝐻 . The calculation for each element is given by:

𝜃𝐻𝑗𝑘 =
𝜎−1𝑘𝑘

∑𝐻−1
ℎ=0

(

𝐞′𝑗ΨℎΣ𝜖𝐞𝑘
)2

∑𝐻−1
ℎ=0

(

𝐞′𝑗ΨℎΣ𝜖Ψ
′
ℎ𝐞𝑘

) , 𝑗, 𝑘 = 1,… , 𝑁, (9)

where Ψℎ represents the moving average coefficients obtained through the forecast at any time 𝑡. The variance matrix for the error
vector, denoted as Σ𝜖 , encompasses 𝜎𝑘𝑘 as its diagonal elements corresponding to the 𝑘th positions. The selection vectors, 𝐞𝑗 and 𝐞𝑘,
are defined to have a value of one at the 𝑗th or 𝑘th element, respectively, and zero elsewhere. Diebold and Yılmaz (2012) introduce
the concept of total connectedness based on a normalization where the elements are divided by the sum of the row, denoted as
𝜃𝐻𝑗𝑘 = 𝜃𝐻𝑗𝑘∕

∑𝑁
𝑘=1 𝜃

𝐻
𝑗𝑘. The total connectedness measure quantifies the impact of volatility shocks across variables within the system

on the overall forecast error variance:

𝐻 = 100 × 1
𝑁

𝑁
∑

𝑗,𝑘=1
𝑗≠𝑘

𝜃𝐻𝑗𝑘 . (10)

ince ∑𝑁
𝑘=1 𝜃

𝐻
𝑗𝑘 = 1 and ∑𝑁

𝑗,𝑘=1 𝜃
𝐻
𝑗𝑘 = 𝑁 , the connectedness contributions arising from volatility shocks are standardized by the overall

ariance of the forecast errors.

.2. Measuring asymmetries in spillovers

We employ the realized semivariances defined above and account for spillovers from volatility due to negative returns (−) and
ositive returns (+). If the contributions of 𝑅𝑆− and 𝑅𝑆+ are equal, the spillovers are symmetric, and we expect the spillovers to be
f the same magnitude as spillovers from 𝑅𝑉 . On the other hand, the differences in the realized semivariances result in asymmetric
pillovers.

Baruník et al. (2016) quantify the extent of asymmetries in volatility spillovers based on the spillover asymmetry measure
), defined as the difference between positive and negative spillovers:

 = + − −, (11)

where + and − represent volatility transmission indices resulting from positive and negative semivariances, denoted as 𝑅𝑆+ and
𝑅𝑆−, with an 𝐻-step-ahead forecast at time 𝑡. The measure  reflects the degree of asymmetry in spillovers caused by 𝑅𝑆− and
𝑆+. As demonstrated by Baruník et al. (2016), a  value of zero indicates that the spillovers from 𝑅𝑆− and 𝑅𝑆+ are equal.
onversely, a positive (negative) value of  indicates that the spillovers from 𝑅𝑆+ are greater (smaller) than those from 𝑅𝑆−.

.3. Estimation methodology and setup

The choice of methodology is motivated by the increasing interest of the mainstream literature in models that understand
conomic variables as driven by shocks with heterogeneous responses and persistence. For such dynamics, the TVP methods
ntroduced by Baruník and Ellington (2020, 2024) identify smoothly varying persistence structures stemming from underlying
inkages due to volatilities, for instance. Further, assuming that our RV series is locally stationary, we can estimate it with the
uasi-Bayesian local likelihood (QBLL) method of Petrova (2019). This has several advantages, such as allowing for estimating
arger systems. While our study setup is not challenged by large system size, this feature remains broadly advantageous in such
odels. On the inference side, QBLL provides a convenient set of metrics about uncertainty from the posterior distribution of

onnectedness measures. Other studies typically use methods that only give point estimates of the VAR parameters and thus rely
n bootstrapping for confidence intervals. Our approach allows us to discern periods of statistically significant differences between
onnectedness stemming from positive and negative volatility spillovers. Also, the methodology presented in this paper estimates
he time-varying persistence of the shocks; we omit the frequency responses, though. Rolling window and inference issues of large

ystems are discussed by Demirer et al. (2018) and further by Baruník and Ellington (2024).
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Typically, dynamic connectedness is calculated with a moving window approach that slides over the dataset and calculates a static
odel while adding the next observation and dropping the oldest one (Diebold and Yılmaz, 2012, 2014; Baruník and Křehlík, 2018).
e turn to the more general TVP-VAR process which provides a distribution of parameters that defines a confidence interval in each

eriod. Therefore, unlike in the traditional connectedness and spillover methodology, we can describe the statistical significance of
he connectedness measures and the meaningful differences between connectedness due to good and bad volatility. Additionally,
e can discuss specific events that determine the observed dynamics since the connectedness is localized. Compared to estimating
ynamic connectedness with a moving-window VAR, TVP-VAR eliminates the arbitrary selection of window length and the omission
f observations. TVP-VAR also does not suffer from sensitivity to outliers that can bias the subsequent windows as an outlier is carried
hrough the rolling procedure with constant weight in the regressions. In the TVP-VAR case, the outlier’s weight decays depending
n the kernel parameters.

We estimate the dynamic network model introduced by Baruník and Ellington (2020, 2024) with the autoregressive lag parameter
f 2 periods since it is commonly used in similar applications, and the value was also suggested by the Bayesian information criterion
or a static VAR over the whole sample. Another crucial parameter is the bandwidth of the kernel, which determines the weights of
he observations around the fixed point 𝑢0 from Eq. (7) for each point in the sample. Typically, a larger kernel bandwidth smooths
nd increases the connectedness since more observations are considered in the simulation step. Having evaluated several bandwidths,
e selected the width of 7 days, particularly due to stronger inference in  and as it is the length of the crypto trading week. A

more detailed discussion on the estimation parameters for various data-generating processes can be found in Baruník and Ellington
(2024). Finally, we truncate the moving-average process representation at horizon 𝐻 = 30, as we note that varying this parameter
does not produce materially different results.

Since QBLL employs a Bayesian framework, it necessitates the assumption of a prior distribution. Following the approach outlined
by Baruník and Ellington (2020, 2024), we utilize the Minnesota Normal-Wishart prior as parameterized according to Kadiyala and
Karlsson (1997). This prior selection aligns with the QBLL estimation methodology established by Petrova (2019), who derives
a time-varying quasi-posterior Normal-Wishart distribution for the drifting parameters in a closed-form expression suitable for
Gaussian VAR models. This approach facilitates straightforward and efficient computation. The use of Normal-Wishart priors in the
QBLL method ensures that the time-varying covariance matrix remains symmetric and positive definite due to its inverted-Wishart
properties, thereby avoiding the need for additional constraints such as triangularization. Consequently, the order of variables in
the VAR system does not affect the estimation of the reduced-form covariance matrix. Moreover, the method allows for the direct
estimation of the evolving covariance matrix while preserving its properties over time, eliminating the need for diagonalization,
thanks to the inverted Wishart posterior density. The application of the QBLL TVP-VAR estimation technique for quantifying
volatility connectedness offers significant practical advantages, as highlighted by Baruník and Ellington (2020).

Our study relates methodologically to Andrada-Félix et al. (2020), who calculate volatility connectedness within and between
blocks of four traditional currencies and four cryptocurrencies, and Abubakr Naeem et al. (2022), who combine the older
methodology by Diebold and Yılmaz (2012) with Baruník et al. (2016) to disentangle volatility due to positive and negative shocks.
While the latter paper estimates the underlying VAR model on moving-window subsets of 150, 215, and 250 days, we estimate the
linkages in the network by employing the TVP-VAR model in each time period similarly to Andrada-Félix et al. (2020). However,
their estimation is based on the Kalman filter method of Antonakakis et al. (2020), while we estimate the TVP coefficients with
QBLL.

Hence, unlike in Andrada-Félix et al. (2020) and Abubakr Naeem et al. (2022), our approach directly provides dynamic 95%
confidence intervals ready-made for inference. This contrasts with previous attempts to study the asymmetric relationship based
on the bootstrapping results of a simulation-based model. Bootstrapping provides a universal static confidence band to distinguish
periods with statistically meaningful differences in asymmetry in connectedness due to positive and negative shocks. The dynamic
approach based on QBLL confidence intervals allows for a locally focused, more rigorous, transparent, and straightforward statistical
evaluation.

We quantitatively assess the dynamics of connectedness and existing asymmetries within good and bad volatility spillovers by
employing several potential drivers within crypto markets as well as external financial and macroeconomic factors. For ease of
exposition and interpretation, the model specifications are introduced later in Section 6, along with estimation results.

4. Data

We perform our analysis with 5-min Open-High-Low-Close price data downloaded from the Binance exchange by using their
official Binance Historical Market Data repository at www.binance.com/en/landing/data. The 5-min returns are calculated by using
the Close values of the 5-min period. Our sample period runs from July 5, 2019, to May 31, 2024, i.e., it contains 1793 observations.
We cover eight assets that consistently represent the majority of the overall market capitalization and liquidity in the crypto market.
Specifically, we employ high-frequency price data for Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Litecoin (LTC), Cardano
(ADA), XRP (formerly Ripple), Tron (TRX), and Dogecoin (DOGE). Since crypto coins are traded 24 h, we are not limited by a
standard 7- or 8-h trading period in a calendar day. Therefore, we aggregate the RV measures over 24 h daily based on the UTC
midnight time.4

4 Table A.2 in the Appendix summarizes basic descriptive statistics, along with the augmented Dickey–Fuller (ADF) test statistics (Dickey and Fuller, 1979)
nd Zivot-Andrews test (Zivot and Andrews, 2002), which both strongly rejects the unit root in all of the RV series, making the TVP-VAR analysis feasible.
ables A.3 and A.4 then complement Table A.2 with the counterparts of RV series due to negative and positive returns. The basic statistics are heterogeneous

cross the studied crypto assets.
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Fig. 1. Time series of realized semivariances for individual crypto assets. Volatility due to positive returns (in green) and volatility due to negative returns (in
red) are stacked to allow for an intraday comparison. The specific y-axes are set according to the 97.5th quantile of the respective total RV to avoid occasional
spikes that overshadow the dynamics on low-volatility days. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

4.1. Optimal data frequency discussion

For a broad range of traditional financial assets, the 5-min frequency for estimating realized RV represents a standard, as
established in the seminal empirical study by Liu et al. (2015). However, due to the unique properties of crypto assets and their
varying levels of microstructure noise, using a 5-min frequency may need further examination, as it could introduce more noise.
A comparable investigation into the crypto asset market was conducted by Zieba (2022), who finds that variations in the noise-
to-signal ratio analysis hinder clear conclusions. The study suggests that the 15-min frequency might be optimal, while the MSE
analysis indicates that the 5-min frequency performs similarly to lower, less noisy frequencies like 60 min.

The cryptocurrency literature still lacks a consensus on the use of specific high-frequencies for various analyses. For instance, Kat-
siampa et al. (2022) utilize hourly data to assess co-movements and correlations among a wide array of highly tradable crypto
assets using a Diagonal-BEKK model. Conversely, Yarovaya and Zieba (2022) employ 5- and 20-min frequencies, noting that results
for 5-, 10-, and 15-min frequencies are very similar. Sensoy (2019) examine Bitcoin’s weak-form efficiency using 15- to 45-min
frequencies, concluding that as the frequency increases, pricing efficiency diminishes. Additionally, Zargar and Kumar (2019) explore
the informational efficiency and martingale hypothesis of Bitcoin returns with 15- to 120-min and daily data, finding statistical
evidence of inefficiency at the highest frequencies, namely 15- and 30-min intervals. Lastly, Vo and Yost-Bremm (2020) develop
high-frequency trading strategies for Bitcoin at the 5-, 15-, and 360-min frequencies, determining that the 15-min frequency yields
the highest profits, followed by the 5-min frequency.

Due to these inconclusive results, we initially experimented with various return granularities, specifically 5-, 15-, 30-, and 60-min
frequencies, with a particular focus on the commonly preferred 5- and 15-min frequencies. When the total connectedness measure
𝐻 , defined in Eq. (10), is computed based on 5- and 15-min frequencies, the correlation between the two time series reaches 98%,
indicating nearly identical dynamics. Naturally, the similarity decreases with longer intervals, but the lowest correlation between
5- and 60-min intervals still exceeds 93%. Based on these results, we conservatively adhere to the default 5-min frequency, which
is generally supported by Zieba (2022). Additionally, we analyzed the correlations of daily RV time series, defined in Eq. (3), based
on the granularity of the underlying log returns for individual crypto assets. The correlation coefficients reported in Table A.6 rarely
fall below 90%, indicating they convey very similar information. For 5-min and 15-min returns, the minimum value is 92% for ETH,
while reaching 98% for BTC and DOGE. This strong similarity further supports the robustness of our results based on 5-min price
data.

4.2. Realized volatilities

In Fig. 1, we individually present positive and negative RV for each asset. In 2019 and early 2020, most cryptos appeared to
have relatively low volatility, with occasional spikes and dips. This changed with the onset of the COVID-19 pandemic in March
2020, when higher volatility in the cryptocurrency market corresponded to a global market panic. In contrast, we see a massive
surge of interest in cryptocurrencies during 2021, which led to a substantial increase in volatility, with frequent and large price
7 
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movements for all eight assets. The surge in volatility can likely be attributed to a number of factors, including increased investments
by institutional investors and the growing mainstream acceptance of cryptocurrencies as a legitimate asset class, e.g., speculation
about the introduction of the spot Bitcoin ETF. Another spike in volatility is observed around the middle of 2022, corresponding
to the collapse of the stablecoin TerraUSD below its 1 USD peg. At the end of the dataset, the most recent period of heightened
volatility occurred in the first quarter of 2024, coinciding with the U.S. Securities and Exchange Commission’s January approval to
launch the first Bitcoin spot ETFs in the United States.

Among the eight coins, the high volatility of Dogecoin stands out, driven by Elon Musk’s tweets (Shahzad et al., 2022) in January
021. Musk’s Twitter activity sparked an interest in Dogecoin, producing unprecedented volatility in the following months. Even
hen compared to the pandemic crash in 2020, Dogecoin’s RV magnitude is approximately eight times as large as that recorded for
itcoin during the pandemic 2020 crash. Overall, Fig. 1 highlights the dynamic and rapidly evolving nature of the cryptocurrency
arket, along with rapid changes in crypto market volatility.

.3. Explanatory variables

Our analysis also explains the dynamics of connectedness and existing asymmetries between good and bad volatility spillovers.
n that sense, we search for drivers within crypto markets as well as for external factors since cryptocurrencies have become more
ntertwined with traditional financial markets and reflect macroeconomic, mostly monetary, indicators (Nguyen et al., 2019; Kukacka
nd Kristoufek, 2023). For crypto-related potential drivers, we combine two data sources.

First, for BTC, ETH, and the other coins in the aggregate, we use the momentum measure defined as the logarithmic deviation
ratio) of the current market capitalization from the previous seven days. Next, from CoinMetrics.io: www.coinmetrics.io, we utilize
he blockchain structural data on the number of active addresses for BTC and ETH (activity on the blockchains, ticker AdrActCnt),
he sum of the fees on the BTC and ETH blockchains (measure of the blockchain load and possible congestion, ticker FeeMeanUSD),
nflows and outflows to the centralized exchanges for all coins where available,5 the velocity of BTC and ETH (what proportion of

coins ‘‘changed hands’’ on the given blockchain, ticker NVTAdj), and BTC hash rate (as the measure of the network security, ticker
HashRate). Finally, from the Binance data repository, we collect exchange (off-chain) trading volumes for BTC and ETH separately
and aggregate for the remaining coins, as well as the number of trades in the same structure.

Second, the traditional financial market and macroeconomic indicators are collected from the St. Louis Federal Reserve database:
www.fred.stlouisfed.org. Specifically, we include the S&P 500 index and the VIX index as proxies for the value and uncertainty
of the traditional financial markets, respectively. The macroeconomic indicators are represented by the break-even inflation (10-
year break-even inflation rate, ticker T10YIE, representing the expected inflation derived from 10-year treasury constant maturity
securities and 10-year treasury inflation-indexed constant maturity securities) and the short-term interest rate (market yield on U.S.
treasury securities at 1-year constant maturity, ticker DGS1). Commodities are represented by the Gold bouillon index as in Ji et al.
(2019) downloaded from www.investing.com and the S&P GSCI commodity index downloaded from www.spglobal.com. Global
economic activity is proxied by the Baltic Dry index also downloaded from www.investing.com, and lastly, we include Economic
Policy Uncertainty downloaded from the official website www.policyuncertainty.com. All the time series are available on a daily
basis. Weekends and other nontrading days take the value of the last available observation.6

5. Qualitative analysis and timing of events

We begin reporting the results of our analysis with a qualitative description related to the overall measure of aggregate volatility
spillovers among the analyzed crypto assets. As in Diebold and Yılmaz (2012), in this section, we do not assume any underlying
structure of the connectedness origin, which we leave for Section 6. Instead, we consider the underlying structure as given and
describe its main properties and general patterns while also focusing on linking the dynamics of the total connectedness to the
key historical events and major economic conditions throughout the analyzed period. We also compare and contrast the overall
connectedness dynamics of the crypto assets to the patterns revealed in earlier studies that focused on standard financial markets.
Second, we study the decomposition of the total connectedness due to good and bad volatilities. The interaction between these two
components is reflected by  (defined as the difference between positive and negative connectedness), which quantitatively
captures the asymmetric reaction due to positive and negative shocks.

5.1. Total dynamic network connectedness

In Fig. 2, we present the total dynamic network connectedness over the whole period under research.7 The total volatility
connectedness oscillates in a remarkably wide interval between 17 and 87, with clearly identified periods of high connectedness
corresponding to crucial events affecting the cryptocurrency market in the recent past. Generally, a high proportion of the
connectedness is driven by contemporaneous correlations, particularly in periods characterized by very narrow confidence intervals.

5 We study connectedness on the largest centralized exchange so the capital inflows and outflows represent the willingness to trade or store the gains,
espectively (tickers FlowInExUSD and FlowOutExUSD).

6 We report on descriptive statistics of the variables in Table A.5.
7 Table A.7 reports on its descriptive statistics in the first row.
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Fig. 2. Total dynamic network connectedness defined by Eq. (10). The shaded area represents 95% confidence intervals, and the solid line represents the median
of the simulated distribution.

The reported range between 17 and 87 contrasts with the results for the connectedness of stocks or volatility spillovers between
arious standard financial markets that often do not drop below 50 (Diebold and Yılmaz, 2014; Baruník et al., 2016; Baruník
nd Křehlík, 2018; Baruník and Kočenda, 2019). Nevertheless, they seldom go below 40 (Diebold and Yılmaz, 2009; Baruník and
llington, 2020; Baruník et al., 2022). Conversely, the upper bound corresponds to values reported for standard financial markets in
he above-mentioned studies, usually surpassing 85 and even reaching 90. This comparison suggests that the lower limit is markedly
dged off in the cryptocurrency segment when compared to those of the standard financial markets. Importantly, it also contrasts
ith the results for the connectedness in crypto by Abubakr Naeem et al. (2022), who, using the well-established methodology
y Diebold and Yılmaz (2012) based on a VAR model moving-window estimation, report markedly less oscillating dynamics in an
nterval between roughly 70 and 90. On the other hand, the total connectedness dynamics among four cryptocurrencies presented
n Andrada-Félix et al. (2020), using the Kalman filter method of Antonakakis and Gabauer (2017), reveal dynamics roughly
omparable to our results, while the oscillation ranges approximately from 10 to 70.

The other pattern that characterizes the total connectedness dynamics is its considerable smoothness when compared to the
esulting plots of earlier applications of the Diebold and Yılmaz (2014) and Baruník and Křehlík (2018) methodologies. This
henomenon is fully in accord with outcomes reported by Baruník and Ellington (2020). It results from the dynamic ‘‘continuous’’
pproach to estimating parameters of the underlying locally stationary TVP-VAR at each point in time. The reason is that the
BLL estimation procedure is essentially based on a Gaussian kernel weighting function that puts greater weights on observations

urrounding each estimated period relative to distant observations to estimate the connectedness measure for the given day.
onversely, earlier studies typically used the static estimation approach of the past dynamics from an approximating rolling window;
ssociated drawbacks are discussed in the previous section.

.2. Timing and impact of crucial events

We now focus in detail on cyclical increases in the total connectedness dynamics. The connectedness is high during several
rolonged periods. For clarity of interpretation, we marked in Fig. 2 the key events impacting the volatility connectedness of the
rypto market (Rognone et al., 2020; Corbet et al., 2020b; Sapkota, 2022; Albrecht and Kočenda, 2024).

The first observable period of markedly high connectedness appeared around September 2019. It is linked to the Bitcoin bull run
hen its price more than tripled in the first half of the year, reaching almost 14 thousand USD. The NYSE owner, Intercontinental
xchange, Inc. (ICE), launched Bitcoin deliverable futures contracts on September 22. In addition, China, a crucial global crypto
layer, generally supported the development of blockchain technology around this period. Interestingly, these steps were met with
weak immediate reaction on the spot markets. However, the apparently unfulfilled expectations of the cryptocurrency investors

ed to Bitcoin prices dropping by almost 18% in the following days.
The next high connectedness period is framed by the global outbreak of the COVID-19 pandemic at the turn of February and

arch 2020, followed by government-enforced lockdowns leading to a coordinated crash of global financial markets. Bitcoin dropped
y more than 50% in one month and even fell below 5 thousand USD in its deepest downturn. Interestingly, the connectedness
uickly decreased during April as the crypto segment regained its market capitalization while establishing an attractive speculative
nvironment for the later bull run in the second half of 2020, when Bitcoin rose to 28 thousand USD in December 2020. These
bservations align with Divakaruni and Zimmerman (2021), who find a robust link between the COVID-induced Economic Impact
ayment (EIP) relief program and Bitcoin investment in the USA. Although they estimate that only 0.02% of the EIP program was
pent on Bitcoin, they report a significant increase of almost 4% in the traded volume between April and June in the modal EIP
mount of 1.2 thousand USD. Several other events logically connected to cryptocurrency segment dynamics are further associated

ith hump-shaped periods of high total connectedness in 2020. They are, specifically, Bitcoin’s third halving that reduced the block
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reward to 6.25 BTC in May, Switzerland canton Zug allowing paying taxes in Bitcoin in September, and the November announcement
of the stablecoin payment system formerly known as Libra by Facebook (now Meta Platforms, Inc.).

Early 2021 is marked by Bitcoin’s (then) all-time-high price of over 40 thousand USD and a prolonged period of high
onnectedness around the value of 60. The high connectedness is framed by surging prices in the whole crypto market and several
mportant events forming the overall bull run dynamic of the first quarter of 2021. The most prominent ones were Elon Musk’s
weets supporting Bitcoin and Dogecoin and the filing for Bitcoin ETF by the Chicago Board Options Exchange (CBOE) in March.
nother high connectedness period between April and June 2021 possibly originates in the commitment of Tesla’s owner, Elon
usk, to accept payments in Bitcoin while holding a considerable number of Bitcoins in the company’s balance sheet. In addition,

he first cryptocurrency exchange, Coinbase Global, Inc., went public on NASDAQ during the period as well. The irony of fate is
hat many consider Elon Musk’s tweet that Tesla no longer accepts Bitcoin as the trigger for the May crash, while the connectedness
emains very high over almost the whole period of the price drop from above 63 thousand USD to below 30 thousand USD reached
n July. The sell-off of the whole segment ended with the rapid outbreak of the new Delta variant of COVID-19, spreading a new
ave of worries over the worldwide markets and leading to the new crypto bull run during the second half of 2021. Similar to

he second half of 2020, the hump-shaped periods of large volatility spillovers among crypto markets in the second half of 2021
re associated with well-known events. Namely, with the adoption of Bitcoin as a legal tender in El Salvador in September 2021,
thereum reached a price of 4.8 thousand USD, driven by the increasing popularity of DeFi and NFTs. Finally, Bitcoin reached its
hen all-time-high price of over 69 thousand USD, mainly due to institutional investors’ demand in November 2021.

Global concerns about intensifying inflation pressures and rising interest rates frame the overall decline of cryptocurrency
arkets, together with global financial markets, and its steep decline supported by several crashes during the entire first half of
022. In June, Bitcoin went down below the 20 thousand USD barrier and has fluctuated between 16 and 29 thousand USD since
hen. The four periods of high connectedness observed during 2022 are linked to crucial events related to the crypto assets market.
here were strong fears about regulatory crackdowns in China and the U.S. in January, forcing the Bitcoin price to tumble below
0 thousand USD for the first time since August 2021. Furthermore, the Fed increased its key interest rate by 50 basis points in
ay, the sharpest increase since 2000. This step was followed by the TerraUSD May collapse below its 1 USD peg and the Chapter

1 bankruptcy procedure launched for the cryptocurrency exchange FTX in November 2022, dropping the Bitcoin price below 16
housand USD. Although the volatile period for the crypto segment persisted for several months, including the collapse of Silicon
alley Bank in March 2023, total connectedness remained relatively low until two spikes during the summer of 2023. In mid-June,
lackRock and Grayscale, along with nine other companies, applied for spot Bitcoin ETFs. However, the favorable market impact
f this event and of the Litecoin halving at the beginning of August was overshadowed by an unexpectedly high U.S. Fed inflation
eading. This led to a rise in the U.S. Treasury yield to its highest level in over two years, reaching 2.5%, which discouraged
nvestments in risky assets and triggered a crypto market crash on August 17, 2023. By the end of the month, Grayscale’s victory
gainst the U.S. Securities and Exchange Commission, which was forced to review its initial denial of the Bitcoin ETF applications,
rought renewed optimism. This positive development likely restored interest in the cryptocurrency market, as prices steadily rose
ntil December 2023.

The growing cryptocurrency market experienced a significant interruption due to a money-laundering scandal involving
inance, the world’s largest cryptocurrency exchange, halting market momentum for approximately two months. Binance’s founder,
hangpeng Zhao, resigned in November 2023 after admitting to being guilty of money laundering violations. However, interest in
he market surged again with the final approval and launch of Bitcoin ETFs in January 2024, marking a new period of heightened
onnectedness. In February, daily net inflows into the U.S.-listed spot Bitcoin ETFs strongly outpaced new supply before the halving,
eading to a new all-time-high price of over 73.7 thousand USD on March 14. This demand-supply imbalance, combined with halving
xpectations, likely led to the Bitcoin Flash Crash on April 15. The following Bitcoin fourth halving event on April 19 reduced the
lock reward for miners by half and concluded the last observed period of elevated connectedness. The dataset span also covers the
.S. Securities and Exchange Commission’s approval of eight Ethereum ETFs for listing and trading in May 2024.

.3. Asymmetries due to good and bad volatility

We now analyze the dynamic asymmetries due to good and bad volatility as introduced by Baruník et al. (2016). Fig. 3 represents
he time series graphically8 and reveals that spillovers due to negative and positive volatility are often similar in terms of their

magnitudes. This observation is in stark contrast to existing connectedness studies covering standard financial markets, typically
documenting periods clearly dominated interchangeably by either negative or positive spillovers. We show in the top panel of
Fig. 3 that periods of significant difference between the two sources of connectedness are always dominated by negative volatility.
In contrast, in periods of large overlap of the two measures and their confidence intervals, the spillovers due to positive volatility
occasionally become larger. Nevertheless, this difference is never statistically significant at the 95% confidence level, and even more
importantly, this difference practically never materializes during a period of considerable economic importance.9

The above patterns are then transposed into , whose dynamics are plotted in the bottom panel of Fig. 3.  is negative
most of the time, with several apparent drops reaching values below minus 40 and prolonged periods of large and statistically
significant dominance of the negative connectedness. The observed pattern is occasionally broken only by short periods of marginal

8 Table A.7 reports on descriptive statistics of spillovers due to negative and positive volatility.
9 A rare exception appears in March 2023 around the collapse of Silicon Valley Bank.
10 
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Fig. 3. Estimates of total negative (in red) and positive (in green) connectedness in the upper panel and  in the bottom panel.  is defined by Eq. (11)
and measures the asymmetry between the two sources of connectedness. Simulated 95% confidence bands allow for directly identifying periods of significant
differences between the two sources of connectedness represented by shaded areas of non-overlapping confidence intervals. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

dominance of the positive connectedness. Again, the observed dynamics are markedly richer compared to Abubakr Naeem et al.
(2022), who report  in their cryptocurrency network to oscillate between roughly minus 15 and 0, supporting our results for
dominantly negative .

In sum, we provide evidence of strong unilateral asymmetry effects embedded in the risk spillovers in the crypto asset market.
The positive and negative connectedness thus statistically significantly differs in certain periods, and this asymmetry prevails for
consecutive days or even weeks, implying that the market operates in different regimes. Based on the discussion linking high
spillovers with information flow on the markets (Baruník et al., 2016), our results suggest that information about crypto asset
market downturns usually spills over substantially faster than news about comparable market upturns.

We further discuss the impact of the key events related to the crypto assets market and potentially associated with asymmetries
in connectedness. The first observation is that only a subset of those events affecting the total connectedness and discussed in detail
in Section 5.2 is also linked with a statistically distinct positive and negative connectedness quantified by  (see Fig. 3).

More detailed observations indicate ten prolonged periods with 95% statistical confidence that are prominent concerning
the dynamics in connectedness due to good and bad volatility asymmetries. The first period occurred during a period of low
connectedness in August 2019 after U.S. President Donald Trump’s trade war pressures on China boosted cryptocurrency prices
again after the bull run in the first half of 2019. Most of the other cases coincide with the events important for total connectedness
and relate to: (i) the period around September 2019 (Bitcoin futures on NYSE), (ii) May to June 2020 (Bitcoin’s third halving),
(iii) August to September 2021 (El Salvador adopting Bitcoin), (iv) August 2023 (U.S. Treasury yield reaching 2.5%, crypto market
crash on August 17, but also the Grayscale’s victory against U.S. SEC), (v) January 2024 (spot Bitcoin ETFs approved and launched),
and (vi) April 2024 (Bitcoin’s fourth halving). The following three cases are mostly linked to asymmetries rather than to total
connectedness: (i) in August 2020, the increasing popularity of the DeFi segment has led to Ethereum surpassing Bitcoin in terms of

the value settlement per day (pattern beginning already in July), (ii) in November 2021, JPMorgan Chase & Co. supported Bitcoin as

11 
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an inflation hedge that might replace gold, a move leading to a new all-time-high of Bitcoin as well as Ethereum, and (iii) the turn
of May and June 2023, associated with spot Bitcoin ETFs applications. Finally, negative dips of  might not be fundamentally
important per se. However, they often approximate the boundaries of the periods when significant differences in connectedness
occur.

When looking at the ten specific periods, there is no clear relationship between the asymmetries in connectedness and the price
trends of the crypto market. Some periods experienced booms or recoveries, while market crashes framed others. However, overall,
important structural changes in the cryptocurrency market (Bitcoin futures, Bitcoin and Litecoin halvings, the popularity of DeFi,
Bitcoin as legal tender, Bitcoin as an inflation hedge by JPMorgan, spot Bitcoin ETFs applications and approvals) were often linked
to asymmetries. This finding goes against the intuition that positive volatility is connected to price increases and negative volatility
is connected to market crashes. For instance, even during the crypto rallies in April 2020 or February to March 2024, negative
volatility had a stronger impact on the market, indicating that the market reacted more strongly to negative news. Regardless of
positive or negative market sentiment, bad volatility always has a stronger impact on the market.

A further existing pattern within the first half of the analyzed period can be recognized for periods of high total connectedness
unrelated to statistically distinguishable asymmetries due to good and bad volatility. These are primarily the period around the
COVID-19 crash in 2020, the period around the crash of 2021 (Tesla refusing Bitcoin), and the period around the crashes in 2022
(inflation pressures in January and regulatory crackdowns in China and the U.S., Fed hike, and TerraUSD collapse in May, FTX
bankruptcy in November).10

Hence, it seems that structural developments shaping the crypto market do induce asymmetric reactions due to positive
and negative shocks to volatility. On the other hand, a high contemporaneous correlation stemming from a panic reaction
and herding, which characterizes the overall market during crashes, generally leads to very narrow but overlapping confidence
intervals, eliminating the significant differences between the effects of good and bad volatility. Ultimately, our evidence shows that
constructive structural changes are reflected in asymmetries, while destructive panic and herding are not.

6. Explaining the connectedness and asymmetry

Linking the connectedness and existing asymmetries to specific events provides one angle to explain their dynamics. We now
look into their possible internal drivers, i.e., if and how much of the dynamics can be attributed to specific characteristics and
changes in the underlying processes of the examined blockchains. Additionally, we consider external macroeconomic and monetary
drivers. This way, we try to understand the underlying dynamics of connectedness within the analyzed system and provide both a
qualitative and quantitative basis for the identification of changes in connectedness before they become visible in the measures that
are estimated ex-post.

6.1. Baseline model

Our subsequent analysis rests on estimating the baseline model specified in daily frequency represented by Eq. (12) below. In
addition to examining the total connectedness 𝐻 defined in Eq. (10),11 we use the same model specification to explore drivers of
the asymmetries existing in connectedness. In such a case, the dependent variable is  defined in Eq. (11).12

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑡 = 𝛽0 + 𝛽1𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝐵𝑇𝐶,𝑡 + 𝛽2𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝐸𝑇𝐻,𝑡 + 𝛽3𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝐴𝑙𝑡𝑠,𝑡

+𝛽4 log(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠)𝐵𝑇𝐶,𝑡 + 𝛽5 log(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠)𝐸𝑇𝐻,𝑡 + 𝛽6 log(𝐹𝑒𝑒𝑠)𝐵𝑇𝐶+𝐸𝑇𝐻,𝑡

+𝛽7 log(𝐼𝑛𝑓𝑙𝑜𝑤)𝐵𝑇𝐶+𝐸𝑇𝐻,𝑡 + 𝛽8 log(𝑂𝑢𝑡𝑓𝑙𝑜𝑤)𝐵𝑇𝐶+𝐸𝑇𝐻,𝑡

+𝛽9 log(𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦)𝐵𝑇𝐶,𝑡 + 𝛽10 log(𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦)𝐸𝑇𝐻,𝑡 + 𝛽11 log(𝐻𝑎𝑠ℎ𝑅𝑎𝑡𝑒)𝑡
+𝛽12 log(𝑉 𝑜𝑙𝑢𝑚𝑒)𝐵𝑇𝐶,𝑡 + 𝛽13 log(𝑉 𝑜𝑙𝑢𝑚𝑒)𝐸𝑇𝐻,𝑡 + 𝛽14 log(𝑉 𝑜𝑙𝑢𝑚𝑒)𝐴𝑙𝑡𝑠,𝑡
+𝛽15 log(𝑇 𝑟𝑎𝑑𝑒𝑠)𝐵𝑇𝐶,𝑡 + 𝛽16 log(𝑇 𝑟𝑎𝑑𝑒𝑠)𝐸𝑇𝐻𝑡

+ 𝛽17 log(𝑇 𝑟𝑎𝑑𝑒𝑠)𝐴𝑙𝑡𝑠,𝑡
+𝛽18 log(𝑆𝑃500)𝑡 + 𝛽19 log(𝑉 𝐼𝑋)𝑡 + 𝛽20𝐵𝐸𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛𝑡 + 𝛽21𝐼𝑅𝑡 + 𝛽22 log(𝐸𝑃𝑈 )𝑡

+𝛽23 log(𝐵𝑎𝑙𝑡𝑖𝑐𝐷𝑟𝑦)𝑡 + 𝛽24 log(𝐺𝑜𝑙𝑑)𝑡 + 𝛽25 log(𝐺𝑆𝐶𝐼)𝑡 + 𝜀𝑡 (12)

10 Moreover, Fig. B.4 provides a detailed picture of the net connectedness of the cryptoassets of interest; they provide a split into the total net connectedness
nd the net connectedness in the good and bad volatilities and Table A.8 provides respective descriptive statistics. No crypto could be labeled as a dominant
iver or a dominant receiver in any of the metrics. The role of leader and follower of each analyzed crypto asset possesses strong dynamics. However, there are
everal interesting findings. First, Bitcoin cannot be identified as a strong and clear leader in the market, even though its net position remains positive at most
imes. The same holds for the overall net connectedness and the bad and good volatility connectedness. Second, Dogecoin is a clear follower of the group as the
ain transmitter and a leader. This holds specifically at the beginning of 2021, i.e., during one of the main DOGE-related hypes. The period is characterized by
strong leadership of both Bitcoin and Dogecoin, while other crypto assets mostly followed. Additionally, Dogecoin’s net connectedness produces a relatively

table negative pattern. Finally, although there is no dominant giver over the analyzed period, Bitcoin, Ethereum, and Litecoin report a clear positive mean net
osition of the directional spillover index. Litecoin shows the highest uncertainty in the metrics across the three, and thus, the expected leadership of Bitcoin
nd Ethereum is identified. The most prominent receivers are Dogecoin, as already mentioned, and XRP and BNB, although their levels are much lower than
hose of Dogecoin. Cardano and Tron remain close to zero on average.
11 Descriptive statistics of the empirical variable 𝐻 can be found in the first row of Table A.7.
12 Descriptive statistics of the components of the empirical variable  can be found in the second and third rows of Table A.7.
12 
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We look at a set of potential drivers of connectedness among the whole system of 8 crypto assets13 with the aim of covering
arious perspectives—momentum, blockchain activity, exchange activity, and external macroeconomic factors, including different
arket conditions (Antonakakis et al., 2019a; Bouri et al., 2021). As there are 8 crypto assets in our dataset, we need to select and

ggregate most of the measures to avoid overfitting and collinearity. Many of the variables would be highly correlated and thus
ead to unreliable results. We tackle this issue by mostly focusing on Bitcoin (BTC) and Ethereum (ETH) as the major players within
he system. The rest of the coins are treated jointly as altcoins.

The selection of variables is based on previous research into structural aspects of different types of dynamics in the crypto
arkets, which still remain rather scarce. We mostly build on our previous results in Kukacka and Kristoufek (2023), Kristoufek

2023), Kubal and Kristoufek (2022) and Kristoufek and Bouri (2023) as well as the results in Demir et al. (2018), Shaikh (2020),
orbet et al. (2020b), Pyo and Lee (2020), Lyócsa et al. (2020) and Wang et al. (2023). The reasoning for the final choice of the
aseline model, i.e., the starting set of variables and thus parameters to estimate, is as follows. The momentum effect is separated
nto Bitcoin, Ethereum, and the rest of the market, as the momentum of these entities is expected to have different effects. Bitcoin
s perceived as the first mover in the market, and its initial momentum is thus expected to be detached from the rest of the market
hat follows later. The Bitcoin momentum is thus expected to have a negative effect on total connectedness. The effects of Ethereum
nd the rest of the altcoins are less clear as the reactions can vary. However, Ethereum is regarded as the second most significant
sset behind Bitcoin. The aggregate altcoins’ momentum is expected to be positive as altcoins tend to move together. The active
ddresses and fees are closely related to the momentum factors. However, they represent a more stable or long-term measure of the
arket activity and are more connected to network development rather than prices. The logic and the expected effects for the total

onnectedness are the same as for the momentum. The remaining factors connected to the network and exchange activity mostly
ontrol the market specifics. In general, a possible Bitcoin leadership is expected to push the connectedness down. Conversely,
thereum is expected to lead the rest of the market, catching up to Bitcoin, and hence pushing the connectedness up (Ji et al.,
019). The macroeconomic variables are included as mostly control variables for the external factors of the traditional markets.
iven that these external factors have demonstrated an impact on Bitcoin returns and volatility, it is reasonable to assume that they
ay similarly influence the dynamic properties of other crypto assets and, consequently, the overall dynamics of the cryptocurrency
arkets (Umar et al., 2021). The starting set of variables is the same for the model of asymmetry, which puts together the logic

f their selection for the total connectedness and the evidence of asymmetric volatility in cryptoassets (Troster et al., 2019; Ardia
t al., 2019; Fakhfekh and Jeribi, 2020; Cheikh et al., 2020; Fung et al., 2022).

The paper’s primary empirical contribution lies in identifying this rich collection of 25 potential drivers of connectedness
n crypto.14 The selection of variables is primarily motivated by sound economic justification, which is supported by the latest
iscoveries in empirical studies on cryptocurrencies. As already discussed in the Introduction, Walther et al. (2019), Corbet et al.
2020b,a) and Charfeddine et al. (2022) support the impact of macroeconomic news, represented by the dynamics of break-even
nflation and the short-term interest rate, and the importance of the global economic business cycle (Walther et al., 2019; Andrada-
élix et al., 2020; Wang et al., 2023) proxied by the development of the Baltic Dry Index (Kilian, 2009), a leading economic indicator
racking the cost of shipping major dry raw materials. Monetary policy aspects such as inflation protection or the impact of the U.S.
nterest rate are also highlighted, e.g., by Li and Wang (2017), Saiedi et al. (2021), Pagnotta (2021) and Bouri and Jalkh (2023).
inancial sentiment or financial market variables suggested by Corbet et al. (2018), Ji et al. (2019), Andrada-Félix et al. (2020),
apkota (2022), Charfeddine et al. (2022) and Suleman et al. (2023) are proxied by two broad financial market indicators: the
&P 500 and VIX indices, while the inclusion of the latter also follows the findings of Walther et al. (2019), Bouri and Jalkh
2023) and Chowdhury and Damianov (2024). Further literature containing inclusion of S&P 500 comprises (Rudkin et al., 2023;
enMabrouk et al., 2024). As represented by the U.S. EPU Index, policy uncertainty is associated with cryptocurrency prices and their
olatility (Demir et al., 2018; Ji et al., 2019; Yen and Cheng, 2021; Umar et al., 2023). Due to its suggested ‘‘safe haven’’ property,
he relationship between cryptocurrency and gold prices has been explored in numerous studies, including Klein et al. (2018), Ji
t al. (2019), Bouri and Jalkh (2023), Yousaf et al. (2023), BenMabrouk and Khalifa (2024) and Narayan and Kumar (2024). The
‘proof-of-work’’ protocol of many cryptocurrencies and its linkage to oil and gas prices also warrants the inclusion of variable
racking developments in energy commodity markets, as recommended by Ji et al. (2019), Joo and Park (2023), BenMabrouk and
halifa (2024) and Narayan and Kumar (2024). Next, trading volume has been found among the main drivers in Ji et al. (2019),
harfeddine et al. (2022) and Andrada-Félix et al. (2020), and its inclusion also follows the results of Balcilar et al. (2017), Li and
ang (2017), Zhang and Zhao (2023) and Bouri and Jalkh (2023). Finally, momentum is motivated by empirical research by Zhang

nd Zhao (2023), who examine the determinants of realized volatility measures in a cross-section of more than 50 cryptocurrencies.
Pagnotta (2021) further brings attention to the fundamentals of cryptocurrency empirical pricing: the basic aspects of mining

nd the role of security. These concepts are related to cryptocurrency users’ basic needs and the incentives for miners that we proxy
ith the number of active addresses, transaction fees, money coming into and going out of centralized exchanges, the speed of

irculation (called velocity), and the BTC hash rate, all in line with empirical findings of Kukacka and Kristoufek (2023). Finally,
ddresses serve as a measure of transaction demand (Parino et al., 2018) and mining difficulty (Li and Wang, 2017).

13 Descriptive statistics of the associated realized measures can be found in Tables A.2, A.3, and A.4.
14 Descriptive statistics of all 25 explanatory variables can be found in Table A.5.
13 
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Table 1
Estimated models for total connectedness and for asymmetry in connectedness for good and bad volatility. Based on a daily dataset of 25 explanatory variables
covering the period from July 7, 2019, to May 31, 2024, i.e., 1791 observations. The models always start with the baseline model in Eq. (12), and then the
variables with the overfitting risk (VIF over 10) are eliminated step-by-step, resulting in the ‘‘full’’ versions of the models. The ‘‘final’’ versions of the models are
obtained after step-wise eliminating the statistically insignificant variables (at the 90% confidence level). The heteroskedasticity and autocorrelation consistent
(HAC) standard errors according to Stock and Watson (2003) are reported in parentheses.

Variable/Model: Connectedness 𝐻 : full Connectedness 𝐻 : final : full : final

const 581.58 (165.16) *** 656.71 (147.44) *** −237.61 (103.20) ** −232.69 (26.13) ***
Momentum𝐵𝑇𝐶 −29.66 (22.12) 25.31 (13.26) *
Momentum𝐸𝑇𝐻 4.19 (18.97) −13.38 (10.65)
Momentum𝐴𝑙𝑡𝑠 −21.63 (14.64) −32.50 (11.41) *** 1.27 (7.21)
log(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠)𝐵𝑇𝐶 −22.91 (6.64) *** −26.12 (6.36) *** 0.14 (4.38)
log(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠)𝐸𝑇𝐻 9.39 (6.17) 11.38 (6.25) * −3.13 (4.11)
log(𝐹𝑒𝑒𝑠)𝐵𝑇𝐶+𝐸𝑇𝐻 5.81 (1.84) *** 5.85 (1.70) *** −4.94 (1.07) *** −5.05 (0.73) ***
log(𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦)𝐵𝑇𝐶 −0.11 (2.41) 7.38 (1.28) *** 6.97 (1.13) ***
log(𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦)𝐸𝑇𝐻 2.28 (3.16) −8.26 (1.73) *** −8.56 (1.37) ***
log(𝑉 𝑜𝑙𝑢𝑚𝑒)𝐸𝑇𝐻 10.82 (3.14) *** 10.51 (2.16) *** 0.57 (1.38)
log(𝑉 𝑜𝑙𝑢𝑚𝑒)𝐴𝑙𝑡𝑠 7.68 (1.97) *** 8.07 (1.87) *** 0.78 (0.93)
log(𝑇 𝑟𝑎𝑑𝑒𝑠)𝐵𝑇𝐶 −8.30 (2.11) *** −9.42 (1.60) *** −0.44 (1.36)
log(𝑉 𝐼𝑋) 6.53 (4.59) 7.57 (4.21) * 9.55 (2.34) *** 8.16 (2.07) ***
IR −0.55 (1.10) −1.53 (0.62) ** −1.50 (0.43) ***
log(𝐸𝑃𝑈 ) −2.73 (1.27) ** −2.49 (1.27) ** −0.83 (0.67)
log(𝐵𝑎𝑙𝑡𝑖𝑐𝐷𝑟𝑦) −4.69 (2.96) −5.21 (2.78) * −0.34 (2.07)
log(𝐺𝑜𝑙𝑑) −67.68 (18.40) *** −75.13 (13.81) *** 2.09 (11.28)
log(𝐺𝑆𝐶𝐼) −2.70 (8.78) 36.01 (4.38) *** 34.51 (4.35) ***

Adjusted 𝑅2 0.42 0.42 0.27 0.26

White test 692.15 *** 421.06 *** 734.92 *** 312.62 ***
LM test 1250.84 *** 1225.53 *** 1373.67 *** 1398.52 ***
ADF test −6.33 *** −6.39 *** −8.18 *** −8.00 ***
KPSS test 0.09 0.09 0.08 0.08

* For the test, statistical significance at the 90% confidence level.
** For the test, statistical significance at the 95% confidence level.
*** For the test, statistical significance at the 99% confidence level.

6.2. Model for total connectedness

The model for total connectedness is estimated based on our daily dataset of 25 explanatory variables covering the period from
uly 7, 2019, to May 31, 2024, i.e., 1791 observations.15 Starting with the full set of variables in Eq. (12), we first eliminate the
actors with a high risk of collinearity and overfitting. Specifically, we estimate the model and step-by-step eliminate the variables
ith the highest variance inflation factor (VIF) until no variable has a VIF above 10 (Dodge, 2008). After that, we step-by-step
liminate the statistically insignificant variables (at the 90% confidence level) until all variables are significant. After the variable
election procedure, the final specification of the estimated model for total connectedness takes the following form:

𝐻
𝑡 = 𝛽0 + 𝛽3𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝐴𝑙𝑡𝑠,𝑡

+𝛽4 log(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠)𝐵𝑇𝐶,𝑡 + 𝛽5 log(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠)𝐸𝑇𝐻,𝑡 + 𝛽6 log(𝐹𝑒𝑒𝑠)𝐵𝑇𝐶+𝐸𝑇𝐻,𝑡

+𝛽13 log(𝑉 𝑜𝑙𝑢𝑚𝑒)𝐸𝑇𝐻,𝑡 + 𝛽14 log(𝑉 𝑜𝑙𝑢𝑚𝑒)𝐴𝑙𝑡𝑠,𝑡 + 𝛽15 log(𝑇 𝑟𝑎𝑑𝑒𝑠)𝐵𝑇𝐶,𝑡

+𝛽19 log(𝑉 𝐼𝑋)𝑡 + 𝛽22 log(𝐸𝑃𝑈 )𝑡 + 𝛽23 log(𝐵𝑎𝑙𝑡𝑖𝑐𝐷𝑟𝑦)𝑡 + 𝛽24 log(𝐺𝑜𝑙𝑑)𝑡 + 𝜀𝑡 (13)

The results for the total connectedness dynamics and its driving factors are summarized in Table 1. As the residuals are serially
orrelated and heteroskedastic, we report the heteroskedasticity and autocorrelation consistent (HAC) standard errors.16 We present
oth the full model and the final model. The former includes all variables from Eq. (13), except those eliminated due to collinearity,
hile the latter comprises the variables remaining after step-by-step significance elimination. In the final model, the effects of

ignificant variables have the same direction as the ones of the full model and their effects are mostly more pronounced. As there
re no radical differences between the full and the final model and the adjusted coefficients of determination are not distinguishable
fter rounding, we interpret the final model only.

From the most general perspective, the total connectedness dynamics can be explained through a combination of both crypto
arkets-related effects as well as the influence of the traditional market, building on the previously documented interplay between

ryptocurrency market dynamics and traditional financial markets (Zeng et al., 2020).

15 This dataset is two observations shorter than the underlying dataset of log returns used to compute the realized volatility measures because the dynamic
etwork model employed to calculate the dependent variables 𝐻 and  is of autoregressive order 2.
16 The lag length selection procedure to obtain HAC standard errors follows the standard formula 0.75 × 𝑇 1∕3 as recommended by Stock and Watson (2003).
14 
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Starting from the crypto-related ones, we find that Bitcoin often goes against the total connectedness of the market. The effects
f both on-chain (active addresses) and off-chain (trades on Binance) have negative effects on connectedness. This relates to Bitcoin
ften surging first, only being followed by the rest of the market. When the number of active addresses on the Bitcoin blockchain goes
p by 1%, the expected decrease in connectedness is around 0.26. This is a huge effect. However, it will be at least partially mitigated
y the positive effect in Ethereum as one expects the active addresses to grow for ETH also (when the active addresses go up for
TC) and the joint effect of BTC and ETH fees which will likely go up when the activity on both networks goes up. Nevertheless,
he effect of the on-chain activity in Bitcoin is considerate and is well in hand with our previous research (Kukacka and Kristoufek,
023). Also, note that a 1% change in active addresses is almost a 𝜎-event. We see similar interactions in the off-chain interactions
s the effects of Ethereum and altcoins volumes boost connectedness while Bitcoin trades push it down. The role of trading volume
n affecting market connectedness is documented by Kurka (2019). In contrast to the on-chain activity, the off-chain activity of ETH
nd altcoins overpowers the negative push of BTC on total connectedness. Previous studies have indicated that off-chain activities,
uch as trading volumes (Charfeddine et al., 2022; Ji et al., 2019; Andrada-Félix et al., 2020; Balcilar et al., 2017), are crucial drivers
f total connectedness and significantly influence market dynamics, often outweighing on-chain activities (Hasan et al., 2021). As
olume and trades are more volatile than the active addresses, the variability in the off-chain trading activity is worth following
ore for a practitioner as the 1% events are more likely there and the effects of similar albeit lower magnitude. Therefore, following
trading (off-chain, exchange) activity of these three baskets can give valuable insights into the (at that time) latent connectedness

volution, similar to the on-chain (transactional) activity but with a slightly lower importance. The momentum of altcoins stands
lone and plainly says that when altcoins shoot up, they detach from the dynamics of the rest, i.e., Bitcoin and Ethereum, which is
hat we often observe in the crypto markets.

Moving to the factors outside of the crypto sphere, we find VIX, EPU, Baltic Dry, and Gold to be significant, which corroborates
he results of Walther et al. (2019) and Balli et al. (2020) but goes partially against Sapkota (2022), Ji et al. (2019), Charfeddine
t al. (2022) or Andrada-Félix et al. (2020), who also represented financial market by including the S&P500 index. It is thus evident
hat information, or rather uncertainty, from the traditional and macro markets transmits to the crypto markets. Interestingly, none
f the direct monetary measures (interest rates and break-even inflation) are part of the final model. Starting from the financial
ncertainty represented by VIX and EPU, we see that the effects of the two are partially offset, as these are quite highly correlated
0.53). However, they do not offset completely, highlighting the complex relationship between financial uncertainty measures and
arket connectedness, emphasizing the nuanced impact of these variables (Wang et al., 2021). The increasing uncertainty in the

raditional financial markets thus comes together with connectedness moving upwards, pushing the crypto markets together. The
lobal economic activity, measured by the Baltic Dry index, is tied with loosening connectedness, making space for diversification in
rypto. However, all three of these uncertainty measures are on the edge of statistical significance, and following them for qualitative
xpectations about the underlying connectedness dynamics certainly has some reliability questions attached. On the other side, the
rice of gold has a strong, clearly significant effect on the connectedness. In magnitude, the effect is massive, underlying the results
f many previous studies on the relationship between crypto assets and gold (Shahzad et al., 2019; Bouri et al., 2020; Zeng et al.,
020). A 1% change in the price of gold has an expected opposite change of 0.75 in connectedness. However, the price of gold is
lso remarkably stable, and such a 1% change is, in fact, around a 1.35𝜎 event. Gold is only weakly correlated with other significant
acro and financial variables, and its effect is thus not marginalized much by such factors. It is also very mildly correlated with

ll momentum metrics, thus partially overtaking mostly the Bitcoin momentum effect from the full model. Lastly, gold is highly
orrelated (0.74) with the S&P500 index, which had been eliminated due to collinearity in the early stages of modeling. Gold thus
ikely carries at least part of the information about dynamics of the overall capital market as well, maybe even more so than being a
easure of uncertainty in the system as it is not correlated, or only weakly, with the other factors connected to such type uncertainty.
ither way, gold is evidently a crucial factor to follow.

Overall, the final model clearly shows that the connectedness can be explained by a palette of factors. The 𝑅2 of 0.42 validates the
esults with respect to the quality of the fit. There are no autoregressive components in the model, as we are interested in explaining
he driving factors rather than simply modeling the serial correlation of the series. As the model residuals are stationary (based on the
esults of the ADF and KPSS tests), the autoregressive components are not needed, as there is no strong serial correlation that would
nvalidate the results. The results offer clear sets of variables to follow for an interested party, which in our case comprises mostly
ortfolio managers but also regulators. As connectedness is observable mostly ex-post, the identified clusters of variables provide
alid indicators of changes in the underlying connectedness mechanism. Importantly, we identified that most of the variable baskets
re relevant—momentum, on-chain activity, off-chain (exchanges) activity, financial uncertainty, and economic uncertainty (and
he financial market performance only indirectly via gold). Following these groups and interactions within can serve as hands-on
ndicators that can be further translated into specific portfolio re-balancing decisions. For regulators, it is more important to follow
he asymmetries, and we continue with the results there forth.

.3. Model for asymmetry in connectedness

Section 5.3 shows that there is a strong asymmetry present between the connectedness of good and bad volatility. This is
videnced by mostly negative . The dataset and the variable selection procedure for this model are the same as for the total

onnectedness model above. The final estimated model specification for the asymmetry in connectedness for good and bad volatility
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after variable selection has the following form:

𝑡 = 𝛽0 + 𝛽6 log(𝐹𝑒𝑒𝑠)𝐵𝑇𝐶+𝐸𝑇𝐻,𝑡 + 𝛽9 log(𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦)𝐵𝑇𝐶,𝑡 + 𝛽10 log(𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦)𝐸𝑇𝐻,𝑡

+𝛽19 log(𝑉 𝐼𝑋)𝑡 + 𝛽21𝐼𝑅𝑡 + 𝛽25 log(𝐺𝑆𝐶𝐼)𝑡 + 𝜀𝑡 (14)

Table 1 summarizes the results from the estimated model, covering the factors driving such asymmetry. The asymmetry towards
igher connectedness in bad volatility is represented by negative values of . Also, the asymmetry is mostly negative, and we
ust interpret the results accordingly. Note that this is a contradiction with the previous results of Baur et al. (2018), who report

hat positive shocks increase volatility more than negative shocks, which contrasts with traditional financial markets. Our newer
ataset thus provides new insights even at this very basic level. Back to the interpretation of the estimated model, the negative
stimated partial effects need to be read as amplifying the asymmetry, while the positive estimated partial effects represent pushing
owards symmetry in the connectedness of good and bad volatility.

Starting with the crypto-related factors, we find the fees and velocities of Bitcoin and Ethereum to be significant. The increasing
ees, as a measure of transactional activity on-chain and thus also a measure of congestion of the network(s), are linked with
ncreasing asymmetry in connectedness. When fees on BTC and ETH increase by 1%, it is expected that the asymmetry increases
gets more negative) by 0.05. In its amplitude, this seems like a tiny effect, but note that the fees are highly variable, with a mean
alue of 1.96 and a standard deviation of 1.23. Putting this together with the estimated effect of fees on the total connectedness
eing positive, it means that the increasing on-chain activity is connected to the market moving together. Still, this joint movement
s more pronounced with respect to the negative volatility. Therefore, if the market is highly congested, it will tend to fall more
ogether than in the case of upward volatility and connected market congestion, supporting the results of Cheikh et al. (2020) who
ound that increased on-chain activity correlates with higher market connectedness, particularly during periods of market downturns.
ollowing fees is thus more important for regulators who are more interested in the negative events than the portfolio managers.
he estimates on the effects of velocity tell an additional detail that an increased on-chain activity on the Ethereum blockchain
ushes the connectedness further towards asymmetry, at least compared to Bitcoin goes against it but does not compensate for it
ompletely (with the estimated effects of 6.97 and −8.56 for BTC and ETH, respectively, and correlation between the two at 0.54).
ven though the Ethereum velocity is insignificant for the total connectedness model, its estimated effect is still positive. This aligns
ith Katsiampa (2019), who found significant effects of past shocks and volatility on the connectedness of major cryptocurrencies,
ighlighting the distinct behaviors of Bitcoin and Ethereum in response to market conditions. This leads to a similar interpretation
f the network fees in terms of total connectedness and asymmetry.

Moving on to the non-crypto variables, we find that VIX, the interest rate, and the GSCI index are the only statistically significant
ariables. Note that none of the macroeconomic variables has been found significant for the total connectedness model. Starting
ith the energy index, this one mostly overtakes the role of gold in the full model (correlation of 0.38 with gold and 0.75 with
&P500), and with its strong positive effect on the asymmetry, it relates to the situations when the connectedness in good and bad
olatility are closer to the balance. As the index majorly represents the overall financial economy growth (due to its high correlation
ith the stock index), its positive effect on the asymmetry indicates that when the financial markets grow, there is no additional

isk towards the negative volatility in crypto. In other words, as a regulator or someone interested mainly in the negative events
nd their implications, seeing the global financial market grow does not signify an additional risk in a more pronounced downturn
n crypto. The risks become closer to symmetric. The effect of VIX provides an additional layer to the story. Its positive estimated
ffect indicates that the connectedness tends to have symmetric effects when the uncertainty in the traditional financial markets
s high. This challenges the results of Balli et al. (2020), who claim that the higher economic uncertainty comes together with
ower connectedness in crypto assets but is in hand with (Hasan et al., 2021), who report that financial uncertainty, as captured
y VIX, plays a critical role in the dynamics of connectedness, particularly in enhancing symmetry during periods of high market
olatility. The market apparently evolves but our extensive analysis also stresses how important it is to control for a large set
f variables, covering various aspects in the complex network of connections between economic, financial, and crypto markets.
utting this together with the GSCI effect, the most critical situations for the policymakers and regulators in crypto come when
he traditional markets are tranquil, and an unexpected negative shock comes. This will translate into pronounced asymmetry in
he crypto connectedness and might lead to a plunge in the broader crypto market. This emphasizes the need to understand the
ynamics and asymmetries specifically under different economic conditions and varying market environments (Mensi et al., 2020),
nd it represents just one of the exemplary scenarios that come from our analysis, contributing to the practice of regulators that
ill be becoming more important in the coming years with crypto assets penetrating into the legacy financial markets. We identify

nterest rate among the dominant variables associated with the asymmetry, which generally follows the findings by Corbet et al.
2020a); however, it does not correspond entirely to Corbet et al. (2020b,a), Walther et al. (2019) and Charfeddine et al. (2022),
ho also detect inflation among important drivers. The negative estimated effect of the interest rate suggests when the interest rates
re high, and thus the monetary policy is tight, the crypto market is more sensitive and more likely to correct downwards rather
han surge. Finally, the adjusted coefficient of determination of 0.26 for the asymmetry regression indicates a good fit but also that
uch of the variation remains unexplained. As our starting set of variables is rather broad, we attribute that unexpected events and

hocks in the system remain major moving forces.

. Conclusion

Cryptocurrencies form a special set of assets with unique statistical and dynamic properties compared to those of traditional

inancial assets such as stocks or Forex rates. Studying how the volatilities of different crypto assets in a portfolio interact, specifically
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through volatility spillovers, is crucial for portfolio managers and other market participants due to the unprecedented levels of
risk and uncertainty involved. Traders, especially those focused on different market phases, are keenly interested in volatility
spillovers during market upturns and downturns. We analyze this phenomenon by examining the connectedness between good
and bad volatility.

The crypto market, represented by the set of 8 large crypto assets, shows an evolution of connectedness that is unseen in
raditional financial markets. The measure oscillates in a much wider range, repeatedly phasing between the times of high and low
onnectedness. Most of these periods can be linked to historical events, both crypto market-related and standard macroeconomic or
onetary policy events. The market also shows a high degree of asymmetry in the connectedness between good and bad volatility,

epresenting large upward and downward swings. Evidence points towards the domination of higher connectedness due to bad
olatility. This suggests that crypto market downturns usually spill over substantially faster than comparable market surges.

While specific historical events can account for periods of both high and low connectedness, as well as pronounced asymmetry,
he overall dynamics are effectively explained by a combination of factors such as blockchain activity, market momentum,
acroeconomic conditions, and monetary policy. We show that it is essential to follow a rich set of variables of various types to

ssess the underlying dynamics of connectedness that are not readily observable. Momentum, on-chain activity, off-chain activity,
nd financial and economic factors of the non-crypto nature all play their role in explaining the connectedness dynamics. Our
indings can thus be utilized, e.g., to dynamically tailor existing risk management strategies to enhance portfolio resilience for crypto
nvestors and fund managers. Furthermore, the identified key empirical factors of connectedness can be utilized by traders to develop
redictive models for significant crypto market events or to create early warning systems. Next, new DeFi or blockchain-based
nstruments that dynamically adjust their risk exposure to good and bad volatility can be developed by financial innovators.

In addition, we propose a somewhat unconventional approach to understanding and explaining connectedness and its asymmetry
n the crypto market. The conventional method involves identifying factors influencing returns and risk premiums. We concentrate
n explaining connectedness and its asymmetry, aiming to uncover and clarify the drivers behind it and dive deeper into its
nderlying dynamics. This endeavor would be challenging with traditional financial assets that lack the rich data structures of
lockchain-based assets. We are aware that the current riskiness, regulatory uncertainty, and other specifics prevent our results from
onveying generalizations concerning the connectedness, asymmetry, and their drivers to traditional financial assets. However, our
mpirically driven modeling approach can be integrated by regulatory authorities once cryptocurrencies become more standardized
inancial products, which now seems to be only a matter of time. Moreover, our main results may offer a valuable approximation for
nderstanding the deeper dynamics of traditional assets. The aggressive policies of the U.S. Securities and Exchange Commission
n 2022 and 2023 and the active regulatory approach in the EU through their markets in crypto-assets (MiCA) regulation could
ndeed diverge. However, if the regulatory stance continues to outweigh dismissive attitudes, the unprecedented data depth of
lockchain-based assets may play a vital role in many aspects of modern financial research.

The connectedness measures presented in this paper can generally be used to model a common factor stemming from network
onnections between asset returns or volatilities. This aspect is particularly intriguing within the emerging asset pricing literature in
he cryptocurrency domain, especially in the context of calculating risk premia. However, we leave the exploration of this application
s a potential avenue for future research.
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ppendix A. Descriptive statistics

See Tables A.2–A.8.

Table A.2
Descriptive statistics of the RV time series for individual crypto assets. Based on a daily dataset covering the period from July 5,
2019, to May 31, 2024, i.e., 1793 observations. For the ADF tests, we report test statistics, and in all cases, the null hypothesis
of unit root presence in the series is rejected at the 99% confidence level. We also report test statistics for the Zivot-Andrew test
with a null hypothesis of series having a unit root with a single structural break in the last row, and the null hypothesis is also
always rejected at the 99% confidence level.

mean std max min skewness kurtosis median ADF test ZA test

ADA 0.003 0.010 0.32 0.0 21.91 665.71 0.0 −11.65 −12.52
BNB 0.002 0.007 0.17 0.0 14.78 302.66 0.0 −11.03 −11.75
BTC 0.001 0.004 0.11 0.0 18.34 455.61 0.0 −11.43 −12.96
DOGE 0.006 0.028 0.88 0.0 20.69 578.21 0.0 −5.27 −6.06
ETH 0.002 0.006 0.16 0.0 18.08 443.41 0.0 −10.54 −11.24
LTC 0.003 0.007 0.17 0.0 14.99 322.73 0.0 −11.49 −12.47
TRX 0.002 0.007 0.15 0.0 13.71 260.41 0.0 −12.01 −13.18
XRP 0.004 0.010 0.21 0.0 10.55 164.60 0.0 −5.55 −7.30

Table A.3
Descriptive statistics of the positive realized semivariances (𝑅𝑆+) from Eq. (4). Based on a daily dataset covering the period
from July 5, 2019, to May 31, 2024, i.e., 1793 observations. For the ADF tests, we report test statistics, and in all cases, the
null hypothesis of unit root presence in the series is rejected at the 99% confidence level. We also report test statistics for the
Zivot-Andrew test with a null hypothesis of series having a unit root with a single structural break in the last row, and the null
hypothesis is also always rejected at the 99% confidence level.

mean std max min skewness kurtosis median ADF test ZA test

ADA 0.002 0.005 0.16 0.0 22.17 664.94 0.0 −11.50 −12.39
BNB 0.001 0.003 0.10 0.0 16.76 384.72 0.0 −11.09 −11.79
BTC 0.001 0.002 0.07 0.0 22.78 687.17 0.0 −11.50 −12.13
DOGE 0.003 0.015 0.47 0.0 21.09 591.62 0.0 −5.31 −6.12
ETH 0.001 0.003 0.08 0.0 19.67 496.06 0.0 −10.48 −11.18
LTC 0.001 0.003 0.08 0.0 15.62 345.54 0.0 −11.32 −12.44
TRX 0.001 0.003 0.08 0.0 14.71 290.47 0.0 −12.48 −16.32
XRP 0.002 0.005 0.10 0.0 10.79 172.75 0.0 −5.15 −6.87

Table A.4
Descriptive statistics of the negative realized semivariances (𝑅𝑆−) from Eq. (5). Based on a daily dataset covering the period
from July 5, 2019, to May 31, 2024, i.e., 1793 observations. For the ADF tests, we report test statistics, and in all cases, the
null hypothesis of unit root presence in the series is rejected at the 99% confidence level. We also report test statistics for the
Zivot-Andrew test with a null hypothesis of series having a unit root with a single structural break in the last row, and the null
hypothesis is also always rejected at the 99% confidence level.

mean std max min skewness kurtosis median ADF test ZA test

ADA 0.002 0.005 0.16 0.0 20.90 625.71 0.0 −12.81 −13.65
BNB 0.001 0.003 0.07 0.0 13.03 234.01 0.0 −11.07 −11.79
BTC 0.001 0.002 0.04 0.0 14.91 290.70 0.0 −12.22 −12.82
DOGE 0.003 0.013 0.41 0.0 19.87 541.79 0.0 −5.25 −6.02
ETH 0.001 0.003 0.08 0.0 16.20 374.00 0.0 −10.71 −11.41
LTC 0.002 0.004 0.11 0.0 15.90 375.23 0.0 −9.90 −10.76
TRX 0.001 0.003 0.09 0.0 14.28 292.16 0.0 −11.89 −13.08
XRP 0.002 0.005 0.11 0.0 11.08 177.13 0.0 −5.66 −7.35
18 
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Table A.5
Descriptive statistics of the explanatory variables for Eq. (12). Based on a daily dataset covering the period from July 7, 2019,
to May 31, 2024, i.e., 1791 observations. ZA test is the test statistic for the Zivot-Andrews test with a null hypothesis of series
having a unit root with a single structural break, and ZA𝑝𝑣𝑎𝑙 is the 𝑝-value of the respective test.

mean std min median max ZA test ZA𝑝𝑣𝑎𝑙

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝐵𝑇𝐶 0.00 0.06 −0.53 0.00 0.22 −11.99 0.00
𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝐸𝑇𝐻 0.00 0.08 −0.67 0.01 0.32 −12.19 0.00
𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝐴𝑙𝑡𝑠 0.00 0.07 −0.45 0.00 0.47 −11.27 0.00
log(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠)𝐵𝑇𝐶 13.70 0.16 13.14 13.73 14.13 −3.63 0.60
log(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠)𝐸𝑇𝐻 13.10 0.26 12.18 13.15 14.22 −3.70 0.54
log(𝐹𝑒𝑒𝑠)𝐵𝑇𝐶+𝐸𝑇𝐻 1.96 1.23 −1.01 1.99 5.31 −4.57 0.10
log(𝐼𝑛𝑓𝑙𝑜𝑤)𝐵𝑇𝐶+𝐸𝑇𝐻 20.56 0.90 18.09 20.65 22.90 −4.21 0.23
log(𝑂𝑢𝑡𝑓𝑙𝑜𝑤)𝐵𝑇𝐶+𝐸𝑇𝐻 20.63 0.90 18.10 20.72 22.91 −4.21 0.23
log(𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦)𝐵𝑇𝐶 4.49 0.54 2.72 4.46 6.07 −6.05 0.00
log(𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦)𝐸𝑇𝐻 3.99 0.57 1.42 4.03 5.52 −5.42 0.01
log(𝐻𝑎𝑠ℎ𝑅𝑎𝑡𝑒) 19.09 0.60 17.79 18.98 20.40 −5.97 0.00
log(𝑉 𝑜𝑙𝑢𝑚𝑒)𝐵𝑇𝐶 11.03 0.77 9.10 10.91 13.54 −5.12 0.02
log(𝑉 𝑜𝑙𝑢𝑚𝑒)𝐸𝑇𝐻 13.16 0.66 10.98 13.15 15.36 −4.55 0.11
log(𝑉 𝑜𝑙𝑢𝑚𝑒)𝐴𝑙𝑡𝑠 21.61 0.82 19.49 21.51 25.56 −5.30 0.01
log(𝑇 𝑟𝑎𝑑𝑒𝑠)𝐵𝑇𝐶 14.08 0.85 12.16 14.01 16.54 −5.96 0.00
log(𝑇 𝑟𝑎𝑑𝑒𝑠)𝐸𝑇𝐻 13.24 0.82 11.08 13.38 15.53 −4.51 0.12
log(𝑇 𝑟𝑎𝑑𝑒𝑠)𝐴𝑙𝑡𝑠 13.82 0.99 11.34 13.80 17.01 −4.71 0.07
log(𝑆𝑃 500) 8.27 0.17 7.71 8.31 8.58 −4.58 0.10
log(𝑉 𝐼𝑋) 2.99 0.33 2.45 2.97 4.42 −4.69 0.07
𝐵𝐸𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 2.12 0.44 0.50 2.28 3.02 −4.19 0.24
𝐼𝑅 −0.11 1.70 −3.22 0.48 1.70 −4.02 0.34
log(𝐸𝑃𝑈 ) 4.92 0.61 2.39 4.87 6.93 −3.96 0.38
log(𝐵𝑎𝑙𝑡𝑖𝑐𝐷𝑟𝑦) 7.39 0.50 5.97 7.43 8.64 −4.11 0.29
log(𝐺𝑜𝑙𝑑) 7.50 0.10 7.24 7.51 7.79 −3.39 0.75
log(𝐺𝑆𝐶𝐼) 6.22 0.26 5.43 6.30 6.71 −3.13 0.87

Table A.6
Correlations of the daily RV time series based on the granularity of the underlying log returns for individual crypto assets. Based
on a daily dataset covering the period from July 5, 2019, to May 31, 2024, i.e., 1793 observations.

ADA 5-min 15-min 30-min 60-min BNB 5-min 15-min 30-min 60-min

5-min 1.00 0.94 0.89 0.91 5-min 1.00 0.97 0.96 0.92
15-min 0.94 1.00 0.97 0.93 15-min 0.97 1.00 0.95 0.89
30-min 0.89 0.97 1.00 0.95 30-min 0.96 0.95 1.00 0.97
60-min 0.91 0.93 0.95 1.00 60-min 0.92 0.89 0.97 1.00

BTC 5-min 15-min 30-min 60-min DOGE 5-min 15-min 30-min 60-min

5-min 1.00 0.98 0.93 0.88 5-min 1.00 0.98 0.96 0.97
15-min 0.98 1.00 0.95 0.91 15-min 0.98 1.00 0.98 0.98
30-min 0.93 0.95 1.00 0.97 30-min 0.96 0.98 1.00 0.99
60-min 0.88 0.91 0.97 1.00 60-min 0.97 0.98 0.99 1.00

ETH 5-min 15-min 30-min 60-min LTC 5-min 15-min 30-min 60-min

5-min 1.00 0.92 0.88 0.84 5-min 1.00 0.95 0.95 0.93
15-min 0.92 1.00 0.96 0.92 15-min 0.95 1.00 0.96 0.94
30-min 0.88 0.96 1.00 0.97 30-min 0.95 0.96 1.00 0.96
60-min 0.84 0.92 0.97 1.00 60-min 0.93 0.94 0.96 1.00

TRX 5-min 15-min 30-min 60-min XRP 5-min 15-min 30-min 60-min

5-min 1.00 0.93 0.91 0.89 5-min 1.00 0.93 0.90 0.89
15-min 0.93 1.00 0.92 0.88 15-min 0.93 1.00 0.94 0.91
30-min 0.91 0.92 1.00 0.96 30-min 0.90 0.94 1.00 0.95
60-min 0.89 0.88 0.96 1.00 60-min 0.89 0.91 0.95 1.00

Appendix B. Net spillover positions and fitted models

See Fig. B.4.
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Table A.7
Descriptive statistics of the total connectedness (𝐻 ), spillovers from volatility due to positive returns (+) and spillovers from
volatility due to negative returns (−). Based on a daily dataset covering the period from July 7, 2019, to May 31, 2024, i.e.,
1791 observations. For the ADF tests, we report test statistics, and in all cases, the null hypothesis of unit root presence in the
series is rejected at the 99% confidence level. We also report test statistics for the Zivot-Andrew test with a null hypothesis of
series having a unit root with a single structural break in the last row, and the null hypothesis is also always rejected at the
99% confidence level.

mean std max min skewness kurtosis median ADF test ZA test

𝐻 47.37 21.49 87.26 17.37 0.30 1.76 45.71 −5.80 −7.41
+ 41.71 20.70 87.16 17.23 0.67 2.24 36.54 −5.17 −6.62
− 51.43 21.45 87.25 17.15 0.08 1.65 52.04 −6.09 −7.53

Table A.8
Descriptive statistics of the net position of the directional spillover index (𝐻 ), that is the top panel from Fig. B.4. Based on a
daily dataset covering the period from July 7, 2019, to May 31, 2024, i.e., 1791 observations. For the ADF tests, we report test
statistics, and in all cases, the null hypothesis of unit root presence in the series is rejected at the 99% confidence level. We also
report test statistics for the Zivot-Andrew test with a null hypothesis of series having a unit root with a single structural break
in the last row, and the null hypothesis is also always rejected at the 99% confidence level.

mean std max min skewness kurtosis median ADF ZA test

ADA 0.10 0.77 2.70 −2.07 0.53 3.79 −0.05 −5.63 −6.57
BNB −0.18 0.70 1.55 −2.73 −0.66 4.67 −0.13 −7.10 −7.59
BTC 0.24 0.75 2.97 −2.65 0.27 4.35 0.06 −6.46 −7.01
DOGE −0.83 1.07 3.79 −4.56 −0.43 5.15 −0.51 −8.14 −9.08
ETH 0.28 0.83 2.84 −2.31 0.26 3.98 0.08 −6.10 −7.18
LTC 0.36 1.00 3.47 −4.27 −0.54 6.27 0.14 −6.44 −6.63
TRX −0.07 0.88 2.99 −2.72 0.59 3.82 −0.15 −6.11 −8.72
XRP −0.10 0.96 2.77 −4.75 −0.42 6.02 −0.10 −5.98 −6.61

Fig. B.4. Net spillover positions of individual crypto assets.The top panels show the net directional spillover index and the bottom panels show the net directional
position for the positive and negative spillover index.
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