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Abstract
We present an approximation technique for solving multistage stochastic 
programming problems with an underlying Markov stochastic process. This process 
is approximated by a discrete skeleton process, which is consequently smoothed 
down by means of the original unconditional distribution. Approximated in 
this way, the problem is solvable by means of Markov Stochastic Dual Dynamic 
Programming. We state an upper bound for the nested distance between the exact 
process and its approximation and discuss its convergence in the one-dimensional 
case. We further propose an adjustment of the approximation, which guarantees 
that the approximate problem is bounded. Finally, we apply our technique to a real-
life production-emission trading problem and demonstrate the performance of its 
approximation given the “true” distribution of the random parameters.
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1 Introduction

Stochastic programming evolved from its deterministic counterpart by the realiza-
tion that the parameters influencing the objective function and constraints are usually 
uncertain, coming from the real world around us. Real world applications range from 
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economy to biology or logistics and engineering. Developments in this field led to 
multistage stochastic programming, which allows for resolving multiple stages of the 
decision-making and data processes. Such models capture the dynamics of the under-
lying random process, and we are able to adjust our decisions based on the random 
parameters observed so far. Our decisions cannot depend on the parameters which are 
still uncertain and will be resolved in future stages; in other words, the decisions fulfill 
the notion of nonanticipativity. Even though we can describe this generalization in a 
straightforward manner, it brings substantial issues with theoretical properties, random 
process models and tractability. The applicability of such models often depends on the 
structure of the problem we are trying to solve. Multistage stochastic models have pro-
vided us with valuable improvements over the two-stage models in certain particular 
cases, usually involving a complex time-dependent structure. Such examples can be 
found, for instance, in finance (e.g. Pflug 2001), energy management (e.g. Pereira and 
Pinto 1991) or transportation (e.g. Cavagnini et al. 2022).

There are two usual ways to describe uncertainty in the stochastic programming mod-
els. The first approach is to collect some historical values or experts’ opinions and pro-
duce a discrete distribution that consists of scenarios with assigned probabilities. The 
second approach is to assume that the random inputs follow a certain continuous distri-
bution and estimate its parameters from the data or use the experts’ opinions to choose 
those parameters. When a continuous distribution is selected, sampling methods are 
commonly used to convert it to the discrete version in order to obtain a numerically trac-
table approximation; see, for example, Pflug and Pichler (2014). For large-scale prob-
lems, we are unable to compute precise solutions even for such discrete approximations.

Most of the stochastic programming models optimize the expected outcome of the 
random costs or returns. The resulting decisions are optimal on average, but possi-
ble risks are neglected. In many cases, this goal need not necessarily be appropriate 
because such decisions could produce a very unsatisfactory performance or, under the 
worst-case scenarios, even lead to bankruptcy. First developments in modeling risk 
aversion by using utility functions can be found in Bernoulli (1954), or a more formal 
and precise description in Von Neumann and Morgenstern (1944). Other significant 
ways to produce more robust solutions include mean-risk models. These bi-criterial 
models aim to find an efficient solution with respect to maximization of the mean 
return and minimization of the risk which is linked to the future uncertainty. Basics 
of the mean-risk concept using variance and semivariance as a measure of the risk 
were published in the article (Markowitz 1952) and book (Markowitz 1959) by Harry 
Markowitz back in the 1950  s. In recent years, risk-averse stochastic optimization 
based on various risk measures has been receiving significant attention. The properties 
required of coherent risk measures, introduced in Artzner et al. (1999), are now widely 
accepted for time-static risk-averse optimization. One of the most popular risk meas-
ures, Conditional Value at Risk (CVaR, see Rockafellar and Uryasev 2002), is known 
to satisfy these properties; for an overview of many others see, for instance, Krokhmal 
et al. (2011). A number of proposals have been put forward to extend the concept of 
coherent risk measures to handle multistage stochastic optimization.

Due to the complexity of stochastic programs, discussed, for example, in Shapiro 
and Nemirovski (2005), approximations are often employed. Monte Carlo sampling 
and scenario approximations had been used even before they were given the name 
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of Sample Average Approximation in the article by Kleywegt et al. (2001). Approxi-
mate solutions depend on the particular set of sampled scenarios and are therefore 
random in general. Such approximate solutions require statistical validation, which 
is usually based on performing multiple replications and examining the stability of 
solutions and objective values, see Bayraksan and Morton (2011) for a summary of 
available methods. Scenario-based stochastic programs can often be reformulated as 
one large-scale standard optimization program, and such a program can be directly 
solved by solvers like CPLEX, Gurobi or COIN-OR. The reformulated programs 
are usually very large and require long solving times or are not solvable at all. This 
aspect led to the development of algorithms which exploit the special structure of 
stochastic programs and take advantage of particular properties, such as convexity. 
Optimization problems containing integer variables are known to be very hard to 
solve in general, and they are, of course, even more demanding in the stochastic set-
ting. Most of the recent algorithms employ a technique of building so-called cuts on 
the feasible space or objective function. These cuts are used to eliminate infeasible 
or suboptimal decisions, or to approximate the objective function. The basic algo-
rithm–Benders’ decomposition, sometimes called the L-shaped method, was devel-
oped by Benders (1962), see also Van Slyke and Wets (1969). Many improvements 
of this basic algorithm have been proposed, especially the multicut method by Birge 
and Louveaux (1988), regularized decomposition by Ruszczyński (1986), and sto-
chastic decomposition by Higle and Sen (1991). These decomposition algorithms 
usually provide an approximate solution and control its quality by computing lower 
and upper bounds on the true optimal objective value.

The structure of recourse functions in the multistage stochastic programs is 
particularly difficult from the algorithmic perspective. If we transform a multistage 
stochastic program into a dynamic programming recursion, the last-stage program 
can be solved by the algorithms mentioned above. For the preceding stages, we need 
to realize that the precise form of the recourse function cannot be obtained, and we 
need to rely on its approximation, provided by the cuts. Therefore we are recursively 
accumulating approximation error, which leads to slower convergence and requires 
further validation of correctness. The basic multistage decomposition algorithm, 
Nested Benders’ decomposition (Birge 1985), applied to a multistage stochastic 
program, requires computational effort that grows exponentially in the number of 
stages. Other important algorithms designed to solve multistage stochastic programs 
include extensions of stochastic decomposition to the multistage case (Higle et al. 
2010; Sen and Zhou 2014), progressive hedging (Rockafellar and Wets 1991), and 
stochastic Dual Dynamic Programming (SDDP) (Pereira and Pinto 1991). SDDP 
will be used as the main solution technique for multistage stochastic programs in 
this article.

SDDP originated in the work of Pereira and Pinto (1991), and inspired a number 
of related algorithms (Chen and Powell 1999; Donohue and Birge 2006; Linowsky 
and Philpott 2005; Philpott and Guan 2008), which aim to improve its efficiency. 
SDDP-style algorithms have computational effort per iteration that grows linearly in 
the number of stages. To achieve this, SDDP algorithms rely on the assumption of 
stage-wise independence, which is rarely fulfilled in practice, especially in financial 
applications. The requirement of time-independence can sometimes be circumvented 
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by a suitable reformulation of the decision problem – see, e.g., Kozmík and Morton 
(2015) working with (independent) returns rather than (time-dependent) prices or 
(Löhndorf and Shapiro 2019) using artificial decision variables; however, in the 
majority of real-life applications, nothing similar is at our disposal. A relatively 
recent modification of the SDDP (Philpott et  al. 2013), which we call Markov 
SDDP, permits the underlying process to be conditioned by a finite Markov chain, 
which allows us to approximate a time-dependent underlying process by a hidden 
Markov model. However, as the Markov chain has to be sparse for computational 
reasons, the original process is approximated only roughly, which may result 
in serious errors. When CVaR is used as a risk measure, the discretized version 
may completely fail to approximate the original problem because the tails of the 
distribution are approximated at most by several atoms, or even a single one; this 
feature causes CVaR to degenerate into the worst-case risk measure: instead of a 
risk-averse problem, we would thus solve a minimax one.

In this paper, we overcome the latter problem by proposing a novel approximation 
technique, which we call smoothed quantization, consisting of two steps at each 
stage t. In the first step, the exact (conditional) t-th stage distribution is approximated 
by its quantization, i.e., an atomic distribution with the probabilities equal to the 
exact (conditional) probabilities of pre-chosen regions surrounding its atoms (see 
Löhndorf and Shapiro 2019, Kreitmeier 2011 or Pflug 2001). In the second step, the 
quantization is smoothed down by means of the exact unconditional distribution, 
restricted to those regions. In result, the shape of the approximation resembles that 
of the original distribution with the first-stage approximation being equal to the 
original distribution. This approximating process remains dependent on the past 
only through a finite number of possible values, which allows us to use the Markov 
SDDP to solve optimization problems with time-dependent underlying processes 
(approximated by our technique).

To measure the accuracy of our approximation, we use nested distance, denoted 
by d , which has been specifically designed for multistage stochastic programs 
(see Pflug and Pichler 2012 or Pflug and Pichler 2014). Under certain conditions 
mentioned in Pflug and Pichler (2014), Theorem 6.1:

holds true where � and � stand for the exact process and its approximation, 
respectively, K is a constant, and v(∙) is the corresponding value function. This 
could help us keep the approximation error (the l.h.s. of (1)) under control, but the 
above-mentioned “certain conditions” are rarely fulfilled in practice. Even though 
we might expect for (1) to hold locally, we demonstrate later that the left-hand side 
of (1) is infinite for some approximations � . Nevertheless, in our opinion, the nested 
distance is still the most suitable metric for measuring approximations of random 
parameters in multistage stochastic programming (see e.g. Pflug and Pichler 2016 
for relevant arguments).

The computation of the nested distance for general � is intractable and even deter-
mining the optimal skeleton (in a certain particular sense of optimality as described 
in Löhndorf and Shapiro (2019)) leads to non-trivial non-convex optimization 

(1)|v(�) − v(�)| ≤ Kd(�, �)
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problems. Hence we give up on finding the optimal approximation. Instead, we state 
an upper bound of the nested distance between the exact process and its smoothed 
quantization and, in the one-dimensional case, we show that this distance converges. 
Further, we discuss settings of the approximation’s parameters so that the distance 
is kept small, and propose a refinement of the approximation guaranteeing that the 
approximated problem is bounded. Finally, we apply our approximation technique to 
a real-life optimal production and emission trading multistage problem and test the 
performance of the approximate solution w.r.t. the exact distribution of the underly-
ing process.

The paper is organized as follows. After the introduction of the risk-averse multi-
stage problem (Sect. 2) and the discussion of the nested distance (Sect. 3), we intro-
duce the smoothed quantization (Sect. 4) and we discuss the choice of its parameters 
and its refinement (Sect. 5). The practical illustration is then presented (Sect. 6) and 
the paper is concluded (Sect. 7). Auxiliary results are provided in the Appendix.

2  Risk averse multistage problem

In line with (Kozmík and Morton 2015), we consider the risk-averse T-stage linear 
stochastic programming problem:

Here, b0 ∈ ℝ
j0 , c0 ∈ ℝ

d0 are deterministic vectors, A0 ∈ ℝ
j0×d0 is a deterministic 

matrix. Further, for each 1 ≤ t ≤ T  , bt ∈ ℝ
jt and ct ∈ ℝ

dt are (possibly random) 
vectors and At ∈ ℝ

jt×(dt−1+dt) is a (possibly random) matrix. Symbol ′ denotes 
transposition. The dimensions, d0,… , dT and j0,… , jT are deterministic. Finally, 
(Ft)t=0,…,T is the filtration generated by process (At, bt, ct)0≤t≤T , and � is a nested risk 
measure defined as

where, for each 1 ≤ t ≤ T  , �t is a conditional risk mapping, i.e., a convex, monotone 
and translation invariant function from the space of integrable Ft-measurable 
real functions into the space of integrable Ft−1-measurable real functions (see 
Ruszczyński and Shapiro 2006, Definition 2.1).

One of the most frequent choices for �∙ is the mean-CVaR risk mapping, defined 
as

where 0 ≤ � ≤ 1 is a risk-aversion parameter and � ∈ [0, 1) is the CVaR level (see 
e.g. Rockafellar and Uryasev 2002 for the discussion of CVaR and its evaluation 
within stochastic programs).

(2)

inf �(c�
0
x0,… , c�

T
xT )

s.t. x0 ∈ ℝ
d0
+ , A0x0 = b0,

xt ∈ ℝ
dt
+ , xt ∈ Ft, At

[
xt−1
xt

]
= bt, 1 ≤ t ≤ T .

�(z0,… , zT ) = z0 + �1(z1 + �2(z2⋯ + �T (zT ))), zt ∈ Ft, 0 ≤ t ≤ T ,

�t(z) = (1 − �)�(z|Ft−1) + �CVaR�(z|Ft−1), 1 ≤ t ≤ T ,



2084 M. Šmíd, V. Kozmík 

1 3

Without loss of generality,1 we assume that

where � is a Markov process taking values in ℝp with deterministic �0 , � is a 
time-independent stochastic process taking values in ℝq with deterministic �0 , 
independent of � , and, for each 0 ≤ t ≤ T  , Ξt ∶ ℝ

p+q
→ ℝ

jt×(dt−1+dt), �t ∶ ℝ
p+q

→ ℝ
jt 

and �t ∶ ℝ
p+q

→ ℝ
dt are measurable mappings.

As it has already been mentioned, the computationally easiest situation occurs 
when the random parameter of the problem is time-independent, i.e., � ≡ 0 . A 
problem with a time dependence may sometimes be reformulated as a problem 
dependent only on an i.i.d. underlying process. If, for instance,

where Bt is a deterministic matrix, �t ∶ ℝ
q
→ ℝ

jt is a mapping, and 
�t = C + D�t−1 + �t , 0 < t ≤ T  , for some time-independent vector process � and 
deterministic matrices C, D, then bt may be made dependent only on an i.i.d. random 
process by adding a vector of artificial variables yt and constraints bt = Btyt + �t(�t) , 
yt = C + Dyt−1 + �t for each 1 ≤ t ≤ T  . If, alternatively, �t = C�t−1�t is true for a 
certain matrix C, then the second constraint would be yt = C�tyt−1 . Unfortunately, 
a similar transformation cannot be done for At or for ct , since for both of them this 
would bring multiplication of decision variables into the optimization problem, 
destroying its convex structure. That said, many cases of inter-stage dependence 
cannot be circumvented by reformulations.

3  Nested distance

In this Section, we discuss the notion of nested distance, introduced in Pflug and 
Pichler (2012) and further elaborated in Pflug and Pichler (2014). Contrary to 
Pflug and Pichler (2014), we do not proceed in full generality; instead, we restrict 
ourselves to distributions of vector-valued stochastic processes, and we take the l1 
norm as the only distance function. The main reason for choosing l1 is the fact that 
it can be expressed as a sum of its one-dimensional counterparts, see below or Šmíd 
(2009) for detailed explanation.

Nested distance is defined by means of conditional probabilities. Before proceed-
ing, let us recall that, having two measurable spaces (A,A) and (B,B) , the condi-
tional distribution of a random element � ∈ A given a random element � ∈ B may 
be understood either as a collection of random variables (ℙ[� ∈ S|�(B)], S ∈ A) , or 
as a random measure, i.e., a mapping �(∙|▴) ∶ A × B → [0, 1] such that, for fixed 
b ∈ B , �(∙|b) is a probability distribution and, for fixed S ∈ A , �(S|▴) is measurable 
(see Kallenberg 2002, Chap. 1.). In the present paper, we understand conditional 
probabilities in the latter sense. Moreover, once �(∙|▴) is the (random-measure 

(3)At = Ξt(�t, �t), bt = �t(�t, �t), ct = �t(�t, �t), 0 ≤ t ≤ T ,

(4)bt = Bt�t + �t(�t), 1 ≤ t ≤ T ,

1 Recall that non-Markov processes may be transformed to Markov processes by adding their history 
into the state space.
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version of a) conditional distribution of � given � , we put ℙ[� ∈ ∙|� = ▴]
def
=�(∙|▴) , 

ℙ[� ∈ ∙|�]def=�(∙|�) and, by writing �(▴) , we mean the mapping from B into the 
space of probability distributions on A defined by �.

Until the end of this Section, let p ∈ ℕ ⧵ {0} and let � and � be processes 
defined on {0,…T} taking values in ℝp with deterministic �0 = �0 and with finite 
first moments. Further, for any collection (x0,… , xt) where x� ∈ ℝ

p , 0 ≤ � ≤ t , put 
xt

def
=(x1,… , xt) , and put p̄T

def
=Tp.

Definition 1 Let Bpdef=B(ℝp) be the Borel sigma-field on ℝp . Let P and Q be 
probability distributions, both defined on (ℝp,Bp) . A probability measure � on 
(ℝp ×ℝ

p,Bp ⊗ B
p) is called transportation from P into Q if P and Q are its mar-

ginal distributions, i.e.,

for each A ∈ B
p and

for each B ∈ B
p.

Definition 2 Let L(X) denote a distribution of random element X. A probability 
measure � on (ℝ2p̄T ,B(ℝ2p̄T )) is called nested transportation from L(�) to L(�) (or, 
briefly, from � to � ) if, for each 1 ≤ t ≤ T  , �(�t, �t ∈ ∙|�t−1, � t−1)2 is a transportation 
from ℙ[�t ∈ ∙|�t−1] into ℙ[�t ∈ ∙|� t−1].

Definition 3 The nested distance between � and � is defined as

where ‖x‖ =
∑n

i=1
�xi� for any x = (x1,… , xn)� ∈ ℝ

n.

Remark 1 For T = 1 , d coincides with the Wasserstein distance, which we later 
denote by d (see Pflug and Pichler (2014) or Villani (2003) for the definition and the 
properties of the Wasserstein distance).

(5)�[A ×ℝ
p] = P(A)

(6)�[ℝp × B] = Q(B)

d(𝜉, 𝜍) = inf
𝜋 ∫

ℝ
2p̄T

‖x − y‖𝜋(dx, dy)
s.t.𝜋 is a nested transportation from 𝜉 to 𝜍,

2 Understanding � as a distribution on (ℝp)2T , �(�
t
, �

t
∈ ∙|�

t−1, � t−1) denotes the conditional distribution 
of components (t,T + t) given components (1,… , t − 1,T + 1,T + t − 1).
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Remark 2 Our definition of nested distance is equivalent to that from (Pflug and 
Pichler 2012). In particular, our Definition 2 is equivalent to Definition 1 from 
(Pflug and Pichler 2012) with Ω = Υ = ℝ

p̄T , Ft = Gt = B
p̄t ⊗ {�,ℝ}p̄T−p̄t therein.3

Proof See Appendix B.1.   ◻

The following Proposition, similar to Pflug and Pichler (2014), Proposition 4.26, 
provides an upper bound of the nested distance between two Markov processes. 
Recall that the process � is Markov if, for any t = 1,… , T  , the conditional distribu-
tion of �t given �t−1 depends only on �t−1 (below, we call such conditional distribu-
tions Markov).

Proposition 1 Let � and � be Markov processes. Denote �1,… ,�T , and �t,… , �T the 
probability distributions ruling �, �, respectively. Let

for some constants K1,… ,KT ≥ 0 . Then, for any 1 ≤ t ≤ T ,

where 
∏t

i=t+1
(1 + Ki) = 1 by definition.

Proof See Appendix B.2  ◻

4  Smoothed quantization

As stated in the Introduction, our motivation is to construct a continuous 
approximation for a time-dependent stochastic process which will depend on the 
past information only through a finite set of possible values. The present Section 
introduces a technique leading to such an approximation, which we call smoothed 
quantization, and discusses some of its properties.

Definition 4 A collection C = ({C1,… ,Ck}, {e1,… , ek}) is a covering of ℝp (with 
representatives) if C1,… ,Ck ⊆ ℝ

p are disjoint measurable such that ℝp =
⋃

i Ci and 
ei ∈ Ci, 1 ≤ i ≤ k.

The covering is rectangular if

(7)d(�t(x),�t(s)) ≤ Kt‖x − s‖, x, s ∈ ℝ
p, 1 ≤ t ≤ T ,

(8)

d(�t, � t) ≤(1 + Kt)d(�t−1, � t−1) + �d(�t(�t−1), �t(�t−1))

≤
t∑

�=1

(
t∏

i=�+1

(1 + Ki)

)
�d(��(��−1), �� (��−1))

3 To be exact, the definitions are equivalent if the feasibility conditions in Pflug and Pichler (2012) are 
understood in the sense that regular versions of the conditional probabilities exist and fulfill the required 
conditions for each measurable set (see (Kallenberg 2002), Chap. 6., for the discussion of the regularity 
of conditional probabilities).
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for some k1,… , kp ∈ ℕ , where −∞ = c
j

0
< e

j

1
< c

j

1
≤ e

j

2
< ⋯ ≤ e

j

kj
< c

j

kj
= ∞ , 

1 ≤ j ≤ p . Here, by writing [−∞, c) , we understand (−∞, c) for any c ∈ ℝ.

Definition 5 Let � be a probability measure on ℝp and let

be a covering of ℝp with representatives. A probability measure � on ℝp is called 
quantization of � defined by C if

The following Proposition discusses computation of the Wasserstein distance 
between � and � when C is rectangular:

Proposition 2 Let � be a p-dimensional real random vector with distribution � hav-
ing finite first moments of its components, let C = ({C1,… ,Ck}, {e1,… , ek}) be a 
rectangular covering of ℝp and let � be a quantization of � defined by C . Then

where �(∙) =
∑k

j=1
ek
j
1Cj

(∙) and, for any 1 ≤ i ≤ p , �i and �i are the i-th marginal dis-
tributions of � , �, respectively, � i is the i-th component of � , and 
�i(∙) =

∑ki
j=1

ei
j
1[ci

j−1
,ci
j
)(∙) . Here, 1S(∙) is an indicator function of a set S.

Proof See (Šmíd 2009), Definition 4, Lemma 4 and its proof.   ◻

Coming to the topic of the present Section, let � be a Markov process on 
{0,… , T} taking values in ℝp with deterministic �0 and with �1,… , �T ruled by 
the set of (Markov) probability distributions �1,… ,�T , respectively. Assume 
�‖𝜉1‖ < ∞,… ,�‖𝜉T‖ < ∞ . We approximate � in two steps: first, we define a 
discrete “skeleton” process � , and then we “smooth” the skeleton in order to get 
the final approximation �.

Strictly speaking, we choose a suitable collection of rectangular coverings of 
ℝ

p with  representatives:

next we put

{C1,… ,Ck} = {[c1
i1−1

, c1
i1
) ×⋯ × [c

p

ip−1
, c

p

ip
) ∶ 1 ≤ i1 ≤ k1,… , 1 ≤ ip ≤ kp},

{e1,… , ek} = {(e1
i1
,… , e

p

ip
) ∶ 1 ≤ i1 ≤ k1,… , 1 ≤ ip ≤ kp},

C = ({C1,… ,Ck}, {e1,… , ek})

�{ei} = �(Ci), 1 ≤ i ≤ k.

(9)d(�, �) =

p�
i=1

d(�i, �i) = �‖� − �(�)‖ =

p�
i=1

��� i − �i(� i)�,

ℭ
def
=(C0, C1,… , CT ), C0 = ({�0}, {ℝ

p}),

Ct = ({Ct,1,… ,Ct,kt
}, {et,1,… , et,kt}), 1 ≤ t ≤ T ,
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and, finally, for any 1 ≤ t ≤ T  , we define (the conditional distributions of) �t and �t 
as

where, for each 1 ≤ t ≤ T  and any representative e of Ct−1 , �t(e) is the quantization of 
�t(e) defined by Ct and

with 0
0
= 0 , is the smoothing distribution. Note that, for each i and t, |�t,i| ≤ 1 and 

support(𝜔t,i) ⊆ Ct,i.

Definition 6 We call � smoothed quantization of � defined by ℭ.

Let us describe our technique informally. As �0 = �0 = �0 are deterministic, 
�̃� = 𝜇(𝜖0) holds true, so the approximation of �1 by �1 is perfect. The best 
approximation of the conditional distribution of �2 given a past value x of � would 
certainly be �2(x) ; however, as we want to have only a few values the future can 
depend on, we use the “second best” choice to condition �2 : a representative 
e of a region in which x lies. So we quantize �2(e) , and we consequently obtain 
(conditional) probabilities of e2,1,… , e2,k2 . We could now smooth the approximating 
distribution by means of �2(e) to get the exact approximation of the conditional 
distribution, yet with a different condition. However, the smoothed distribution 
would then depend on both �1 (determining the shape of the distribution) and 
�2 (determining the region we truncate it to), which would mean k1 × k2 different 
distributions at t = 2 hence k1 × k2 sets of cuts in the SDDP algorithm (see below). 
By using the same smoothing distribution regardless of the condition (the truncated 
unconditional one), the number of possible distributions, hence of the cut sets, will 
be equal only to k2 at t = 2.

Next, we summarize some basic properties of the smoothed quantization.

Proposition 3 

 (i)  � is uniquely defined by � . In particular, for each 1 ≤ t ≤ T  , 

�0 = �0, �0 = �0,

(10)ℙ
[
𝜀t = ∙|�̄�t−1, �̄�t−1

]
= 𝜃t(∙|𝜀t−1),

(11)ℙ[�
t
= ∙|�

t−1, �t] = �
t,i

t
(�

t
)(∙), i

t
(∙)

def
=

k
t∑

i=1

i1
C
t,i
(∙),

𝜔t,i(∙) =
�̃�t(∙ ∩ Ct,i)

�̃�t(Ct,i)
, �̃�t

def
=L(𝜉t),

�t = �t(�t), �t(s)
def
=

kt∑
i=1

et,i1Ct,i
(s),
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 (ii)  � is Markov, ruled by distributions 

 (iii)  for each 1 ≤ t ≤ T  , �t(∙) is constant on any Ct−1,i , 1 ≤ i ≤ kt−1 ; in particular, 
�t(�t−1) = �t(�t−1),

 (iv)  �1
d
=�1 (meaning that the distributions of the left-hand side and the right-hand 

side agree),
 (v)  L(�) does not depend on eT ,1,… , eT ,kT.

Proof 

(i) is clear.
(ii) Denote �t

def
= it(�t) , 0 ≤ t ≤ T . We have 

(iii) follows from the definition of �t and from (i).
(iv) follows by substituting.
(v) is clear from (ii).

  ◻

Equations (10) and (11) give us instructions how to simulate the process � : at 
the t-th time step, a value of �t is drawn from �(∙|�t−1) first and, consequently, �t is 
drawn from �t,it(�t)

 . Alternatively, as the distribution of �t depends on the past only 
through �t , we can generate the skeleton process first and smooth it afterwards. 
For better understanding, we graphically illustrate our construction using an 
example with T = 2 , k1 = 2 , and k2 = 3 in Fig. 1.

Before determining an upper bound of the approximation error, measured by 
d(�, �) , we assume, without loss of generality, that

where U1,… ,UT are i.i.d. and g1,… gT measurable (see (Kallenberg 2002) 
Proposition 8.6 for the proof that such a representation always exists).

Theorem  1 Let there exist a measurable function ht with �ht(Ut) < ∞ for any 
1 ≤ t ≤ T  such that

�t(∙|s) =
kt∑
i=1

�t,i(∙)�t(Ct,i|�t−1(s)), s ∈ ℝ
p, 1 ≤ t ≤ T ,

ℙ[�t ∈ ∙|� t−1](i)=ℙ[�t ∈ ∙|� t−1, �t−1] = 𝔼(ℙ[�t ∈ ∙|� t−1, �t]|� t−1, �t−1)
(11)
= 𝔼(�t,�t

(∙)|� t−1, �t−1) =
kt∑
i=1

�t,i(∙)ℙ[�t = i|� t−1, �t−1]

(10)
=

kt∑
i=1

�t,i(∙)�(Ct,i|�t−1)(i)=�t(∙|�t−1).

(12)�t = gt(�t−1,Ut), 1 ≤ t ≤ T ,
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Then, for any 1 ≤ t ≤ T ,

where

(13)‖gt(x, u) − gt(y, u)‖ ≤ ht(u)‖x − y‖, x, y ∈ ℝ
p, u ∈ support(Ut).

(14)
d(�t, � t) ≤(1 + Kt)d(�t−1, � t−1) + Kt�‖�t−1 − �t−1‖

+ �d(�t(�t−1), �t(�t−1))

(15)
≤

t−1
∑

�=1
��

p
∑

i=1

k�
∑

j=1
∫ |x − ei�,j|q�,j�

i
�,j(dx)

+
t

∑

�=2
��

k�−1
∑

i=1
q�−1,id(�� (e�−1,i), �� (e�−1,i)),

Fig. 1  Smoothed quantization–illustration. Realizations of � : circles, realizations of � : squares, quantized 
(conditional) distributions: blue, (conditional) distributions of � : orange. Succession of simulation: green 
arrows
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with 
∏s

i=s+1
xi
def
=1; here, for any  1 ≤ � ≤ t, 1 ≤ k ≤ k� , q�,k = ℙ[�� = e�,k], and, for 

any 1 ≤ i ≤ p , �i
�,k

 is the i-th marginal distribution of ��,k.

Remark 3 (13) holds if 

 (i) �t = C + D�t−1 + Ut (with ht(u) ≡ ‖D‖).
 (ii) �t = Ut�t−1 and �‖Ut‖ < ∞ (with ht(u) ≡ ‖u‖).
Proof As, by Lemma 2 in Appendix and (13),

(7) holds true. Consequently, by Proposition 1,

Using the triangular inequality, Proposition 3 (iii), and (16), we have

Combined with (17) we get (14).
Further, by induction, using the facts that �0 = �0 and d(�1, �1) = 0 (by Proposi-

tion 3 (iv)), we get

which proves (15) since

and

K� = �h� (U� ), 1 ≤ � ≤ T ,

�� = K�+1

t
∏

i=�+2
(1 + Ki), 1 ≤ � ≤ t − 1,

�� =
t

∏

i=�+1
(1 + Ki), 2 ≤ � ≤ t,

(16)
d(�t(x),�t(y)) ≤ � ‖g(x, u) − g(y, u)‖L(Ut)(du)

≤ ‖x − y‖� ht(u)L(Ut)(du) = Kt‖x − y‖, x, y ∈ ℝ
p,

(17)d(�t, � t) ≤ (1 + Kt)d(�t−1, � t−1) + �d(�t(�t−1), �t(�t−1)).

d(�t(�t−1), �t(�t−1)) ≤ d(�t(�t−1),�t(�t−1)) + d(�t(�t−1), �t(�t−1))

≤ Kt�‖�t−1 − �t−1‖ + d(�t(�t−1), �t(�t−1)).

d(�t, � t) ≤
t−1�
�=1

���‖�� − ��‖ +
t�

�=2

���d(��(��−1), ��(��−1))

�d(��(��−1), ��(��−1)) =

k�−1∑
i=1

q�−1,id(��(e�−1,i), ��(e�−1,i))
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  ◻

The next Theorem provides conditions for convergence of the smoothed 
quantization in the one-dimensional case.

Theorem 2 Let p = 1 . Assume (13) and let the unconditional distributions �̃�1,… , �̃�t 
be absolutely continuous such that their tails

are O(x−a) , � = 1,… , t , for some a > 1 . For each 1 ≤ t ≤ T  and for each covering 
with representatives C = ((C1,… ,Ck), (e1,… , ek)) , denote

and assume that DC , EC , FC , and GC are Lipschitz (their Lipschitz constants may 
depend on C ). Then there exists a sequence ℭ1,ℭ2,… of collections of coverings 
such that d(�T , �

�
i

,T
) → 0 , where, for any covering collection ℭ , �ℭ is the smoothed 

quantization of �T defined by ℭ.

Proof Let ℭ = (C0,… , CT ) be a collection of coverings. For any 1 ≤ t ≤ T  , let RCt
t  

and TCt
t  be the Lipschitz constants of DCt

t  , ECt
t  , respectively and let SCtt  be the common 

Lipschitz constant of FCt
t  and GCt

t  . First we show that, for any 1 ≤ t ≤ T  , it holds that

�‖�� − ��‖
Prop. 3(i)
= �‖�� − �� (�� )‖ = �(�(‖�� − �� (�� )‖|��−1))

Prop. 3(ii)
= �(∫ ‖s − �� (s)‖�� (ds|��−1))

Prop.3(iii)
= �(∫ ‖s − �� (s)‖�� (ds|��−1))

=
k�−1
∑

k=1
q�−1,i

k�
∑

j=1
�� (C�,j|e�−1,k)∫ ‖s − e�,j‖��,j(ds)

q�,j=
∑

k q�−1,k�� (C�,j|e�−1,k)
=

k�
∑

j=1
q�,j ∫ ‖s − e�,j‖��,j(ds)

=
k�
∑

j=1
q�,j

p
∑

i=1
∫ |s − ei�,j|�

i
�,j(ds) =

p
∑

i=1

k�
∑

j=1
∫ |s − ei�,j|

(

q�,j�i
�,j

)

(ds)

T𝜏(x)
def
= max(�̃�𝜏(−∞,−x], �̃�𝜏 (x,∞))

(18)DC

t
(∙)

def
=d(�t(∙), �t(∙)),

(19)EC

t
(∙)

def
=

kt−1∑
i=2

�t(Ci|∙)∫ |x − et,i|�t,i(dx),

(20)FC

t
(v)

def
=�t(C1|∙), GC

t
(∙)

def
=�t(Ck|∙),
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where ΦCt
t =

∫ ct,1
−∞

�̃�t(−∞,x]dx

�̃�t(−∞,ct,1]
 , ΨCt

t =
∫ ∞

ct,kt−1
�̃�t(x,∞)dx

�̃�t(ct,kt−1,∞)
 , and it holds that

where �ℭ the skeleton process defined by ℭ . To this end, fix ℭ and agree to omit 
the superscripts indicating the coverings. We prove (21) and (22) simultaneously by 
induction.

Clearly, (21) and (22) hold for t = 1 (by Proposition 3 (iv)).
Let t > 1 and assume (21) and (22) to hold for t − 1 . By the Lipchitz property 

of Dt , Proposition 2 and Kantorovich-Rubinstein Theorem (implying that 
�‖x − y‖ ≤ d(x, y) for any x, y with �‖x‖ + �‖y‖ < ∞ , by Pflug and Pichler (2014) 
Theorem 2.29),

Further, by Proposition 2 (note that �t(�t−1) is the quantization of �t(�t−1) ), the 
Lipschitz properties and the K-R Theorem again, we get

Thus,

giving (21) by Lemma 3 in Appendix.
The proof of (22) is simpler, based on the fact that

(21)
d(�t, �

ℭ

t
) ≤ 2d(�t, �t(�t)) + (1 + 2Kt)d(�t−1, �

ℭ

t−1
)

+(R
Ct
t + S

Ct
t (Φ

Ct
t + Ψ

Ct
t ) + T

Ct
t + Kt)d(�t−1, �

ℭ

t−1
)

(22)d(�t, �
ℭ

t
) ≤ d(�t, �t(�t)) + (Kt + R

Ct
t + 1)d(�t−1, �

ℭ

t−1
),

(23)

�Dt(�t−1) ≤ �Dt(�t−1)
⏟⏞⏞⏟⏞⏞⏟

= �d(�t(�t−1), �t(�t−1))

= �(�‖�t − �t(�t)‖��t−1))
= �‖�t − �t(�t)‖ = d(�t, �t(�t))

+Rt�‖�t−1 − �t−1‖

≤ d(�t, �t(�t)) + Rtd(�t−1, �t−1).

(24)

�(d(�t(�t−1), �t(�t−1)))
Prop. 2
= �(

kt∑
i=1

�t(Ct,i|�t−1)� |x − et,i|�t,i(dx))

= Φt�Ft(�t−1) + �Et(�t−1) + Ψt�Gt(�t−1)

≤ Φt�Ft(�t−1) + �Et(�t−1) + Ψt�Gt(�t−1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=d(�t ,�t(�t))

+Utd(�t−1, �t−1),

Ut = St(Φt + Ψt) + Tt.

d(�t, � t)
(14), Prop.2≤ (1 + Kt)d(�t−1, � t−1) + Ktd(�t−1, �t−1) + �d(�t(�t−1), �t(�t−1))

triang. ineq.≤ (1 + Kt)d(�t−1, � t−1) + Kt(d(�t−1, �t−1) + d(�t−1, �t−1))

+ �d(�t(�t−1), �t(�t−1))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(23)≤ d(�t ,�t(�t))+Rtd(�t−1,�t−1)

+ �d(�t(�t−1), �t(�t−1)))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(24)≤ d(�t ,�t(�t))+Utd(�t−1,�t−1)

,
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which may be proved analogously to (14) of Theorem 1 and implies (22) by (23) and 
Lemma 3 in Appendix.

Therefore, both (21) and (22) have been proved.
Next we show that, for each 1 ≤ t ≤ T  , there exist a series of covering collections 

ℭ1,ℭ2,… such that

Clearly, (25) with t = T  proves the Theorem. We shall proceed by induction while 
for t = 0 , (25) holds trivially.

Let t > 0 and assume (25) to hold for t − 1 , i.e., that there exists a sequence 
�1,�2,… of covering collections such that (25) holds for t − 1 and �∙ instead of t 
and ℭ∙.

First, let Ci = ({Ci
1
,… ,Ci

ki
}, {ei

1
,… , ei

ki
}), i ∈ ℕ , be coverings such that 

limi d(�t, �i,t(�t)) → 0 where �i,t(∙) =
∑

j e
i
j
1Ci

j
(∙) : their existence is guaranteed by 

Šmíd (2009), Theorem 1. For each n ∈ ℕ , let i(n) be such that d(�t, �i(n),t(�t)) ≤ 1

4n
.

Next, for any n ∈ ℕ and any covering C , put

and note that �C
n
→ 0 by the induction hypothesis. For each i, n ∈ ℕ , let j(i,  n) be 

such that �Ci
j(i,n)

≤ 1

2n
.

Finally, for any n, put ℭn = (𝔇j(i(n),n), Ci(n)) . By substituting into (21), we get

Similarly we get, using (22), that d(�t, �
ℭn

t
) ≤ 1

n
 , which, together with (27), proves 

(25).   ◻

The next Proposition states sufficient conditions for (18)–(20).

Proposition 4 Let p = 1 and, for each 1 ≤ t ≤ T  , let

be differentiable in both x and y such that, for each x and y,

for some unimodal h(∙, y) with ∫ h(x, ∙)dx and maxx h(x, ∙) uniformly bounded. Let

d(�t−1, �t−1) ≤ (1 + Kt)d(�t−1, �t−1) + �d(�t(�t−1), �t(�t−1)),

(25)d(�t, �
ℭn

t
) → 0, d(�t, �

ℭn

t
) → 0.

(26)
�C
n
= (1 + 2Kt)d(�t−1, �

�n

t−1
) + (Kt + RC

t
+max(1, SC

t
(ΦC

t
+ ΨC

t
) + TC

t
))d(�t−1, �

�n

t−1
)

(27)d(�t, �
ℭn

t
) ≤ 2d(�t, �i(n),t(�t)) + �

Ci(n)

j(i(n),n)
≤ 1

n
.

Gt(x|y)def=�t((−∞, x]|y)

||||
�

�y
Gt(x|y)

|||| ≤ h(x, y)
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and

for any c ∈ ℝ . Then the Lipschitz properties of (18)–(20) hold true.

Proof Fix 1 ≤ t ≤ T  and a covering C and agree to omit corresponding indexes. Let 
y ∈ ℝ. By Vallander (1973) (or perhaps (Pflug 2001)), we have

where

Denoting g(∙|y) = �

�y
G(∙|y) , we get

so

where m is the mode of h(∙, y) and ê = maxi=1,…,k−1 |ei+1 − ei| (we have used the 
fact that h(∙, y) is non-decreasing up to m and non-increasing from m). Clearly, 

�

�y ∫
c

−∞

Gt(x|y)dx = ∫
c

−∞

�

�y
Gt(x|y)dx

�

�y ∫
∞

c

[1 − Gt(x|y)]dx = −∫
∞

c

�

�y
Gt(x|y)dx

D(y) = I0(y) +⋯ + Ik(y),

I0(y) = �
e1

−∞

G(x|y)dx, Ik(y) = �
∞

ek

[1 − G(x|y)]dx,

Ii(y) = �
ci

ei

[G(ci|y) − G(x|y)]dx + �
ei+1

ci

[G(x|y) − G(ci|y)]dx, 1 ≤ i ≤ k − 1.

I�
0
(y) = �

e1

−∞

g(x|y)dx, I�
k
(y) = −�

∞

ek

g(x|y)dx,

I�
i
(y) = −�

ci

ei

g(x|y)dx

+ �
ei+1

ci

g(x|y)dx + [(ci − ei) − (ei+1 − ci)]g(ci|y),
1 ≤ i ≤ k − 1,

(28)

����
𝜕

𝜕y
D(y)

���� ≤ �
∞

−∞

�g(x�y)�dx +
k−1�
i=1

((ci − ei) + (ei+1 − ci))�g(ci�y)�

≤ � h(x, y)dx + 2

k−1�
i=1

�ei+1 − ei��h(ci, y)� ≤ � h(x, y)dx + 2� h∗(x, y)dx,

h∗(x, y) =

⎧⎪⎨⎪⎩

h(x + ê, y) x < m − ê

max h(∙, y) m − ê ≤ x ≤ m + ê

h(x − ê, y) x > m + ê
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∫ h⋆(x, y)dx ≤ ∫ h(x, y)dx + 2êmax h(∙, y) which, together with (28), proves (18) as 
both ∫ h(x, y)dx and max h(∙, y) are uniformly bounded, hence the derivative is uni-
formly bounded and the Lipschitz property of D holds.

As for (19), we have

so

which implies the Lipschitz property of (19) by applying a similar trick as in the 
case of D to the middle term.

Finally, as h is uniformly bounded, so is the derivative of G and the Lipschitz 
property of (20) holds.   ◻

Example 1 Let p = 1 and let �t be AR(1), i.e., �t = a�t−1 + �t , 1 ≤ t ≤ T , where the 
c.d.f. F of �t is differentiable with F� = f  unimodal. Then

so we may choose h(x, y) = |a|f (x − ay) , giving ∫ h(x, y) = a , max h = |a|max f .4 
Thus, by Proposition 4, the Lipschitz properties of (18)–(20) hold and, consequently, 
Theorem 2 holds once the tails of each 

∑t

�=1
at−��t , 1 ≤ t ≤ T , are O(x−�) for some 

𝛼 > 1 , which is true in most cases because the converse would imply infinite second 
moments.

E(y) = G(c1|y)∫

c1

e1
(x − e1)�1(dx) +

k−1
∑

i=2
(G(ci|y) − G(ci−1|y))∫

ci

ci−1
|x − ei|�i(dx)

+ (1 − G(ck|y))∫

ek

ck−1
(ek − x)�k(dx)

||||
�

�y
E(y)

|||| ≤ h(c1, y)�
c1

e1

(c1 − e1)F1(dx) +

k−1∑
i=2

(h(ci, y) + h(ci−1, y))�
ci

ci−1

(ci − ci−1)�i(dx)

+ h(ck−1, y)�
ek

ck−1

(ek − ck−1)�k(dx)

≤ h(c1, y)(c1 − e1) +

k−1∑
i=2

(h(ci, y) + h(ci−1, y))(ci − ci−1) + h(ck−1, y)(ek − ck−1)

Gt(x|y) = F(x − ay),
�

�y
Gt(x|y) = −af (x − ay),

4 The change-of-derivative condition is met as

and similarly for the upper tail.

�

�y ∫
c

−∞

F(x − ay)dx =
�

�y ∫
c−ay

−∞

F(z)dz = −aF(c − ay) = −a∫
c−ay

−∞

f (z)dz = −a∫
c

−∞

f (x − ay)dx
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Example 2 If �t = �t−1�t then Gt(x|y) = ℙ[�t ≤ x

y
] = F(

x

y
) where F is the c.d.f. of �t . 

Here, unfortunately, Proposition 4 cannot be used because 
∫ �

�y
Gt(x|y)dx = −

1

y2
∫ F�(

x

y
)dx = −

1

y
 is unbounded. We can, of course, assume �t to 

be a random walk and modify the mappings �t,�t and Ξt in (3) (i.e., use �t(e
x, u) 

instead of �t(x, u) etc.); however it is not guaranteed that the nested distance of the 
exponentials would converge, too.

Remark 4 A version of Theorem 2 for p > 1 can be formulated for the price of more 
complex notation; however, a counterpart of (19) seems impossible to be verified 
even for the auto-regression as the probabilities q∙ are involved.

Finally, we prove that the nested distance does not increase when we consider the 
i.i.d. part of the underlying process, which is not approximated.

Proposition 5 Let � be a process taking values in ℝq with deterministic �0 , such that 
�⟂⟂� and �⟂⟂� , where ⟂⟂ means independence. Then d((�, �), (�, �)) ≤ d(�, �).

Proof See Lemma 4 in Appendix.   ◻

5  Approximation of the multistage problem

The question we deal with in the present Section is the choice of a (rectangular) 
covering collection ℭ = (C1,… , CT ) so that the smoothed quantization � of �, 
defined by ℭ is suitable and as exact as possible.

The first thing to be taken into account is computability. Within the plain 
SDDP, T − 1 collections of cuts, approximating the cost-to-go functions, are main-
tained, and each of these collections is updated during each backward pass, while, 
in our implementation of Markov SDDP, the number of the cut collections equals 
� =

∑T

t=1
kt =

∑T

t=1

∏p

i=1
kt,i (the total number of the skeleton processes atoms) and, 

during each backward pass, only one collection per stage is updated. Therefore, it 
could be expected that the time complexity of the solution will be roughly linear in 
� . Taking into account that a solution of a single problem by the plain SDDP could 
take tens of minutes on a regular PC (with processor Intel Core 5 and 16 GB RAM), 
it is clear that the numbers kt,i cannot be large, especially given multidimensional 
�t , and even in the one-dimensional it would be very time consuming to exploit the 
asymptotic properties we proved. In any case, the number of the atoms is limited by 
our computational resources.

Having determined the numbers of the atoms we can computationally afford, the 
next step is to choose the frontiers of the covering sets and their representatives. 
As we have already premised, we find it reasonable to choose these parameters so 
that d(�, �) (hence d((�, �), (�, �)) by Proposition 5) is minimized. Unfortunately, 
such minimization is a very complex task, even if we resort to the minimization of 
the upper bound (15). That said, finding the optimal representatives with respect 
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to (15) with the frontiers known is a complex, possibly non-convex problem: the 
second part of (15) and the dependence between the stages being due. However, 
if we believe that the distributions �t,i(∙|e) approximate the normalized versions 
of �t(∙ ∩ Ct,i|e) well, then we can regard the second part of (15) less critical and 
concentrate on the first part; contrary to the whole expression, finding the optimal 
representatives (with the frontiers known) is easy here as we minimize a sum of 
terms

where e�,i,1,… e�,i,k�,i are the possible values of ei
�,∙

 . It is well known that (each term 
on the) right-hand side is minimized by ei

t,i
= median(�i

t,j
).

Unfortunately, as we have premised, not all � ’s with a reasonable value of the 
nested distance are suitable for the approximation of Problem (2). In particu-
lar, it may happen that, unlike the original problem, the approximate version is 
unbounded. To illustrate this possibility, consider a (hypothetical) asset-liability 
problem in which it is necessary to satisfy a random liability, no greater than some 
constant b, at the time T by means of buying an asset at the times 0,… , T − 1 . Say 
that the decision criterion is a nested mean-CVaR and that, in line with Efficient 
Market Hypothesis (see Cuthbertson (1997)), the asset prices form a martingale 
(see Kallenberg (2002), Chapter 7). Given these assumptions, there is no reason to 
buy more assets than b, because buying more than b assets up to T − 1 and selling 
them at T would (possibly) increase risk (CVaR in our case) without increasing the 
mean value. However, as our approximation uses an “incorrect” conditioning value, 
it can happen that, despite the true price process being a martingale, the approxi-
mated one is a sub-martingale, i.e., the prices increase on average (to see it, recall 
that �(�t+1|�t = ∙) is a piece-wise constant by Proposition 15 (iii), so �(�t+1|�t) ≠ �t 
almost surely once � ’s are absolutely continuous). If this (false) increase is high 
enough and/or the risk aversion is small enough, then, within the approximating 
problem, it could be “reasonable” to buy unlimited amounts of the asset to sell it 
at T. In result, these (false) arbitrage opportunities can completely overshadow the 
asset-liability management since the profits from the “speculation” would be unlim-
ited. Clearly, to avoid this problem, the approximation has to be modified.

Proceeding generally, we start by giving a simple criterion, which, if fulfilled, 
guarantees boundedness of � in Problem (2) from below, which, among other 
things, precludes arbitrage.

Proposition 6 Let there exist integrable random functions ft ∶ ℝ
dt → ℝ , ft ∈ Ft , 

0 ≤ t < T  , and a constant � such that, for each feasible policy x,

k��
j=1

∫ �x − ei
�,j
�q�,j�i

�,j
(dx) =

k�,i�
k=1

∫ �x − e�,i,k�
⎛
⎜⎜⎝

�
j∶ei

�,j
=e�,i,k

q�,i,k

⎞
⎟⎟⎠
�i
�,k
(dx)

(29)�T (c
�
TxT ) ≥ fT−1(xT−1)

(30)𝜎t(c
�
txt + ft(xt)) ≥ ft−1(xt−1), 1 ≤ t < T ,
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Then the optimal value of (2) is bounded from below by �.

Proof Follows easily by gradual application of (29)– (31) to the criterion of Problem 
(2).   ◻

Corollary 1 Let �t(z|Ft−1) ≥ �(z|Ft−1) for any Ft-measurable random variable z and 
any 1 ≤ t ≤ T  and let (29)–(31) hold with �(∙|Ft−1) in place of �t(∙) for any t. Then 
the optimal value of (2) is bounded from below by �.

Proof Follows from the fact that

  ◻

Remark 5 The mean-CVaR risk mapping fulfills the assumptions of Corollary 
1. Indeed, as CVaR is the mean of the right tail distribution (see (Rockafellar and 
Uryasev 2002)), which is easy to show to first-order stochastically dominate the 
one from which it is computed, we have CVaR(z|F) ≥ �(z|F) and, consequently, 
mean-CVaR(z|F) ≥ �(z|F) for any z and F .

The way of finding an approximation � such that the boundedness criterion is 
met clearly depends on the structure of the approximated problem. As we will see 
in the next Section, one of the conditions guaranteeing the boundedness of the 
Problem (2) with p = 1 could be

where � is a discount factor. Now say that we have a smoothed quantization � 
for which (32) does not hold and we look for a refined Markov approximation � 
fulfilling (32) which is “similar” to � in the sense that it is ruled by conditional 
probabilities �1,… ,�T such that, for any 1 ≤ t ≤ T  and 1 ≤ i ≤ kt−1 , 

 (i) �t(∙) is constant on Ct−1,i,
 (ii) �t(∙�et−1,i) = ∑

j �t,i,j�
�
t,j
(∙) for some discrete distribution �t,i,∙,

where, for any j, �′
t,j

 is a distribution with support(𝜔�
t,j
) ⊆ Ct,j . It may be easily 

seen that such a process fulfills (32) if

where, for any � , d�,0 = inf(support(��
�,1
)) and d𝜏,j = c𝜏,j, 1 < j ≤ k𝜏 .

(31)c�
0
x0 + f0(x0) ≥ � .

�(c�
0
x0,… , c�

T
xT )

≥ c�
0
x0 + �(…�(c�

T−2
xT−2 + �(cT−1xT−1 + �(c�

T
xT |FT−1)|FT−2)|FT−3)… ).

(32)��(�t|�t−1) ≤ �t−1, 1 ≤ t ≤ T ,

(33)𝜚
∑
j

𝜋t,i,j�𝜔
�
t,j
≤ dt−1,i−1, 1 ≤ i ≤ kt−1, 1 < t < T ,
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One way to guarantee that such � is close to � , for each 2 ≤ t ≤ T  and 
1 ≤ i ≤ kt−1 , is to find �t.i,1,… ,�t,i,kt so that d(�t(et−1,i), �t,i) is minimal, where 
�t,i is the distribution with atoms et,1,… , et,kt and corresponding probabilities 
�t,i,1,… ,�t,i,kt , i.e., for each i and t, to solve the transportation problem

and set 𝜋t,i,j = �̂�j , 1 ≤ j ≤ kt , where �̂�1,… , �̂�kt is the optimal solution of Problem 
(34). Note that this does not have to be done for t = 1 as the approximation is perfect 
here. For all the Problems (34) to be feasible, it should hold

because otherwise no combination of �1,… ,�kt would exist satisfying (35). To 
guarantee (36), we may set

which implies (36) given that

In order to have � as similar as possible to �, we may set ct,1 so that ℙ[�t ≤ ct,1] is 
negligible for each 1 ≤ t ≤ T .

Finally, we summarize our approximation algorithm:
Algorithm 1 

1. Determine suitable rectangular sets (Ct,i)1≤i≤kt1≤,t≤T
2. For each t = 1 to T − 1

3.       For each i = 1 to p
4.             For each j = 1 to kt,i
5.                   Put ej

t,i
= median(�i

t,j
)

6.             End For
7.       End For
8. End For
9. Construct the smoothed quantization � of � defined by C∙ and 

e∙.
10. If � is suitable

(34)min
�j≥0,rj,k≥0,1≤j,k≤kt

kt∑
j=1

kt∑
k=1

|et,j − et,k|rj,k

(35)

s.t.

kt∑
j=1

rj,k = �t(C
k
t,k
|et−1,i), 1 ≤ k ≤ kt

dt−1,i−1 ≥ �

kt∑
j=1

�j��
�
t,i
, �j =

kt∑
k=1

rj,k, 1 ≤ j ≤ kt

(36)dt−1,0 ≥ ����
t,1
, 2 ≤ t ≤ T

(37)𝜔�
t,1 = 𝛿et,1 , 𝜔�

t,i = 𝜔t.i, 1 < i ≤ kt, 1 ≤ t < T ,

(38)e0,1 ≥ �e1,1 ≥ ⋯ ≥ �Te1,T .
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11.       Solve Problem (2) with � instead of �
12. Else
13.       Refine � to get a suitable approximation �
14.       Solve Problem (2) with � instead of �
15. End If

When p = 1 , a procedure constructing � fulfilling the suitability condition (32) with 
𝜚 < 1 may be as follows

Algorithm 2 

1. Let c be such that ℙ[�t ≤ c] is small for each 1 ≤ t ≤ T

2. Let e be slightly smaller than c
3. For each t = 1 to T
4.       Add c to the collection ct,∙
5.       Add e to the collection et,∙
6.       Determine ��

t,∙
 according to (37)

7.       Put pt,i,j = �t(Ct,j|et−1,i) , 1 ≤ j ≤ kt , 1 ≤ i ≤ kt−1

8. End For
9. For each t = 2 to T
10.       For each i = 1 to kt−1
11.             If 𝜚 ∫ x𝜛t(dx|et−1,i) > et−1,i

12.                   Assign pt,i,∙ the optimal solution of Problem 
(34)

13.             End If
14.       End For
15. End For

Remark 6 “Suitable rectangular sets” may be determined according to (proofs of) 
Theorem 1 or Lemma 5, both from Šmíd (2009).

Remark 7 If p = 1 , then �̃�t,1,j = qt,j𝜔t,j , 1 ≤ j ≤ kt , 1 ≤ t ≤ T − 1 , so 
median(�̃�t,1,j) = median(𝜔t,j) , depending neither on qt,∙ nor on t.

6  Application

In the present Section, we illustrate our approximation technique by a simplified version 
of a production-planning emission-trading problem of a steel company, published 
in Zapletal et al. (2019). The company produces four products made out of five raw 
products, and buys necessary carbon allowances on a secondary market. The subject of 
their decision is the production and the timing of the allowances purchase. The decision 
problem is as follows:
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Here, � is the nested mean-CVaR risk measure. The decision variables 
include: zt – the monetary income of the company, xt – the final production, yt 
– the raw production, ut and st – the numbers of the allowances held and purchased, 
respectively.

The constants include: r ∈ ℝ
5×4 – the production matrix, w ∈ ℝ

5 – the raw 
production limits, h ∈ ℝ

5 – the vector of unit emissions, � ∈ ℝ – the discount factor.
As for the random parameters,

is the process of the allowance prices, where V1,… ,VT are i.i.d. standard normal 
random variables and 𝜐 > 0 is a parameter. Note that Pt is, in fact, a discretized 
martingale Geometrical Brownian motion with a volatility of �.

Further,

is the random profit from production where � ∈ ℝ
4 is a constant vector (equal to the 

mean prices) and U1,… ,UT are i.i.d. standard normal, t = 1,… , T  (note that Mt are 
i.i.d.).

Finally,

is the process of demand with d being a constant vector and Et is binomial sym-
metric with its atoms set so that the unconditional variance matrix equals 1

42
 of the 

demand process from Zapletal et al. (2019), Sect. 3. For the values of the constants 
and for more details, see (Zapletal et al. 2019).

In the present Section, we deal with the instance of Problem (39) with T = 2 , 
� being the nested Mean-CVaR risk measure (with � = 0.5 and � = 0.2) , � = 0.96 , 
� = 0.0325 , � = 0.439 and P0 = 24.29 EUR (the price valid in November 2019). All 
these values have been estimated from real-world data (see (Zapletal et al. 2019)).

The simplifications we made in comparison with the original problem from 
(Zapletal et al. 2019) in order to be more illustrative are as follows: our problem 

(39)

inf𝜌(−z0,… ,−𝜚TzT )

s.t. z0 ∈ ℝ, z0 = −P0s0,

zt ∈ ℝ, zt = M�
t
xt−1 − Ptst, 0 < t ≤ T ,

xt ∈ ℝ
4
+
, xt ≤ Dt, 0 ≤ t < T ,

yt ∈ ℝ
5
+
, yt = rxt, yt ≤ w, 0 ≤ t < T ,

u0 ∈ ℝ+, u0 = s0,

ut ∈ ℝ+, ut = ut−1 + st − h�yt−1, 0 < t ≤ T ,

st ∈ ℝ, 0 ≤ t ≤ T ,

Any variable indexed by t is Ft −measurable, 0 ≤ t ≤ T .

Pt ∈ ℝ, Pt = Pt−1 exp

{
−
�2

2
+ �Vt

}
, 1 ≤ t ≤ T ,

Mt ∈ ℝ
4, Mt = [1 + �Ut]+�, 1 ≤ t ≤ T ,

Dt ∈ ℝ
4, D0 = d, Dt = 0.5Dt−1 + 0.5(d+Et), 1 ≤ t < T ,
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is one stage less, we do not allow derivatives, no allowances are granted for 
free here, and the distributions of the random parameters are rescaled (in order 
to accommodate the allowance price increases in comparison with the time of 
(Zapletal et al. 2019)). Moreover, to be able to estimate the criterion better, we set 
the CVaR level to 0.2 rather than 0.05.

As the random parameter Dt lies on the right-hand side of the constraints, it 
may be expressed by means of an artificial decision vector dt . After doing this 
and some substitutions, the decision problem is transformed to:

In the language of Sect. 2, we have �t = (Mt,Et) and �t = Pt , 0 ≤ t ≤ T  with M0 ≡ 0 , 
E0 ≡ 0 . Note that uT = 0 , i.e., no allowances are kept for future use at the time 
horizon.

The following Proposition shows that (32) is a sufficient condition for the 
boundedness of the Problem.

Proposition 7 If

then the optimal value in (39) is bounded from below.

Proof Put

where � = maxx≥0,rx≤w ��x . As �(Pt|Ft−1) = �(Pt|Pt−1) and �(Mt|Ft−1) = � for any 
1 ≤ t ≤ T  , we have

and

inf𝜌(P0u0,−𝜚z1,… ,−𝜚TzT )

s.t. zt ∈ ℝ, zt = M�
t
xt−1 − Pt(ut − ut−1 + h�rxt−1), 0 < t ≤ T ,

xt ∈ ℝ
4
+
, xt ≤ dt, rxt ≤ w, 0 ≤ t < T ,

ut ∈ ℝ+, 0 < t < T ,

uT = 0,

dt = 0.5dt−1 + 0.5(d + Et), 0 < t < T ,

d0 = d,

Any variable indexed by t is Ft-measurable, 0 ≤ t ≤ T .

(40)Pt ≥ 𝜚�(Pt+1|Pt), 0 ≤ t < T ,

ft(e) = −𝜚t+1�(Pt+1|Pt)e − 𝜈
∑T

𝜏=t+1
𝜚𝜏 , 0 < t < T ,

�(−�TzT |FT−1)

= �T (−��xT−1
⏟⏞⏟⏞⏟

≥−�
+�(PT |PT−1)h

�rxT−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0
−�(PT |PT−1)eT−1) ≥ fT−1(eT−1),
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for any 0 < t < T  , and

which together guarantee the boundedness by Corollary 1.   ◻

Remark 8 Proposition 7 holds not only for geometrically Brownian prices Pt , but 
also for any P general Markov with finite first moments.

To investigate the impact of the accuracy of the approximation on the quality of 
the solution, we solved Problem (39) for 22 different combinations of k1 and k2 . For 
each pair, we proceeded using Algorithms 1 and 2. In particular, we put c1,1 =0.5, 
e1,1 = 0.45, c2,1 = 0.3 , e2,1 = 0.27 (note that ℙ[�t ≤ ct,1], t = 1, 2, are negligible); the 
rest of the frontiers we set, according to Šmíd (2009), to

where Ft is the unconditional c.d.f. of Pt . The representatives have been set to

(see Remark 7).
As the boundedness criterion (40) coincides with (32), we might set ��

∙
 according 

to (37) and use Problem (34) to compute conditional probabilities defining � . Note 
that (38) is fulfilled whenever k2 ≥ k1).

Next, we solved the problem with � instead of � by the Markov SDDP algorithm, 
implemented in � + + with ����� serving as the linear programming solver.

To evaluate the resulting optimal policy, we have tested it given the true (Geo-
metrical Brownian) distribution of P; in particular, we have estimated � given the 
“true” distribution using the policy stemming from the approximation. We have 
proceeded by simulation; namely, we have computed 20 estimators of � , each by 
means of 10, 000 scenarios S

def
=(P1, �1,P2, �2) drawn from the “true” distribution. To 

be able to estimate the inner CVaR’s, we have drawn the sample using conditional 
sampling, i.e., 100 observations are drawn from L(P1)◦L(�1) and, for each value 
(p, �) obtained this way, 100 observations are drawn from L(P2|P1 = p)⊗ L(𝜂2) . 
For each scenario S, we compute the corresponding “Markov” scenario 

�(−�tzt + ft(et)|Ft−1)

= �t�(−M�
t
xt−1

⏟⏞⏟⏞⏟
≥−�

+ (Pt − ��(Pt+1|Pt))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0
et − Ptet−1 + Pth

�rxt−1
⏟⏞⏟⏞⏟

≥0
|Ft−1) − �

∑T

�=t+1
��

≥ ft−1(et−1)

P0e0 + ft(e0) ≥ −�
∑T

�=1
�� ,

ct,i = F−1
t

(
i − 1

kt − 1

)
, 1 < i < kt, t = 1, 2,

e1,i = median(𝜔1.i), 1 < i ≤ k1
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M
def
=(�1(P1),P1, �1, �2(P2),P2, �2),5 and subsitute it into the approximate policy to 

get the corresponding incomes Z = (Z1, Z2)
def
=(�z1, �

2z2) . As a result of this pro-
cedure, we have a sample of 100 values of Z1 and 100 values of Z2 for each Z1 . 
The mean part of the criterion has been estimated by the sample means of Z, each 
CVaR(Z2|Z1 = z) as a mean of the 20 highest values of Z2 with Z1 = z , and the outer 
CVaR as the average of the highest 20 inner CVaRs. Finally, we estimate � by the 
average of our 20 estimators, denoting it by ṽ(= ṽk1,k2 ).

The results of solutions for individual pairs k1, k2 are summarized in Table  1 
and depicted in Fig. 2. Though the estimations of the objective value are noised, an 
increasing trend is visible at the first look. By linear regression

we get b = 0.019(0.002) , where there is the standard error in brackets, which means 
that, by adding one node to the optimization, the value of the criterion increases by 
roughly EUR 19,000. Figure  3 shows the dependence of the computational times 
on � ; even though the trend comes out quadratic, it is close to the linear one as we 
supposed.

Clearly, once the true optimal value v is finite, the trend of the criterion 
improvement cannot be linear in � as the series should converge to v from below. 
Unfortunately, the noise of the estimation prevented us from fitting more complex 
trends. However, when we rerun the same analysis with all the processes except for 
deterministic P, the noisiness of the criterion estimation decreased enough for the 
non-linear regression

ṽk1,k2 ∼ a + b𝜅, 𝜅 = k1 + k2

v − ṽk1,k2 ∼ a exp{b𝜅}

Table 1  Evaluation of optimal 
policies given various k1 , k2 . 
ṽ
k1,k2

 : average value of −� (in 
millions of EUR) with standard 
deviation (within the 20 
estimates), t: average solution 
time in minutes (over the 20 
estimates), “no opt”: objective 
value without optimization of 
emission trading (allowances are 
not pre-purchased)

k1 k2 ṽ
k1,k2

t k1 k2 ṽ
k1,k2

t

no opt 54.63 (0.4)
3 3 60.48 (0.12) 61 6 7 60.72 (0.08) 116
3 4 60.43 (0.13) 64 6 8 60.65 (0.09) 121
3 5 60.47 (0.14) 67 6 9 60.69 (0.09) 127
4 4 60.47 (0.09) 76 7 11 60.64 (0.09) 152
4 5 60.59 (0.11) 80 8 12 60.69 (0.07) 173
4 6 60.51 (0.1) 84 9 14 60.78 (0.07) 203
5 5 60.62 (0.07) 93 10 15 60.78 (0.08) 225
5 6 60.48 (0.1) 98 11 17 60.84 (0.08) 256
5 7 60.65 (0.08) 102 12 16 60.75 (0.09) 261
5 8 60.5 (0.11) 108 12 18 60.92 (0.07) 281
6 6 60.76 (0.07) 110 13 19 60.9 (0.06) 306

5 Note that this can be done using Proposition 3 (i), and that it might not be possible for a general hidden 
Markov approximation.
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 58.5

 59

 59.5
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 60.5

 61

 61.5

noopt
6 7 8 9 10 11 12 13 14 15 18 20 23 25 28 30 32

criterion
trend

Fig. 2  Evaluation of optimal policies. Points: average value of −� , bars: standard deviations, line: trend 
a + b� . The horizontal axis – labels: k1 and k2 , positions: k1 + k2

Fig. 3  Computational times in dependence on � . Vertical axis: time in minutes
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to be significant, giving v = 63.46(0.06) , a = 2.40(0.11) , b = −0.092(0.009) , see 
also Fig. 4. This suggests that the convergence rate of the approximation error as 
� → ∞ is exponential (a similar model with v − ṽ = O(𝜅b) came out insignificant).

Finally, as an experiment, we run several optimizations with discrete 
approximations and tried to evaluate them the same way as the smoothed 
quantization. In particular, we have used the skeleton process � calibrated 
to be a martingale as an approximation instead of � . The resulting optimal 
policies, however, have proved to be useless because they recommended 
arbitrage as a reaction to a significant portion of scenarios; needless to say, such 
recommendations mostly lead to huge losses “in reality”, as the true discounted 
price process is a supermartingale. This clearly speaks in favor of the smoothed 
quantization. However, it should be said in defense of discrete approximations 
that, when the decision period is long, a new optimization could (and should) be 
done at each stage rather than using the policy from the previous optimization; 
this new optimization can clearly be calibrated not to produce arbitrage in 
its first stage. If, on the other hand, the decision period is short, as in high-
frequency trading for instance, then having a policy not producing arbitrage at 
hand is more than necessary.

 61.8

 62

 62.2

 62.4

 62.6

 62.8

 63

 63.2

 63.4

 63.6

 63.8

6 7 8 9 10 11 12 13 14 15 18 20 23 25 28 30 32

criterion
trend

estimated true value

Fig. 4  Evaluation of optimal policy with deterministic �
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7  Conclusions

We have proposed an approximation technique suitable for multistage problems 
with Markov random parameters and illustrated its usefulness on a realistic 
problem. Our technique is especially suitable for financial applications as it 
does not neglect the distribution tails and it can cope with arbitrage potentially 
arising in approximated problems.

In the present paper, the approximation is designed to minimize the nested 
distance; however, its parameters may be set to meet other criteria, e.g., to 
keep the first two moments of the exact process (the moments of � may be 
easily evaluated by the Law of Iterated Expectation and the Law of Iterated 
Variance). Inspired by Kozmík and Morton (2015), one may also think of finer 
approximation of the tails in order to fit tail measures more accurately.

Regarding future research, three ideas come to mind. First, looking at Fig. 1, 
it suggests itself to set ℙ[�t = ∙|�t−1 = e] so that d(�t(e),�t(e)) is minimized rather 
than determine the probabilities by (10). It should, however, be noted that such 
minimization could be difficult and, moreover, some of our theoretical results 
may no longer hold. Second, our “anti-arbitrage protection” could be built into 
the initial construction of � . We did not do this in the present paper as the “anti-
arbitrage” condition is problem-dependent; however, maybe it is possible to 
find more general conditions precluding arbitrage and build them into the initial 
construction of the approximation. Third, condition

would probably suffice for boundedness of Problem (39) (as well as of similar 
ones); as this condition is less strict than (40), it would lead to smaller distortions 
of the original approximations. However, proving this, e.g., for Problem (44) would 
require dealing with estimation of �t(cMt + dPt) from below for some constants 
c, d, which would require either uniform boundedness of Mt , which is not the case 
in our example, or a general estimate of risk mappings of independent sums from 
below which we, however, are not aware of. But nothing prevents anyone from using 
approximations restricted only by (41) given that they do not produce arbitrage in 
practice.

Clearly, our technique might be improved in many ways; however, even in the 
present form, it may be useful for a wide area of problems, including portfolio 
selection, derivative replication or asset-liability management.

A. Auxiliary results

Lemma 1 Let 1 < t ≤ T  and let �, � be processes on {1,… , t} taking values in ℝp . 
Denote P = L(�t ), Q = L(� t) . Let � be a nested transportation from P into Q. Then, 
for each x, s ∈ ℝ

p̄t−1 , an optimal transportation �t(∙|x, s) from P[�t ∈ ∙|�t−1 = x] into 
Q[�t ∈ ∙|� t−1 = s] (w.r.t. d ) exists (being a well defined conditional probability).

(41)Pt ≥ ��t+1(Pt+1)
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Proof By Villani (2003), Theorem 1.3. �t(∙|x, s) exists (and is a probability meas-
ure) for each x, s. To prove that �t is a conditional probability, it remains to show 
that

Certainly, (42) holds if

(because �t(A|∙) = ℙ[B|�t−1 = ∙1] which is measurable by definition, similarly 
for the second coordinate). Clearly, C is a � system with 𝜎(C) = B

p ⊗ B
p . Put 

Dℑ{A ∈ B
p ⊗ B

p ∶ A fulfils (42)}. Trivially, ℝp ×ℝ
p ∈ D . Further, once A,B ∈ D 

and B ⊂ A , we have �t(A⧵B|∙) = �t(A|∙) −�t(B|∙) (by the elementary properties 
of probability measures), so A⧵B ∈ D by Kallenberg (2002),  Lemma 1.12. 
Finally, once for A1 ⊂ A2 ⊂ … , Ai ∈ D , i ∈ ℕ , we have limi Ai ∈ D by Kallenberg 
(2002), Lemmas 1.14 and 1.10 (ii). Thus, D is a �-system containing C , and, by the 
Monotone Class Argument ((Kallenberg 2002), Theorem  1.1), Bp × B

p ∈ D , i.e., 
(42) holds true.   ◻

Lemma 2 Let � be a conditional distribution on (ℝp,Bp) given values from a meas-
urable space (S,S) . Let U ∈ ℝ

s be a random vector and let g ∶ S ×ℝ
s
→ ℝ

p be a 
measurable mapping such that

Then

Proof Fix x, y ∈ S . Put

and denote � = L(X) . As

and, similarly, �(S × ∙) = �(∙|y) , � is a transportation from �(x) to �(y) . Moreover, 
by calculus,

which proves the Lemma because the l.h.s. majorizes the Wasserstein distance.   ◻

Lemma 3 For any processes �, � in ℝp and any 1 ≤ t,

(42)𝜛t(A|∙) is measurable for each A ∈ B
p ⊗ B

p.

A ∈ C, C = {B × C ∶ B,C ∈ B
p, at least one of B and C is ℝp}

(43)�(∙|x) = ℙ[g(x,U) ∈ ∙].

d(�(x),�(y)) ≤ � ‖g(x, u) − g(y, u)‖L(U)(du).

X = 𝜁(U), 𝜁 ∶ (ℝs,Bs) → (S × S,S⊗ S), 𝜁(u) = (g(x, u), g(y, u)),

�(∙ × S) = ℙ[� (U) ∈ ∙ × S] = ℙ[g(x,U) ∈ ∙] = �(∙|x)

∫ ‖r − s‖�(dr, ds) = ∫ ‖g(x, u) − g(y, u)‖L(U)(du)

d(�t, �t) ≤ d(�t, � t) ≤ d(�t, � t)
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Proof Let � be the optimal transportation from �t to � t . Then 
�t(X, S)

def
=�(ℝ(t−1)p × X,ℝ(t−1)p × S) is a transportation from �t to �t which proves the 

first inequality. For the second one, see (Pflug and Pichler 2014), Lemma 2.37.   ◻

Lemma 4 Let � and � be processes in ℝp on {0,… , T} with deterministic �0 and 
�0 . Let q ∈ ℕ and let �, �′ be processes on 0,… , T  with �t, ��t ∈ ℝq , 0 ≤ t ≤ T  , hav-
ing the same distribution, with deterministic �0 = ��

0
 , such that �⟂⟂� , �′⟂⟂� . Then 

d((�, �), (�, ��)) ≤ d(�, �).

Proof Let � be a nested transportation, �-optimal with respect to d(�, �) . For any 
1 ≤ t ≤ T  , denote �t the transportation from �t|�t−1 to �t|� t−1 (its existence is assured 
by the definition of the nested transportation).

Further, for each t and u, v ∈ ℝ
q̄t−1 , q̄t−1 = (t − 1)q , let �t(v|u, v) the opti-

mal transportation from L(�t|�t−1 = u) into L(�t|�t−1 = v) . By Lemma 
1, �t is a well-defined conditional probability. As d is a metric, we have 
0 = d(�t�u, ��t �u) = ∫ ‖u − v‖�t(du, dv�u, u) , so we can choose �t so that �t(∙|u, u) is 
concentrated on {(u, u) ∶ u ∈ ℝ

q}.
For any 1 ≤ t ≤ T  , denote � = (�, �), �� = (�, ��) and consider the conditional dis-

tribution �t defined as

It could be easily proved by the Monotone Class Argument (see the proof of Remark 2 in 
Appendix B.1) that �t is a transportation from �t|�t−1 into ��

t
|��t−1 . Consequently, the dis-

tribution � defined by the composition of �1,… ,�T is a nested transportation, so we have

The Lemma now follows by limit transition.   ◻

B Proofs

B.1 Proof of Remark 2

By the Tower Property ((Pflug and Pichler 2012), Lemma 10), � is a nested trans-
portation in the sense of (Pflug and Pichler 2012) if and only if, for each 1 ≤ t ≤ T ,

𝜋t(𝜉t ∈ A, 𝜂t ∈ B, 𝜍t ∈ C, 𝜂�
t
∈ D|𝜃t−1, 𝜃�t−1)

= 𝜎t(B × D|𝜂t−1, 𝜂�t−1)⊗ 𝜌t(A × C|𝜉t−1, 𝜍 t−1).

d(�, �′) ≤∫ ‖yT − zT‖�(dyT , dzT )

=∫ ⋯∫ (‖xT − sT‖ + ‖uT − vT‖)�T (duT , dvT |uT−1, vT−1)�T (dxT , dsT |xT−1, sT−1)… �1(u1, v1)�t(x1, s1)

=∫ ‖uT − vT‖�T (duT , dvT |uT−1, vT−1)… �1(u1, v1)

+ ∫ ‖xT − sT‖�T (dxT , dsT |xT−1, sT−1)… �t(x1, s1)

=0 + ∫ ‖xT − sT‖�T (dxT , dsT ) ≤ d(�, �) + �.
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Applying (44) to sets A = At ×ℝ
pt−1 , At ∈ B

p , we see that (44) implies (5). 
To prove the reverse implication, note first that (5) implies (44) for any 
A ∈ C

def
={B × C ∶ B ∈ B

p , C ∈ B
p̄t−1} ; indeed,

(we used the pull-out property of conditional expectations (Kallenberg 2002, 
Theorem  6.1 (v) twice). As, by the definition of the product sigma fields, C is a 
generator of Bp̄t , closed under finite intersections, and as the system of sets A 
fulfilling (44) contains ℝp̄t and is closed under proper differences and increasing 
limits (by the properties of probability measures6), (5) follows by the Monotone 
Class Argument (Kallenberg 2002, Theorem 1.1.). The proof of the equivalence of 
(45) and (6) is symmetric.

B.2 Proof of proposition 1

Let �t−1 be an �-optimal (w.r.t. d(�t−1, � t−1) ) nested transportation from �t−1 to � t−1 . 
Let, for each x, s ∈ ℝ

p , �t(∙|x, s) be the optimal transportation from �(x) into �(s) ; 
by Lemma 1 (Appendix), �t is a well-defined probability distribution.

Put

As, by the Markov property, �t(�t−1) = L(�t|�t−1) , �t(�t−1) = L(�t|� t−1) , and as, by 
definition, �t is a conditional distribution of the last 2p components of �t , we have, 
by Definition 2, that �t is a nested transportation from �t to � t . Thus

(44)𝜋((𝜉t, 𝜍 t) ∈ A ×ℝ
p̄t |𝜉t−1, 𝜍 t−1) = P[𝜉t ∈ A|𝜉t−1], A ∈ Bp̄t ,

(45)𝜋((𝜉t, 𝜍 t) ∈ ℝ
p̄t × B|𝜉t−1, 𝜍 t−1) = Q[𝜍 t ∈ B|𝜍 t−1], B ∈ Bp̄t .

P
[
𝜉t ∈ A|𝜉t−1

]
=𝔼P

(
1B

(
𝜉t
)
1C

(
𝜉t−1

)
|𝜉t−1

)

=1C

(
𝜉t−1

)
P
[
𝜉t ∈ B|𝜉t−1

]
= 1C

(
𝜉t−1

)
𝜋
[
(𝜉t, 𝜍t) ∈ B ×ℝ

p|𝜉t−1, 𝜍 t−1
]

=1C

(
𝜉t−1

)
𝔼𝜋

(
1B

(
𝜉t
)|𝜉t−1, 𝜍 t−1

)
= 𝔼𝜋

(
1C

(
𝜉t−1

)
1B

(
𝜉t
)|𝜉t−1, 𝜍 t−1

)

=𝜋
[(

𝜉t, 𝜍 t

)
∈ A ×ℝ

p̄t |𝜉t, 𝜍 t
]

�t(dxt, dst) = �t(dxt, dst|xt−1, st−1)�t−1(dxt−1, dst−1).

(46)

d(�t, � t) ≤� ‖xt − st‖�t(dxt, dst)

=� � [‖xt−1 − st−1‖ + ‖xt − st‖]�t(dxt, dst�xt−1, st−1)�t−1(dxt−1, dst−1)
≤d(�t−1, � t−1) + � + Bt,

6 Here, the proof would fail if the conditional probabilities were not regular because the conditional 
probabilities which are not regular need not be probability measures.
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where

(we have used the triangular inequality for d ). The Proposition now follows by 
substituting this into (46) and by a limit transition.
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