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Abstract
In this work, we are interested in an optimal power flow problem with fixed voltage
magnitudes in distribution networks. This optimization problem is known to be non-
convex and thus difficult to solve. A well-known solution methodology consists in
reformulating the objective function and the constraints of the original problem in
terms of positive semi-definite matrix traces, to which we add a rank constraint. To
convexify the problem, we remove this rank constraint. Our main focus is to provide
a strong mathematical proof of the exactness of this convex relaxation technique. To
this end, we explore the geometry of the feasible set of the problem via its Pareto-
front. We prove that the feasible set of the original problem and the feasible set of
its convexification share the same Pareto-front. From a numerical point of view, this
exactness result allows to reduce the initial problem to a semi-definite program, which
can be solved by more efficient algorithms.
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1 Introduction

The optimal power flow (OPF) study in an electrical network is an essential tool in
power engineering. It is defined as an optimization problem where the cost function
can represent an economic objective such as power generation cost, or/and a technical
objective such as the minimization of power losses in the network. The constraints
often represent some physical restrictions at each bus and at each transmission line of
the network.

OPF problems are widely used in the literature for different goals, see for instance
Elattar and ElSayed (2019), especially:

– The minimization of power production (or importation) costs. In this case, the
objective function is quadratic.

– The minimization of losses of active and/or reactive power in the transmission
lines. The objective function is then non-linear, or even non-convex.

– Maintaining a constant voltage profile. The objective function is then in the form
of a l1 or l2 distance between the voltage v and a target value vt , i.e. J =‖v − vt‖.

Some papers combine several cost functions, leading to consider multi-criteria
optimization problems Shaheen et al. (2016).

To compute the fluxes through the lines of the network, we use the power flow equa-
tions [see for instance Momoh (2017)]. Those equations appear in the OPF problem
as equality constraints and are non-convex. Thus, it makes the optimization problem
itself non-convex and therefore very difficult and costly to solve numerically. On the
other hand, there is no guarantee that an approximate solution provided by an opti-
mization method will be a global minimum. For these reasons, it is preferable to find
a convex problem that is equivalent in a certain sense.

There are several methods that can be used to convexify the problem. A first
approach is to linearize the non-convex constraints under certain physical assump-
tions, in particular the reactive power constraints must be neglected and the voltages
must be fixed. It is then possible to obtain a linear or a quadratic problem [see Castillo
and Gayme (2017)].

Another approach relies on the convexification of the original problem via a convex
relaxation. This consists in replacing the non-convex set of constraints by a convex
set containing it. The convex relaxation is then said to be exact if the optimal value
of the original problem is equal to the optimal value of the convexified problem.
A first and natural possibility is to take the convex hull of the constraints set [see
for instance Lavaei et al. (2012)]. However, the disadvantage of this method is the
difficulty to find an algebraic representation of the convex hull that can be used in
practice. An alternative is to use a larger convex set than the convex hull, and which
can be represented algebraically in a simple manner.

InBai et al. (2008), the authors reformulate the objective function and the constraints
of the original problem in terms of traces of positive semi-definite matrices, to which
is added a rank constraint. By removing this rank constraint, they obtain a convex
problem. This method is called a SDP relaxation.

The authors of Lavaei et al. (2012, 2013) states that the SDP relaxation is exact
under certain conditions of monotony of the objective function and on the voltage
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phase angles. In Lavaei et al. (2012), the voltage magnitudes are assumed to be fixed
and to prove the exactness of the SDP relaxation, they studied the geometry of the
feasible set of the problem via its Pareto-front. However, in their proof the authors
makes a simplifying hypothesis that is not always satisfied, which makes the proof
incomplete (Lemma 4, p. 581). In Lavaei et al. (2013), a generalization to variable
voltage magnitudes is proposed, but the proof of exactness relies on the proof of the
fixed voltage magnitude case. Therefore a complete proof is still an open problem in
both the fixed and variable voltage magnitude cases.

The main goal of this paper is to provide a rigorous proof of the exactness of the
SDP relaxation in the case of fixed voltage magnitudes. Whereas the variable voltage
magnitude case is of practical greater interest, an exactness proof appears to be much
more difficult to reach in this case without additional very restrictive conditions (for
instance no lower bound limitation on the injected active power). In order to do so,
we will use two main ingredients: the tree structure of the distribution network and
a geometrical study of the feasible sets and their Pareto-front. Furthermore, the new
techniques proposed in this paper can be useful tools to help reaching a proof in the
variable voltage magnitude case in a future work.

The rest of this paper is organized as follows. In Sect. 2, we present the model and
the physical equations governing the power distribution network. We then define the
optimization problem of interest and provide different equivalent formulations of this
problem. Section3 is dedicated to the notion of Pareto-front. We give some definitions
and provide some elementary properties that will be frequently used to prove the
theoretical results of this paper. In Sect. 4, we introduce and study the convexified
problem in the simplified case of a network of only one line, and we show some results
that will be used in the following. In Sect. 5, we prove the main result of this paper
which states that under some conditions, the initial problem and its convexification
share the same Pareto-front, i.e. the relaxation is exact. We conclude by proving a
theorem that allows to use this convexification in practice. In Sect. 6, we present some
numerical tests to highlight the proven theoretical results. Finally, in Sect. 7, we give
some concluding remarks and perspectives.

2 Modeling of the power distribution network

2.1 Geometry of the network

We consider a power distribution network modeled by a tree Σ = (S, E), where
S = {1, · · · m}, m ≥ 2, is the set of vertices that represent the nodes of the network
and E ⊂ {{i, k} ∈ R

2, i �= k} is the set of non-oriented edges that represent the
transmission lines. Let us notice that since Σ is a tree, the cardinal of E is necessarily
m − 1. Figure1shows an example of such a network presented in Kersting (1991).

We will use the notation i ∼ k to point out that the vertices i and k are adjacent,
i.e. {i, k} ∈ E .

In order to enumerate the elements of E , we consider a bijection

ψ : {1, · · · , m − 1} → E .
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Fig. 1 Example of the graph of a distribution network of 34 nodes

In the following, we will need to consider flows in both directions in the transmission
lines. To this end, for each non-oriented edge of E , we associate two oriented edges.
Therefore, we define the set

E = {
(i, k) ∈ S2 | {i, k} ∈ E

}
,

whose cardinal is 2(m −1). In other words, for each edge {i, k} in E , the set E contains
the two couples (i, k) and (k, i).

To enumerate the elements of E , we introduce the bijection

ϕ : {1, · · · , 2(m − 1)} → E,

defined such that if ψ(�) = {i, k}, with i < k, then ϕ(2� − 1) = (i, k) and ϕ(2�) =
(k, i). It means that the two orientations of the same edge are consecutive in ϕ, and
that the order of the edges is the same in ϕ and in ψ .

2.2 Physical formulation

We present here the main governing equations and constraints in a AC-power distri-
bution system. We refer to Momoh (2017) for a more detailed presentation of power
engineering equations.

Let vi be the complex voltage at node i , written as

vi = Vi e
jθi , (1)

where Vi is the modulus of vi , called the voltage magnitude and θi is the argument
of vi in ] − π, π ], called the voltage angle. We assume in this work that the voltage
magnitudes are fixed and known for each node i of the network.
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To each non-oriented edge {i, k} ∈ E , we associate a complex admittance yik ,
defined by

yik = gik − jbik,

where gik and bik are the conductance and the susceptance of the line {i, k}, respec-
tively. We assume that bik > gik > 0. This hypothesis is classical in the literature
when addressing this type of problems [see for instance Zhang et al. (2014)].

For each oriented edge (i, k) ∈ E , the active power flow from node i to node k is
defined by

Fik(θik) = V 2
i gik + Vi Vk

(
bik sin(θik) − gik cos(θik)

)
, (2)

where θik = θk − θi .
The total amount of power that can flow through a transmission line {i, k} = ψ(�)

is limited by a physical capacity. This limit is called a thermal constraint and ensures
that the equipment of each transmission line does not become overloaded or overheat
(Conti et al. 2003; Liu et al. 2020). There are several ways to formulate this constraint
[see Madani et al. (2014)], for instance

Fik + Fki ≤ F�, (3)

where F� > 0. The advantage of this formulation is that it can easily rewrite in terms
of voltage angles. Indeed, according to (2), we have

Fik + Fki = (V 2
i + V 2

k )gik − 2Vi Vk gik cos(θik).

We can then distinguish three cases according to the value of F�:

– if F� < (Vi − Vk)
2gik , the constraint (3) is not feasible;

– if (Vi − Vk)
2gik ≤ F� < (Vi + Vk)

2gik , the constraint (3) is equivalent to −θ ik ≤
θik ≤ θ ik , where

θ ik = arccos

(
(V 2

i + V 2
k )gik − F�

2Vi Vk gik

)

;

– if (Vi + Vk)
2gik ≤ F�, the constraint (3) is automatically satisfied.

The first case is not interesting. Therefore in the following, the quantities F� will be
assumed to satisfy

F� ≥ (Vi − Vk)
2gik,

for every edge. As a consequence, the thermal constraint rewrites as follows:

− θ ik ≤ θik ≤ θ ik, (4)
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with θ ik ∈ [0, π ]. Let us notice that θ ik does not depend on the direction of the line,
thus θki = θ ik . In the following, the thermal constraint will be expressed indifferently
in the form (3) or in the form (4).

For some technical reasons, we assume that

0 < θ ik ≤ π

2
.

This condition is equivalent to

(Vi − Vk)
2gik < F� ≤ (V 2

i + V 2
k )gik .

Actually, an even more restrictive assumption will be made later. The physical
relevance of this restriction will then be discussed.

At each node i ∈ S, the injected active power Pi must be equal to the generated
active power minus the consumed active power. These powers can also be written in
terms of power flow equations as follows [see Monticelli (2012)]

Pi =
∑

k∼i

Fik, (5)

which stands as an equality constraint. Furthermore, the injected active power must
satisfy the following inequality constraints

Pi ≤ Pi ≤ Pi , (6)

which limit the quantity of generated or consumed power at each node Monticelli
(2012).

There are many objective functions that can be considered to define the optimal
power flow problem, such as the total loss in the network or the power generation cost
[see Elattar and ElSayed (2019)]. Let P = (P1, · · · , Pm)T ∈ R

m be the vector of all
the power injections defined by equation (5). In this work, we consider an objective
function

J : P 
−→ J (P), (7)

strictly increasing with respect to P, in a sense that we will be precised in Sect. 3.
Let θ ∈ R

2(m−1) be the vector containing all the phase angles of the network, such
that θ� = θik for ϕ(�) = (i, k). Let us notice that according to (5) and (2), and since
the voltage magnitudes Vi are fixed, the active injected power Pi can be seen as a
function of the phase angles θik . In other words, P := P(θ) is a state variable which
depends on the control variable θ . Therefore, we introduce the objective function

J̃ (θ) = J (P(θ)),

where J is the function defined by (7).
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The optimal power flow problem of interest then states as follows

min
θ∈Rm

J̃ (θ),

s.t . − θ ik ≤ θik ≤ θ ik, ∀(i, k) ∈ E,

Pi = ∑
k∼i Fik, ∀i ∈ S,

Pi ≤ Pi ≤ Pi , ∀i ∈ S.

(OPF1)

2.3 Semi-definite reformulation

The power flow equationsmake the problem (OPF1) non-convex and therefore difficult
to solve. In this section, we are going to reformulate this problem in a matrix form
[see Lam et al. (2012)]. The non-convexity will then appear more clearly. On the other
hand, this reformulation will also be helpful to build a convexification of the problem.

We start from expressing all the constraints of Problem (OPF1) in terms of the
vector v = (v1, · · · , vm)T of the complex voltages. In order to do so, we introduce
the following hermitian matrices:

– for 1 ≤ i ≤ m, the matrix Ei such that Ei
i,i = 1 and all the other entries are equal

to 0;
– the matrix Y defined by

{
∀i ∈ S, Yi,i = ∑

k∼i yik,

∀(i, k) ∈ E, Yi,k = −yik,

and all other entries are equal to 0;
– for 1 ≤ i ≤ m, the matrix Bi defined by

Bi = 1

2
(Y∗Ei + EiY);

– for (i, k) ∈ E , the matrix Bik such that

⎧
⎪⎨

⎪⎩

Bik
i,i = gik,

Bik
i,k = − yik

2 ,

Bik
k,i = − yik

2 ,

and all other entries are equal to 0.
An immediate computation shows that Fik = Tr(Bikvv∗) for all (i, k) ∈ E and
Pi = Tr(Bivv∗), for all i ∈ S.
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Now, let us consider the following optimization problem

min
W∈Hm

Ĵ (W),

s.t. Pi ≤ Tr(BiW) ≤ Pi , ∀i ∈ S

Tr(BikW) + Tr(BkiW) ≤ F�, ∀{i, k} = ψ(�) ∈ E,

W  0,

rank(W) = 1,

(OPF2)

where Hm is the set of hermitian matrices of order m, the notation W  0 means that
the matrix W is positive semi-definite and

Ĵ (W) = J (Tr(B1W), · · · ,Tr(BmW)).

Problems (OPF2) and (OPF1) can be linked by the following result whose proof is
immediate.

Proposition 1 Problems (OPF1) and (OPF2) are equivalent in the following sense:

– if θ is a solution of (OPF1), then noting v = Ve jθ , the matrix W = vv∗ is a
hermitian matrix of rank 1 and a solution of (OPF2);

– if W is a solution of (OPF2), then there exists a vector v ∈ C
m such that W = vv∗

and θ = arg(v) is a solution of (OPF1).

Problem (OPF2) is obviousely non-convex because of the rank constraint. A natural
way to make it convex is therefore to remove this rank constraint, which leads to
consider the following problem:

min
W∈Hm

Ĵ (W),

s.t. Pi ≤ Tr(BiW) ≤ Pi , ∀i ∈ S,

Tr(BikW) + Tr(BkiW) ≤ F� ∀{i, k} = ψ(�) ∈ E,

W  0.

(OPF2)

This is a semi-definite program (SDP) that is much easier to solve numerically than
Problem (OPF2) [see for instance Bai et al. (2008)]. However, there is no guarantee
that a solution of (OPF2) is of rank 1 and therefore leads to a solution of (OPF2). The
following of this paper is dedicated to find some conditions that ensure that this is the
case and to prove it.

2.4 Set reformulation

In this section, we propose another formulation of Problem (OPF1) by considering the
vector of injected active power as a decision variable and by defining the constraints
in terms of sets. This formulation will be more adapted to the mathematical study that
will follow.
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We define the following order relation: for x, y ∈ R
n , we set

x ≤ y ⇔ ∀i ∈ {1, · · · , n}, xi ≤ yi .

The fluxes defined by (2) are gathered in one vector F(θ) ∈ R
2(m−1) where the

�-th component is

F�(θ) = Fik(θik), with ϕ(�) = (i, k). (8)

The injected active power flow vector P(θ) ∈ R
m then writes

Pi (θ) =
∑

k∼i

Fik(θik). (9)

Weare nowgoing to define a feasible set for each constraint. Concerning the injected
active power constraint, we only need to introduce

PP =
{
P ∈ R

m, P ≤ P ≤ P
}

. (10)

Next we consider the thermal constraint. For each non-oriented edge ψ(�) =
{i, k} ∈ E , the feasible set for the active power flows is defined by

F� =
{
(Fik(θik), Fki (−θik))

T , −θ ik ≤ θik ≤ θ ik

}
. (11)

Considering the whole network, the feasible set for the active power flow reads

F =
{
F(θ), −θ ≤ θ ≤ θ

}
. (12)

We immediately see that the sets F and F� are connected as follows

F =
m−1∏

�=1

F�. (13)

Finally, the feasible set of the injected active power for the thermal constraint is
given by

Pθ =
{
P(θ), −θ ≤ θ ≤ θ

}
. (14)

In order to link the sets F and Pθ , we introduce the connectivity matrix A ∈
Mm,2(m−1)(R), defined by

Ai,� =
{
1 if ϕ(�) = (i, ·),
0 otherwise,
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where the notation ϕ(�) = (i, ·) means that there exists k ∈ S such that ϕ(�) = (i, k)

(i.e. there exist k ∈ S such that i ∼ k). We then have

P(θ) = AF(θ),

and therefore

Pθ = AF . (15)

Such a construction already exists in the literature, see for instance Lavaei et al. (2012,
2013).

This leads to consider the following optimization problem

min
P∈Rm

J (P)

s.t. P ∈ Pθ ∩ PP

(OPF3)

Proposition 2 Problems (OPF1) and (OPF3) are equivalent in the following sense:

– If θ is a solution of (OPF1), then P(θ) defined by (8) and (9) is a solution of
(OPF3).

– If P is a solution of (OPF3), then there exists θ ∈ R
2(m−1) such that P = P(θ)

and θ is a solution of (OPF1).

Once again, we omit the proof that is immediate.

3 Pareto-front

In order to convexify Problem (OPF1), we are going to study the geometry of the
feasible set for Problem (OPF3). Themain tool wewill use to locate potential solutions
is the Pareto-front. This section is dedicated to recall this notion and itsmain properties.

First, we introduce the following order relation

x ≺ y ⇔ ∀i ∈ {1, · · · , n}, xi ≤ yi and ∃i ∈ {1, · · · , n}, xi < yi .

We can then define the notion of Pareto-optimality.

Definition 1 Let A ⊂ R
n . A vector x ∈ A is said to be Pareto-optimal in A if

{
y ∈ A, y ≺ x

} = ∅.

The set of all vectors x ∈ A which are Pareto-optimal in A is called the Pareto-front
of A and is denoted by O(A).
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Let us notice that the Pareto-front of a set A is always a subset of the topological
frontier of A.

The following definition allows to link the Pareto-front with optimization problems.

Definition 2 A function f : A ⊂ R
n → R is said to be strictly increasing on A if for

all x, y ∈ A such that x ≺ y, we have f (x) < f ( y).

We then have the following classical result.

Proposition 3 Let f : A ⊂ R
n → R be a strictly increasing function. If x� =

arg minx∈A f (x), then x� ∈ O(A).

Proof By absurd, suppose that x� /∈ O(A). Then there exists x ′ ∈ A such that x ′ ≺ x�.
Since f is strictly increasing, we have f (x ′) < f (x�). That contradicts the optimality
of x�. ��

Next, we establish a result that ensures that under certain conditions, nested sets
have the same Pareto-front. Up to our knowledge, this result does not exist in the
literature, although it is quite elementary.

Proposition 4 Let A ⊂ B ⊂ R
n.

1. We have A ∩ O(B) ⊂ O(A).
2. If in addition B is a compact set and O(B) ⊂ A, then O(A) = O(B).

Proof

1. Let x ∈ A ∩ O(B). If x /∈ O(A), then there exists x� ∈ A such that x� ≺ x.
Since A ⊂ B, we have x� ∈ B. This contradicts x ∈ O(B) and therefore we have
A ∩ O(B) ⊂ O(A).

2. Since O(B) ⊂ A, the statement 1. reformulates as O(B) ⊂ O(A). Conversely, let
x ∈ O(A) and let us suppose by absurd that x /∈ O(B). We introduce the set

C = B ∩ {
y ∈ R

n, y ≤ x
}
,

which is compact as an intersection of a compact and a closed set. Let f : C → R

be the function defined by f ( y) = ∑n
i=1 yi . The function f is continuous on C,

therefore there exists x� ∈ C such that

x� = arg min y∈C f ( y).

If x� does not belong to O(B), then there exists x′ ∈ B such that x′ ≺ x�. Hence,
we have x′ ≤ x� ≤ x and consequently x′ ∈ C. In addition, f is strictly increasing,
therefore we have f (x′) < f (x�), which contradicts the optimality of x�. As a
consequence, x� ∈ O(B). Since x does not belong toO(B),we cannot have x� = x.
Hence we have x� ≺ x. Now, since x� ∈ O(B) ⊂ O(A) ⊂ A, this contradicts
x ∈ O(A). Therefore x ∈ O(B) and O(A) ⊂ O(B).

��
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Fig. 2 Network of one
transmission line

4 Distribution network of one transmission line

The objective of the following sections is to build a relevant convexification of Problem
(OPF3), then to prove that this convexification is exact under some conditions. This
type of proof will be based on two main elements:

– the geometrical properties of the feasible sets at the local level of a transmission
line;

– the tree structure of the network.

In this section, we are interested in a network constituted of only one transmission
line. In a first instance, we don’t take into account the injected power constraints. The
purpose is to introduce some notations, to prove some geometric results on the feasible
set and to come up with a convexification of the problem in this very simplified case.
We will then extend these results to the whole network in the following sections.

We consider a graph constituted of a single edge {1, 2} (see Fig. 2). For simplicity
of notations, the coefficients b12 and g12 will simply be noted b and g. The active
power flow F12 and F21 will respectively be noted by F1 and F2. Finally, the angle
θ12 will be noted θ .

We introduce the angle

α = arctan

(
b

g

)
∈

]
0,

π

2

[
. (16)

4.1 The feasible setF of the active power flow

We consider the function F(θ) = (F12(θ), F21(θ))T , where

F12(θ) = V 2
1 g + V1V2b sin(θ) − V1V2g cos(θ),

F21(θ) = V 2
2 g − V1V2b sin(θ) − V1V2g cos(θ).

We define

A =
{
F(θ) ∈ R

2, θ ∈ [−π, π ]
}

.

Let us notice that A is an ellipse whose axis of symmetry is the line y = x , see Fig. 3
(a).

The feasible set of the active power flow is defined by

F =
{
F(θ) ∈ R

2, θ ∈ [−θ, θ̄ ]
}

. (17)
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Fig. 3 a The set A, b the set F , c the set O(F)

This set is an arc of the ellipse A (see the example in Fig. 3 (b), with θ = π/2).
By studying the variations of functions F1 and F2, we can easily see that the

Pareto-front of the set F is

O(F) =
{
F(θ) ∈ R

2, θ ∈ [−max(θ, α),min(θ, α)
]}

, (18)

see Fig. 3 (c).

4.2 Convexification of the setF

The purpose here is to build an exact convexification of the set F which can be used
in practice. A natural idea is to consider the convex hull of F . However, the convex
hull does not have a simple algebraic characterization and is therefore difficult to use
in practice for our optimization problem of interest.

We will build another convexification based on a positive semi-definite hermitian
matrix formulation which has a very simple algebraic characterization.

WenoteH
+
m the set ofm×m positive semi-definite hermitianmatrices.We introduce

the set

H =
{
W ∈ H

+
2 ,W1,1 = V 2

1 ,W2,2 = V 2
2 ,

− tan(θ)Re
(
W1,2

) ≤ Im
(
W1,2

) ≤ tan(θ)Re
(
W1,2

)}
.

One can easily check that a matrix W of order 2 belongs to H if and only if there
exists α ∈ [0, V1V2] and θ ∈ [−θ, θ ] such that

W =
(

V 2
1 αe jθ

αe− jθ V 2
2

)
. (19)

Moreover, such a matrix is of rank 1 if and only if α = V1V2.
The set F can then be written in terms of hermitian matrices of H as follows

F = {Re(diag(WK )),W ∈ H, rank(W) = 1}, (20)
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Fig. 4 a The set conv(F) with θ > π
2 , b The set conv(F) with θ ≤ π

2

where the matrix K is defined by

K =
(

g + jb −g − jb
−g − jb g + jb

)
.

By removing the rank constraint in (20), we obtain a convexification of F , i.e. a
convex set containing F , which will be denoted by

conv(F) = {Re(diag(WY)),W ∈ H}. (21)

Let us notice that thanks to the hypothesis θ ≤ π
2 , the set conv(F) is actually convex.

Indeed, this set is a sector of an ellipse contained in a half-ellipse, see Fig. 4. Without
this hypothesis, the set conv(F)would not be convex (except in the case θ = π where
conv(F) is the entire ellipse).

Once again, the study of variations of F1 and F2 shows immediately that
O(conv(F)) = O(F). This can also be seen in Fig. 4. This result will be later extended
to the whole network.

4.3 Technical results

We present here some technical results which will be used in the following and which
are obtained by making a more restrictive assumption on θ .

First, let us notice that according to Eqs. (17) and (18), if θ ≤ α, we have

O(conv(F)) = O(F) = F . (22)

Now we present a characterization of the elements of conv(F)\F .

Lemma 1 Let us assume that θ ≤ α. Let (x, y) ∈ conv(F)\F . Then there exists δ > 0
such that (x − δ, y) ∈ F .

In addition, for all ε ∈ [0, δ], we have (x − ε, y) ∈ conv(F).
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Proof Since θ ≤ α, we haveO(conv(F)) = F . The function F2 is strictly decreasing
on [−θ, θ ], therefore there exists a unique θ ∈ [−θ, θ ] such that F2(θ) = y. Since
(x, y) /∈ F , we cannot have F1(θ) = x . If F1(θ) > x , then we have (x, y) ≺ F(θ),
which contradicts O(conv(F)) = F . Therefore, we have necessarily F1(θ) < x . By
setting δ = x − F1(θ), we have (x − δ, y) = F(θ) ∈ F .

The second statement is immediate by convexity of conv(F). ��
Finally, we prove a property that allows to reverse the sense of inequalities between

the two components of vectors of F and conv(F).

Lemma 2 We assume that θ ≤ α. Let (x�, y�) ∈ F and
(x, y) ∈ conv(F). Then, we have

1. if x ≤ x�, then y ≥ y�;
2. if x < x�, then y > y�;
3. if y ≤ y�, then x ≥ x�;
4. if y < y�, then x > x�.

Proof Since θ ≤ α, thanks to (22), we have (x�, y�) ∈ O(conv(F)). If x ≤ x� and
y < y�, then we have (x, y) ≺ (x�, y�), which contradicts (x�, y�) ∈ O(conv(F)).
The other statements can be proved in a similar way. ��

4.4 Consideration of injected active power constraints

Here, we consider in addition the constraints

Pi ≤ Fi (θ) ≤ Pi , i ∈ {1, 2}.

The feasible set is then written in the formF ∩FP whereF is defined by (17) and

FP =
{
F ∈ R

2, P ≤ F ≤ P
}

.

Note that since FP is convex, the set conv(F) ∩ FP is a simple convexification of
F ∩ FP . In order to prove that this convexification is exact, we would like to have

O(F ∩ FP ) = O(conv(F) ∩ FP ). (23)

However, we can easily see that this equality is not always satisfied. To illustrate this
failure, let us consider the following setting θ = π/2, b = 5, g = 2 and V1 = V2 = 1.
Figure5shows different scenarios for the set F ∩ FP , depending on the values of Pi
and Pi . In the cases (a) and (b), the sets O(conv(F) ∩ FP ) and O(F ∩ FP ) are both
equal to F ∩ FP and so (23) holds. However, it is not true in case (c), as we can see
more clearly in Fig. 6.

We observe that those problematic cases only appear when some elements ofF are
not Pareto-optimal and the values of Pi are large enough. To avoid this, a classical
assumption is to suppose that all the points of F are Pareto-optimal in F [see for
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Fig. 5 Some possible cases for the setF ∩FP ; the orange surface corresponds to conv(F)∩FP ; the green
curve corresponds to F ∩ FP

Fig. 6 Zoom of the figure 5 (c);
we haveO(conv
(F) ∩ FP ) = {a} and
O(F ∩ FP ) = {b}

instance Lavaei et al. (2013)]. This assumption is equivalent to θ ≤ α. In Lavaei et al.
(2013); Huang et al. (2019), authors explain that this assumption does always hold in
practice for distribution networks.

Let us notice that under this condition, equality (23) does not necessary hold. But
it does not hold only when the feasible set F ∩ FP is empty, as we can see in Fig. 7.
This alternative is sufficient to apply in the framework of our optimization problem.

In the following section, we generalize and prove relation (23) in the case of a
general network of m ≥ 2 nodes.

5 General distribution network

We start by generalizing the definitions and notations of Sect. 4.2 to the case of a whole
network.
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Fig. 7 a The relation O(F ∩ FP ) = O(conv(F) ∩ FP ) holds, b the set F ∩ FP is empty

For each non-oriented edge ψ(�) = {i, k}, we reproduce the convexification of the
power flow feasible set F�, defined by (11). We thus introduce

conv(F�) = {Re(diag(WKik)), W ∈ Hik}, (24)

where the set Hik is defined by

Hik =
{
W ∈ H

+
2 , W1,1 = V 2

i , W2,2 = V 2
k ,

− tan(θ ik)Re(W1,2) ≤ Im(W1,2) ≤ tan(θ ik)Re(W1,2)
}
,

and the matrix K ik is given by

K ik =
(

gik + jbik −gik − jbik

−gik − jbik gik + jbik

)
.

According to relations (13) and (15), it is natural to define the convexification of
the sets F and Pθ by

conv(F) =
m−1∏

�=1

conv(F�) (25)

and

conv(Pθ ) = A conv(F). (26)

The sets conv(F) and conv (Pθ ) are convex as a product of convex sets and the
image by a linear map of a convex set.
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Those definitions lead us to consider the following optimization problem

min
P∈Rm

J (P)

s.t. P ∈ conv(Pθ ) ∩ PP ,
(OPF3)

where PP is defined by (10).
As stated previously, we obtain (OPF2) as a convexification of (OPF2). On the

other hand, Problems (OPF2) and (OPF3) are both equivalent to (OPF1). Moreover,
(OPF2) and (OPF3) are equivalent as stated in the following result, whose proof is
straightforward and not given here.

Proposition 5 Problems (OPF2) and (OPF3) are equivalent in the following sense:

– If P is a solution of (OPF3), then for every edge {i, k} ∈ E, there exists αik ∈
[0, Vi Vk] and θik ∈ [−θ ik, θ ik] such that we have

Pi =
∑

k∼i

(V 2
i gik + αikbik sin(θik) − αik gik cos(θik)).

The matrix W defined by

⎧
⎪⎨

⎪⎩

Wi,i = V 2
i , if i ∈ S,

Wi,k = αike jθik , if (i, k) ∈ E,

Wi,k =0, else,

(27)

is then a solution of (OPF2).
In addition, if P ∈ Pθ , then the matrix W is of rank 1.

– If W is a solution of (OPF2), then by defining

Pi = Tr(BiW), (28)

where Bi is defined by (2.3), the vector P is a solution of (OPF3).
In addition, if the matrix W is of rank 1, then P ∈ Pθ . In this case, there exists
v ∈ C

m such that W = vv∗ and we have P = P(arg(v)).

In order to prove that the convexification introduced earlier is exact, we need the
following assumption.

Assumption A1 For every edge {i, k} ∈ E, we have

θ ik ≤ arctan

(
bik

gik

)
.

As introduced in the previous section, the convexification of the feasible set P is
conv (Pθ )∩PP , where conv(Pθ ) is defined by (26). In this section, in a first instance,
we establish that O (conv (Pθ ) ∩ PP ) = O(P), under certain conditions that will be
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precised. This result is difficult to prove and will require some preliminary results. We
will then deduce themain theorem of this paper, which ensures that the convexification
(OPF2) is exact in this framework.

As a first preliminary result, we give a characterization of the vectors of
O(conv(Pθ ) ∩ PP ).

Lemma 3 Let us suppose that Assumption A1 holds. Let P ∈ O(conv(Pθ ) ∩PP ) and
F ∈ conv(F) be such that P = AF.

If a vertex i ∈ S satisfies Pi > Pi , then for every vertex k ∈ S such that k ∼ i, we
have (Fik, Fki ) ∈ F�, with ψ(�) = {i, k} and i < k.

Proof By absurd, we suppose that Pi > Pi and that there exists k ∈ S with k ∼ i ,
such that (Fik, Fki ) /∈ F�. We will construct a vector P� ∈ conv (Pθ ) ∩ PP such that
P� ≺ P . This will contradict the assumption that P belongs to the Pareto-front of this
set.

We have (Fik, Fki ) ∈ conv (F�) \F�, then according to Lemma 1, there exists
δ > 0 such that (Fik − δ, Fki ) ∈ F� and for all ε ∈ [0, δ], we have (Fik − ε, Fki ) ∈
conv (F�).

We set ε = min
(
δ, Pi − Pi

)
> 0. Let F� be defined by

F�
qr =

{
Fqr if (q, r) �= (i, k),

Fik − ε if (q, r) = (i, k),

and P� = AF�. Then we have

P�
i =

∑

n∼i

F�
in = Fik − ε +

∑

n∼i
n �=k

Fin = Pi − ε

and for all n �= i, we have P�
n = Pn . We deduce that P� ≺ P .

Now, let us prove that P� ∈ conv (Pθ ) ∩ PP . We have F� ∈ conv(F), therefore
P� ∈ conv (Pθ ) . On the other hand, since Pi ≤ Pi − ε = P�

i < Pi ≤ Pi , we deduce
P� ∈ PP .

Hence, we have proved that P� ∈ conv (Pθ ) ∩ PP . ��
The following Lemma allows to find a condition for a vector of conv(F) to be in F .
This result relies on the tree structure of the network.

Lemma 4 Let us suppose that assumption A1 holds. Let F� ∈ F and F ∈ conv(F)

such that for every i ∈ S, we have

∑

k∼i

Fik ≤
∑

k∼i

F�
ik . (29)

Then, we have Fik = F�
ik , for every (i, k) ∈ E .
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Proof We fix arbitrarily a root r of the treeΣ. Let us notice that for a vertex i ∈ S\{r},
of parent k, relation (29) writes

Fik − F�
ik ≤

∑

n child of i

(
F�

in − Fin
)
. (30)

First, we show by a bottom-up induction, that for every vertex i ∈ S\{r}, of parent k,
we have Fik ≤ F�

ik . Let i ∈ S\{r}, of parent k.

– If i is an external vertex of Σ (i.e. i has no child), then (30) implies directly that
Fik ≤ F�

ik .
– If i is an internal vertex of Σ (i.e. i has at least one child), such that for every child

n of i , we have Fni ≤ F�
ni , then Lemma 2 ensures that Fin ≥ F�

in . Relation (30)
then implies that Fik ≤ F�

ik .

The property is then true for every vertex i ∈ S\{r}. Next, we show by a top-down
induction that for every internal vertex i ∈ S and for every children n of i , we have
Fin = F�

in and Fni = F�
ni .

– If i is the root r of Σ , relation (30) writes

∑

n child of i

(
F�

in − Fin
) ≥ 0.

From the above, we know that for every child n of i , we have Fni ≤ F�
ni . Therefore,

according to Lemma 2, we have Fin ≥ F�
in . We deduce that Fin = F�

in . Lemma 2
then implies that Fni ≥ F�

ni , therefore Fni = F�
ni .

– If i is not the root and its parent k satisfies Fki = F�
ki , then according to Lemma 2,

we have Fik ≥ F�
ik . From the above, for every child n of i , we have Fni ≤ F�

ni ,
therefore according to Lemma 2, Fin ≥ F�

in . Relation (30) then writes

0 ≤ Fik − F�
ik ≤

∑

n child of i

(
F�

in − Fin
) ≤ 0

We deduce that Fin = F�
in . Lemma 2 ensures that Fni ≥ F�

ni , hence Fni = F�
ni .

We have thus proven that for every (i, k) ∈ E , we have Fik = F�
ik . ��

Thanks to these lemmas, we can now prove that the feasible set Pθ ∩ PP and its
convexification conv (Pθ )∩PP share the same Pareto-front, provided the setPθ ∩PP

is non-empty.

Theorem 5 We suppose that Assumption A1 holds. If Pθ ∩ PP �= ∅, then we have

O(Pθ ∩ PP ) = O (conv (Pθ ) ∩ PP ) .
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Proof If O (conv (Pθ ) ∩ PP ) ⊂ Pθ ∩ PP , then Proposition 4 ensures that O(Pθ ∩
PP ) = O (conv (Pθ ) ∩ PP ) . As a consequence, it is sufficient to prove the first
inclusion.

Let P ∈ O (conv (Pθ ) ∩ PP ) and F ∈ conv(F) such that P = AF. By absurd,
we suppose that P /∈ Pθ ∩ PP . The proof will consist in constructing a vector P ′ ∈
conv (Pθ ) ∩ PP such that P ′ ≺ P , which will contradict the assumption.

Since P /∈ Pθ , there exists an edge that we note {1, 2} = ψ(1) ∈ E , such that
(F12, F21) /∈ F1. Let us notice that Lemma 3 ensures that P1 = P1 and P2 = P2.

By removing the edge {1, 2} of the graphΣ , we obtain two connected components.
We note S1 and S2 the set of vertices of the connected component containing the vertex
1 and 2, respectively.

Finally, since Pθ ∩ PP �= ∅, there exists P� ∈ Pθ ∩ PP and F� ∈ F such that
P� = AF�.

1st step: there exists a vertex i ∈ S such that Pi > Pi .
Let us suppose this is not the case, in other words that every vertex i ∈ S satisfies
Pi = Pi . Since Pi ≤ P�

i , we deduce that for every i ∈ S, we have

∑

k∼i

Fik ≤
∑

k∼i

F�
ik .

Lemma 4 then ensures that Fik = F�
ik for every oriented edge (i, k) ∈ E . Therefore,

we have (F12, F21) = (
F�
12, F�

21

) ∈ F1, which is impossible.

2nd step: determination of the part of the graph where we will modify P .
We call a feasible path every path of vertices q1 ∼ · · · ∼ qr such that

– q1 ∈ {1, 2};
– q2 /∈ {1, 2};
– Pqr > Pqr

;
– for all 1 ≤ i ≤ r − 1, we have Pi = Pi .

We consider the sub-graph Σ̃ = (S̃, Ẽ) of Σ , connected and maximal, such that
every vertex i ∈ S̃ satisfying Pi > Pi belongs to a feasible path in Σ̃ . In other words,
by browsing the graph from 1 or 2, as soon as we meet a vertex such that Pi > Pi ,

we remove all its descendants. The feasible paths and the construction of the graph Σ̃

is illustrated for a simple example in Fig. 8.
Let us notice that Σ̃ admits two types of leaves:

– the leaves i satisfying Pi = Pi , in which case, this is a leaf from the original tree
Σ ;

– the leaves i satisfying Pi > Pi , in which case, this is not necessarily a leaf of the
original tree Σ ; according to the first step and by maximality of Σ̃, there exists at
least one leaf of this type in Σ̃ .

The vertices i ∈ Σ̃ which are not leaves necessarily satisfy Pi = Pi .
We now prove that there exists a feasible path q1 ∼ · · · ∼ qr in Σ̃ such that for

all i = 1, · · · , r − 1, we have Fqi qi+1 < F�
qi qi+1

. By absurd, let us suppose that for

all feasible path in Σ̃, there exists s ∈ {1, · · · , r − 1} such that Fqsqs+1 ≥ F�
qsqs+1

.
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Fig. 8 Example of graph Σ̃ and the feasible paths

We consider then the subgraph Σ̂ = (Ŝ, Ê) of Σ̃ in which we have removed all the
vertices beyond qs+1 in the feasible paths.

Let us consider a leaf i in Σ̂, whose only neighbor is noted by k. We have two
possibilities:

– either i corresponds to a qs+1 described previously and then satisfies Fki ≥ F�
ki ;

– or i is also a leaf of Σ̃ satisfying Pi = Pi . It is therefore a leaf from the original
tree Σ. As a consequence, we have Pi ≤ P�

i , thus Fik ≤ F�
ik . Lemma 2 then

ensures that Fki ≥ F�
ki .

We consider now the vertex 1 as the root of Σ̂ . For an internal vertex i ∈ Ŝ ∩ S2,
of parent k, we prove by a bottom-up induction that Fik ≤ F�

ik .

– If all the children of i are external vertices of Σ̂ : since i is an internal vertex of Σ̂

different from the root, it is not a leaf of Σ̂ . Therefore, we have Pi = Pi , thus

Fik +
∑

n child of i

Fin ≤ F�
ik +

∑

n child of i

F�
in,

and then

Fik − F�
ik ≤

∑

n child of i

(
F�

in − Fin
)
.

A child n of i , which is an external vertex by assumption, and therefore a leaf of
Σ̂ , satisfies according to the above Fin ≥ F�

in, thus we have Fik ≤ F�
ik .

– If all the children n of i satisfy Fni ≤ F�
ni , then Lemma 2 ensures that Fin ≥ F�

in
and we deduce in the same fashion that Fik ≤ F�

ik .

The result is then true for all the vertices of Ŝ ∩ S2 and in particular for the vertex 2,
therefore F21 ≤ F�

21.
The same result can be obtained by considering the vertex 2 as a root and the

set Ŝ ∩ S1. We deduce that F12 ≤ F�
12. Lemma 2 then ensures that F21 ≥ F�

21
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and F12 ≥ F�
12, therefore (F12, F21) = (

F�
12, F�

21

)
, which contradicts the fact that

(1, 2) /∈ F1.
It follows that there exists a feasible path q1 ∼ · · · ∼ qr in Σ̃ such that for all

i = 1, · · · , r − 1, we have Fqi qi+1 < F�
qi qi+1

and thus Fqi+1qi > F�
qi+1qi

according to
Lemma 2. We will modify P on the vertices of this feasible path.

3rd step: construction of P ′.
Without loss of generality, we assume that q1 = 1. We set

F ′
12 = F12 − δ,

F ′
21 = F21,

F ′
qi qi+1

= λi Fqi qi+1 + (1 − λi ) F�
qi qi+1

, ∀1 ≤ i ≤ r − 1,

F ′
qi+1qi

= λi Fqi+1qi + (1 − λi ) F�
qi+1qi

, ∀1 ≤ i ≤ r − 1,

where δ > 0 and the numbers λi ∈]0, 1[will be fixed in the following. For every other
line {i, k} of E, we set F ′

ik = Fik and F ′
ki = Fki .

We then define P ′ = AF′ and we have

P ′
1 − P1 = −δ + (1 − λ1)

(
F�

q1q2 − Fq1q2

)
,

P ′
qr

− Pqr = (1 − λr−1)
(

F�
qr qr−1

− Fqr qr−1

)
,

and for 2 ≤ i ≤ r − 1,

P ′
qi

− Pqi = (1 − λi−1)
(

F�
qi qi−1

− Fqi qi−1

)
+ (1 − λi )

(
F�

qi qi+1
− Fqi qi+1

)
.

The objective is to have P ′ ≺ P and P ′ ∈ PP , thus Pi ≤ P ′
i ≤ Pi for every i ∈ S.

The vertices qi , for 1 ≤ i ≤ r − 1, satisfy Pi = Pi , therefore we must enforce
P ′

i = Pi . This implies that

λ1 = 1 − δ

F�
q1q2 − Fq1q2

,

λi = 1 − (1 − λi−1)
Fqi qi−1 − F�

qi qi−1

F�
qi qi+1

− Fqi qi+1

, for 2 ≤ i ≤ r − 1.

Let us notice that for δ small enough, λi belongs to ]0, 1[ and can be as close to 1 as
we want.

Since F�
qr qr−1

− Fqr qr−1 < 0, we deduce that P ′
qr

< Pqr . By construction, all the
other vertices i ∈ Σ\ {qr } satisfy P ′

i = Pi , thus we have P ′ ≺ P .

4th step: verification that P ′ ∈ conv (Pθ ) ∩ PP .
Let �i be such thatψ(�i ) = {qi , qi+1}. We first notice that by convexity of conv

(F�i

)
,

we have
(

F ′
qi qi+1

, F ′
qi+1qi

)
∈ conv

(F�i

)
for all 1 ≤ i ≤ r −1.On the other hand, since

(F12, F21) ∈ conv (F1) \F1, Lemma 3 ensures that
(
F ′
12, F ′

21

)
belongs to conv (F1)
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at least for δ small enough. Therefore, for δ small enough, we have P ′ ∈ conv (Pθ ).
To prove that P ′ ∈ PP , it is sufficient to prove that P ′

qr
> Pqr

. We have

P ′
qr

− Pqr
= Pqr − Pqr

+ (1 − λr−1)
(

F�
qr qr−1

− Fqr qr−1

)
.

We have seen that by choosing δ small enough, we can make λr−1 as close to 1 as we
want. Since Pqr > Pqr

, we have P ′
qr

> Pqr
for δ small enough, thus P ′ ∈ PP .

We have thus proven that for δ small enough, P ′ belongs to conv (Pθ ) ∩PP . Since
P ′ ≺ P , the initial assumption is contradicted. ��

Now, we conclude this section with a result allowing to connect the solutions of the
convexified problem (OPF2) to the solutions of the physiscal problem (OPF1). This
result has direct numerical applications, since it allows in practice to solve the convex
problem (OPF2) and obtain either a solution of Problem (OPF1), or the non-existence
of solutions for this problem.

Theorem 6 We suppose that Assumption A1 holds. Then we distinguish three cases:

1. if (OPF2) admits a solution W of rank 1, then there exists v ∈ C
m such that

W = vv∗ and arg(v) is a solution of (OPF1);
2. if (OPF2) admits a solution W of a rank at least 2, then (OPF1) is infeasible;
3. if (OPF2) is infeasible, then (OPF1) is infeasible.

Proof
1. If (OPF2) admits a solution W of rank 1, then there exists v ∈ C

m such that
W = vv∗ and Proposition 5 ensures that P = P(arg(v)) is a solution of (OPF3)
and that P ∈ Pθ . Therefore, we have Pθ ∩ PP �= ∅ and according to Theorem 5,
we have

O(conv(Pθ ) ∩ PP ) = O(Pθ ∩ PP ).

Since the cost function J is strictly increasing, we have P ∈ O(conv(Pθ ) ∩ PP )

and therefore P ∈ O(P). We deduce that P is a solution of (OPF3) and thus arg(v)

is a solution of (OPF1).
2. If (OPF2) admits a solution W of rank greater than 2, by absurd, let us suppose

that (OPF1) is feasible. Then (OPF3) is also feasible, therefore Pθ ∩ PP �= ∅.
Theorem 5 ensures that

O(conv(Pθ ) ∩ PP ) = O(Pθ ∩ PP ).

In other words, every solution of (OPF3) belongs to Pθ . It follows from Propo-
sition 5 that every solution of (OPF2) is of rank 1, which contradicts the
assumption.

3. If (OPF2) is infeasible, by absurd, let us suppose that (OPF1) is feasible. Then
(OPF3) is also feasible. As a consequence, we havePθ ∩PP �= ∅. SincePθ ∩PP ⊂
conv(Pθ )∩PP ,we have conv(Pθ )∩PP �= ∅, thus (OPF3) is also feasible. It follows
from Proposition 5 that (OPF2) is feasible, which is a contradiction.

��
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Fig. 9 IEEE 37 node test feeder

6 Numerical tests

We present here some numerical examples to highlight Theorem 6 proved previously
and to test if this theoretical result can be extended to take into account reactive powers.

6.1 IEEE 37 node test feeder

We consider the distribution network of 37 nodes whose structure is given in Fig. 9.
The network and the line data are provided in Schneider et al. (2017). The admittance
matrix is computed using the code provided in Group (2010). In order to make our
tests more relevant, we provide data values of the lower (upper) bound of the injected
active powers, thermal constraint and of the voltages, displayed in Table 1.

The F� are chosen so that assumption A1 holds. For every line {i, k}, we compute
the angle αik defined by (16) from admittance yik . We then set the thermal constraint
as F� = Fik(αik) + Fki (αki ). Note that we then have θ ik = αik .

The computations for Problem (OPF2) are carried out by the primal-dual interior
points method, with the function Mosek using Yalmip toolbox on Matlab®, see
Löfberg (2004); ApS (2019). To solve Problem (OPF1), we use the functionFMINCON
which relies on a SQP-BFGS type algorithm [see Waltz et al. (2006)].
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Table 1 Bus parameters values
Nodes Pi Pi Qi Qi V̂i

701 −1.2023 1.2023 −0.1000 0.1000 1

702 −0.0940 −0.0740 −0.1420 0.6100 0.9992

703 −0.0100 0.0100 −0.1000 0.1000 0.9999

704 −0.0010 0.0010 −0.1000 0.1000 0.9996

705 −0.0100 0.0100 −0.1000 0.1000 0.9998

706 −0.0100 0.0100 −0.1000 0.1000 0.9999

707 −0.0100 0.0100 −0.1000 0.1000 0.9999

708 −0.0100 0.0100 −0.1000 0.1000 1

709 −0.0100 0.0100 −0.1000 0.1000 1

710 −0.0100 0.0100 −0.1000 0.1000 1

711 −0.0100 0.0100 −0.1000 0.1000 1

712 −0.0100 0.0100 −0.1000 0.1000 0.9998

713 −0.0010 0.0100 −0.1053 0.0947 0.9994

714 −0.0213 −0.0013 −0.1053 0.0947 0.9997

718 −0.0100 0.0100 −0.1000 0.1000 0.9999

720 −0.0010 0.0100 −0.1000 0.1000 0.9998

722 −0.0213 −0.0013 −0.1053 0.0947 0.9999

724 −0.0100 0.0100 −0.1000 0.1000 0.9999

725 −0.0100 0.0100 −0.1000 0.1000 0.9999

727 −0.0156 0.0044 −0.1028 0.0972 1

728 −0.0156 0.0044 −0.1028 0.0972 1

729 −0.0268 −0.0068 −0.1084 0.0916 0.9998

730 −0.0100 0.0100 −0.1000 0.1000 1

731 −0.0100 0.0100 −0.1000 0.1000 1

732 −0.0100 0.0100 −0.1000 0.1000 1

733 −0.0156 0.0044 −0.1028 0.0972 1

734 −0.0100 0.0100 −0.1000 0.1000 1

735 −0.0156 0.0044 −0.1028 0.0972 1

736 −0.0213 −0.0013 −0.1053 0.0947 0.9998

737 −0.0100 0.0100 −0.1000 0.1000 1

738 −0.0100 0.0100 −0.1000 0.1000 1

740 −0.0268 −0.0068 −0.1083 0.0917 0.9998

741 −0.0213 −0.0013 −0.1053 0.0947 0.9999

742 −0.0100 0.0100 −0.1000 0.1000 0.9998

744 −0.0100 0.0100 −0.1000 0.1000 1

775 −0.0156 0.0044 −0.1028 0.0972 1

799 −0.0100 0.0100 −0.1000 0.3798 0.9649

123



A SDP relaxation of an optimal power flow problem for

Table 2 Comparison of the
optimal values of Problems
(OPF1) and (OPF2) for different
values of P15

P15 (OPF1) (OPF2)

Optimal value Optimal value Rank of W

0.6 0.2106 0.2106 1

0.7 0.2711 0.2711 1

0.8 0.3376 0.3376 1

0.9 0.4092 0.4092 1

1.0 Infeasible 0.4861 4

1.1 Infeasible 0.5861 24

2.5 Infeasible 1.9861 35

2.6 Infeasible 2.3569 37

2.7 Infeasible Infeasible −
2.8 Infeasible Infeasible −

For all the numerical tests, we consider the objective function

J (P) =
37∑

i=1

Pi ,

which represents the total active power losses in the network. This function is strictly
increasing with respect to P , in the sense of Definition 2.

6.2 Illustration of Theorem 6

In order to highlight Theorem 6, the values of Pi , i ∈ {1, · · · , 37}\{15} are set as in
Table 1 and the value of P15 varies from 0.6 to 2.8, in an increasing manner, in order
to make this constraint more and more tight. Also, we set P15 = 3. The obtained
results are displayed in Table 2.

We remark that up to the value P15 = 0.9, the matrix W solution of (OPF2) is
of rank 1 and both problems share the same optimal value. For the values between
P15 = 1 and P15 = 2.6, the matrix W is of rank greater than 1 and in this case the
algorithm used for solving Problem (OPF1) fails to find a feasible solution. Finally,
for the values P15 = 2.7 and P15 = 2.8, the respective algorithms of both problems
do not find a feasible solution. These results are consistent with the three cases of
Theorem 6.

6.3 Consideration of the reactive power constraints

In many practical OPF problems, the consideration of reactive powers constraints is
essential. We want to know if Theorem 6 can handle these additional constraints or
if more assumptions are required. In this paper, we did not study this case theoreti-
cally. However, we will include these additional constraints in the following numerical
experience.
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Table 3 Comparison of the
optimal values of Problems
(OPF1) and (OPF2) for different
values of Q1

Q2 (OPF1) (OPF2)

Optimal value Optimal value Rank of W

0.03 0.0176 0.0176 1

0.04 0.0177 0.0177 1

0.05 0.080 0.080 1

0.06 0.086 0.086 1

0.09 Infeasible 0.0485 3

0.10 Infeasible 0.0585 3

0.47 Infeasible Infeasible −
0.48 Infeasible Infeasible −

The reactive power flow equation is given by

Gik = V 2
i bik − Vi Vk

(
gik sin(θik) + bik cos(θik)

)
, (31)

where θik is the phase angle. The injected reactive power can be defined from (31) by

Qi =
∑

k∼i

Gik .

The reactive power constraints of interests write:

Q
i
≤ Qi ≤ Qi , for all nodes i .

In the following, we set the values of Q
i
, i ∈ {1, · · · , 37}\{2} as in Table 1 and

we vary the value of Q
2
between 0.03 and 0.48 in an increasing manner. The value

of Q2 is set to 0.6. All the other parameters are set as in Table 1. The obtained results
are displayed in Table 3.

For the values between Q
2

= 0.03 and Q
2

= 0.06, the solution W of (OPF2) is
of rank 1 and both problems share the same optimal value. For the values Q

2
= 0.09

and Q
2

= 0.10, the matrixW is of rank greater than 1 and the algorithm used to solve
Problem (OPF1) fails to find a feasible solution. Finally, for the values Q

2
= 0.47 and

Q
2

= 0.48, the algorithms of both problems do not find a feasible solution.
These results shows a similar behavior as Theorem 6. However, to prove it theo-

retically, some additional assumptions may be required. For instance, in Zhang et al.
(2014) a study that takes into account the constraints on the reactive power was carried
out, but the amplitudes of the voltages were all equal to 1 and the Q

i
were assumed

to be small enough.

123



A SDP relaxation of an optimal power flow problem for

7 Conclusion

Wehave presented anAC-OPF problemwith fixed voltagemagnitudes in a distribution
network. This problem is known to be non-convex because of the power flowequations.
In order to make it convex, we applied the method used in Bai et al. (2008) which
consists in reformulating the cost function and the constraints in terms of traces of
semi-definite matrices. This leads to a new formulation of the problem in which the
non-convexity appears as a rank constraint. By removing this rank constraint, we
obtain a convex relaxation of the main problem.

In order to find the conditions under which this relaxation can be exact, we used
the notion of Pareto-optimality which is a very adapted tool for our study. We started
by studying the problem in the case of a one transmission line network, then extended
our results to the case of a whole network.

The main result we have proved is that the constraint set of the problem of interest
share the same Pareto-front of its convexified relaxation. Since the cost function is
strictly increasing, the relaxation is exact. We then proved a theorem which allows to
exploit the convex relaxation in practice to solve the main problem on interest. We
concluded by giving some numerical tests to highlight the last theorem of this work.

Some interesting extensions of this work could be:

– to extend the main result in the case of variable voltages magnitudes. Some addi-
tional assumptions might be required in order to obtain a theorem similar to
Theorem 6.

– reactive powers constrains, i.e. to add the constraints Q
i
> −∞ and Qi < +∞.

In the case of fixed voltage magnitudes, authors of Zhang et al. (2014) shows
that the feasible set of the injected reactive power constrains is a simple linear
transformation of the feasible set of the injected reactive power. Therefore, by
adding an assumption equivalent to Q

i
= −∞, they showed in this case that

Theorem 6 holds.
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