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Abstract. The paper deals with the problem studied in our previous
paper published in Int. J. Approx. Reasoning, which raised new questions
rather than brought solutions. Thus, the current contribution also tries
to answer the ever-lasting question: Which belief function entropies de-
scribed in the literature can detect optimal models? Nevertheless, here,
we approach the problem in a different way. We try to find out the en-
tropy functions that are indirectly proportional to the informative con-
tent of belief functions, i.e., the more informative the belief function, the
lower its entropy.
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1 Introduction

In probability theory, many data-based model learning approaches employ the
Shannon entropy of a model as a criterion of optimum. It is based on the fact that
Shannon entropy measures the amount of uncertainty included in a probability
distribution (measure), and thus, it is inversely proportional to the amount of in-
formation the distribution bears. Thus, the maximum entropy principle should
be applied if one selects an optimum model among those carrying all the re-
quired information. Such a solution adds the smallest amount of “artificially”
added information. On the contrary, the minimum entropy principle should be
applied if one selects an optimum model among those composed of the required
information. This model comprises as much of the required information as pos-
sible. In this paper, we will study the possibility of measuring the information
content of belief functions; we want to determine the measures that enable us to
recognize which of the two belief functions is more informative. Thus, we do not
distinguish the type of uncertainty evaluated by the considered measures. Nev-
ertheless, as we will see later, the measures increasing with the non-specificity of
the measured basic assignments are preferred from the above-mentioned point
of view.

In Jiroušek et al (2022), we observed that none of the tested entropy func-
tions could unambiguously determine which of the two compositional models is
more informative than the other. Recall that the validity of this statement was
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restricted to the situations corresponding to the realized computational experi-
ments.

• We considered only entropy functions, the computational complexity of which
does not exceed the considered space or time limits.

• In the computational experiments, we compared two low-dimensional com-
positional models. One was the so-called perfect model, and the other was
not perfect. Thus, we knew that the former was better (it carried more in-
formation) than the latter.

To comment on the impact of these restrictions, recall that in probability the-
ory, such problem can be solved by comparing the values of information measure
of dependence (a generalization of well-known mutual information). Using the
apparatus of information theory, it can be shown that for the considered compo-
sitional models, the value of the information measure of dependence is inversely
proportional to Shannon entropy. Thus, the bland conclusion from the cited pa-
per may be interpreted as that none of the tested measures evinces “advanced”
properties of Shannon entropy that form the foundation of information theory.
In this paper, we give up comparing models and study a simpler problem of
recognizing which of two belief functions is more informative.

2 Notation

We will get along with a few basic notions from belief function theory. Ω denotes
a finite set (often called frame of discernment). Basic probability assignment
(BPA) is a mapping 𝑚 : 2Ω → [0, 1] such that (1)

∑
𝑎⊆Ω 𝑚(𝑎) = 1, and (2)

𝑚(∅) = 0.
We say that 𝑎 ⊆ Ω is a focal element (of 𝑚) if 𝑚(𝑎) > 0. A BPA with only

one focal element is called deterministic; 𝜄𝑎 denotes the deterministic BPA with
𝜄𝑎 (𝑎) = 1. Since 𝜄Ω represents total ignorance, it is said to be vacuous. A BPA
whose all focal elements are singletons is called Bayesian.

Each BPA 𝑚 can also be represented by the corresponding belief function,
by plausibility function, or by commonality function (Shafer, 1976), which are
all defined on the power set of the frame of discernment. For all 𝑎 ⊆ Ω

𝐵𝑒𝑙𝑚 (𝑎) =
∑︁
𝑏⊆𝑎

𝑚(𝑏); (1)

𝑃𝑙𝑚 (𝑎) =
∑︁

𝑏⊆Ω:𝑏∩𝑎≠∅
𝑚(𝑏); (2)

𝑄𝑚 (𝑎) =
∑︁

𝑏⊆Ω:𝑏⊇𝑎
𝑚(𝑏). (3)

Each BPA 𝑚 is also connected with a set of probability distributions. It is called
credal set, and it is defined:

P𝑚 =
{
𝑃𝑟 defined on Ω :

(
∀𝑎 ⊆ Ω : 𝑃𝑟 (𝑎) ≥ 𝐵𝑒𝑙 (𝑎)

)}
.
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A key notion of Dempster-Shafer’s theory of belief functions is the so-called
Dempster’s combination rule (Shafer, 1976). It describes how to combine in-
formation from two distinct sources. Getting from one source bpa 𝑚1, and 𝑚2

from the other source, we get the result described by their combination 𝑚1 ⊕𝑚2

defined for each 𝑐 ⊆ Ω

𝑚1 ⊕ 𝑚2 (𝑐) = (1 − 𝐾)−1
∑︁
𝑎⊆Ω

∑︁
𝑏⊆Ω:𝑎∩𝑏=𝑐

𝑚1 (𝑎) · 𝑚2 (𝑏),

where 𝐾 =
∑
𝑎⊆Ω

∑
𝑏⊆Ω:𝑎∩𝑏=∅ 𝑚1 (𝑎) · 𝑚2 (𝑏) is often interpreted as the amount of

conflict between 𝑚1 and 𝑚2.
In definitions of entropy functions for BPAs (see Table 2 for the list of those

considered in this paper), some authors also used Shannon entropy of a spe-
cific probability distribution (recall it is defined for probability function 𝑃𝑟 by
a famous formula H(𝑃𝑟) = −∑

𝜔∈Ω 𝑃𝑟 (𝜔) log2 𝑃𝑟 (𝜔)). Thus, in what follows,
we will consider three probability functions related to BPA 𝑚, so-called pignis-
tic transform, plausibility transform, and maximum entropy transform defined
(respectively)

𝐵𝑒𝑡 𝑃𝑚 (𝜔) =
∑︁

𝑎⊆Ω:𝜔∈𝑎

𝑚(𝑎)
|𝑎 | ,

𝑃𝑙 𝑃𝑚 (𝜔) =
𝑃𝑙𝑚 (𝜔)∑
𝜐∈Ω 𝑃𝑙𝑚 (𝜐)

,

𝑀𝐸 𝑃𝑚 = arg max
𝑃∈P𝑚

{H (𝑃)}.

3 Belief functions comparison

The study is based on the intuition saying that BPA 𝑚1 is not less informative
than BPA 𝑚2 (assuming that both are defined on the same frame of discernment
Ω) if 𝐵𝑒𝑙𝑚2 ≤ 𝐵𝑒𝑙𝑚1 , which is equivalent to 𝑃𝑙𝑚1 ≤ 𝑃𝑙𝑚2 , and also to P𝑚1 ⊆ P𝑚2 .

Notice that this situation is very general and covers some other specific sit-
uations. For example, when for each focal elements 𝑐 of 𝑚1, there is a focal
element 𝑐 of 𝑚2, such that 𝑚1 (𝑐) = 𝑚2 (𝑐), and 𝑐 ⊆ 𝑐. In a way, the simplest
case is the following: We say that 𝑚1 is a simple specification of 𝑚2 if 𝑚1 is
created from 𝑚2 by shifting a part of its mass from some focal element to its
subset; precisely, there exists subsets 𝑎 ⊂ 𝑏 ⊆ Ω such that 𝑚1 (𝑎) = 𝑚2 (𝑎) + 𝜀,
and 𝑚1 (𝑏) = 𝑚2 (𝑏) − 𝜀 (all the remaining focal elements of 𝑚1 are the copies
of the focal elements of 𝑚2). Since we shift (a part of) the mass from 𝑏 to its
subset, we see directly from Eq. (1) that1 𝐵𝑒𝑙𝑚1 > 𝐵𝑒𝑙𝑚2 .

One immediately sees that, when 𝐵𝑒𝑙𝑚1 > 𝐵𝑒𝑙𝑚2 , for Harmanec-Klir entropy
𝐻𝐻 (𝑚2) ≥ 𝐻𝐻 (𝑚1) because P𝑚1 ⊆ P𝑚2 . Though not so evident, the same prop-
erty holds also for Dubois-Prade’s and Ramer’s entropy 𝐻𝐷. Namely, if 𝑚1 is

1Strict inequality 𝐵𝑒𝑙𝑚1 > 𝐵𝑒𝑙𝑚2 in this paper denotes that for all 𝑎 ⊆ Ω, 𝐵𝑒𝑙𝑚1 (𝑎) ≥
𝐵𝑒𝑙𝑚2 (𝑎), and for at least one 𝑎 𝐵𝑒𝑙𝑚1 (𝑎) is strictly greater than 𝐵𝑒𝑙𝑚2 (𝑎).
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𝐻𝑂 Hohle (1982) 𝐻𝑂 (𝑚) = ∑
𝑎⊆Ω 𝑚(𝑎) ∗ log( 1

𝐵𝑒𝑙𝑚 (𝑎) )

𝐻𝑇 Smets (1983) 𝐻𝑇 (𝑚) =
∑
𝑎⊆Ω log( 1

𝑄𝑚 (𝑎) )

𝐻𝐷
Dubois, Prade (1987)
Ramer (1987)

𝐻𝐷 (𝑚) = ∑
𝑎⊆Ω 𝑚(𝑎) log( |𝑎 |)

𝐻𝑁 Nguyen (1987) 𝐻𝑁 (𝑚) = ∑
𝑎⊆Ω 𝑚(𝑎) ∗ log( 1

𝑚(𝑎) )

𝐻𝐿 Lamata, Moral (1988) 𝐻𝐿 (𝑚) = 𝐻𝑌 (𝑚) + 𝐻𝐷 (𝑚)

𝐻𝐾 Klir, Ramer (1990) 𝐻𝐾 (𝑚) = ∑
𝑎⊆Ω 𝑚(𝑎) ∗ log( 1

1−∑𝑏⊆Ω 𝑚(𝑏) |𝑏\𝑎 |
|𝑏 |

) + 𝐻𝐷 (𝑚)

𝐻𝑃 Klir, Parviz (1992) 𝐻𝑃 (𝑚) =
∑
𝑎⊆Ω 𝑚(𝑎) ∗ log( 1

1−∑𝑏⊆Ω 𝑚(𝑏) |𝑎\𝑏 |
|𝑎 |

) + 𝐻𝐷 (𝑚)

𝐻𝐵 Pal et al (1992, 1993) 𝐻𝐵 (𝑚) = 𝐻𝐷 (𝑚) + 𝐻𝑁 (𝑚)

𝐻𝐼 Maeda, Ichihashi (1993) 𝐻𝐼 (𝑚) = 𝐻𝐻 (𝑚) + 𝐻𝐷 (𝑚) = H(𝑀𝐸 𝑃𝑚) + 𝐻𝐷 (𝑚)

𝐻𝐻 Harmanec, Klir (1994) 𝐻𝐻 (𝑚) = max𝑃∈P𝑚
H(𝑃) = H(𝑀𝐸 𝑃𝑚)

𝐻𝐽 Jousselme et al (2006) 𝐻𝐽 (𝑚) = H(𝐵𝑒𝑡 𝑃𝑚)

𝐻𝑌 Yager (2008) 𝐻𝑌 (𝑚) =
∑
𝑎⊆Ω 𝑚(𝑎) ∗ log( 1

𝑃𝑙𝑚 (𝑎) )

𝐻𝐺 Deng (2016) 𝐻𝐺 (𝑚) = 𝐻𝑁 (𝑚) +∑
𝑎⊆Ω 𝑚(𝑎) ∗ log(2 |𝑎 | − 1)

𝐻𝜆 Jiroušek, Shenoy (2018) 𝐻𝜆 (𝑚) = H(𝑃𝑙 𝑃𝑚) + 𝐻𝐷 (𝑚)

𝐻𝑆 Jiroušek, Shenoy (2020) 𝐻𝑆 (𝑄𝑚) =
∑
𝑎⊆Ω (−1) |𝑎 |𝑄𝑚 (𝑎) log(𝑄𝑚 (𝑎))

𝐻𝜋 Jiroušek et al (2022) 𝐻𝜋 = H(𝐵𝑒𝑡 𝑃𝑚) + 𝐻𝐷 (𝑚)
Dubois and Prade (1987), Lamata and Moral (1988), Klir and Ramer (1990), Klir and
Parviz (1992), Maeda and Ichihashi (1993), Harmanec and Klir (1994), Jiroušek and
Shenoy (2018),Jiroušek and Shenoy (2020)

Table 1. Definitions of entropy, chronologically ordered

a simple specification of 𝑚2, then evidently 𝐻𝐷 (𝑚2) > 𝐻𝐷 (𝑚1). Since, as it is
shown in the following assertions, if 𝐵𝑒𝑙𝑚2 < 𝐵𝑒𝑙𝑚1 , then 𝑚1 may be created
from 𝑚2 by a sequence of simple specifications, 𝐻𝐷 (𝑚2) > 𝐻𝐷 (𝑚1) must hold,
too.

Theorem. If 𝐵𝑒𝑙𝑚 < 𝐵𝑒𝑙𝑚̄ then there exists a finite sequence of BPAs 𝑚 =

𝑚1, 𝑚2, . . . , 𝑚𝑘 = 𝑚̄ such that each 𝑚𝑖+1 is a simple specification of 𝑚𝑖.

Proof. The assertion is a direct consequence of the following lemma, the proof
of which gives instructions on how to construct 𝑚𝑖+1 from 𝑚𝑖. Notice that, in
comparison with 𝑚𝑖, 𝑚𝑖+1 always has more focal elements identical with fo-
cal elements of 𝑚̄, which guarantees that the constructed sequence of BPAs
𝑚1, 𝑚2, . . . , 𝑚𝑘 is finite. □
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Lemma. If 𝐵𝑒𝑙𝑚1 < 𝐵𝑒𝑙𝑚2 , then there exists a BPA 𝑚̂, which is a simple
specification of 𝑚1. Moreover

|{𝑎 ⊆ Ω : 𝑚1 (𝑎) = 𝑚2 (𝑎)}| < |{𝑎 ⊆ Ω : 𝑚̂(𝑎) = 𝑚2 (𝑎)}|.

Proof. Since 𝑚1 ≠ 𝑚2 and both these BPAs are normalized, a focal element 𝑏
of 𝑚1 must exist such that 𝑚1 (𝑏) > 𝑚2 (𝑏). The existence of 𝑎 ⊂ 𝑏 for which
𝑚1 (𝑎) < 𝑚2 (𝑎) follows from the following contemplation: If 𝑚1 (𝑎) ≥ 𝑚2 (𝑎) for
all 𝑎 ⊆ 𝑏, then 𝐵𝑒𝑙𝑚1 (𝑏) > 𝐵𝑒𝑙𝑚2 (𝑏).

Choose 𝜀 = min{(𝑚2 (𝑎) −𝑚1 (𝑎)); (𝑚1 (𝑏) −𝑚2 (𝑏))}. Define 𝑚̂(𝑎) = 𝑚1 (𝑎) + 𝜀,
𝑚̂(𝑏) = 𝑚1 (𝑏) −𝜀, and 𝑚̂(𝑐) = 𝑚1 (𝑐) for all 𝑐 ⊆ Ω different from 𝑎 and 𝑏, which is
a simple specification of 𝑚1. Moreover, if 𝜀 = 𝑚2 (𝑎) −𝑚1 (𝑎), then 𝑚̂(𝑎) = 𝑚2 (𝑎),
and if 𝜀 = 𝑚1 (𝑏) − 𝑚2 (𝑏)), then 𝑚̂(𝑏) = 𝑚2 (𝑏). Since all the remaining values of
𝑚̂ are the same as the corresponding values of 𝑚1, it means that

|{𝑎 ⊆ Ω : 𝑚1 (𝑎) = 𝑚2 (𝑎)}| < |{𝑎 ⊆ Ω : 𝑚̂(𝑎) = 𝑚2 (𝑎)}|. □

Results of Experimental Computations. Since there are no more theoreti-
cally supported properties expressing the relationship between entropy functions
and the informativeness of belief functions, we made a lot of computations. Be-
cause of the great computational complexity of 𝐻𝐻 and 𝐻𝐼 , we exclude them
from the experiments.
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Fig. 1. Success rate simple-specification experiments.

Our key findings are illustrated in Figure 1, which outlines the outcomes
of our experimental investigation. The experiments were designed as follows:
Starting with a frame of discernment, Ω, with a size of |Ω| = 16, we randomly
generated BPAs denoted as 𝑚2. Subsequently, we randomly created 𝑚1 for each
of them as its simple specification described above. Then, we computed all the
considered entropy values for 𝑚1 and 𝑚2 to compare whether the entropy 𝐻 (𝑚2)
was less than 𝐻 (𝑚1), indicating that 𝑚2 contains more information. The result
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was considered positive if this condition was met and negative otherwise. This
computational process was repeated 2,000 times.

Figure 1 presents the effectiveness of various entropy measures in discerning
the enhanced information content in 𝑚2 compared to 𝑚1.

Simplifying the outcomes, it was observed that four entropy measures (𝐻𝑇 ,
𝐻𝐷, 𝐻𝜆, and 𝐻𝜋) achieved a perfect success rate of 100%. It was no surprise for
𝐻𝐷, as mentioned above. Close behind these four entropies, entropy 𝐻𝐿 showed a
success rate exceeding 99%. 𝐻𝐿 is a sum of two other entropy measures (𝐻𝐷+𝐻𝑌 )
where 𝐻𝐷 is 100% successful, implying that this amalgamation suggests limited
benefits from mixing these entropy measures in this context.

Let us repeat that we did not include 𝐻𝐻 and 𝐻𝐼 in the computational
experiments. However, as mentioned above, 𝐻𝐻 (𝑚2) ≥ 𝐻𝐻 (𝑚1), and 𝐻𝐷 (𝑚2) >
𝐻𝐷 (𝑚1) for simple specification 𝑚1 of 𝑚2, and therefore, since Maeda-Ichihashi’s
entropy 𝐻𝐼 is the sum of 𝐻𝐻 and 𝐻𝐷, it belongs among those measuring properly
the informativeness of belief functions. For Harmanec-Klir’s entropy 𝐻𝐻 the
same holds with a reservation that the required inequality is not strict.

4 Application of Dempster’s rule.

The content of this section is built on the idea that 𝑚1 ⊕ 𝑚2, the result of
combining two distinct sources of information, should be more informative than
each separately. In this situation, we do not have any theoretical support; we
can only present:
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Fig. 2. Success rate for Dempster’s-rule experiments.

Results of Experimental Computations. Because of the high computational
complexity of the computation of the maximum entropy transform, we again
excluded both 𝐻𝐻 and 𝐻𝐼 from the following experiments.

We initiated the experiment by generating 2,000 pairs of basic probability
assignments (BPAs), labeled as 𝑚1 and 𝑚2 (both defined on the same frame
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of discernment Ω, |Ω| = 16). We combined each pair using Dempster’s rule of
combination, getting 𝑚1 ⊕ 𝑚2. The primary objective was to determine how
often the entropy of the combination, 𝐻 (𝑚1 ⊕ 𝑚2), was lower or equal to the
initial entropy 𝐻 (𝑚2), i.e., how often the individual entropies indicate an increase
of information as an impact of considering two sources of information instead
of only one of them. In these experiments, we accept for success even when
𝐻 (𝑚2) = 𝐻 (𝑚1 ⊕ 𝑚2). It is because, for some specific 𝑚1, it may happen that
𝑚2 = 𝑚1 ⊕ 𝑚2),

The outcomes of these comparisons, presented in Figure 2, revealed a striking
contrast to our previous experiment involving simple specifications. Remarkably,
eight entropy measures achieved a perfect success rate of 100%: 𝐻𝐷 , 𝐻𝐿 , 𝐻𝜆, 𝐻𝑁 ,
𝐻𝑃 , 𝐻𝜋 , 𝐻𝑌 , and 𝐻𝐵. Surprisingly, Deng’s entropy 𝐻𝐺 failed - exhibiting behavior
bordering on randomness. Similarly with 𝐻𝑆 and 𝐻𝑇 .

5 Discussions

There is little to add to the results presented in Sec. 3. The fact that 𝑚2

contains more information than 𝑚2 if 𝐵𝑒𝑙𝑚1 < 𝐵𝑒𝑙𝑚2 fully corresponds with
our intuition, and that in this case, for Dubois-Prade’s and Ramer’s entropy
𝐻𝐷 (𝑚2) < 𝐻𝐷 (𝑚1) was proven. Therefore, it is unsurprising that two entropies
from those including 𝐻𝐷 (i.e., 𝐻𝜆, and 𝐻𝜋) show the required property. Moreover,
we conjecture that if 𝐵𝑒𝑙𝑚1 < 𝐵𝑒𝑙𝑚2 then always H(𝐵𝑒𝑡 𝑃𝑚2 ) ≤ H (𝐵𝑒𝑡 𝑃𝑚1 ),
and even H(𝑃𝑙 𝑃𝑚2 ) ≤ H (𝑃𝑙 𝑃𝑚1 ).

Section 4 raises more questions, even though the results in Fig. 2 hint that
most of the studied entropies manifest the expected property. Because of the lack
of space, we mention the most important objection. The basic assumption that
the result of combining two distinct sources of information is more informative
than each separately is somewhat questionable. It is clear that when combining
two reliable sources of information, we know more (or at least the same) than
when having just one of them. It, however, does not mean that we must be
more specific about the possibilities in question. Consider, for example, two
sources yielding Bayesian BPAs on Ω = {1, 2, 3, 4}: 𝑚1 = (0.1, 0.1, 0.8, 0), and
𝑚2 = (0.1, 0.1, 0, 0.8). Then, 𝑚1 ⊕ 𝑚2 = (0.5, 0.5, 0, 0). Having Bayesian BPA,
we can compute their Shannon entropies getting H(𝑚1) = H(𝑚2) � 0.92 and
H(𝑚1⊕𝑚2) = 1. This example demonstrates that entropies enabling evaluation of
the informativeness of belief functions should perhaps meet some other properties
and predetermines, thus, future research.
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