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Abstract

This is a short paper to remind us that although Prof. George Klir passed
away eight years ago, his ideas are still alive. He was one of the first who
had the idea to extend information theory beyond probability theory and to
see the potential of fuzzy sets and belief functions. Some of the problems
he raised have not yet been satisfactorily solved. In this paper, we take a
fresh look at the problem of what properties entropy should have if it is to
be considered a measure of information. Based on these requirements, we
consider 24 definitions of entropy for belief functions and study how well
they satisfy the proposed conditions.

1 Introduction

We met Prof. Klir in the early 1990s when he was lecturing at the Institute of
Information Theory and Automation of the Czech Academy of Sciences. He was
talking about the open problem of defining entropy in the context of the theory of
belief functions. At that time he had about five to seven definitions and was trying
to answer several questions. He noticed that belief functions were burdened with
different kinds of ambiguity. He recognized three types. The first was nonspecificity,
which was related to the size of the focal elements; the larger the focal elements, the
less specific the basic assignment. The second type of ambiguity measured internal
conflict or dissonance in the belief function, and the third type was confusion.
Thus, one question was which types of uncertainty were measured by the entropy
functions under study. The main question, however, was what were the most
important properties of the concept of entropy. Of course, the answer to this
question depends on what we want to measure with this quantity. Is it a measure
of uncertainty? If so, how should the measure deal with its different types? Or
should entropy measure the information content of a random variable? Although
much time has passed since then, no one has satisfactorily answered most of these
questions. In this paper, however, we will show that if we restrict the problem
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to finding an entropy that allows us to define some notions of information theory
(in the case of this paper, the measure of mutual information) in the same way as
Shannon did, we can deduce which properties are most important. We will also
see how Prof. Klir’s definitions meet these requirements.

2 Belief functions notation

We expect the reader to be familiar with the theory of belief functions (Shafer,
1976), so we will just briefly recall the main notions of this theory and introduce
the notation used in this paper.

Thus, Ω denotes a finite frame of discernment . A basic probability assignment
(BPA) is a function m : 2Ω → [0, 1] such that

∑
a⊆Ωm(a) = 1, m(∅) = 0. We

will also consider a two-dimensional case when Ω = ΩX ×ΩY . For such ω ∈ Ω, its
projections (coordinates) will be denoted by ω↓X and ω↓Y ; i.e., ω = (ω↓X , ω↓Y ).
The same symbol will also be used for pro projection of subsets a ⊆ Ω, a↓X =
{ω↓X : ω ∈ a}, and marginalization. m↓X : 2ΩX → [0, 1] is a marginal BPA defined
defined on ΩX by

m↓X(a) =
∑

b⊆Ω:b=a↓X

m(b)

for all a ⊆ ΩX . Analogous symbols will also be used for projections and marginal-
ization concerning the other coordinate Y .

A subset a ⊆ Ω is said to be a focal element of m if m(a) > 0. A BPA with only
one focal element is said to be deterministic, denoted ιa, where ιa(a) = 1. Since
ιΩ represents total ignorance, it is called vacuous. Bayesian BPAs are those BPAs
whose focal elements are only singletons.

We will also use the standard alternative representation of a BPA: the belief
function, plausibility function, and commonality function.

Belm(a) =
∑

b⊆a
m(b); Plm(a) =

∑

b⊆Ω:b∩a 6=∅
m(b); Qm(a) =

∑

b⊆Ω:b⊇a
m(b).

A central concept in Dempster-Shafer’s theory is Dempster’s combination rule
(Shafer, 1976), which combines information from two distinct sources: BPAs m1

and m2. The combined BPA m1 ⊕ m2 is computed (for each subset c ⊆ Ω) as
follows:

(m1 ⊕m2)(c) = (1−K)−1
∑

a⊆Ω

∑

b⊆Ω:a∩b=c
m1(a) ·m2(b),

where K =
∑
a⊆Ω

∑
b⊆Ω:a∩b=∅m1(a) ·m2(b) is usually interpreted as the amount

of conflict between m1 and m2 (if K = 1, then the combination is undefined). This
rule is also used when creating a joint BPA for independent variables, i.e., for BPAs
mX and mY defined on ΩX and ΩY , respectively. In this case, the focal elements
of the combination are only those c ⊆ Ω, for which c = c↓X × c↓Y , and Dempster’s
rule simplifies to a simple product (mX ⊕mY )(c) = mX(c↓X) ·mY (c↓Y ).
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Recall that each BPA m is associated with a set of probability distributions π
defined on Ω. A credal set, is a set of probability distributions π

Pm =
{
π defined on Ω :

(
∀a ⊆ Ω : π(a) ≥ Bel(a)

)}
.

We will consider special probability distributions representing BPA m in specific
situations. We will consider so-called pignistic transform, plausibility transform,
and maximum entropy transform defined (respectively)

πm(x) =
∑

a⊆Ω:x∈a

m(a)

|a| ,

λm(x) =
Plm(x)∑
y∈Ω Plm(y)

,

µm = arg max
π∈Pm

{H(π)},

where H(π) = −∑x∈Ω π(x) log2 π(x) is Shannon entropy of a probability distribu-
tion π.

3 Requirements on entropy functions

Belief function theory was designed as a generalization of probability theory to
surpass the imperfections of the latter. Therefore, most authors introducing the
entropy within the theory of belief functions see it as a generalization of Shannon
entropy. This is why they require it to equal Shannon entropy for all Bayesian
BPAs. This is also why we accept that the belief function’s entropy should have
the following property.

Probability consistency property. We say that a function H that assigns a
real value to each BPA is consistent with Shannon entropy if, for all Bayesian
BPAs m, the value H(m) is equal to the Shannon entropy of the correspond-
ing probability function, i.e., H(m) = −∑x∈Ωm({x} log2m({x}).

The properties studied in this paper are deduced from the requirement that the
belief function entropy makes it possible to define mutual information in the same
way as in probability theory. Recall that in probabilistic information theory

MIπ(X;Y ) = H(π(X))−H(π(X|Y )) = H(π(X)) +H(π(Y ))−H(π(X,Y )).

Since mutual information is always non-negative and equals zero if and only if the
variables are independent, we get that in the ideal case, the belief function entropy
should have the following property:

Strict subadditivity property. We say H is strictly subadditive, if

H(m) ≤ H(m↓X) +H(m↓Y ) (1)
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for all BPA m defined on Ω, with the equality in (1) if and only if m =
m↓X ⊕m↓Y .

Thus, for the strictly subadditive function H, we could apply Shannon’s idea
of defining mutual information by the formula

MIH(m[X;Y ]) = H(m↓X) +H(m↓Y )−H(m). (2)

Then MIH would be symmetric, always non-negative, and equal to 0 if and only
if X and Y are independent under BPA m, i.e., if m = m↓X ⊕ m↓Y . However,
we admit that we do not know such a strictly subadditive function. None of the
entropies listed in Table 1 is strictly subadditive; none can be used as a basis
for introducing information theory in the framework of belief functions. For this,
one should find another strictly subadditive function or another way to introduce
information-theoretic notions that do not follow the Shannon idea.

One reason for developing information theory for belief functions is to transfer
the successful model learning algorithms from probability theory to the theory of
belief functions. However, for this purpose, one can heuristically use a function
that often manifests mutual information’s properties. Therefore, we will study
weaker properties in the following section. Namely, it is evident that every strictly
subadditive function also has the following two properties.

Additivity property. We say H is additive, if H(mX ⊕mY ) = H(mX) +H(mY )
for any pair of one-dimensional BPAs mX ,mY defined on ΩX ,ΩY , respec-
tively.

Subadditivity property. H is said to be subadditive, if H(m) ≤ H(m↓X) +
H(m↓Y ) for all BPA m defined on Ω.

The last property we require is based on the intuition that the entropy function
H should measure the informativeness of BPAs. Again, using the analogy with
probability theory, the more information there is in a BPA, the lower its entropy.
For Bayesian BPAs, this requirement is met by the probability consistency property.
For others, we assume that BPA m1 is not less informative than BPA m2 (assuming
both are defined on the same frame of discernment Ω) if Belm2

≤ Belm1
, which is

equivalent to Plm1 ≤ Plm2 , and also to Pm1 ⊆ Pm2 . Note that this situation is
very general and covers some other specific cases. In a sense, the simplest case is
the following. We say that m1 is a simple specification of m2 if m1 is created from
m2 by shifting some of its mass (or all of its mass) from some focal element to its
subset. More precisely, there exist subsets a ⊂ b ⊆ Ω such that m1(a) = m2(a)+ε,
and m1(b) = m2(b)−ε (all remaining focal elements of m1 are the copies of the focal
elements of m2). Since we are moving (a part of) the mass from b to its subset, we
see directly from the definition of the belief function that1 Belm1 > Belm2 . Thus,
in this paper, we use the following notion.

1Strict inequality Belm1 > Belm2 in this paper means that for all a ⊆ Ω, Belm1 (a) ≥
Belm2 (a), and for at least one a, Belm1 (a) is strictly greater than Belm2 (a).
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Simple monotonicity property. We say that a function H which assigns a real
value to each BPA is simple monotonic if, for any simple specification m1 of
m2, it holds that H(m1) < H(m2).

It should be pointed out that several different types of monotonicity of belief
functions entropy were studied in the literature (see e.g., monotonicity with respect
to the set inclusion (Ramer, 1987), (Abellan and Moral, 1999), and others (Jiroušek
and Shenoy, 2018)). Therefore, for the sake of clarity, we will consistently use only
the notion of simple monotonicity. It can be shown that it is equivalent to the
implication

Belm1
> Belm2

=⇒ H(m1) < H(m2).

4 Survey of entropy functions

Without claiming completeness, we consider 24 definitions of entropy-like functions
published in the last four decades (see Table 1). This section is devoted to their
evaluation with respect to the requirements described in the previous section. As
mentioned, none of them is strictly subadditive, so we will consider the introduced
weaker properties: their additivity and subadditivity.

From a theoretical point of view, the Maeda-Ichihashi entropy HI fits our re-
quirements best. It is the only entropy that satisfies all the required properties
except strict subadditivity: probability consistency, simple monotonicity, additiv-
ity, and subadditivity. A simple but rather singular counterexample has disproved
its strict subadditivity. The main drawback of HI is its computational complexity.
Its computation requires the solution of an optimization problem: the search for
the maximum entropy transform of the respective BPA. This precludes the ap-
plication of this entropy not only to machine learning algorithms but also to the
computational experiments we have performed to test the behavior of the entropies
considered. Note a difference between this entropy and that of Harmanec-Klir HH .
The latter is not simple monotonic since it can take the same value for a BPA
as for its simple specification. Nevertheless, HH is also of extreme computational
complexity, and the computation of the Abellán-Moral entropy HA is even more
complex.

We know of no other entropy that would satisfy all four properties that HI

possesses. The property of probability consistency is not a problem. It is possessed
by the vast majority of entropies studied, except HT , HD, and HGP . Similarly,
most of the studied entropies have the additivity property: HO, HD, HN , HL, HR,
HP , HB , HH , HI , HJ , HY , Hλ, HS , Hπ. The problems arise with the remaining two
properties, simple monotonicity, and subadditivity, which are satisfied by only a
few entropies.

Both simple monotonicity and subadditivity properties are simultaneously sat-
isfied only by the Dubois-Prade entropy HD and the Abellán-Moral entropy HA
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Table 1: Definitions of entropy, chronologically ordered

HO Hohle (1982) HO(m) =
∑
a⊆Ωm(a) log

(
1

Belm(a)

)

HT Smets (1983) HT (m) =
∑
a⊆Ω log

(
1

Qm(a)

)

HD Dubois, Prade (1987) HD(m) =
∑
a⊆Ωm(a) log(|a|)

HN Nguyen (1987) HN (m) =
∑
a⊆Ωm(a) log

(
1

m(a)

)

HL Lamata, Moral (1988) HL(m) = HY (m) +HD(m)

HR Klir, Ramer (1990) HR(m) = HD(m) +
∑
a⊆Ωm(a) log

(
1

1−∑b⊆Ω m(b)
|b\a|
|b|

)

HK Klir (1991) HK(m) =
∑
a⊆ΩBelm(a) log(Plm(a))

HP Klir, Parviz (1992) HP (m) = HD(m) +
∑
a⊆Ωm(a) log

(
1

1−∑b⊆Ω m(b)
|a\b|
|a|

)

HB Pal et al. (1992, 1993) HB(m) = HD(m) +HN (m)

HI Maeda, Ichihashi (1993) HI(m) = HH(m) +HD(m) = H(µm) +HD(m)

HH Harmanec, Klir (1994) HH(m) = maxπ∈Pm H(π) = H(µm)

HGP George, Pal (1996) HP (m) =
∑
a⊆Ωm(a)

∑
b⊆Ωm(b)

(
1− |a∩b||a∪b|

)

HM Maluf (1997) HM (m) = −∑a⊆Ω Plm(a) log(Belm(a))

HA Abellán, Moral (1999)2 HA(m) = HI(m) + minπ∈Bm
KL(π;µm)

HJ Jousselme et al. (2006) HJ(m) = H(πm)

HY Yager (2008) HY (m) =
∑
a⊆Ωm(a) log

(
1

Plm(a)

)

HG Deng (2016) HG(m) = HN (m) +
∑
a⊆Ωm(a) log(2|a| − 1)

HZ Zhou et al. (2017) HZ(m) = HG(m) + log(e)
|Ω|

∑
a⊆Ωm(a) ∗ (1− |a|)

Hλ Jiroušek, Shenoy (2018) Hλ(m) = H(λm) +HD(m)

HPD Pan, Deng (2018) HPD(m) = −∑a⊆Ω
Bel(a)+Pl(a)

2 log
(
Bel(a)+Pl(a)

2(2|a|−1)

)

HS Jiroušek, Shenoy (2020) HS(Qm) =
∑
a⊆Ω(−1)|a|Qm(a) log(Qm(a))

HQ Qin et al. (2020) HQ(m) =
∑
a⊆Ω

|a|
|Ω|m(a) log(|a|) +HN (m)

HY D Yan, Deng (2020) HY D(m) = −∑a⊆Ωm(a)logm(a)+Bel(a)
2(2|a|−1)

e
|a|−1
|Ω|

Hπ Jiroušek et al. (2022) Hπ(m) = H(πm) +HD(m)

Dubois and Prade (1987), Lamata and Moral (1988), Klir and Ramer (1990),
Klir and Parviz (1992), Maeda and Ichihashi (1993), Harmanec and Klir (1994),
George and Pal (1996), Abellan and Moral (1999), Jiroušek and Shenoy (2018),
Pan and Deng (2018),Jiroušek and Shenoy (2020), Yan and Deng (2020)

(and the already mentioned Maeda-Ichihashi entropy HI). However, HA is dis-

2KL denotes the famous Kullback-Leibler divergence of two probability measures defined

KL(κ;π) =
∑
x∈Ω κ(x) log2

κ(x)
π(x)

, and Bm is a borderline of the convex set Pm.
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Table 2: Characteristics of entropy
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HO Hohle (1982) low

HT Smets (1983) high

HD Dubois, Prade (1987) low

HN Nguyen (1987) low

HL Lamata, Moral (1988) low

HR Klir, Ramer (1990) low

HK Klir (1991) high

HP Klir, Parviz (1992) low

HB Pal et al. (1992, 1993) low

HI Maeda, Ichihashi (1993) extreme

HH Harmanec, Klir (1994) extreme

HGP George, Pal (1996) low

HM Maluf (1997) high

HA Abellán, Moral (1999) extreme

HJ Jousselme et al. (2006) low

HY Yager (2008) low

HG Deng (2016) low

HZ Zhou et al. (2017) low

Hλ Jiroušek, Shenoy (2018) low

HPD Pan, Deng (2018) high

HS Jiroušek, Shenoy (2020) high

HQ Qin et al. (2020) low

HY D Yan, Deng (2020) low

Hπ Jiroušek et al. (2022) low

qualified because of its computational complexity, and HD is zero for all Bayesian
BPAs, which disqualifies it as a basis for measuring the dependence of variables in
the context of belief functions. Note, however, that it is precisely the HD entropy
whose inclusion makes HI simple monotonic.

Considering that mutual information is usually used in machine learning only
to control heuristic approaches, we can use a criterion that does not have all the

3Black stripe - proven property, Dark-grey stripe - in random experiments the property mani-
fested in more than 99 % cases, Light-grey stripe - in random experiments the property manifested
in more than 98 % cases.
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theoretically required properties for this purpose. Since its computation is repeated
many times, we need it to be fast and simple. If we allow its heuristic use, we
can use a criterion that sufficiently satisfies the required property. To see if this
happens, we randomly generated thousands of BPAs and tested how often the four
properties under consideration were satisfied. The results are shown in Table 2,
which not only summarizes the properties that were theoretically proven for the
entropies considered (black stripes), but also shows that some of the properties were
manifested sufficiently often (gray stripes). These results suggest that if we were
asked to recommend an entropy for defining mutual information used in efficient
machine learning algorithms, we would recommend one based on Hπ. Although
we know that Hπ is neither simply monotonic nor subadditive, the computational
experiments showed that the situations in which these negative properties can
mislead the model learning process are not frequent.

5 Conclusions

Although we gave a kind of recommendation in the last sentences of the previous
paragraph, the paper raised more questions than answers to open questions. The
idea behind the Maeda-Ichihashi entropy HI seems to be fruitful. Although the
combination of the Dubois-Prade entropy HD with neither the pignistic nor the
plausibility transform yields an entropy with the required properties, the question
remains whether some other transform would serve this purpose as well as the
maximum entropy transform. Of course, even the choice of properties may not be
optimal. Therefore, we regret that we do not have the opportunity to discuss all
such questions with Prof. George J. Klir, who had a deep insight into this problem
and the intuition to find answers. If he knew all the results published in the last
eight years, he might take a different, more promising path.
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