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© ÚTIA - Institute of Information Theory and Automations

Czech Academy of Sciences, 2024

ISBN: 978-80-905688-0-8



24th CZECH-JAPAN SEMINAR ON DATA ANALYSIS AND
DECISION MAKING

Telč coat of arms

Organized by:
Institute of Information Theory and Automation,

Czech Academy of Sciences

Telč
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Ondřej Čepek, Charles University, Prague

iv



Foreword

The 24th edition of the seminar is now behind us. This year, the seminar took place in Telč, a
beautiful Baroque town on the edge of the Bohemian-Moravian Highlands. We were delighted to
welcome 26 participants, who, as the name of the seminar suggests, came from both the Czech
Republic and Japan. All four days of the seminar were filled with engaging events and provided
ample space for informal discussions on open topics related to mathematical decision-making
and its associated theories.

Accommodation was provided by the Antoň Hotel, which offered lodging and excellent fa-
cilities with superb food, service, and a perfect setting for discussions. The seminar itself was
held at the Centre Telč, part of the Institute of Theoretical and Applied Mechanics of the Czech
Academy of Sciences, which generously offered its lecture room free of charge. We are partic-
ularly grateful to the center’s director, Jakub Novotný, who not only arranged a guided tour for
us but also allowed us a rare glimpse behind the scenes of this remarkable facility, including its
unique wind tunnel, capable of simulating extreme weather conditions and their effects on the
materials being studied.

In addition to the academic program, we had opportunities to refresh our minds in the open
air. One afternoon, we took a hike to the nearby Roštejn Castle. Another day, we enjoyed Telč,
a UNESCO World Heritage site recognized for its beauty and uniqueness.

The friendly atmosphere and the fantastic group of people who attended are reflected in the
quality of this collection of papers, which were presented during the seminar. We hope you find
them as inspiring and thought-provoking as we did.

We want to extend our heartfelt thanks to the seminar sponsors (listed above), whose sup-
port was essential to the event’s success. Their contributions have allowed us to create a rich,
stimulating environment for discussion and collaboration.

Enjoy your reading!

In Prague, September 5, 2024

Václav Kratochvíl, Radim Jiroušek
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Preliminary investigation of multimodal

segmentation with shape metrics and key

points for images of carotid

atherosclerosis

Petr Čermák1,3, Vladyslav Sherstobitov2, David Školoud́ık3, David
Pakizer3, and Jǐŕı Kozel3

1Institute of Physics in Opava, Silesian University in Opava, Czechia
2Faculty of Applied Informatics, Tomas Bata University in Zlin, Czechia

3Faculty of Medicine, University of Ostrava, Czechia

Abstract

One of the greatest representatives of the diseases of civilization is stroke. Atheroscle-
rosis, mainly atherosclerotic plaques cause this. The location and progression of
atherosclerotic plaque in carotid arteries using image processing methods and arti-
ficial intelligence is the subject of this article. The determination of plaque location
and border is provided by a residual learning neural network. Furthermore, multi-
modal segmentation and computation of object shape metrics along with key points
are performed. This computation is performed for a stable and progressive plaque
subset of the B-mode ultrasound echogenity images of the carotid artery. Each al-
gorithm to compute shape metrics and key points is evaluated for its contribution
to the classification between stable/progressive plaques. The contribution level is
mapped into three groups. A neural network classification test is also performed.

Keywords: Carotid plaque, Computer analysis, Soft computing, Decision making, Image
analysis, Shape metrics, Key points, Echogenity.

1 Introduction

The field of image data evaluation enables the analysis and prediction of civilization dis-
eases. Stroke is one of the representatives of civilization’s diseases and the main cause of
morbidity and mortality [1]. These ischemic strokes are mainly caused by atherosclerosis,
i.e., atherosclerotic plaques [2]. The atherosclerotic plaque in the carotid artery creates
arterial stenosis, and as it grows, the risk of thrombosis or embolization of the brain
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increases. Carotid plaque prone to rupture consists of a large lipid core or intraplaque
hemorrhage (echolucent areas within the plaque on ultrasound) covered by a thin fibrous
cap [3]. Various factors, including the accumulation of inflammatory cells and local hemo-
dynamic factors, weaken the fibrotic cap, leading to plaque rupture and leaving behind
ulceration or mural thrombus (Figure 1). These plaque features act as a thromboembolic
source, allowing plaque components to be released into the blood and cause stroke [4].

Figure 1: Visualization of unstable carotid plaque with a thin/fissured fibrous cap and
mural thrombus.

To support decision making, it is necessary to characterize the properties of the plaque
in terms of describing its echogenity (intensity), structural, textural, and shape proper-
ties. The structure will be essential as we will be looking for an area of possible insta-
bility/rupture of the plaque. With acquisition and evaluation are contacted problems
namely

1. Different setup of the sonographic devices;

2. Perception and experience of the physician;

3. How to standardize acquisition and evaluation chain.

In terms of computed aided support for decision-making, the following main steps are
taken

1. Localization ROI (Region of Interest);

2. Segmentation area of ROI;

3. Analyzing interesting segments in terms of echogenity, texture properties, and shape
properties. Usually, we also analyze the relation between segments;

Preliminary investigation of multimodal segmentation with shape metrics and key points for images of
carotid atherosclerosis
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4. Make/calculate support decision, final decision made by a physician. In the process
of making/calculating, we can also use other data about the patient(anamnesa,
laboratory tests, etc.).

In the machine learning era, many methods are used [5], in this paper, the approaches of
clustering - unsupervised learning, and at the same time neural network, i.e., supervised
training, will be applied. Furthermore, the shape characteristics and key points will be
investigated for part of an ANTIQUE database [8].

2 Detecting the position of the artery and determin-
ing its border

Detection of the position and identification of the artery border is a significant part of
the calculation and analysis of carotid plaque. A deep learning network with ResNet50
residual learning is used to detect points at the artery border[6, 10]. The detected border
points and point clouds were approximated by an ellipse due to the probe pressure on the
carotid artery (Figure 2). The estimation and drawing of the ellipse was performed using
the function cv2.fitEllipse(c) from the OpenCV library (Figure 2). Further developments
could be made by switching the ellipsoid approximation to the spline approximation in
the case of a sufficient number of correctly detected points on the carotid border. Image
data selected from the ANTIQUE database [8].

Figure 2: Example of labeling by a human physician and computer-aided SW[6]

3 Segmentation of the Carotide Artery

After detecting the position of the artery and determining its border, the segmenting of
the carotid artery is done. Let us have an echogenity image from the B-Mode cut.

Ii,j , (1)

Petr Čermák, Vladyslav Sherstobitov, David Školoudík, David Pakizer, Jiří Kozel
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where I is the echogenity image and i, j are the coordinates of the echogenity value stored.

SWi,j , (2)

where SWi,j is the sliding window as a submatrix of echogenity image I and its coordinates

Par =
{
Par∗w

2 +i,w2 +j

}
; i = 0, 1· l, 2· l, ..., nx· l; j = 0, 1· l, 2· l, ..., ny· l, (3)

where Par is a set of parameter objects (numbers, matrices) calculated from sliding
windows as input to the K-Mean algorithm. Indexes w

2 + i, w2 + j determine the center
position of the sliding window in coordinates of the echogenity value in the image. The
sliding window movement is denoted by l, C is there set of clusters and Kis the preset
number of clusters[14]

C = {c1, c2, ..., cK} , (4)

the objective function to minimize

J (C) =

K∑

k=1

Jk, (5)

where Jkis the sum of squared error

Jk =

∥ck∥∑

i=1

(∥xi,j −mk∥)2 . (6)

As input of K-Means Par we can choose characteristic like DFT, DWL Coeficients. We
can apply filtering of the coefficients using percentil of variance

Par∗i,j





calc type = 1 Filter
(
ParFi,j (k, l)

)

calc type = 2 Filter
s

(
ParW,s

i,j (k, l)
)

calc type = 3 ParAi,j
calc type = 4 ParDi,j

. (7)

DFT for sliding window as follows[14]

ParFi,j (k, l) =
1√
MN

M−1∑

m=0

N−1∑

n=0

SWi,j (m,n) exp

[
−2πj

(
mk

M
+
nl

N

)]
, (8)

and DWT for given s [11]

ParW,s
i,j (k, l) =

1

s

M−1∑

m=0

N−1∑

n=0

SWi,j (m,n)ψ

(
m− k

s

)
ψ

(
n− l

s

)
, (9)

we also use average and variance

Preliminary investigation of multimodal segmentation with shape metrics and key points for images of
carotid atherosclerosis
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ParAi,j =

M−1∑
m=0

N−1∑
n=0

SWi,j (m,n)

MN
, (10)

,

ParDi,j = E
[(
ParAi,j − SWi,j (m,n)

)2]
. (11)

.
As a clustering or classification tool, we can also use Neural Network

C = NN (Par) . (12)

.
Those algorithms are implemented in software for the analysis of medical images [12]

shown in Figure 3. The program was implemented in Python using several open-source
libraries, namely OpenCV, pyWavelet, Numpy, Scipy, and Keras. During the analysis of
the results, it was found that several iterations of segmentation are sometimes necessary to
obtain meaningful and relevant results. It is required to change one or more parameters,
such as the size of the sliding window, the number of steps the window goes through, or
the number of clusters.

As an example of segmentation of the ultrasound image, we used sliding window
techniques. The sliding window created a sub-matrix image for fast Fourier transform.
We use these FFT coefficients to calculate the mean and variance. The filtering of SW
the FFT coefficient is based on the percentile of the variance. K-means or artificial neural
network classification is performed, and the clusters are colored (Figure 4).

C = {c1, c2, ..., cK} → {RGB1, RGB2, ..., RGBK} (13)

4 Shape metrics

We choose shape metrics based on the Euler characteristic as human perception [11, 14],
curvature of the object border K (t), and energy of the object border [14].

En = C −H (14)

Euler characteristic is given by the difference in connected components and the number
of holes[14].

Euler characteristic for Figure 3 is -1. The curvature function is defined [14]

K (t) =
θ (t)

dt
=
x′y′′ − y′x′′
(
x′2 + y′2

) 3
2

, (15)

where θ (t) is definet follows

Petr Čermák, Vladyslav Sherstobitov, David Školoudík, David Pakizer, Jiří Kozel
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Figure 3: Algorithm of segmentation with sliding window [12]

Figure 4: Labeling by physician, computer-segmentation[13, 20]

Preliminary investigation of multimodal segmentation with shape metrics and key points for images of
carotid atherosclerosis
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Figure 5: Finding holes

θ (t) = arctan
y (t)− y (t− w)

x (t)− x (t− w)
, (16)

finally border energy

Eb =
1

L

L∫

0

[K (u)]
2
du. (17)

As a remark, K (t) must be checked for gaps in curve approximation and using the
neighboring connected algorithm. When we used bitmap images, there is a problem with
discretization. Peeks in K (t) must be filtered using a Gaussian filter. Three objects
were extracted , and the border energy calculated, namely the carotid border, the carotid
lumen, and the carotide segment from the progressive plaque in Figure 6.

carotid border carotid lumen carotid segment P

Figure 6: Segmented carotid borders and filtered curvature functions

For comparison, the functions of elipse, real and synthetic ulceration are also shown
(Figure 7).

Petr Čermák, Vladyslav Sherstobitov, David Školoudík, David Pakizer, Jiří Kozel
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real ulceration synthetic ulceration elipse

Figure 7: Borders of real ulceration, synthetic ulceration, and ideal elipse, their filtered
curvature functions

It is clear that the circle has the lowest energy; the next elipse and carotid border. The
highest value of border energy has the carotid segment of progressive plaque. The carotid
lumen and ulceration plaque have near values. For comparison, we create a synthetic
ulceration shape in the form of a mushroom. The energy of the curvature function could
be used as a sign of complexity of the area, which could be relevant for the prediction of
the rupture.

Object Border energy (with Filtered K (t))

elipse 15.2109
carotid border 35.255
carotid lumen 164.6

carotid segment P 1610.21
carotid ulceration 118.903
synt. ulceration 70.6686

Table 1: Energy of different curvature functions filtered

The curvature function could also be used to predict possible rupture. Characteristic
curvature is seen as synthetic ulceration and real ulceration. The curvature function
can determine ROI with rotation invariancy. We can also use some type of curvature
approximation, like Fourier coefficients, or classification using LSTM NN. However, the
determination of how to create a representative template depends on the set of images.

5 Key Points

One of the techniques that allows for the identification of key points is OBR, which stands
for Oriented FAST and Rotated BRIEF[19]. Compared to other widely used SIFT and

Preliminary investigation of multimodal segmentation with shape metrics and key points for images of
carotid atherosclerosis
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SURF algorithms, it has a distinct advantage in that it operates in real-time, is robust to
changes in zoom, maintains accuracy even when the image is rotated, and is capable of
analyzing fast amounts of data. To apply this method, a series of steps must be taken.

First, key points must be identified using oFAST, an enhanced version of the original
FAST algorithm, which determines the direction of these points by ensuring their invari-
ance. Thus, the initial step involves utilizing the FAST algorithm to detect potentially
significant points and subsequently calculating a moment for each detected point based
on the pixel intensity within a small region surrounding the point. This provides infor-
mation regarding the primary orientation of the point, serving as a foundation for the
rotation invariant local description of the points.

The second step in this process involves adapting the BRIEF descriptor to ensure
rotational invariance. It involves creating a binary representation of the significant points
by comparing the intensities of randomly placed pixel pairs around each point. This
results in a concise and easily comparable descriptor. Subsequently, the orientation of
this descriptor must be determined according to the predetermined orientation of the
point that was established in the initial stage. This ensures that the descriptors remain
comparable even if the images are subjected to rotation. In the following images, examples
of the stable and progressive plaque and their processing are shown (Figure 8, 9).

Figure 8: Dataset processing example, Stable plaque segmentation, detection hole, and
SIFT, ORB methods[20]

Figure 9: Dataset processing example, Progressive plaque segmentation, detection holes,
and SIFT, ORB methods[20]

Petr Čermák, Vladyslav Sherstobitov, David Školoudík, David Pakizer, Jiří Kozel
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6 Shape metrics, Key points over stable and progres-
sive plaque data subset

Let us calculate shape metrics and key points for

• Stable plaque data subset;

• Progressive plaque data subset;

on partial dataset from ANTIQUE study[8] results are presented in the Table 2 [20]. We
classify the difference in characteristic average values according to stable and progressive
plaques into three groups namely ≤ 10%, 10%− 20% and ≥ 20%. All other charectiristic
which do not mentioned in this paper, we can found in [20].

Method/Algorithm Category Stable
plaque
subset

Progressive
plaque sub-
set

Perimeter ≤ 10% 586 650
Circularity ≤ 10% 0.429 0.442
Number of border points K (p) > 0.5 ≤ 10% 88 86.8
Centroid distance ≤ 10% 9.31 9.57
Rectangularity ≤ 10% 0.51 0.5
Elongation ≤ 10% 1.151 1.2
FAST True 10%− 20% 72 88
Number of border points K (p) = 0 10%− 20% 315 353
Area 10%− 20% 66471 78050
Border energy (not filtered K (t)) ≥ 20% 2556 3449
Euler characteristic ≥ 20% 15.3 19.2
FAST False ≥ 20% 562 670
SIFT ≥ 20% 89 123
ORB ≥ 20% 55 100

Table 2: Comparision of the results of Methods/Algorithms comparision with the stable
plaque subset and the progressive plaque subset [20]

7 Conclusions

The research used a set of 151 segmented images of the carotid artery, some of which
contained images of stable plaques, and others contained images of progressive plaques.
First, there is the preprocessing of B-Mode carotid images to localize the position and
carotide border. For shape descriptors, we need to provide segmentation of the carotid
artery image. After pre-processing these images, 15 descriptors were used to help extract
information on plaque structure. These were descriptors such as moments, perimeter,

Preliminary investigation of multimodal segmentation with shape metrics and key points for images of
carotid atherosclerosis
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circularity, number of border points, centroid distance, rectangularity, elongation, number
of border points, area, border energy, Euler characteristic, two FAST versions, SIFT and
ORB[20].

It was found that the complexity of the border, shape metrics, and key point com-
putation have a greater influence on the ratio of parameter values between stable and
progressing plaques. A threshold value of 20% was chosen. The ORB method had the
highest difference of the average parameter values when comparing stable and progress-
ing plaques. Through the use of deep learning algorithms, it was shown that the neural
network tested can correctly classify 80% of medical images[20]. Although this is not a
very high rate; this result can still be considered sufficiently valid for subsequent uses of
the model in the laboratory.

Firstly, it is recommended to expand the database of medical images used for training
and testing of the models. A total of 151 images were used in this research, which a
relatively limited number for robust training of deep neural networks. Larger more data
will ensure higher accuracy and reliability of the results[20]. Adding additional images to
the dataset depends on the number of physicians, as labeling is a time-consuming process.
It is also possible to use semi-automatic segmentation for gradually database extending,
however, in questionable cases and images with artifacts, the cooperation of the physician
is again required. The semi-automatic segmentation could be a other subtask, seems
pretty important.

References

[1] Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional
burden of disease and risk factors, 2001: systematic analysis of population health
data. Lancet 2006;367:1747–1757.
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11



[7] OPENCV. Structural Analysis and Shape Descrip-
tors. Online. 2024, Sat Aug 31 2024. Available from:
https://docs.opencv.org/3.4/d3/dc0/group imgproc shape.html#
gaf259efaad93098103d6c27b9e4900ffa. [cit. 2024-09-01].
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Abstract

This paper examines mutual conflict behavior between belief function structures
across different discernment frame sizes (Ω). Through experiments on Ω2 to Ω6, we
observe that as frame size increases, non-conflicting pairs and higher-order hidden
conflicts become exceedingly relatively rare despite of exponential grows of cardi-
nalities of their classes. The super-exponential growth of possible belief structures
complicates exhaustive analysis, leading us to employ random sampling. Our find-
ings reveal that cardinality of class of first-degree hidden conflicts (HC1) grows faster
than cardinality of non-conflicts as frame size increases, highlighting the challenges
and implications for applying belief function theory in complex decision-making sce-
narios.

1 Introduction
The theory of belief functions was developed to better express uncertainty in information,
extending beyond traditional methods such as second-order probability, which represents
the probability of a probability—or, more precisely, our confidence in the likelihood of a
single phenomenon.

In real life, we constantly deal with uncertainty. Consider, for instance, the weather
forecast many of us check on our smartphones. You may have noticed that different
websites or applications often provide varying predictions. These discrepancies arise from
the different models used and the data available to those models, resulting in different
sources of information that are typically inconsistent with one another. When faced with
this situation, how do we decide which prediction to trust? Instead of choosing just one,
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belief functions allow us to combine all available sources of information using rules such
as Dempster’s rule or its non-normalized version, often referred to as the Conjunctive
rule.

While combining conflicting information using these methods is possible, there are
well-known examples where such combinations lead to paradoxical or meaningless re-
sults. A famous example is the combination of medical diagnoses, such as cancer and
the flu, where conflicting evidence can produce highly counter-intuitive outcomes, such
as assigning an unreasonably high degree of belief to an almost impossible event. This
highlights the importance of quantifying the degree of inconsistency—often referred to as
the magnitude of conflict—between belief functions.

The simplest definition of conflict comes directly from the Conjunctive rule, where the
conflict is quantified by the probability mass assigned to the empty set by the combination
rule. The critical difference between the Conjunctive rule and Dempster’s rule lies in
how they handle this mass: the Conjunctive rule retains it in the empty set, whereas
Dempster’s rule proportionally redistributes it among all non-empty sets in the resulting
combination.

This definition of conflict is highly dependent on the structure of the belief functions
involved. The existence of conflict depends on the structure, and its magnitude is in-
fluenced by the size of the assigned probability masses. In this article, we focus on the
structures of belief functions and their impact on conflict. Specifically, we explore the
likelihood that two random structures will generate a conflict, the nature of higher-level
hidden conflicts, the numbers of conflicting and non-conflicting pairs, and the techni-
cal feasibility of examining these scenarios. These topics form the core of the following
discussion.

2 Basic Notions
This section will recall some basic notations needed in this paper.

Assume a finite frame of discernment Ω with elements denoted usually by ωi, i.e.,
{ω1, ω2, . . . , ωn} and their sets by capital letters. In the case of |Ω| = n, we will highlight
this fact using a subscript as Ωn. P(Ω) = {X|X ⊆ Ω} is a power-set of Ω. P(Ω) is often
denoted also by 2Ω, e.g., in Pichon et al. (2019).

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such that
∑

A⊆Ω m(A) =
1. The values of the bba are called basic belief masses (bbm). m(∅) = 0 is usually assumed.
We sometimes speak about m as of a mass function.

There are other equivalent representations of m: A belief function (BF) is a mapping
Bel : P(Ω) −→ [0, 1], Bel(A) =

∑
∅̸=X⊆A m(X). Because there is a unique correspon-

dence between m and corresponding Bel we often speak about m as of a belief function.
Let m be a belief function defined on Ω and A ⊆ Ω. If m(A) > 0 we say A is a focal

element of m. The set of focal elements is denoted by Fm (or simply F for short), and
we call it a structure of m. We say that a focal element X ∈ F is proper if X ̸= Ω. In the
case of mvac(Ω) = 1 we speak about the vacuous BF (VBF) and about a non-vacuous BF
otherwise. If all focal elements have a non-empty intersection, we speak about consistent
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BF. If focal elements are nested, we speak about consonant BF.
The (non-normalized) conjunctive rule of combination ∩⃝, see e.g. Smets (2005), is

defined by:
(m1 ∩⃝m2)(A) =

∑

X∩Y=A;X,Y⊆Ω

m1(X)m2(Y )

for any A ⊆ Ω. κ =
∑

X∩Y=∅;X,Y⊆Ω m1(X)m2(Y ) is usually considered to represent a
conflict of respective belief functions when κ > 0. By normalization of m12 = m1 ∩⃝m2

we obtain Dempster’s rule ⊕, see Shafer (1976). To simplify formulas, we often use
∩⃝3

1m = m ∩⃝m ∩⃝m, and also ∩⃝k
1(m1 ∩⃝m2) = (m1 ∩⃝m2) ∩⃝ . . . ∩⃝(m1 ∩⃝m2), where (m1 ∩⃝m2)

is repeated k-times.

3 Hidden conflict
Let us assume conjunctively non-conflicting belief functions m1 and m2, i.e., (m1 ∩⃝m2)(∅)
= m12(∅) = 0. In the case that there exists k ≥ 1 such that ( ∩⃝k+1

1 m12)(∅) > 0, then we
say that there is a hidden conflict of degree k between m1 and m2. Note that k is the
smallest with this property. We can formalize this in the following definition.

Definition 1 Assume two BFs m1 and m2 such that for some k>0 ( ∩⃝k
1(m1 ∩⃝m2))(∅) = 0.

If there further holds ( ∩⃝k+1
1 (m1 ∩⃝m2))(∅) > 0 we say that there is a conflict of BFs m1

and m2 hidden in the k-th degree (hidden conflict of k-th degree, abbreviated as HCk).
If there is already ( ∩⃝k+1

1 (m1 ∩⃝m2))(∅) = (m1 ∩⃝m2))(∅) > 0 for k = 0 then there is a
conflict of respective BFs which is not hidden or we can say that it is conflict hidden in
degree zero (HC0).

Arnaud Martin called ( ∩⃝k
1m)(∅) auto-conflict of of k-th order of m in Osswald and

Martin (2006). Thus conflict of m1 and m2 hidden in the k-th degree is auto-conflict of
m12 hidden in k-th degree, specially positive ak+1 of combined m12 = m1 ∩⃝m2 hidden
by zero ak(m12) (i.e., ak+1(m12) > 0 where ak(m12) = 0), see also our contribution in
CJS’17 Daniel and Kratochvíl (2017).

Hidden conflict and its degrees are extensions of the classic Shafer’s definition of
conflict. It is not an alternative definition or approach but a more detailed classification
of situations where m(∅) = 0.

This technical definition defines all degrees of hidden conflict using repeated combi-
nations1. However, the original observation of hidden conflict came from the analysis
of conflict Conf, defined in Daniel (2014), and its comparison with conjunctive conflict
in situations where Conf(m1,m2) > 0 while (m1 ∩⃝m2)(∅) = 0. For better insight into

1Repeated combination is only a technical tool here: we are interested only in m1, m2, and m12, not
in bbms of any repeated combination either of them, with the exceptipon of bbm assigned to empty set
by the non-normalized conjunctive rule ∩⃝, i.e., bbm which is normalized when Dempster’s rule is applied.
Regardles of this, considering two or more numerically same BFs does not mean anything about their
depenency, we can assume that both / all of them come from indepenent sources.
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this, we refer to the Introductory and Little Angel examples published in Daniel and
Kratochvíl (2020), for brief presentation of these examples see Appendix 1.

From a large amount of results about hidden conflicts and their degrees, we recall the
following principal theorem:

Theorem 1 Hidden conflict of non-vacuous BFs on Ωn, n > 1 is always of a degree less
or equal to n− 2; i.e., the condition

( ∩⃝n−1
1 (m1 ∩⃝m2))(∅) = 0 (1)

always means full non-conflictness of respective BFs, and no hidden conflict exists.

For more detail on the limitation of the degree of hidden conflicts in characteristic
situations, see Daniel and Kratochvíl (2020) and for comparison with related Pichon’s
approach, see Daniel and Kratochvíl (2022).

Analogously to degrees of hidden conflicts, degrees of non-conflictness were defined
in Daniel and Kratochvíl (2019). Analogously, to distinguishing internal conflict(s) of
individual BFs from mutual conflict between them, also internal hidden conflicts are
defined, and mutual hidden conflicts distinguished Daniel and Kratochvíl (2020), internal
hidden conflict was presented for the first time in CJS 2017 in Pardubice by Daniel and
Kratochvíl (2017) in fact. Considering this, a hidden conflict of two BFs is hidden internal
conflict of their combination.

Preparing the actual presentation of hidden conflict we have the following observed:
1. Consistent BFs have no internal conflict nor hidden internal conflict, i.e., their auto-
conflict any order is always equal to zero.
2. Non-consistent BFs always have some internal conflict, either hidden or non-hidden,
i.e., there is always positive auto-conflict of some order.
3. BFs m1 and m2 with consistent m1 ∩⃝m2 are in no conflict nor hidden conflict of any
degree. (Such mis are always consistent itselves.)
4. BFs m1 and m2 with non-consistent m1 ∩⃝m2 are always in hidden conflict of some
degree greater or equal to zero. (regardless whether m1 and/or m2 are/is consistent).

Lemma 1 (i) Two BFs m1 and m2 are in a hidden conflict of a positive degree whenever
(m1 ∩⃝m2)(∅) = 0 and m1 ∩⃝m2 is not consistent.
(ii) Specially, hidden conflict of the first degree appears whenever (m1 ∩⃝m2)(∅) = 0 and
m1 ∩⃝m2 has positive auto-conflict (of the second order: a(m1 ∩⃝m2) = a2(m1 ∩⃝m2) > 0).

Proof. Proofs follow Theorem 5 from Daniel and Kratochvíl (2022) and the previous
observations.

4 Conflict analysis
In our previous work Daniel and Kratochvíl (2022), we explored the concept of conjunctive
conflict, specifically focusing on the amount of probabilistic mass that the non-normalized
conjunctive rule assigns to the empty set. We found that the existence or absence of
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b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b

b b b b m(∅) = 1 b b b b b b b b

b b m(∅) = 1 b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b

b b b b b b

b b b b

Table 1: All possible conjunctive combinations of belief structures and classes of non-
conflictness on Ω2: White – non-conflict, Green – hidden conflict, Red+Magenta – con-
flict. The table presents all possible combinations of belief function structures for Ω2.
The different structures are represented along the x and y axes. For Ω2, there are two
singletons and one set of cardinality 2, which represents the entire frame of discernment
Ω2. In the table, sets that are included in a particular structure are shaded black, while
those not included are shaded grey.

conjunctive conflict is determined solely by the belief functions’ structure. In contrast,
the magnitude of the conflict depends on the individual probability masses. However, our
primary interest lies in conflict’s mere existence or non-existence rather than its magnitude
in this study. Therefore, we concentrated on analysing the structures of belief functions.

Given the size of the frame of discernment Ω, we can enumerate the number of unique
belief function structures. This enables us to calculate all possible combinations of these
structures and determine how many are conflicting, hidden conflicting, or non-conflicting.
In our previous study Daniel and Kratochvíl (2022), we performed this analysis for the
three smallest frames, where |Ω| = 2, 3, 4. The complete set of structure combinations for
|Ω| = 2 is illustrated in Table 1 and for |Ω3| = 3 by bitmap in Appendix 2, while the counts
of conflicting and non-conflicting structures for different cardinalities are summarized in
Table 2.

NC C i.e., HC0 HC1 HC2 HC3

Ω2 17 28 4 – –
Ω3 649 14720 756 4 –
Ω4 258.785 1.071.676.416 1.738.492 2.592 4

Table 2: Number of conflicting belief structure couples in different degrees hiddeness of
conflictness/non-conflictness

We can immediately see that the most frequent cases are not hidden conflicts (C, i.e.,
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hidden in degree zero HC0). There are always four singular cases where hidden conflict
of degree n−1 (HCn−1) appears for Ωn. Cardinalities of all other classes rapidly increase
with the cardinality of the frame of discernment n.

For these small frames, it is interesting to note that the cardinality of HC1, and thus
the class of hidden conflicts in general, grows significantly faster than the cardinality
of the non-conflict class (NC). There are significantly fewer hidden conflicts on Ω2, but
already more on Ω3, and significantly more hidden conflicts than non-conflicts on Ω4.

The cardinality of HC2 is less than that of NC on Ω3 and Ω4. Nevertheless, it also
grows quicker than the cardinality of NC: it is about 160 times less on Ω3, while only
about 100 times less on Ω4.

5 Random sampling approach
As we attempt to extend our analysis to higher dimensions, we encounter a significant
computational challenge due to the super-exponential growth in the number of structures.
For example, with Ω5, there are 31 possible focal elements, resulting in 231 possible struc-
tures and 262 combinations of these structures. The sheer magnitude of these numbers
makes it infeasible to compute all possible combinations using current technology, and
the problem only worsens with Ω6 and beyond.

One potential solution is to employ random sampling. By selecting a sufficiently large
random sample of structure combinations, we can estimate the distribution of different
classes of conflicts, including different degrees of hidden conflict.

First, we validated our approach by performing random generation for Ω2,Ω3, and
Ω4 to ensure its accuracy. For these cases, we converted the results from Table 2 into
percentages. Table 3 compares our randomly sampled results and the original results
obtained from an exhaustive search of all possible combinations of the listed structures.
The first three rows of Table 3 represent the exact results from the complete search, while
the next three rows show the outcomes based on random sampling.

NC C HC1 HC2 HC3

Ω2 34.7 57.1 8.2 – –
Ω3 4.02 91.26 4.69 0.025 –
Ω4 0.024 99.814 0.162 0.00024 0.000000373

Ω2 sampling 35.41 56.22 8.37 – –
Ω3 sampling 4.09 91.17 4.72 0.025 –
Ω4 sampling 0.023 99.817 0.159 0.001 0.000

Table 3: Percentage representation of conflict levels across all possible combinations of
Belief function structures for a given frame of discernment

The generation of random structures was carried out in two steps. First, we determined
the number of focal elements for the generated structure. Then, we randomly selected
the corresponding number of distinct subsets from Ω, forming the desired structure. The
number of focal elements was generated such that the probability of selecting a given
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number corresponded to the frequency distribution of focal elements among all possible
structures on Ω. As is well-known from combinatorics, the most probable number of
focal elements is approximately 2|Ω|/2, which aligns with the highest number of possible
combinations of subsets. Due to applying this two-step generation, we validated it as
presented in Table 3.

Encouraged by our initial success, we proceeded to experiment with the Ω5 frame.
Given the vast number of possible combinations of the structures involved, we conducted
eight separate experiments, each consisting of 100 million random combinations. We
divided these into eight batches to assess the consistency of the intermediate results. The
results from these individual experiments are remarkably consistent and are summarized
in Table 4.

no. NC C HC1 HC2 HC3 HC4

1 1 99999968 31 0 0 0
2 0 99999969 31 0 0 0
3 1 99999960 39 0 0 0
4 0 99999961 39 0 0 0
5 0 99999963 37 0 0 0
6 1 99999950 49 0 0 0
7 0 99999953 47 0 0 0
8 0 99999965 35 0 0 0

Table 4: Results of random sampling for Ω5

For Ω6, the results were even more compelling. Given the enormous number of possible
structures and their combinations, we conducted 4 billion trials, organized into 160 sets
of 25 million pairs each. Despite the extensive sampling, we did not find a single non-
conflicting pair or a pair with a hidden conflict - summarized in Table 5. In other words, all
pairs exhibited conflict. This suggests that the probability of encountering a pair/couple
of non-conflicting belief functions for a larger frame of discernment is exceedingly close
to zero, and the same holds for couples in hidden conflict of various degrees.

NC C HC1 HC2 HC3 HC4 HC5

Ω6 0 4.000.000.000 0 0 0 0 0

Table 5: Results of random sampling for Ω6

6 Summary and Results Analysis
Presenting the results of our experiments on Ω5, we can confirm our observation that the
cardinality of HC1 grows much faster than NC, already reaching about a hundred times
greater in this case. Unfortunately, the 100 million generated samples were insufficient to
obtain a HCi case for i > 1.
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NC C HC1 HC2 HC3 HC4 HC5

Ω2 17 28 4 – – – –
Ω3 649 14 720 756 4 – – –
Ω4 258 785 1 071 676 416 1 738 492 2 592 4 – –
Ω5 1.725e10 4.611e18 1.771e12 (>> 3e3) (>> 4) 4 –
Ω6 ? 8.507e37 ? ? ? ? 4

Table 6: Numbers of conflicting belief structure couples in different degrees of
conflictness/non-conflictness. There are precise number for Ω2 – Ω4, and estimation
for entire space for Ω5 and Ω6

Since we know that the cardinality of HCn−1 is equal to 4 and that all HCi values are
greater for i > n− 1, we have marked 0+ in the cases where no samples were generated,
although they could theoretically exist. Similarly, for Ω6, even 25 million generated pairs
were not enough to encounter anything other than a conflict that is not hidden.

Analyzing our results, it is clear that all classes of conflict/non-conflict increase with n.
The largest class is always C ∼ HC0: the class of pairs with a classic unhidden conjunctive
conflict. The cardinality of HCi decreases from a maximum at i = 0 down to 4 for HCn−1.
The second-largest class, HC1, is greater than NC (the class of non-conflicting pairs) for
n ≥ 3 and grows faster than NC as n increases.

As we are interesting only in the belief structures, we have sizes of no conflicts nor
hidden conflicts here. Nevertheless, we should notice one exception which is structural:
i.e., full conflict where all focal elements of m1 have empty intersection with all focal
elements of m2, there appears m12(∅) = 0, the case where the conjunctive rule gives no
other information and Dempster’s rule is not applicable. There are two such cases on
Ω2, see red fields in Table 1, 36 on Ω3, and 1 154 on Ω4. This class also grows with the
size of frame, but we can see that its cardinality incomparably less with the class of all
conflicts HC0 and also less than cardinalities of NC, HC1 and on Ω4 less than HC2. I.e.,
cardinality of FC is less than cardinalities all classes investigated here, with the exception
of HCn−1 which is always equal to 4 in any frame.

NC C HC1 HC2 HC3 HC4 HC5

Ω2 34.7 57.1 8.2 – – – –
Ω3 4.02 91.26 4.69 0.025 – – –
Ω4 0.024 99.814 0.162 0.00024 3.73e-10 – –
Ω5 3.75e−9 100− 3.85e−7 0+ 0+ 8.67e−15 –
Ω6 0+ 100− 0+ 0+ 0+ 0+ 4.70e−36

Table 7: Actual (for Ω2 – Ω4) and estimated (Ω5 – Ω6) percentages of conflict types
among all possible combinations of structures for a given frame of discernment size

As the actual cardinalities of these rapidly growing classes are difficult to conceptual-
ize, it is more intuitive to compare the percentages of belief structure pairs in particular
conflict classes (see Table 7) or in direct comparison of the classes: for comparison of HCi
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classes with class of non-conflicting pairs and of class fully conflicting pairs with the other
classes see Table 8. We can see rapid increase relative comparison of HC1/N with the
size of the frame, while decrease of any comparison of FC, especially with the class of all
conflicting pairs C.

Since we did not observe any HCi situations for i > 1 within our random generation
for Ω5 and Ω6, but we know such situations exist, we have marked the corresponding
fields in Table 7 for Ω5 and Ω6 with 0+.

HC1/NC HC2/NC HC3/NC FC / NC FC / C FC/HC1 FC/HC2

Ω2 0.235 – – 1.176e-1 7.143e-2 5.000e-1 –
Ω3 1.166 0.006 – 5.547e-2 2.446e-3 4.762e-2 9.000e0
Ω4 6.718 0.010 1.545e-5 4.459e-3 1.077e-6 6.638e-4 4.452e-1
Ω5 102.666 (?) (?) (?) (?) (?) (?)

Table 8: Increasing of relative frequencies of HCi/NC with size of frame (columns 1–3).
Relative frequencies of full conflict in comparison with conflicting/non-conflicting classes
decreasing with size of frame (columns 4–7)

7 Conclusion
In this study, we investigated the behavior of conflict of couples of belief function struc-
tures, particularly focusing on the probability and distribution of conflicts across dis-
cernment frames Ω of different sizes. Through extensive experiments on Ω2 to Ω6, we
observed that the cardinality of all conflict classes, particularly non-hidden conflicts (C),
increases significantly with the size of Ω. Notably, our experiments on Ω5 and Ω6 re-
vealed that despite the growing of cardinalities of all degrees of hidden conflicts, that
even non-conflicting pairs and pairs of small positive higher-order degree of hidden con-
flicts (i = 1, 2) are exceedingly rare; confirming the hypothesis that the probability of
encountering such pairs is almost negligible as the frame size grows and completely gen-
eral2 belief functions are considered.

The results underscore the computational challenges posed by the super-exponential
growth in the number of possible belief structures and their combinations, making exhaus-
tive searches infeasible for larger frames. Our use of random sampling provided valuable
insights. However, the limitations of this method became apparent when no higher-order
hidden conflicts were observed in larger frames despite their theoretical existence.

Furthermore, our analysis highlighted the disproportionate growth of certain conflict
classes, particularly HC1, which quickly surpasses non-conflicting pairs as Ω increases.

These findings suggest that as the frame of discernment expands, the likelihood of
encountering meaningful, non-conflicting belief combinations diminishes, raising impor-
tant questions about the practical implications of belief function theory in large-scale
applications.

2It is, of course, different if some restricted class of belief function is considered: either from the point
of view of their structure or the limitation of the number or size of focal elements.
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In conclusion, while belief functions offer a robust framework for managing uncer-
tainty, our findings indicate that the prevalence of conflict, particularly in larger frames,
necessitates careful consideration in practical applications. Future work could explore
alternative methods for managing or mitigating conflicts in belief structures, especially
as the scale of analysis increases. Additionally, further research into the theoretical un-
derpinnings of conflict distribution may yield new insights that can enhance the utility of
belief function theory in complex decision-making scenarios.
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Appendix 1: Hidden Conflict Examples
In accordance to the body of this study, only belief structures are important for existence
and degree of conjunctive (hidden) conflict. Hence for our examples graphical presenta-
tions in Figures 1 and 2, are more important than any specific numeric belief masses.

In our examples, we would like to illustrate how a hidden conflict is revealed. Note that
because of the commutativity of ∩⃝, we can rewrite

(
∩⃝3

1(m1 ∩⃝m2)
)

into
(
∩⃝3

1(m1) ∩⃝ ∩⃝3
1(m2)

)
,

etc. Once a positive mass is assigned to the empty set, it cannot be removed by ∩⃝. Let us
highlight the first occurrence of a positive mass on an empty set to clarify the examples.

b

b bbb

∩⃝
b

b bbb

=
b

b bbb

b

b bbb

b

b bbb

b

b bbb

b

b bbb

∩⃝
b

b bbb

b

b bbb

∩⃝ = and
b

b bbb

b

b bbb

∅

Figure 1: Arising of a hidden conflict: focal elements of m′, m′, m′′; m′ ∩⃝m′, m′′; and of
m′ ∩⃝m′ ∩⃝m′′. Where ω1 is the top one element, ω2 and ω3 clock-wise numbered.

Introductory Example. Let us assume Bel′, Bel′′ on Ω3 where F ′ = {{ω1, ω2},
{ω1, ω3}} and F ′′ = {{ω2, ω3}} (see Fig. 1 ). Then (m′ ∩⃝m′′)(∅) = 0. But (m′ ∩⃝m′ ∩⃝m′′)(∅)
> 0 (as highlighted in Figure 1, where conflicting focal elements are drawn in red), which
implies ∩⃝2

1(m
′ ∩⃝m′′)(∅) > 0 as well. Thus, there is a conflict hidden in the 1st degree. For

detail, see Daniel and Kratochvíl (2020); and for an example of numeric bmms also Table
9. In comparison with (m′ ∩⃝m′ ∩⃝m′′)(∅) = (m′ ∩⃝m′′ ∩⃝ m′ ∩⃝m′′)(∅) = 0.48, the conflict
based on non-conflicting parts of belief functions (see Daniel (2014)) Conf(m′,m′′) =
0.40, see Daniel and Kratochvíl (2020).

X {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3}{ω1, ω2, ω3} ∅
m′(X) 0.0 0.0 0.0 0.60 0.40 0.00 0.00 –

m′′(X) = 0.0 0.0 0.0 0.00 0.00 1.00 0.00 –
(m′ ∩⃝m′′)(X) 0.00 0.60 0.40 0.00 0.00 0.00 0.00 0.00

(m′ ∩⃝m′′ ∩⃝m′ ∩⃝m′′)(X) 0.00 0.36 0.16 0.00 0.00 0.00 0.00 0.48

Table 9: Belief masses in the Introductory Example.

Little Angel Example. Let us have two BFs Bel1 and Bel2 on Ω5 = {ω1, ω2, ..., ω5}:
F1 = {A,B,C} = {{ω1, ω2, ω5}, {ω1, ω2, ω3, ω4}, {ω1, ω3, ω4, ω5}}, F2 = {D} = {{ω2, ω3,
ω4, ω5}}, i.e., |F1| = 3 while |F2| = 1. Respective structures can be seen in Fig. 2 where
sets of focal elements of individual BFs m1 (3×) and m2 (1×) are depicted in its first row
(ω1 is on the top with ωis clock-wise enumerated). Again, there is (m1 ∩⃝m2)(∅) = 0 (there
is no empty intersection of any X ∈ F1 with Y ∈ F2). Moreover, ∩⃝2

1(m1 ∩⃝m2)(∅) = 0 in
this example. Finally, ( ∩⃝3

1(m1 ∩⃝m2))(∅) > 0. Thus there is a hidden conflict of the 2-nd
degree. Following the second line of Figure 2, the empty set emerges as the intersection
of focal elements drawn by red color, i.e., it appears already in m1 ∩⃝m1 ∩⃝m1 ∩⃝m2.

On cardinalities of different degrees of Belief functions conjunctive conflictness
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Figure 2: Little Angel example: focal elements of m1,m1,m1,m2; ∩⃝3
1m1,m2;

( ∩⃝3
1m1) ∩⃝m2

Consistency of both m1 and m2 is underlined in Daniel and Kratochvíl (2020), nev-
ertheless we already know, that non-consistency of their combination m1 ∩⃝m2 is more
important.

For numeric values, see the original instance of Little Angel example in Daniel and
Kratochvíl (2020), where is ( ∩⃝3

1(m1 ∩⃝m1))(∅) = 0.108 > 0 and Conf(m1,m2) = 0.1 > 0.

Appendix 2: Bitmaps of Couples of Ω3 Belief Structures
Analogously to Table 1 in Section 4 for Ω2, we can present situation for Ω3 by a bitmap
presented in Figure 3.

(a) Zoom of left upper part (32× 32) (b) Full 127× 127 bitmap

Figure 3: Hiddeness degree bitmap of conjunctive conflict of belief structures on Ω3:
White – full non-conflict (degree 3), Black – HC2, Orange – HC1, Red – conflict – HC0

(degree 0).

Milan Daniel, Václav Kratochvíl
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Environmental Vulnerability and
Uncertainty Processing

Milan Daniel1 and Jan Geletič1
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This contribution combines older Hájek-Valdés approach [3, 4] to uncertainty pro-
cessing in MYCIN-like expert systems and analysis of Cadiag-2 fuzzy expert system [1]
with development of City Simulation Software [2, 5] covering environmental, population,
transportation and energetic aspects of smart city urban modelling and planning.

Uncertainty processing in MYCIN-like systems is based on operations corresponding
to group operations enabling us to show isomorphicity of uncertainty processing in quite
different classic expert systems MYCIN and PROSPECTOR. Analogously, some of norms
and conorms used in fuzzy expert systems may be considered to be cones of corresponding
group operations. Based on this, we can compare MYCIN-like systems also with fuzzy
systems as Cadiag-2 and its variants are.

Finally, similar aspects appear when computing global environmental KPIs from local
ones in City Simulation Software. After appropriate transformation even KPIs covering
different environmental KPIs as different thermal KPIs, air quality and other KPIs can
be aggregated.
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Abstract

The aim of this paper is to analyze the approximation capabilities of
lattice integral transforms, especially, using their appropriate composition.
In particular, our objective is to introduce and analyze the concept of the
inverse integral kernel function, specifically a Q–inverse for an integral kernel
function K on X. Additionally, we demonstrate that a smooth variant of the
original function can be approximated from both below and above using the
suitable composition of lattice integral transforms. Ultimately, we assess the
approximation quality of the original function using the modulus of continuity
and the value obtained from the integration of the square of the integral kernel
function Q, which specifies the inverse kernel function to K.

1 Introduction

Integral transforms are mathematical tools that generate a new function g(y) by
integrating the product of an existing function f(x) and an integral kernel function
K(x, y) over specified limits. The integral kernel function serves as a bridge between
the domains of f(x) and g(y). Among the most widely used integral transforms are
the Fourier and Laplace transforms, applicable to both real and complex-valued
functions. These transforms are highly effective in addressing practical problems
in various scientific and engineering fields, such as solving (partial) differential
equations, signal and image processing, and spectral analysis of stochastic processes
(see, e.g. [2, 13, 15]).

When handling imprecise or vague data using fuzzy set theory, we typically
work with vectors or functions whose values are part of a suitable algebra of truth
values, such as a residuated lattice or its specific subclasses like BL-algebra, MV-
algebra, or IMTL-algebra. In the paper [12], Perfilieva proposed the so-called direct
(lower and upper) lattice fuzzy transforms, which transform residuum lattice-valued
functions into component vectors according to the fuzzy partition of the function
domain. The component vectors carry a certain sort of aggregated information
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from the original functions, which may be further processed. In addition, the
original functions can be reconstructed from below and above from the compo-
nent vectors using the so-called inverse lattice fuzzy transforms, which were used
in signal and image processing (e.g., pepper-and-salt noise suppression or image
compression/decompression).

In the paper [8], Holčapek and Quoc generalized lattice fuzzy transforms and
introduced lattice integral transforms, which follow the standard integral trans-
form scheme. More precisely, for a given complete residuated lattice L with the
multiplication operation ⊗ and the residuum operation →, for a fuzzy measure
space ⟨X,F , µ⟩, an integral kernel function K : X × Y → L, and ⋆ ∈ {⊗,→}, the
⋆-lattice integral transform is defined as the map F ⋆

(K,µ) : F(X) → F(Y ) given by

F ⋆
(K,µ)(f)(y) =

∫ ⊗

X

K(x, y) ⋆ f(x) dµ, (1)

where
∫ ⊗
X

is the Sugeno-like integral introduced in [3, 4] (see also [5]). Obviously,
a lattice integral transform maps residuated lattice-valued functions over a domain
X to residuated lattice-valued functions over a domain Y , in a similar way to the
standard integral transforms such as Fourier or Hilbert transforms for both real or
complex-valued functions. It should be noted that, in addition to the lattice integral
transforms presented in [8], two other types of lattice integral transforms were
introduced in [9]. A reconstruction of original functions and certain applications
in decision-making and image processing were presented in [6, 7, 10].

One of the primary objectives for introducing lattice integral transforms was to
enhance the approximation capabilities of the lower and upper fuzzy transforms.
The first analysis of the approximation properties of lattice integral transforms was
presented in [10]. In the work, the authors introduced the relationship between
the integral kernel function and its inverse using another integral kernel function
on one function domain and demonstrated that the reconstructions of the original
functions are greater than or equal to (or less than or equal to) their lattice integral
transforms with respect to the new integral kernel function. It is worth mentioning
that this new integral kernel function represents, roughly speaking, the unit formed
by the composition of the integral kernel function and its inverse. In the context
of standard integral transforms, this unit is the Dirac delta function.

The purpose of this paper is to deepen the analysis of the approximation ca-
pabilities of lattice integral transforms started in [10]. In particular, we aim to
introduce and analyze the concept of the inverse integral kernel function, specifi-
cally a Q–inverse for an integral kernel function K on X. This Q–inverse is crucial
for reconstructing the original function through the composition of lattice integral
transforms. Next, we show the conditions under which the following inequalities
hold (pointwise):

F→
(K−1,µY ) ◦ F⊗

(K,µX) ≥ F⊗
(Q,µX) and F

⊗
(K−1,µY ) ◦ F→

(K,µX) ≤ F→
(Q,µX),

where K−1 is the Q–inverse of K. Finally, we introduce a modulus of continuity
for lattice-valued functions, denoted as ω(f), and demonstrate that if both lattice
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integral transforms preserve constant functions and K−1 is the Q–inverse of K
then

F→
(K−1,µY ) ◦ F⊗

(K,µX)(f)(x) ↔ f(x) ≥ ω(f),

and similarly for the opposite composition.
The paper is structured as follows. The next section provides a preliminary

introduction to essential concepts such as residuated lattices, fuzzy sets, fuzzy
relations, fuzzy measure spaces, and fuzzy integrals, which are utilized throughout
the paper. The third section presents two types of lattice integral transforms
and discusses their basic properties. The fourth section details the approximation
capabilities of these transforms. Finally, the last section is the conclusion.

2 Preliminaries

Truth value algebras We assume that the algebra of truth values is a complete
residuated lattice, i.e., an algebra L = ⟨L,∧,∨,⊗,→, 0, 1⟩ with four binary opera-
tions and two constants such that ⟨L,∧,∨, 0, 1⟩ is a complete lattice, where 0 is the
least element and 1 is the greatest element of L, ⟨L,⊗, 1⟩ is a commutative monoid
(i.e., ⊗ is associative, commutative and the identity a⊗ 1 = a holds for any a ∈ L)
and the adjointness property is satisfied, i.e.,

a ≤ b→ c iff a⊗ b ≤ c (2)

holds for each a, b, c ∈ L, where ≤ denotes the corresponding lattice ordering, i.e.,
a ≤ b if a∧b = a for a, b ∈ L. The operations ⊗ and → are called the multiplication
and residuum, respectively. For details, we refer to [1].

Example 1 It is easy to prove that the algebra

LT = ⟨[0, 1],min,max, T,→T , 0, 1⟩,

where T is a left continuous t-norm (see, e.g., [11]) and a →T b =
∨{c ∈ [0, 1] |

T (a, c) ≤ b} defines the residuum, is a complete residuated lattice.

A unary operation N : L→ L is called a generalized negation (negation for short)
on L if N is a non-increasing map such that N(0) = 1 and N(1) = 0.

Fuzzy sets Let L be a complete residuated lattice, and let X be a non-empty
set. A function A : X → L is called a fuzzy set on X. The set of all fuzzy sets
on X is denoted by F(X). A fuzzy set A on X is called crisp if A(x) ∈ {0, 1} for
any x ∈ X. The symbol ∅ denotes the empty fuzzy set on X, i.e., ∅(x) = 0 for any
x ∈ X. The set of all crisp fuzzy sets on X (i.e., the power set of X) is denoted
by P(X). A constant fuzzy set A on X (denoted as aX) satisfies A(x) = a for any
x ∈ X, where a ∈ L. The set Core(A) = {x | x ∈ X & A(x) = 1} is called the the
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core of a fuzzy set A, respectively. A fuzzy set A is called normal if Core(A) ̸= ∅.
A fuzzy set K on the Cartesian product X×Y is called the fuzzy relation. We say
that a fuzzy relation K is normal in the first argument if Core(Kx) ̸= ∅ for any
x ∈ X, where Kx(·) = K(x, ·). Similarly, one can define the normality of K in the
second component.

Fuzzy measure spaces Let X be a non-empty set. A subset F of P(X) is an
algebra of sets on X provided that.

(A1) X ∈ F ,

(A2) if A ∈ F , then X \A ∈ F ,

(A3) if A,B ∈ F , then A ∪B ∈ F .

It is easy to see that if F is an algebra of sets, then the intersection of finite
number of sets belongs to F . A pair (X,F) is called a measurable space (on X) if
F is an algebra (σ-algebra) of sets on X. Let (X,F) be a measurable space and
A ∈ F(X). We say that A is F-measurable if A ∈ F . Obviously, the sets {∅, X}
and P(X) are algebras of fuzzy sets on X.

A map µ : F → L is called a fuzzy measure on a measurable space (X,F) if

(i) µ(∅) = 0 and µ(X) = 1,

(ii) if A,B ∈ F such that A ⊆ B, then µ(A) ≤ µ(B).

A triplet (X,F , µ) is called a fuzzy measure space whenever (X,F) is a measurable
space and µ is a fuzzy measure on (X,F). For details, we refer to [14]. Let µ be a
fuzzy measure on (X,F). We say that a map µc,N : F → L is N -conjugate to µ if
µc(A) = N(µ(X \ A)) for any A ∈ F , where X \ A is the complement of A in X
and N is a generalized negation on L (cf., [3]).

Example 2 Let LT be an algebra from Ex. 1, where T is a continuous t-norm.
Let X = {x1, . . . , xn} be a finite non-empty set, and let F be an arbitrary algebra.
A relative fuzzy measure µr on (X,F) can be given as

µr(A) =
|A|
|X|

for all A ∈ F , where |A| and |X| denote the cardinality of A and X, respectively.
Let φ : L→ L be a monotonically non-decreasing map with φ(0) = 0 and φ(1) = 1.
The relative measure µr can be generalized as a fuzzy measure µr

φ on (X,F) given
by µr

φ(A) = φ(µr(A)) for any A ∈ F .
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Multiplication-based fuzzy integral The integrated functions are fuzzy sets
on X and are denoted by f , g etc. Let (X,F , µ) be a fuzzy measure space, and let
f : X → L. The ⊗–fuzzy integral of f on X is given by

∫ ⊗

X

f dµ =
∨

A∈F
µ(A)⊗

(∧

x∈A

f(x)

)
. (3)

It should be noted that the previous definition of ⊗–fuzzy integral was proposed
in [3] and coincides with the definition in [5] whenever ⊗ distributes over

∧
in the

algebra of truth values (e.g., an MV-algebra).

3 Lattice integral transforms

As mentioned in the introduction, the main parameter of lattice fuzzy transforms is
a fuzzy partition of the function domain. It should be noted that a fuzzy partition
is composed of normal fuzzy sets whose cores constitute a standard partition of the
function domain. It can be demonstrated that each fuzzy partition defines a fuzzy
relation with specific properties, and conversely, specific fuzzy relations can create
a fuzzy partition. Building on the definition of a fuzzy partition, specifically the
normality of fuzzy sets, we introduce the concept of an integral kernel function as
follows.

Definition 1 A fuzzy relation K : X × Y → L that is normal in the second
argument is called integral kernel function or simply integral kernel.

The lattice integral transforms are constructed using the multiplication-based
fuzzy integral, whose integrand is the transformed function multiplied by the in-
tegral kernel, where the multiplication ⋆ is one of the operations of ⊗ and →.
A lattice integral transform of fuzzy sets from F(X) to fuzzy sets from F(Y ) is
defined as follows.

Definition 2 Let (X,F , µ) be a fuzzy measure space, let K : X × Y → L be an
integral kernel, and let ⋆ ∈ {⊗,→}. A map F ⋆

(K,µ) : F(X) → F(Y ) defined by

F ⋆
(K,µ)(f)(y) =

∫ ⊗

X

K(x, y) ⋆ f(x) dµ, (4)

is called a (K,µ, ⋆)–lattice integral transform.

In what follows, we assume that a fuzzy measure space (X,F , µ) is given and
K : X × Y → L is an integral kernel. The following theorem provides a summary
of the elementary properties of lattice integral transforms (see, [8]).

Theorem 1 Let ⋆ ∈ {⊗,→}. For any f, g ∈ F(X) and a ∈ L, we have

(i) F ⋆
(K,µ)(f) ≤ F ⋆

(K,µ)(g) if f ≤ g,
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(ii) F ⋆
(K,µ)(f ∩ g) ≤ F ⋆

(K,µ)(f) ∧ F ⋆
(K,µ)(g),

(iii) F ⋆
(K,µ)(f) ∨ F ⋆

(K,µ)(g) ≤ F ⋆
(K,µ)(f ∪ g),

(iv) a⊗ F ⋆
(K,µ)(f) ≤ F ⋆

(K,µ)(aX ⊗ f),

(v) F ⋆
(K,µ)(aX → f) ≤ a→ F ⋆

(K,µ)(f).

The following theorem shows conditions under which a constant function (con-
stant fuzzy set) aX on X is transformed into a constant function aY on Y , i.e.,
F ⋆
(K,µ)(aX) = aY .

Theorem 2 Let a ∈ L.

(i) If for any y ∈ Y there exists Ay ∈ F such that Ay ⊆ Core(Ky) and µ(Ay) = 1,
then F⊗

(K,µ)(aX) = aY .

(ii) If for any y ∈ Y and for any A ∈ F with A ⊆ X \ Core(Ky) it holds that
µ(A) ≤ a, then F→

(K,µ)(aX) = aY .

It is worth noting that the standard real-valued fuzzy transforms as well as
lower and upper lattice fuzzy transforms preserve constant functions; therefore,
it seems to be natural to assume that integral kernels and fuzzy measures as the
parameters of the lattice integral transforms satisfy the conditions under which the
constant functions are preserved. In addition, the preservation of constant functions
proved to be an essential condition for the successful reconstruction of the original
functions using lattice integral transforms, so we will discuss this property in more
detail.

Definition 3 Let ⟨X,F , µ⟩ be a fuzzy measure space, let K be an integral kernel,
and let a ∈ L. The sufficient condition in Theorem 2(i) is denoted by (C1) and we
say that (K,µ) satisfies (C1). The sufficient condition in Theorem 2(ii) is denoted
by (C2) and we say that (K,µ) satisfies (C2) for a, where a ∈ L. If (K,µ) satisfies
(C2) for any a ∈ L, then we say that (K,µ) satisfies (C2).

The following theorem connects conditions (C1) and (C2) with fuzzy measures
and N -conjugate fuzzy measures.

Theorem 3 Let ⟨X,F , µ⟩ be a fuzzy measure space, let K be an integral kernel.

(i) If (K,µ) satisfies (C1), then (K,µc,N ) satisfies (C2).

(ii) If (K,µ) satisfies (C2) and Core(Ky) ∈ F for any y ∈ Y , then (K,µc,N )
satisfies (C1).
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4 Approximation of functions using lattice inte-
gral transforms

This section focuses on the approximation capability of lattice integral transforms,
particularly, on their composition which enable reconstructing original functions.
For this purpose, we introduce the concept of the Q–inverse integral kernel and
show that a smooth variant of the original function can be approximated from both
below and above using a composition of lattice integral transforms. In addition,
we estimate the quality of the approximation using the continuity modulus and the
integral of the square of the kernel function Q.

4.1 Inverse integral kernel

Let K : X × Y → L and K ′ : Y × X → L be two integral kernels. First, we
introduce a new type of integral kernel on X to express the relationship between
K and K ′.

Definition 4 An integral kernel Q : X ×X → L is said to be compatible with K
and K ′ or also (K,K ′)–compatible provided that

Q(x, z)⊗K ′(y, z) ≤ K(x, y) (5)

holds for any x, z ∈ X and y ∈ Y .

The notion of inverse of K is related to the integral kernel of Q on X, which
allows to introduce a wider class of inverses that can be taken into account when
approximating the original functions.

Definition 5 Let Q : X × X → L and K : X × Y → L be integral kernels. An
integral kernel K ′ : Y ×X → L is said to be an Q–inverse of K if

Q(x, z) =
∧

y∈Y

K ′(y, z) → K(x, y), x, z ∈ X. (6)

From the previous definition, we can see that Q is uniquely determined from K
and K ′ by (6). Interestingly, we can have different Q–inverses of K for the same
Q as the following example shows, so the Q–inverse is not defined uniquely.

Example 3 Let X = {x1, x2, x3} and Y = {y1, y2}, and consider the  Lukasiewicz
algebra on [0, 1]. Assume the integral kernels expressed by matrices as follows:

K =




1 0.8
0.9 1
0.7 1


 KT =

(
1 0.9 0.7
0.8 1 1

)
K ′ =

(
1 0.9 0.7
0.7 1 1

)
.

We see that KT ̸= K ′, particularly, KT > K ′. Introducing the matrix operation
for a p× q–matrix K and a q × p–matrix L as

(K → L)ik = min{Kjk → Lij | j = 1, . . . , q} (7)
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for any i, k = 1, . . . , p, we simply find that the integral kernel Q defined in (6)
expressed by the matrix form is

Q = K → KT = K → K ′ =




1 0.8 0.8
0.9 1 1
0.7 0.8 1


 .

Hence, there are two different Q–inverses of K, namely, the transpose of K and
the integral kernel K ′.

In what follows, we use K−1 to denote an arbitrary Q–inverse of K. More
precisely, if we use K−1, then we mean one of the Q–inverses of K, including the
maximal one.

4.2 Upper and lower approximation of functions

The following theorem gives a generalization of the inequality for upper lattice
fuzzy transforms and in a sense shows the approximation from above of the original
function using the composition of lattice integral transforms.

Theorem 4 Let F⊗
(K,µX) be an lattice integral transform from F(X) to F(Y ), and

let F→
(K−1,µY ) be a lattice integral transform from F(Y ) to F(X). Then

F→
(K−1,µY ) ◦ F⊗

(K,µX) ≥ F⊗
(Q,µX). (8)

Unlike the original method, which approximates functions from above using a com-
position of lattice fuzzy transforms, the composition of lattice integral transforms
approximates the original function in a different way. Specifically, the reconstructed
function is above the lattice integral transform of the original function with respect
to the integral kernel Q on X, which is determined by the kernel K and its inverse
K−1. The (Q,µX ,⊗)–lattice integral transform on the right side of inequality (8)
acts as a smoothing filter that suppresses high-frequency components present in the
function. Therefore, the composition of lattice integral transforms generally does
not approximate the original function from above but rather its smoothed version
as produced by the transform. This property highlights the utility of lattice integral
transforms as effective filters for high-frequency content or random noise.

Similarly, a generalization of the approximation from below of the original func-
tion by a composition of lattice integral transforms is given in the following theorem.

Theorem 5 Let F→
(K,µX) be a lattice integral transform from F(X) to F(Y ), and

let F⊗
(K−1,µY ) be a lattice integral transform F(Y ) to F(X). Then

F⊗
(K−1,µY ) ◦ F→

(K,µX) ≤ F→
(Q,µX). (9)

Note that (K,µ,→)–lattice integral transform on X with respect to the inte-
gral kernel Q can be viewed as another smoothing filter that filters out the high
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frequencies presented in the functions. Thus, the reverse composition of M–lattice
integral transforms approximates from below the smoothed original function given
by the (K,µ,→)–lattice integral transform on X with respect to Q. As a conse-
quence of the previous theorems, we can derive another approximation of original
functions using lattice integral transforms.

Corollary 1 For any f ∈ F(X) and y ∈ X, it holds that

(i) F→
(K−1,µY ) ◦ F⊗

(K,µX)(f)(y) ≥
∫ ⊗
X
f ⊗ 1Core(Qy) dµX ,

(ii) F⊗
(K−1,µY ) ◦ F→

(K,µX)(f)(y) ≤
∫ ⊗
X
1Core(Qy) → f dµX .

4.3 Estimation of approximation quality

In this part, we focus on assessing the quality of the approximation of the original
function using lattice integral transforms. One method for evaluating this quality
is by measuring the closeness between the original function and the reconstructed
function based on the modulus of continuity. Let E(X) denote the set of all equiv-
alences on X.

Definition 6 The map ω : F(X)× E(X) → L given by

ω(f,E) =
∧

(x,y)∈E

f(x) ↔ f(y) (10)

is called the modulus of continuity.

The modulus of continuity provides a degree of proximity of function values at
points that are equivalent with respect to a chosen equivalence E.

Define ∇ : L→ L as

∇(a) =

{
0, a = 0,

1, otherwise,
(11)

for any a ∈ L. The following theorem shows an estimate of the approximation
quality for the (K,µ,⊗)–lattice integral transform.

Theorem 6 Let (K,µ) satisfy (C1), and let f ∈ F(X) and y ∈ Y . Define an
equivalence Ey on X as (x, z) ∈ Ey if x = z or ∇Ky(x) ⊗ ∇Ky(z) = ⊤ for any
x, z ∈ X. Then

F⊗
(K,µ)(f)(y) ↔ f(x) ≥ ω(f,Ey), (12)

for any x ∈ X such that ∇Ky(x) = 1.

Similarly, the next theorem shows that the same estimate of approximation
quality holds also for the (K,µ,→)–lattice integral transform.
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Theorem 7 Let (K,µ) satisfy (C2), and let f ∈ F(X) and y ∈ Y . Define the
equivalence Ey on X as in Theorem 6. Then

F→
(K,µ)(f)(y) ↔ f(x) ≥ ω(f,Ey), (13)

for any x ∈ X such that ∇Ky(x) = 1.

The following statement presents the estimation of the approximation quality
of the reconstructed function.

Theorem 8 Let K be an integral kernel, K−1 be an Q–inverse of K for a re-
flexive integral kernel Q, and let f ∈ F(X). Assume that (K,µX) satisfies (C1)
and (K−1, µY ) satisfies (C2) and define ω(f) =

∧
y∈Y ω(f,Ey), where Ey is the

equivalence defined in Theorem 6. Then

F→
(K−1,µY ) ◦ F⊗

(K,µX)(f)(x) ↔ f(x) ≥ ω(f) (14)

for any x ∈ X.

Note that a similar statement holds for the reverse composition of lattice integral
transforms as well.

In the end of this subsection, we provide an estimate of the approximation
quality of lattice integral transforms for very special functions which are extensional
with respect to a fuzzy relation on the space X. We know that K−1 = KT is the
Q–inverse of K, where Q is the fuzzy relation on X given by formula (6). Let
Y ⊆ X. We say that a fuzzy relation Q on X is Y –transitive if

Q(x, y)⊗Q(y, z) ≤ Q(x, z) (15)

holds for any x, z ∈ X and y ∈ Y . Obviously, Q is transitive if X = Y . The fol-
lowing lemma shows the properties of Q, when the integral kernel K is determined
by a similarity relation on X.

Lemma 1 Let Y ⊆ X be a non-empty set, let P be a similarity relation on X such
that K : X × Y → L given as K(x, y) = P (x, y) for any x ∈ X and y ∈ Y is an
integral kernel, and let K−1 = KT be a Q–inverse of K, i.e., Q is give by formula
(6), Then Q is a reflexive and Y –transitive integral kernel on X such that P ≤ Q.
In addition, P (x, y) = Q(x, y) holds for any x ∈ X and y ∈ Y .

Let f : X → L be a function, and let Q be a reflexive and Y –transitive fuzzy
relation on X. We say that f is extensional with respect to Q if

f(x)⊗Q(x, y) ≤ f(y) and Q(x, y)⊗ f(y) ≤ f(x) (16)

holds for any x, y ∈ X. The following theorems provide an estimate of the approx-
imation of the extensional functions.
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Theorem 9 Let Y ⊆ X be a non-empty set, let P be a similarity relation on X
such that K : X × Y → L given as K(x, y) = P (x, y) for any x ∈ X and y ∈ Y
is an integral kernel, and let K−1 = KT be a Q–inverse of K. If f is extensional
with respect to Q and (K−1, µY ) satisfies (C2), then

F→
(K−1,µY ) ◦ F⊗

(K,µX)(f)(x) ↔ f(x) ≥
∫ ⊗

X

Q2(y, x) dµX (17)

for any x ∈ X.

Again, a similar statement holds for the reverse composition of lattice integral
transforms as well.

We have shown that the composition of lattice integral transforms preserves
constant functions under the satisfaction of conditions (C1) and (C2). The fol-
lowing corollary demonstrates that even the same conditions ensure preservation
for the entire class of extensional functions with respect to Q, where the integral
kernel Q is determined from a similarity relation P on X, as stated in the previous
theorem.

Corollary 2 Let the assumption of Theorem 9 be satisfied, and let (K,µX) satisfy
(C1). Then

F→
(K−1,µY ) ◦ F⊗

(K,µX)(f) = f (18)

for any extensional function f on X with respect to Q.

5 Conclusion

This paper analyzed the approximation capabilities of lattice integral transforms
and their compositions that enable the reconstruction of original functions. The
concept of the inverse integral kernel function, specifically a Q–inverse for an inte-
gral kernel function K on X, was introduced and some properties were examined.
It was demonstrated that a smooth variant of the original function could be approx-
imated from both below and above using suitable compositions of lattice integral
transforms. The approximation quality of the original function was assessed using
the continuity modulus and, for special functions, also the integral of the square
of the kernel function Q, which serves as the inverse of K. These findings un-
derscored the effectiveness of lattice integral transforms in achieving precise and
reliable approximations, providing a robust framework for further applications in
mathematical analysis and related fields.
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Abstract

The studies on the interval analytic hierarchy process (AHP) being con-
ducted in our laboratory are systematically reviewed with their significance
in this paper.

1 Introduction

The pairwise comparison matrix (PCM) given by the decision maker (DM) is often
inconsistent. The analysis of the PCM has been allowed by the conventional AHP
when the PCM is sufficiently consistent. The priority weight vector is estimated by
minimizing a kind of total deviation. In the interval AHP, the inconsistency is as-
sumed to come from the vagueness of human judgments. Therefore, the normalized
interval priority weight vector is estimated to cover all preferential data given by
the crisp PCM. We note that the condition of order preservation is never violated in
the interval AHP because all components of the crisp PCM are treated as possible
evaluations by the DM and covered by the estimated normalized interval priority
weight vector. The conventional estimation method for a normalized interval pri-
ority weight vector from a given crisp PCM tends to derive a too-narrow interval
priority weight vector. Therefore, several estimation methods for a normalized in-
terval priority weight vector has been proposed and examined the advantages over
the conventional estimation method by numerical experiments.

However, because the normalized interval weight vector corresponds to the con-
sistent interval PCM is not always unique, the estimation problem of normalized
interval priority weight vector under a given crisp/interval PCM can have non-
unique solutions. Therefore, in our approach, we estimate a set of normalized
interval priority weight vectors. It has been shown that the set of normalized

*Supported by JSPS KAKENHI Grant Number JP23K04272.



interval priority weight vectors is obtained as a line segment expressed by a param-
eter showing the sum of centers, if the estimation problem with the center vector
normalization constraint has a unique solution. Because all normalized interval pri-
ority weight vectors in the set associate with the same conssistent interval PCM,
their distances from the given crisp/interval PCM are the same. We regard each
normalized interval priority weight vectors in the set as an interval priority weight
vector expressing the DM’s preference. As the evaluation of the DM is not yet
consistent, s/he has multiple normalized interval priority weight vectors each of
which includes many normalized crisp priority weight vectors.

For decision analysis using the set of normalized interval priority weight vectors,
various approaches are conceivable. In the conventional AHP, the marginal utility
values of alternatives for each criterion are estimated by a PCM. However, to avoid
the rank reversal, we assume the marginal utility values of alternatives for each
criterion have already been assessed properly. Therefore, we consider the set of
normalized interval priority weight vectors only for criteria. Since a normalized
interval priority weight vector includes the uncertainty and multiple normalized
interval priority weight vectors are obtained for the DM, we face a decision analysis
under double uncertainty.

One approach is to reduce the set of normalized interval priority weight vectors
to a set of normalized crisp priority weight vectors included at least one normalized
interval priority weight vector in the set. Then, we may apply one of decision
rules developed for decision making under uncertainty. Namely, we may apply the
maximin, maximax, Hurwicz and minimax regret rules for ranking the alternatives
with marginal utility values and a set of normalized crisp priority weight vectors.

The other approach is to rank alternatives for each normalized interval priority
weight vector in the set of solutions to the estimation problem by using one of the
decision rules such as the maximin, maximax, Hurwicz and minimax regret rules.
Then we obtain a set of weak orders of alternatives. As the set of normalized in-
terval priority weight vectors treated in our study is a line segment, we may obtain
a figure showing the transitions of interval total utility values of alternatives as
functions of a parameter, and maps of weak orders of alternatives in the parameter
space. The figure and maps visualize the DM’s vague preference among alterna-
tives. Observing those, we find alternative pairs such that the DM’s preference
between them is stable, alternative pairs such that the DM’s preference between
them is labile, and so on. Moreover, by the interaction with the DM, we may
revise the set of weak orders to a more suitable one for the DM. Furthermore, by
aggregating the weak orders in the set, we obtain an aggregated weak order. More
rich analyses would be conceivable in the interval AHP.

The estimation methods of the normalized interval priority weight vector from
a crisp PCM are compared also from the view of the accuracy of ranking alterna-
tives. We have started the investigations of interval AHP but there are still many
untouched topics. The author hopes that the interval AHP will be developed fur-
ther as a useful tool for decision analysis and support even when the given PCM
is not sufficiently consistent.
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Abstract

This is a short paper to remind us that although Prof. George Klir passed
away eight years ago, his ideas are still alive. He was one of the first who
had the idea to extend information theory beyond probability theory and to
see the potential of fuzzy sets and belief functions. Some of the problems
he raised have not yet been satisfactorily solved. In this paper, we take a
fresh look at the problem of what properties entropy should have if it is to
be considered a measure of information. Based on these requirements, we
consider 24 definitions of entropy for belief functions and study how well
they satisfy the proposed conditions.

1 Introduction

We met Prof. Klir in the early 1990s when he was lecturing at the Institute of
Information Theory and Automation of the Czech Academy of Sciences. He was
talking about the open problem of defining entropy in the context of the theory of
belief functions. At that time he had about five to seven definitions and was trying
to answer several questions. He noticed that belief functions were burdened with
different kinds of ambiguity. He recognized three types. The first was nonspecificity,
which was related to the size of the focal elements; the larger the focal elements, the
less specific the basic assignment. The second type of ambiguity measured internal
conflict or dissonance in the belief function, and the third type was confusion.
Thus, one question was which types of uncertainty were measured by the entropy
functions under study. The main question, however, was what were the most
important properties of the concept of entropy. Of course, the answer to this
question depends on what we want to measure with this quantity. Is it a measure
of uncertainty? If so, how should the measure deal with its different types? Or
should entropy measure the information content of a random variable? Although
much time has passed since then, no one has satisfactorily answered most of these
questions. In this paper, however, we will show that if we restrict the problem
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to finding an entropy that allows us to define some notions of information theory
(in the case of this paper, the measure of mutual information) in the same way as
Shannon did, we can deduce which properties are most important. We will also
see how Prof. Klir’s definitions meet these requirements.

2 Belief functions notation

We expect the reader to be familiar with the theory of belief functions (Shafer,
1976), so we will just briefly recall the main notions of this theory and introduce
the notation used in this paper.

Thus, Ω denotes a finite frame of discernment . A basic probability assignment
(BPA) is a function m : 2Ω → [0, 1] such that

∑
a⊆Ωm(a) = 1, m(∅) = 0. We

will also consider a two-dimensional case when Ω = ΩX ×ΩY . For such ω ∈ Ω, its
projections (coordinates) will be denoted by ω↓X and ω↓Y ; i.e., ω = (ω↓X , ω↓Y ).
The same symbol will also be used for pro projection of subsets a ⊆ Ω, a↓X =
{ω↓X : ω ∈ a}, and marginalization. m↓X : 2ΩX → [0, 1] is a marginal BPA defined
defined on ΩX by

m↓X(a) =
∑

b⊆Ω:b=a↓X

m(b)

for all a ⊆ ΩX . Analogous symbols will also be used for projections and marginal-
ization concerning the other coordinate Y .

A subset a ⊆ Ω is said to be a focal element of m if m(a) > 0. A BPA with only
one focal element is said to be deterministic, denoted ιa, where ιa(a) = 1. Since
ιΩ represents total ignorance, it is called vacuous. Bayesian BPAs are those BPAs
whose focal elements are only singletons.

We will also use the standard alternative representation of a BPA: the belief
function, plausibility function, and commonality function.

Belm(a) =
∑

b⊆a
m(b); Plm(a) =

∑

b⊆Ω:b∩a 6=∅
m(b); Qm(a) =

∑

b⊆Ω:b⊇a
m(b).

A central concept in Dempster-Shafer’s theory is Dempster’s combination rule
(Shafer, 1976), which combines information from two distinct sources: BPAs m1

and m2. The combined BPA m1 ⊕ m2 is computed (for each subset c ⊆ Ω) as
follows:

(m1 ⊕m2)(c) = (1−K)−1
∑

a⊆Ω

∑

b⊆Ω:a∩b=c
m1(a) ·m2(b),

where K =
∑
a⊆Ω

∑
b⊆Ω:a∩b=∅m1(a) ·m2(b) is usually interpreted as the amount

of conflict between m1 and m2 (if K = 1, then the combination is undefined). This
rule is also used when creating a joint BPA for independent variables, i.e., for BPAs
mX and mY defined on ΩX and ΩY , respectively. In this case, the focal elements
of the combination are only those c ⊆ Ω, for which c = c↓X × c↓Y , and Dempster’s
rule simplifies to a simple product (mX ⊕mY )(c) = mX(c↓X) ·mY (c↓Y ).

Radim Jiroušek, Václav Kratochvíl
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Recall that each BPA m is associated with a set of probability distributions π
defined on Ω. A credal set, is a set of probability distributions π

Pm =
{
π defined on Ω :

(
∀a ⊆ Ω : π(a) ≥ Bel(a)

)}
.

We will consider special probability distributions representing BPA m in specific
situations. We will consider so-called pignistic transform, plausibility transform,
and maximum entropy transform defined (respectively)

πm(x) =
∑

a⊆Ω:x∈a

m(a)

|a| ,

λm(x) =
Plm(x)∑
y∈Ω Plm(y)

,

µm = arg max
π∈Pm

{H(π)},

where H(π) = −∑x∈Ω π(x) log2 π(x) is Shannon entropy of a probability distribu-
tion π.

3 Requirements on entropy functions

Belief function theory was designed as a generalization of probability theory to
surpass the imperfections of the latter. Therefore, most authors introducing the
entropy within the theory of belief functions see it as a generalization of Shannon
entropy. This is why they require it to equal Shannon entropy for all Bayesian
BPAs. This is also why we accept that the belief function’s entropy should have
the following property.

Probability consistency property. We say that a function H that assigns a
real value to each BPA is consistent with Shannon entropy if, for all Bayesian
BPAs m, the value H(m) is equal to the Shannon entropy of the correspond-
ing probability function, i.e., H(m) = −∑x∈Ωm({x} log2m({x}).

The properties studied in this paper are deduced from the requirement that the
belief function entropy makes it possible to define mutual information in the same
way as in probability theory. Recall that in probabilistic information theory

MIπ(X;Y ) = H(π(X))−H(π(X|Y )) = H(π(X)) +H(π(Y ))−H(π(X,Y )).

Since mutual information is always non-negative and equals zero if and only if the
variables are independent, we get that in the ideal case, the belief function entropy
should have the following property:

Strict subadditivity property. We say H is strictly subadditive, if

H(m) ≤ H(m↓X) +H(m↓Y ) (1)
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for all BPA m defined on Ω, with the equality in (1) if and only if m =
m↓X ⊕m↓Y .

Thus, for the strictly subadditive function H, we could apply Shannon’s idea
of defining mutual information by the formula

MIH(m[X;Y ]) = H(m↓X) +H(m↓Y )−H(m). (2)

Then MIH would be symmetric, always non-negative, and equal to 0 if and only
if X and Y are independent under BPA m, i.e., if m = m↓X ⊕ m↓Y . However,
we admit that we do not know such a strictly subadditive function. None of the
entropies listed in Table 1 is strictly subadditive; none can be used as a basis
for introducing information theory in the framework of belief functions. For this,
one should find another strictly subadditive function or another way to introduce
information-theoretic notions that do not follow the Shannon idea.

One reason for developing information theory for belief functions is to transfer
the successful model learning algorithms from probability theory to the theory of
belief functions. However, for this purpose, one can heuristically use a function
that often manifests mutual information’s properties. Therefore, we will study
weaker properties in the following section. Namely, it is evident that every strictly
subadditive function also has the following two properties.

Additivity property. We say H is additive, if H(mX ⊕mY ) = H(mX) +H(mY )
for any pair of one-dimensional BPAs mX ,mY defined on ΩX ,ΩY , respec-
tively.

Subadditivity property. H is said to be subadditive, if H(m) ≤ H(m↓X) +
H(m↓Y ) for all BPA m defined on Ω.

The last property we require is based on the intuition that the entropy function
H should measure the informativeness of BPAs. Again, using the analogy with
probability theory, the more information there is in a BPA, the lower its entropy.
For Bayesian BPAs, this requirement is met by the probability consistency property.
For others, we assume that BPA m1 is not less informative than BPA m2 (assuming
both are defined on the same frame of discernment Ω) if Belm2

≤ Belm1
, which is

equivalent to Plm1 ≤ Plm2 , and also to Pm1 ⊆ Pm2 . Note that this situation is
very general and covers some other specific cases. In a sense, the simplest case is
the following. We say that m1 is a simple specification of m2 if m1 is created from
m2 by shifting some of its mass (or all of its mass) from some focal element to its
subset. More precisely, there exist subsets a ⊂ b ⊆ Ω such that m1(a) = m2(a)+ε,
and m1(b) = m2(b)−ε (all remaining focal elements of m1 are the copies of the focal
elements of m2). Since we are moving (a part of) the mass from b to its subset, we
see directly from the definition of the belief function that1 Belm1 > Belm2 . Thus,
in this paper, we use the following notion.

1Strict inequality Belm1 > Belm2 in this paper means that for all a ⊆ Ω, Belm1 (a) ≥
Belm2 (a), and for at least one a, Belm1 (a) is strictly greater than Belm2 (a).
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Simple monotonicity property. We say that a function H which assigns a real
value to each BPA is simple monotonic if, for any simple specification m1 of
m2, it holds that H(m1) < H(m2).

It should be pointed out that several different types of monotonicity of belief
functions entropy were studied in the literature (see e.g., monotonicity with respect
to the set inclusion (Ramer, 1987), (Abellan and Moral, 1999), and others (Jiroušek
and Shenoy, 2018)). Therefore, for the sake of clarity, we will consistently use only
the notion of simple monotonicity. It can be shown that it is equivalent to the
implication

Belm1
> Belm2

=⇒ H(m1) < H(m2).

4 Survey of entropy functions

Without claiming completeness, we consider 24 definitions of entropy-like functions
published in the last four decades (see Table 1). This section is devoted to their
evaluation with respect to the requirements described in the previous section. As
mentioned, none of them is strictly subadditive, so we will consider the introduced
weaker properties: their additivity and subadditivity.

From a theoretical point of view, the Maeda-Ichihashi entropy HI fits our re-
quirements best. It is the only entropy that satisfies all the required properties
except strict subadditivity: probability consistency, simple monotonicity, additiv-
ity, and subadditivity. A simple but rather singular counterexample has disproved
its strict subadditivity. The main drawback of HI is its computational complexity.
Its computation requires the solution of an optimization problem: the search for
the maximum entropy transform of the respective BPA. This precludes the ap-
plication of this entropy not only to machine learning algorithms but also to the
computational experiments we have performed to test the behavior of the entropies
considered. Note a difference between this entropy and that of Harmanec-Klir HH .
The latter is not simple monotonic since it can take the same value for a BPA
as for its simple specification. Nevertheless, HH is also of extreme computational
complexity, and the computation of the Abellán-Moral entropy HA is even more
complex.

We know of no other entropy that would satisfy all four properties that HI

possesses. The property of probability consistency is not a problem. It is possessed
by the vast majority of entropies studied, except HT , HD, and HGP . Similarly,
most of the studied entropies have the additivity property: HO, HD, HN , HL, HR,
HP , HB , HH , HI , HJ , HY , Hλ, HS , Hπ. The problems arise with the remaining two
properties, simple monotonicity, and subadditivity, which are satisfied by only a
few entropies.

Both simple monotonicity and subadditivity properties are simultaneously sat-
isfied only by the Dubois-Prade entropy HD and the Abellán-Moral entropy HA
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Table 1: Definitions of entropy, chronologically ordered

HO Hohle (1982) HO(m) =
∑
a⊆Ωm(a) log

(
1

Belm(a)

)

HT Smets (1983) HT (m) =
∑
a⊆Ω log

(
1

Qm(a)

)

HD Dubois, Prade (1987) HD(m) =
∑
a⊆Ωm(a) log(|a|)

HN Nguyen (1987) HN (m) =
∑
a⊆Ωm(a) log

(
1

m(a)

)

HL Lamata, Moral (1988) HL(m) = HY (m) +HD(m)

HR Klir, Ramer (1990) HR(m) = HD(m) +
∑
a⊆Ωm(a) log

(
1

1−∑b⊆Ω m(b)
|b\a|
|b|

)

HK Klir (1991) HK(m) =
∑
a⊆ΩBelm(a) log(Plm(a))

HP Klir, Parviz (1992) HP (m) = HD(m) +
∑
a⊆Ωm(a) log

(
1

1−∑b⊆Ω m(b)
|a\b|
|a|

)

HB Pal et al. (1992, 1993) HB(m) = HD(m) +HN (m)

HI Maeda, Ichihashi (1993) HI(m) = HH(m) +HD(m) = H(µm) +HD(m)

HH Harmanec, Klir (1994) HH(m) = maxπ∈Pm H(π) = H(µm)

HGP George, Pal (1996) HP (m) =
∑
a⊆Ωm(a)

∑
b⊆Ωm(b)

(
1− |a∩b||a∪b|

)

HM Maluf (1997) HM (m) = −∑a⊆Ω Plm(a) log(Belm(a))

HA Abellán, Moral (1999)2 HA(m) = HI(m) + minπ∈Bm
KL(π;µm)

HJ Jousselme et al. (2006) HJ(m) = H(πm)

HY Yager (2008) HY (m) =
∑
a⊆Ωm(a) log

(
1

Plm(a)

)

HG Deng (2016) HG(m) = HN (m) +
∑
a⊆Ωm(a) log(2|a| − 1)

HZ Zhou et al. (2017) HZ(m) = HG(m) + log(e)
|Ω|

∑
a⊆Ωm(a) ∗ (1− |a|)

Hλ Jiroušek, Shenoy (2018) Hλ(m) = H(λm) +HD(m)

HPD Pan, Deng (2018) HPD(m) = −∑a⊆Ω
Bel(a)+Pl(a)

2 log
(
Bel(a)+Pl(a)

2(2|a|−1)

)

HS Jiroušek, Shenoy (2020) HS(Qm) =
∑
a⊆Ω(−1)|a|Qm(a) log(Qm(a))

HQ Qin et al. (2020) HQ(m) =
∑
a⊆Ω

|a|
|Ω|m(a) log(|a|) +HN (m)

HY D Yan, Deng (2020) HY D(m) = −∑a⊆Ωm(a)logm(a)+Bel(a)
2(2|a|−1)

e
|a|−1
|Ω|

Hπ Jiroušek et al. (2022) Hπ(m) = H(πm) +HD(m)

Dubois and Prade (1987), Lamata and Moral (1988), Klir and Ramer (1990),
Klir and Parviz (1992), Maeda and Ichihashi (1993), Harmanec and Klir (1994),
George and Pal (1996), Abellan and Moral (1999), Jiroušek and Shenoy (2018),
Pan and Deng (2018),Jiroušek and Shenoy (2020), Yan and Deng (2020)

(and the already mentioned Maeda-Ichihashi entropy HI). However, HA is dis-

2KL denotes the famous Kullback-Leibler divergence of two probability measures defined

KL(κ;π) =
∑
x∈Ω κ(x) log2

κ(x)
π(x)

, and Bm is a borderline of the convex set Pm.
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Table 2: Characteristics of entropy
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HO Hohle (1982) low

HT Smets (1983) high

HD Dubois, Prade (1987) low

HN Nguyen (1987) low

HL Lamata, Moral (1988) low

HR Klir, Ramer (1990) low

HK Klir (1991) high

HP Klir, Parviz (1992) low

HB Pal et al. (1992, 1993) low

HI Maeda, Ichihashi (1993) extreme

HH Harmanec, Klir (1994) extreme

HGP George, Pal (1996) low

HM Maluf (1997) high

HA Abellán, Moral (1999) extreme

HJ Jousselme et al. (2006) low

HY Yager (2008) low

HG Deng (2016) low

HZ Zhou et al. (2017) low

Hλ Jiroušek, Shenoy (2018) low

HPD Pan, Deng (2018) high

HS Jiroušek, Shenoy (2020) high

HQ Qin et al. (2020) low

HY D Yan, Deng (2020) low

Hπ Jiroušek et al. (2022) low

qualified because of its computational complexity, and HD is zero for all Bayesian
BPAs, which disqualifies it as a basis for measuring the dependence of variables in
the context of belief functions. Note, however, that it is precisely the HD entropy
whose inclusion makes HI simple monotonic.

Considering that mutual information is usually used in machine learning only
to control heuristic approaches, we can use a criterion that does not have all the

3Black stripe - proven property, Dark-grey stripe - in random experiments the property mani-
fested in more than 99 % cases, Light-grey stripe - in random experiments the property manifested
in more than 98 % cases.
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theoretically required properties for this purpose. Since its computation is repeated
many times, we need it to be fast and simple. If we allow its heuristic use, we
can use a criterion that sufficiently satisfies the required property. To see if this
happens, we randomly generated thousands of BPAs and tested how often the four
properties under consideration were satisfied. The results are shown in Table 2,
which not only summarizes the properties that were theoretically proven for the
entropies considered (black stripes), but also shows that some of the properties were
manifested sufficiently often (gray stripes). These results suggest that if we were
asked to recommend an entropy for defining mutual information used in efficient
machine learning algorithms, we would recommend one based on Hπ. Although
we know that Hπ is neither simply monotonic nor subadditive, the computational
experiments showed that the situations in which these negative properties can
mislead the model learning process are not frequent.

5 Conclusions

Although we gave a kind of recommendation in the last sentences of the previous
paragraph, the paper raised more questions than answers to open questions. The
idea behind the Maeda-Ichihashi entropy HI seems to be fruitful. Although the
combination of the Dubois-Prade entropy HD with neither the pignistic nor the
plausibility transform yields an entropy with the required properties, the question
remains whether some other transform would serve this purpose as well as the
maximum entropy transform. Of course, even the choice of properties may not be
optimal. Therefore, we regret that we do not have the opportunity to discuss all
such questions with Prof. George J. Klir, who had a deep insight into this problem
and the intuition to find answers. If he knew all the results published in the last
eight years, he might take a different, more promising path.
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Abstract

In this study, we are concerned with a worker assignment problem in
multi-stage production lines based on the restricted-cycle model with multiple
periods, in which workers may have different skill levels, and the operation
time of each worker at any stage is stochastic. An outcome of the problem
is an assignment of workers to stages, where each worker is assigned to ex-
actly one stage of the production line, and each stage is assigned exactly one
worker. Each worker-to-stage assignment is evaluated based on the expected
cost of idle and expected cost of delay at all stages, and the goal is to find
an assignment that minimizes the total expected cost among all assignments.
Here, we propose a fast heuristic algorithm for finding a near-optimal as-
signment, and numerical experiments evaluate the heuristic. Moreover, we
propose a new branch and bound based algorithm for finding an optimal
worker assignment with an initial solution obtained by the heuristic, and its
effectiveness is evaluated using numerical experiments as well.

1 Introduction

One of the main issues in production management is worker assignment in produc-
tion line [2], and many different approaches have been proposed to solve the related
problems [1, 5]. We are dealing with a worker assignment problem in multi-stage
production lines, where workers may have different skill levels. Series production
lines are under consideration [3]. The underlying model is called the restricted-cycle

*Shao-Chin Sung is currently known as So Akiyama.
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model with multiple periods (see [4]), and an analytical study of a restricted case
of the model is studied in [7, 9].

2 Problem Formulation

Suppose there are n workers w1, w2, . . . , wn to be assigned to an n-stage production
line that repeatedly generates a single product. In the following, stages in the
production line are indexed by i and workers by j.

2.1 Production Line

� Each stage is planned or designed to be operated by one worker and to be
completed within a target operation time. Since the production line generates
a single product repeatedly, some stages may become idle if the operation time
of a stage is shorter than others. Therefore, all stages are assumed to have the
same target operation time, denoted by Z. However, by human or machine
error, operation times at stages may not equal the target operation time Z,
i.e., early and late completion at stages may occur. Of course, earliness and
tardiness incur extra costs.

� When an operation is completed early, the corresponding stage becomes idle.
A unit-time earliness incurs an earliness cost of CE .

� On the other hand, a late completion at some stage causes a waiting time at
the next stage, and if late completions occur at several consecutive stages,
the waiting time for later stages will be much longer.

Let i ∈ {1, 2, . . . , n} and k ≤ i. The completion at the i-th stage is called
a k-consecutive late if

– the completions at the (i− k+1)-th stage, the (i− k+2)-th stage, . . . ,
the i-th stage are all late, and

– no late completion occur immediately before the (i−k+1)-th stage, i.e.,
the completion at the (i − k)-th stage is not late if k < i, or otherwise
(if k = i), the completions at the first i stages are all late.

Our model’s tardiness cost may differ depending on the number of consecutive

late completions. A unit-time of tardiness incurs a cost of C
(k)
T when the

corresponding completion is a k-consecutive late.

2.2 Workers

There are n workers w1, w2, . . . , wn to be assigned to the n stages in the produc-
tion line, and they may have different skill levels. Thus, the following values are
associated with each worker wj (j = 1, 2, . . . , n):
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� pj ∈ [0, 1]: The probability of worker wj completing the operation early at
her or his assigned stage. Equivalently, 1− pj is the probability of worker wj

completing the operation late at her or his assigned stage.

� Tj ∈ R≥0: The expected tardiness of worker wj at her or his assigned stage.

� Ej ∈ R≥0: The expected earliness of worker wj at her or his assigned stage.

2.3 Assignments and Their Evaluation

An outcome of our problem is a bijective mapping π : {1, 2, . . . , n} → {1, 2, . . . , n}
of workers to stages in the production line. In this mapping, π(i) = j means worker
wj is assigned to the i-th stage. We call such a mapping an assignment, and each
assignment is evaluated based on the expected earliness cost and expected tardiness
cost at all stages.

Let π be an assignment and i ∈ {1, 2, . . . , n}. Hence, under the assignment π,
worker wπ(i) is assigned to the i-th stage. Hence,

� the expected earliness cost incurred at the i-th stage is CE · Eπ(i), and

� the expected tardiness cost incurred at the i-th stage is the sum of the ex-
pected tardiness cost incurred by 1-consecutive late completion, 2-consecutive
late completion, . . . , i-consecutive late completion, i.e.,

i∑

k=1

(
φ(π, i, k) · C(k)

T · Tπ(i)
)

where φ(π, i, k) is the probability of a k-consecutive late completion occurred
at the i-th stage. For every i, k ∈ {1, 2, . . . , n} satisfying i ≥ k,

φ(π, i, k) =

{
pπ(i−k) ·

∏i
j=i−k+1(1− pπ(j)) if i > k∏i

j=1(1− pπ(j)) otherwise (i.e., if i = k).

Therefore, the total expected cost under assignment π is

total(π) =

n∑

i=1

(
CE · Eπ(i) +

i∑

k=1

(
φ(π, i, k) · C(k)

T · Tπ(i)
))

.

The goal is to find an assignment that minimizes the total expected cost total(π)
among all assignments π.

3 Previous Works

A straightforward way to find an optimal assignment is by brute force. More
precisely, by applying a backtracking-based algorithm in which

On Optimizing Worker Assignment in Multi-stage Production Lines

54



� assignments are constructed by assigning workers one by one from the first
stage, then the second stage, ..., and finally, the n-th stage;

� whenever a new assignment is entirely constructed, calculate the total ex-
pected cost and keep track of the best-constructed assignment.

In the end, return the best-constructed assignment as optimal, i.e., the assignment
whose total expected cost is the smallest. The running time of such an algorithm
is extremely long.

Yamamoto et al. [6] pointed out that the total expected cost of an assignment
can be calculated incrementally, stage by stage. By definition, the total expected
cost of an assignment is the sum of the expected costs incurred at all stages. For
each i ∈ {1, 2, . . . , n}, the expected cost incurred at the i-th stage is

stage(π, i) = CE · Eπ(i) +

i∑

k=1

(
φ(π, i, k) · C(k)

T · Tπ(i)
)
,

and hence,

total(π) =

n∑

i=1

stage(π, i).

Observe that the value of stage(π, i) does not depend on π(i + 1), . . . , π(n), i.e.,
workers assigned after the i-th stage. This fact allows us to calculate the total
expected cost of an assignment incrementally, stage by stage, and based on this
fact, Yamamoto et al. [6] proposed a backtracking-based algorithm which improves
the running time compared with brute force.

The running time for calculating stage(π, i) based on the above definition
is O(n2), where

� the running time for calculating all φ(π, i, k)s, the probabilities of consecutive
late completions, is O(n2), and

� the running time for the remaining calculation is O(n).

Recently, Zhao et al. [8] pointed out that the values of φ(π, i, k)s, the probabilities of
consecutive late completions, can also be calculated incrementally, stage by stage.
For every i, k ∈ {2, 3, . . . , n} satisfying i ≥ k,

φ(π, i, k) = φ(π, i− 1, k − 1) · (1− pπ(i)).

It follows that, with the values of all φ(π, i−1, 1), φ(π, i−1, 2), . . . , φ(π, i−1, i−1)
provided, the values of all φ(π, i, 1), φ(π, i, 2), . . . , φ(π, i, i) can be obtained in O(n)
time. Hence, the running time for calculating stage(π, i) can also be reduced from
O(n2) to O(n), which is a huge reduction from the one by Yamamoto et al. [6].
Zhao et al. [8] proposed another backtracking-based algorithm with a much shorter
running time.

Ryuhei Koura, Xiaowen Zhao, Shao-Chin Sung

55



4 Our Proposed Algorithm

In order to achieve the task of reducing the running time of backtracking-based
algorithms for finding an optimal assignment, the approaches by Yamamoto et
al. [6] and Zhao et al. [8] are to simplify the calculation for evaluating assignments.

Another way to achieve the task is by pruning branches in backtracking. Our
proposed algorithm is a branch and bound-based algorithm for finding an optimal
assignment, which is a minor modification from the algorithm proposed in [8].

Suppose, at some point of time in the search process of backtracking, a partial
assignment σ is obtained, and the best-constructed assignment is π∗. Let ℓ ∈
{1, 2, . . . , n} be such that only workers assigned to the first k stages are decided
by σ. Then, for every (full) assignment π which can be obtained by extending σ,

total(π) is at least
∑ℓ

i=1 stage(σ, i). If
∑ℓ

i=1 stage(σ, i) ≥ total(π∗), it implies
total(π) ≥ total(π∗), and equivalently, none of the branches from σ leads to
an assignment that updates the best-constructed assignment, and therefore, all
branches from σ can be pruned. This argument provides one obvious way of pruning
branches.

One can do better. Observe that the sum of all expected earliness costs at all
stages is the same for all assignments. That is, for each assignment π, we have

n∑

i=1

CE · Eπ(i) =

n∑

j=1

CE · Ej .

Hence, total(π) can be rewritten as follows.

total(π) =

n∑

j=1

CE · Ej +

n∑

i=1

i∑

k=1

(
φ(π, i, k) · C(k)

T · Tπ(i)
)

It follows that our goal is essentially to minimize
∑n

i=1

∑i
k=1

(
φ(π, i, k)·C(k)

T ·Tπ(i)
)

among all assignments. Moreover, for every (full) assignment π which can be
obtained by extending the partial assignment σ mentioned above, we have

total(π) ≥
n∑

j=1

CE · Ej +

ℓ∑

i=1

ℓ∑

k=1

(
φ(π, i, k) · C(k)

T · Tπ(i)
)

≥
ℓ∑

i=1

stage(σ, i).

One can prune more branches based on this argument except for extreme cases.

5 A Heuristic Algorithm

Generally, when applying a branch and bound-based algorithm, whether one can
prune a branch depends on the partial solution under construction and the quality
of the best-constructed solution. Hence, finding a solution as good as possible
with some fast algorithms, i.e., heuristic, and using such a solution as the first
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best-constructed solution may reduce the time of the branch and bound-based
algorithm.

We examine local search as a fast heuristic for finding a good assignment, and
we find that the qualities of local optimal assignments are surprisingly good. We
implement local search based on the following operations.

� swap(i, j): Exchange the workers in two specified stages i and j.

� rotate(i, j): When i < j, extract the worker w at the i-th stage and, for
each i < k ≤ j, move the worker at the k-th stage to the (k−1)-th stage, and
finally put the worker w at the j-the stage. When i > j, extract the worker
w at the i-th stage and, for each j ≤ k < i, move the worker at the k-th stage
to the (k + 1)-th stage, and finally put the worker w at the j-the stage.

This heuristic halts within 1 ms for instances with 15 stages in numerical exper-
iments and produces high-quality solutions. Figure 1 shows that for more than
100,000 instances with stages ranging from 5 to 14, the average rate of the total
expected cost of solutions obtained by our heuristic compared with the total ex-
pected costs of the corresponding optimal assignments. In the worst case, the rate
is 100.538 %.

Figure 1: Qualities of heuristic solutions
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6 Numerical Experiments

We implement our proposed algorithms with Java, and we conduct numerical ex-
periments to test the effectiveness of our proposed algorithms. We apply the al-
gorithms to more than 100,000 randomly generated instances with stages ranging
from 5 to 14. Figure 2 and Table 1 and figures shows the comparison of running
times of our proposed algorithms and algorithms proposed by Yamamoto et al. [6],
Zhao et al. [8].

Table 1: The comparison of running times of algorithms
n B&B + LS (ms) B&B (ms) Zhao [8](ms) Yamamoto [6](ms)

5 0.0151 0.0058 0.0057 0.0072
6 0.0512 0.0027 0.0333 0.0310
7 0.2236 0.1761 0.1925 0.4404
8 1.4145 1.3296 1.6074 4.0879
9 11.6150 11.4700 15.0546 43.5208
10 109.4531 109.2086 148.6765 -
11 1,145.0325 1,147.2280 1,572.9247 -
12 13,311.5551 13,319.8945 18,361.5413 -
13 166,906.6154 167,772.6538 228,823.8077 -
14 1,962,642.3330 1,970,956.0000 2,519,959.6670 -

Figure 2: Comparison of running times
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Abstract

In this paper, we study a multi-class support vector machine proposed in
our previous study, in which class-pair geometric margins are maximized. It
is formulated by a convex approximation of the optimization problem which
minimizes the p-th power of a p-norm of reciprocal class-pair geometric mar-
gins. However, this problem may not be solved stably because of the p-th
power. Hence, we propose a more stable formulation which reduces the power
of the objective function.

1 Multi-class Linear Classification and Class-pair
Margins

In this paper, we study the multi-class support vector machine proposed in [1]. In
this section, we introduce the multi-class classification task and the linear model.
After that, we define class-pair geometric margins of the linear model.

The input space X is a subset of n-dimensional real spaceRn, and the set of class
labels is defined by Y = {1, 2, . . . , c}. A learning problem is to find a classifier C :
X → Y, using m training instances: (x1, y1), . . . , (xm, ym) ∈ X×Y. The objective of
the learning problem is to correctly classify not only the training instances but also
unseen ones. A linear classifier is given in the form: C(x) = argmaxy∈Y{w⊤

y x+ by}
for every x ∈ X, where (w1, b1), . . . , (wc, bc) ∈ Rn+1 are parameters.

We define class-pair (geometric) margins for the multi-class linear classification
model. Let Y2̄ = {(y, y′) | y, y′ ∈ Y, y < y′} be the set of class label pairs.
We assume that its elements are indexed as follows: Y2̄ = {e1, e2, . . . , ec(c−1)/2}.
Let ek = (y, y′) ∈ Y2̄. We express the training set whose labels are y or y′ as
xk1 , . . . , x

k
mk

. For each xki , we define a new class label yki = +1 if yi = y and define

yki = −1 if yi = y′. Let Zk be the set of training instances (xk1 , y
k
1 ), . . . , (x

k
mk
, ykmk

).



The hyperplane classifying y and y′ is defined by {x ∈ Rn | v⊤k x+ dk = 0}, where
vk = wy − wy′ and dk = by − by′ . For simplicity, we assume that this hyperplane
correctly divides Zk, namely yki (v

⊤
k x

k
i + dk) > 0 for all (xki , y

k
i ) ∈ Zk. Using these

definitions, the margin of the hyperplane for class pair ek is defined as follows:

µZk
(vk, dk) =

min(xk
i ,y

k
i )∈Zk

yki (v
⊤
k x

k
i + dk)

∥vk∥
. (1)

2 Stable Formulation of Margin Optimization

In our previous study [1], we have considered a support vector machine, in which
a p-norm of reciprocal class-pair margins is minimized. To solve the optimization
problem, we have proposed a convex approximation, which is formulated as follows:

minimize
(v,d)∈V,s

∑

k∈Y2̄

∥vk∥p/sp−1
k

subject to yki (v
⊤
k x

k
i + dk) ≥ sk ≥ 1, (xki , y

k
i ) ∈ Zk, k ∈ Y2̄,

(2)

where V is the set of elements (vk, dk) defined above. However, this formulation

has the drawback that the objective function becomes too small if ∥vk∥/s1−1/p
k

are less than one or too large if they are more than one. Hence, to re-
duce the power of the objective function, we use the following fact: r1/p =
infs>0{sr + (p − 1)(1/s)1/(p−1)}. That is, we replace the objective function with
s0
∑

k∈Y2̄ ∥vk∥p/sp−1
k + (p − 1)(1/s0)

1/(p−1). Moreover, we replace vk, dk, sk with
vk/s0, dk/s0, sk/s0. Then, we obtain the following convex optimization problem:

minimize
(v,d)∈V,s,s0

∑

k∈Y2̄

∥vk∥p/sp−1
k + (p− 1)(1/s0)

1/(p−1)

subject to yki (v
⊤
k x

k
i + dk) ≥ sk ≥ s0, (x

k
i , y

k
i ) ∈ Zk, k ∈ Y2̄.

(3)

3 Concluding Remarks

In this study, we have proposed a stable formulation to minimize reciprocal class-
pair geometric margins. In our presentation, we will show the effect of the proposed
formulation by experimental experiments.
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1 Introduction to Multi-Agent Pathfinding

Multi-agent pathfinding (MAPF) is a problem of finding collision-free paths for
agents moving in shared environment. An instance of MAPF [3] is a tuple (G,A, s, t),
where G = (V,E) is a graph, A a set of agents, s : A 7→ V and g : A 7→ V are
start and goal locations of the agents. MAPF works with discrete time – at each
timestep, every agent is located in a vertex of G. Between consecutive timesteps,
each agent performs an action – either stays at its current vertex (wait action) or
moves to a neighboring vertex (move action). A solution to classical MAPF is a
set of plans {πa}a∈A, one plan for each agent. A plan for an agent a is a sequence
of actions that, once executed, leads the agent from its start location s (a) to its
goal location g (a).

Solution {πa}a∈A is valid if it does not contain any conflict between any pair of
agents. We consider vertex conflicts (two agents occupy same vertex at the same
time) and swapping conflicts (two agents swap their positions between consecutive
timesteps, i.e. at the same time travel over the same edge in opposing directions)
[3].

2 Stochastic Environment

The above-described classical MAPF deals with deterministic environments. How-
ever, many real-world problems, e.g. various robots-involved scenarios, exhibit
stochastic behavior. For example, robot wheels may slip, resulting in not execut-
ing the desired action – robot might stay at current location instead of moving, or
may continue in a straight direction instead of turning.

Therefore, in our work, we focus on solving MAPF in a stochastic environment
where a set of possible outcomes {(pi, vi, li)}i is assigned to each action [1]. An
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outcome (pi, vi, li) means that after executing the action, with probability pi, agent
ends up in vertex vi (which might be different from v) and executing of the action
will take li timesteps. Such a model allows to specify a possibility of just getting
delayed (i.e., with some probability, traversing the edge might take longer) as well
as ending in a different vertex (e.g., continuing straight instead of turning left).

A solution to MAPF in such an environment is a set of policies {pa}a∈A. For
each agent a ∈ A, a (single-agent) policy pa : V × T 7→ Actions prescribes which
action the agent should execute in its current situation, given by its location and
current time. As in classical MAPF, a collision-free solution is required. Specif-
ically, we look for a solution that is conflict-free for any possible scenario (any
possible outcomes of actions). Furthermore, we want to minimize expected SOC
(sum of expected total travel times of individual agents).

3 Algorithm

To compute the (optimal) policy-based solution of MAPF in the stochastic environ-
ment, we proposed an algorithm DeltaPolicyCBS (DPCBS) [1]. The algorithm is
a modification of the Conflict-based Search algorithm [2] for classical MAPF. CBS
(and so DPCBS) is a two-level algorithm that decomposes the problem of solving
MAPF into obtaining optimal single-agent solutions, for each agent individually,
(low level) and deconflicting those single-agent solutions (high level).

The low level part of DPCBS is based on modeling the single-agent shortest-
path problem in the stochastic environment as Markov Decision Process. If there
are no constraints, the problem can be easily modeled as MDP over states corre-
sponding to vertices V of the graph. If there are some constrains, it is necessary to
use states V × T where T is a set of timesteps. However, it is possible to reuse the
without-constrains solution for states (v, t) with t greater than the timestep tmax

of latest constraint, and compute actions for the remaining states (t ≤ tmax) using
dynamic programming [1].

4 Improvements – Work in Progress

Experimental evaluation [1] of DPCBS showed some promising results in terms of
decreasing real cost of the solution (compared to existing techniques of achieving
some robustness of MAPF solution) as well as quite high complexity – the algorithm
was not able to solve highly stochastic environments with higher number of agents.

We will present improvements addressing this issue, such as restricting the area
(locations) involved in the policy computing, and an online modification of DPCBS
that considers only conflicts in near future and handles later conflicts via replanning
during execution.

Jakub Mestek
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Abstract

In this study, we are dealing with a model of coalition formation games
called altruistic hedonic coalition formation games, an extended model of
hedonic games with the altruism of players imposed. We focus on Pareto
optimal partitions in altruistic hedonic games and propose two searching
algorithms for finding Pareto optimal partitions. By numerical experiments,
we confirm the effectiveness of the proposed algorithms.

1 Introduction

Hedonic coalition formation games, or hedonic games, are models of cooperative
games such that each player has preferences over all possible coalitions to which
she or he can join, and an outcome of the game is a partition of the grand coalition
into disjoint coalitions. As an extended model, Kerkmann et al. [4] (also see [3])
introduced an extended model called altruistic hedonic games, in which players
care not only about coalitions they belong to but also the status of all their friends,
regardless of whether those friends are in the same coalition to them.

Generally, a partition is stable if no player has an incentive to leave her or his
coalition and join another one. Deviations from partitions are defined depending
on the imposed stability concept. Nash stability, individual stability, core stabil-
ity, strict core stability, Pareto optimality, and popularity are stability concepts
commonly studied in hedonic games (e.g. see [6]).

*Shao-Chin Sung is currently known as So Akiyama.
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In the following, after introducing the model of altruistic hedonic games, we will
discuss how to find Pareto optimal partitions in altruistic hedonic games. More
precisely, we propose two searching algorithms for finding Pareto optimal partitions.
By numerical experiments, we confirm the effectiveness of the proposed algorithms.

2 Preliminaries

Let N = {1, 2, . . . , n} be a finite set of players. A coalition X ⊆ N is a non-empty
subset of N . For each i ∈ N , the collection of all coalitions in which player i belongs
is denoted byNi = {X ⊆ N | i ∈ X}. A partition π of N is a collection of coalitions
such that every player in N belongs to at least one coalition in π, i.e.,

⋃
X∈πX = N ,

and every player in N belongs to not more than one coalition in π, i.e., all coalitions
in π are pairwise disjoint. We denote the set of all partitions of N by ΠN . For each
partition π ∈ ΠN and each player i ∈ N , we denote the coalition in π containing i
by π(i). In other words, π(i) is the only coalition in π ∩Ni.

A hedonic coalition formation game, or hedonic game is a pair (N, v) of the
set N of players and an evaluation profile v = (vi)i∈N , where each vi : N → R is an
evaluation function of player i ∈ N , where vi(j) is player i’s evaluation of player j
being together in the same coalition. It is assumed that vi(i) = 0 for each i ∈ N .
Each player i’s utility be a member of a coalition X ∈ Ni is vi(X) =

∑
j∈X vi(j).

An outcome of a hedonic game (N, v) is a partition of N , i.e., a member of
ΠN . For each partition π ∈ ΠN , the utility of each player i ∈ N under a partition
π is vi(π) = vi(π(i)). From this definition of utilities, players in hedonic games
care not only about the coalitions to which they belong. This model is commonly
referred to as additive hedonic games (e.g. see [1, 2, 5]).

Recently, Kerkmann et al. [4] (also see [3]) introduced an extended model called
altruistic hedonic games. Players in altruistic hedonic games care not only about
the coalitions to which they belong but also the status of all their friends, regardless
of whether those friends are in the same coalition. More precisely, for each i ∈ N ,
we denote the set of player i’s friends by Fi ⊆ N \ {i}. For each partition π ∈ ΠN ,
the utility µi(π) of each player i ∈ N under partition π is defined as follows.

µi(π) = vi(π) + α
∑

j∈Fi

vj(π),

where α is a non-negative real number called the degree of altruism.
An altruistic hedonic game is a tuple (N, v, F, α) of the set N of players, an

evaluation profile v = (vi)i∈N , a friend profile F = (Fi)i∈N , and a degree of
altruism α ∈ R≥0. An altruistic hedonic game becomes a hedonic game when α = 0.
Kerkmann et al. [4] called the model, selfish first if α ≥ 1/M , equal treatment
if α = 1, and altruistic treatment if α ≥M , whereM =

∑
i∈N

∑
j∈N max{vi(j), 0}.

Let us point out that, in the model introduced by Kerkmann et al., each Fi is
the set of players positively evaluated by player i, and here Fi can be any subset of
N \ {i}. In this sense, the model introduced in the paper is slightly extended from
the model introduced by Kerkmann et al. [4].

On Pareto Optimal Stable Partitions in Altruistic Hedonic Games
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3 Pareto Optimality

This section discusses how to construct Pareto optimal partitions in altruistic he-
donic games. Aziz et al. [1] showed that the problem of constructing a Pareto
optimal partition for additive hedonic games is weakly NP-hard.

Let π, σ ∈ ΠN be two arbitrary partitions. We say that π Pareto dominate σ
in (N, v, F, α) if µi(π) ≥ µi(σ) for each i ∈ N and µi(π) > µi(σ) for some i ∈ N . A
partition is called Pareto optimal in (N, v, F, α) if it can not be Pareto dominated
in (N, v, F, α) by any partition in ΠN .

Proposition 1 Every altruistic hedonic game has at least one Pareto optimal par-
tition.

Proof. Let (N, v, F, α) be an arbitrary altruistic hedonic game, and let π0 ∈ ΠN

be an arbitrary partition. If π0 is Pareto optimal, then we are done. Otherwise,
a partition π1 exists in ΠN Pareto dominating π0. According to the definition of
Pareto domination, we have

∑
i∈N µi(π1) >

∑
i∈N µi(π0). Again, if π1 is not Pareto

optimal, another partition π2 exists in Πn Pareto dominating π1 and satisfying∑
i∈N µi(π2) >

∑
i∈N µi(π1).

We can repeat this process whenever the last partition πk, for some positive
integer k, is not Pareto optimal, and all partitions π0, π1, π2, . . . , πk in such a
Pareto domination sequence are different. Moreover, we will find a Pareto optimal
partition in a finite step since the number |ΠN | of partitions is finite. □

A straightforward way to construct a Pareto optimal partition is to test each
partition π ∈ ΠN , whether π can be Pareto dominated or not. Given a partition π ∈
ΠN , the running time for calculating the utilities µi(π) of all player i ∈ N is O(n2).
The running time for performing a Pareto domination test is O(n) if utilities of
all players under each test subject. Then, the running time of the straightforward
algorithm is O(n2 · |ΠN |+ n · |ΠN |2 +EN ) = O(n · |ΠN |2 +EN ), where EN is the
running time for enumerating all partitions in ΠN .

In the following, we propose an algorithm for constructing a Pareto optimal
partition.

ParetoSearch(N, v, F, α):

� Let σ ∈ ΠN be an arbitrary partition.

� Enumerate all partitions in ΠN one by one.

– Let π ∈ ΠN be a newly constructed partition.

– If π Pareto dominates σ, then set σ := π.

� return σ.

Observe that the running time of this algorithm is O(n2|ΠN |+ EN ).

Erika Momo, Souta Ikegame, Xiaowen Zhao, Shao-Chin Sung
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Theorem 1 The algorithm ParetoSearch always returns a Pareto optimal par-
tition.

Proof. Let σ0 ∈ ΠN be an arbitrary partition used as the initial partition in
the algorithm. Suppose the algorithm enumerates all the partitions in the order
(π1, π2, . . . , π|ΠN |), and the partition σ is updated m ≥ 0 times by πj1 , πj2 , . . . , πjm
in the algorithm.

If m = 0, the initial partition is Pareto optimal, which the algorithm returns.
Suppose m > 0, and in the following we show that πjm is Pareto optimal. To do
so, we show that, for each ℓ ∈ {1, 2, . . . ,m}, πjℓ is not Pareto dominated by πk for
any 1 ≤ k < jℓ.

Since πj1 is the first enumerated partition by which the initial partition σ0 is
Pareto dominated, we have µi(πj1) ≥ µi(σ0) for each i ∈ N and µi(πj1) > µi(σ0)
for some i ∈ N . Moreover, if 1 ≤ k < j1, either there exists i ∈ N such that
µi(πk) < µi(σ0) or µi(πk) = µi(σ0) for every i ∈ N . Hence, if 1 ≤ k < j1, there
exists i ∈ N such that µi(πk) < µi(πj1), and hence, πj1 is not Pareto dominated
by πk.

Now suppose ℓ ∈ {1, 2, . . . , k−1} and πjℓ is not Pareto dominated by πk for any
1 ≤ k < ℓ. Recall that πjℓ+1

is the next enumerated partition by which πjℓ is Pareto
dominated, and hence, πjℓ is not Pareto dominated by πk for any 1 ≤ k < jℓ+1.
By the same arguments above, we can conclude that πjℓ+1

is not Pareto dominated
by πk for any 1 ≤ k < jℓ+1.

Finally, since πjm is also not Pareto dominated by πk for any jm < k < |ΠN |,
we can conclude that πjm is Pareto optimal. □

4 Pareto Optimality and Contractual Individual
Stability

Now, let us introduce the concept of contractual individual stability in hedonic
games. This stability concept helps reduce the running time (not the complexity)
for finding Pareto optimal partitions in altruistic hedonic games.

Let π ∈ ΠN be an arbitrary partition, i ∈ N , and X ∈ π ∪ {∅}. Observe
that π(j) = X for each j ∈ X (if X ̸= ∅). We define the partition π(i,X) as follows.

π(i,X) =

{(
π \ {π(i), X}

)
∪ {π(i) \ {i}, X ∪ {i}} if X ̸= π(i),

π otherwise.

In other words, π(i,X) is the partition, where the only change from pi is that player i
moves from π(i) to X. We say that (i,X) is a contractual individual deviation
from π in (N, v) if

� player i has an incentive to deviate from π to π(i,X), i.e., vi(π(i,X)) > vi(π),

On Pareto Optimal Stable Partitions in Altruistic Hedonic Games
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� player i has permission to leave π(i) from all another players in π(i), i.e.,
vj(π(i,X)) ≥ vj(π) for each j ∈ π(i) \ {i}, and

� player i has permission to join X from all players in X, i.e., vj(π(i,X)) ≥ vj(π)
for each j ∈ X.

A partition π ∈ ΠN is contractual individually stable in (N, v) if π has no contrac-
tual individual deviation.

Proposition 2 Every hedonic game has at least one contractual individual stable
partition.

Proof. One can prove this claim by a similar argument as Proposition 1. The
length of any sequence of contractual individual deviations starting from any par-
tition is finite, and the last partition of a maximal contractual individual deviation
sequence is contractual individual stable. □

The relation between Pareto optimality in altruistic hedonic games and con-
tractual individual stability in hedonic games is as follows.

Lemma 1 Pareto optimality in every altruistic hedonic game implies contractual
individual stability in the corresponding hedonic game.

Proof. Let π ∈ ΠN be a partition, and (i,X) be a contractual individual deviation
from π in (N, v). Hence, π is not contractual individual stable in (N, v). By
definition, we have vj(π(i,X)) ≥ vj(π) for every j ∈ N , and vi(π(i,X)) > vi(π).
Moreover, from the non-negativity of α, we have µj(π(i,X)) ≥ µj(π) for every j ∈ N ,
and µi(π(i,X)) > µi(π) as well. Therefore, π is not Pareto optimal in (N, v, F, α).
□

We are ready to introduce a new version of our proposed algorithm for con-
structing a Pareto optimal partition based on enumerating contractual individual
stable partitions. In the following, by ΠCIS

N , we denote the set of all contractual
individual stable partitions.

ParetoSearch CIS(N, v, F, α):

� Let σ ∈ ΠN be an arbitrary partition.

� Enumerate all partitions in ΠCIS
N one by one.

– Let π ∈ ΠCIS
N be a newly constructed contractual individual stable

partition.

– If π Pareto dominates σ, then set σ := π.

� return σ.

Erika Momo, Souta Ikegame, Xiaowen Zhao, Shao-Chin Sung
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Observe that the running time of this algorithm isO(n2·|ΠCIS
N |+ECIS

N ), where ECIS
N

is the running time for enumerating all partitions in ΠCIS
N . Generally, the number

|ΠCIS
N | of all contractual individual stable partitions is much smaller than the num-

ber |ΠN | of all partitions. Therefore, the running time of this algorithm is shorter
than the previous version based on enumerating all partitions in ΠN .

Theorem 2 The algorithm ParetoSearch CIS always returns a Pareto optimal
partition.

Proof. By a similar argument of Theorem 1, the algorithm returns a contractual
individual stable partition σ∗, not Pareto dominated by any other contractual
individual stable partition.

It follows that σ∗ is not Pareto dominated by any partition, which is not con-
tractual individual stable. Let π be a partition that is not contractual individual
stable. Then, find the last partition π′ of a maximal contractual individual devi-
ation sequence starting from π. Recall that such a partition π∗ is a contractual
individual stable, and π∗ Pareto dominates π.

Since σ∗ is not Pareto dominated by π∗, σ∗ is also not Pareto dominated by π.
Therefore, σ∗ is not Pareto dominated by any other partition, and equivalently, σ∗

is Pareto optimal. □

5 Numerical Experiments

We implement our proposed algorithms with Java, and we conduct numerical ex-
periments to test the effectiveness of our proposed algorithm. The following table
and figure show the comparison of running times of ParetoSearch and Pare-
toSearch CIS.

Table 1: Comparison of straightforward algorithm (ST), ParetoSearch (PS),
and ParetoSearch CIS (PSC).

n instance ST(ms) PS(ms) PSC(ms)

5 10000 0.01 0.01 0.01
6 10000 0.05 0.04 0.03
7 10000 0.19 0.15 0.11
8 10000 1.23 0.78 0.39
9 10000 12.58 3.81 1.98
10 10000 235.74 21.32 8.00
11 3083 8447.74 122.84 45.04
12 166 72245.60 788.05 217.87
13 16 1123291.29 6029.06 1276.00
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Figure 1: Comparison of ParetoSearch and ParetoSearch CIS
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1 Introduction

In the previous publications, we focused on a formal theory of intermediate quan-
tifiers e.g. “Most”, “Several”, “Almost all”, etc., and non-trivial syllogisms with
them (see [6]) that are part of fuzzy natural logic (FNL). In this paper we will show
that our theory is also capable of solving problems of non-monotonic logic (cf. [2]).

Non-monotonicity is the following feature of commonsense reasoning: we for-
mulate a theory determined by axioms that are “normally true”. However, a new
formula(s) may occur that we apparently consider to be true as well but which
leads to a conclusion contradicting the original theory. We want to update the
original theory to contain both the original conclusions as well as the new ones.
The latter, however, contradict the original ones. What should we do?

A typical example of nonmonotonic reasoning is the classical bird-penguin prob-
lem. We start with the commonsense knowledge “All birds can fly”. A new infor-
mation tells us that “Some birds are penguins” and we know that “No penguins can
fly”. Joining the latter with the former leads in classical logic to a contradiction.

We argue that “All” in commonsense reasoning, in fact, means “Most” or “Al-
most all”. Classical logic suggests no convincing solution how to express it. In this
paper we prove that replacing the classical quantifier ∀ by a vague intermediate
quantifier Most the above problem disappears. Hence, if we modify the original
default knowledge into (Most x)(Bird x,CanFly x) (“most birds can fly”) then we
can prove formally in FNL that the additional information saying that “Penguins
are birds which cannot fly” does not lead to a contradiction and so, the resulting
theory is consistent. The reason consists in the vagueness of linguistic expressions
used in common-sense reasoning and their appropriate mathematical model within
FNL. We will show that also non-trivial intermediate syllogisms allow consistent
revision by a new information. Note that nonmonotonic reasoning is related to the
properties of sub/contrary in the graded square of opposition analyzed in [5].
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2 Preliminaries

The theory of intermediate quantifiers is a special formal theory T IQ in fuzzy type
theory (FTT), see [7].

An intermediate quantifier of type 〈1, 1〉 is one of the following formulas:

(Q∀Ev x)(B,A) ≡ (∃z)[(∀x)((B|z)x⇒⇒⇒ Ax)∧∧∧ Ev((µB)(B|z))], (1)

(Q∃Ev x)(B,A) ≡ (∃z)[(∃x)((B|z)x∧∧∧Ax)∧∧∧ Ev((µB)(B|z))]. (2)

where Ev is an evaluative linguistic expression (see [8] and Figure 1), µ is a measure
on fuzzy sets and B|z is an operation of a cut of a fuzzy set B using z.

In this paper, we will consider some (arbitrary) modelM of T IQ and a selected
universe M . We will use special notation for the interpretation of the formula
Ev(µ(B)(B|z)), namely, if M is a model and B,Z ⊂∼M are are fuzzy sets then

FREv (B,B|Z) =M(Ev(µ(B)(B|z))).

where the cut B|Z is a fuzzy subset of B consisting of all singletons a
/
x, x ∈ M

that are equal to the corresponding singletons of Z.

A semantic interpretation of intermediate quantifiers (1) and (2) are truth values
given by the respective formulas

Q∀Ev (B,A) =
∨{∧

u∈N
((B|Z)(u)→ A(u)) ∧ FREv (B,B|Z) | Z ∈ F(N)

}
, (3)

Q∃Ev (B,A) =
∨{∨

u∈N
((B|Z)(u) ∧A(u)) ∧ FREv (B,B|Z) | Z ∈ F(N)

}
. (4)

0 10.4 0.5

aEx

cEx
Ex

aν

cν

ν

aBiEx cBiEx

¬SmνSmν

aSmνcSmν

||
a¬Smν

LH RH

¬cSmν = 1− cSmν

Figure 1: Extensions of evaluative expressions Sm ν̄νν, ¬Sm ν̄νν and BiEx in the con-
text [0, 0.4]∪[0.4, 1] with marked interpretation of points a¬¬¬Sm ν̄νν , aBiEx and¬¬¬cSm ν̄νν .
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In this paper, we will consider the following intermediate quantifiers:

A: All B are A := (Q∀Bi∆∆∆x)(B,A) ≡ (∀x)(Bx⇒⇒⇒ Ax),

E: No B are A := (Q∀Bi∆∆∆x)(B,¬¬¬A) ≡ (∀x)(Bx⇒⇒⇒¬¬¬Ax),

P: Almost all B are A := (Q∀BiEx x)(B,A)

B: Almost all B are not A := (Q∀BiEx x)(B,¬¬¬A)

T: Most B are A := (Q∀BiVe x)(B,A)

D: Most B are not A := (Q∀BiVe x)(B,¬¬¬A)

K: Many B are A := (Q∀¬Sm x)(B,A)

G: Many B are not A := (Q∀¬Sm x)(B,¬¬¬A)

I: Some B are A := (Q∃Bi∆∆∆x)(B,A) ≡ (∃x)(Bx∧∧∧Ax),

O: Some B are not A := (Q∃Bi∆∆∆x)(B,¬¬¬A) ≡ (∃x)(Bx∧∧∧¬¬¬Ax)

where ∆∆∆ is the Baaz delta keeping the membership degree 1 and sending all lower
membership degrees to 0.

3 Nonmonotonicity and intermediate quantifiers

3.1 Bird-penguin problem

We start with a commonsense knowledge

(i) (All x)(Bird x,CanFly x) (“all birds can fly”).

(ii) (Some x)(Bird x,Penguin x) (“some birds are penguins”).

(iii) (∀x)(Penguin x⇒⇒⇒¬¬¬CanFly x) (“no penguins can fly”).

Axiom (ii) is a new information causing that such a theory is contradictory.
However, we can modify the original default knowledge (i) by

(i’) (Most x)(Bird x,CanFly x) (“most birds can fly”)

which is a natural modification since we know that most birds fly but not all. Then
we can prove that the new theory is consistent.

Theorem 1 Let us consider an extension T of the theory of intermediate quanti-
fiers T IQ and Bird , Penguin , CanFly ∈ Formoα be formulas. Let

T `(Most xα)(Bird x,CanFly x), (5)

T `(∃xα)∆∆∆(Bird x∧∧∧ Penguin x), (6)

T `(∀xα)(Penguin x⇒⇒⇒¬¬¬CanFly x). (7)

Then T ` (∃xα)(Bird x∧∧∧¬¬¬CanFly x) and T is consistent.
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Hence, we proved formally in our theory that additional information saying
that “Penguins are birds which cannot fly” does lead to a contradiction. The
reason consists in the vagueness of expressions of natural language that are used
in commonsense reasoning. In our case, we replace the precise quantifier ∀ by
a vague intermediate quantifier Most which allows exceptions and so, the above
nonmonotonicity problem disappears.

3.2 Default rules

The reasoning above is related to default logic. The defaults are represented as
inference rules rather than object language formulas. Reiter in [9] argues that
defaults cannot be reasoned about within the logic. For example, he discusses the
following example from [3]: “Normally canaries are yellow” and “Yellow things are
never green” and he argues that we cannot conclude “Normally canaries are never
green”. McDermott and Doyle’s suggestion is to have the following sequence of
inferences:

• (∀x)(CANARY(x)&M YELLOW(x)⇒⇒⇒¬¬¬YELLOW(x)),

• (∀x)(YELLOW(x)⇒⇒⇒¬¬¬GREEN(x)),

• we can infer that (∀x)(CANARY(x)&M YELLOW(x)⇒⇒⇒¬¬¬GREEN(x))

whereMA is intended to mean “A is consistent”. Reiter in [9] casts doubts, whether
the last formula can legitimately be interpreted to mean “Normally canaries are
not green”.

We argue that in our theory of intermediate quantifiers and syllogisms this is
possible, has a good sense and does not lead to a contradiction. Indeed, what does
it mean

“Normally Ax are Bx”? (8)

This sentence immediately suggests that there can be abnormal situations in which
Ax are not Bx. But only exceptionally and otherwise we expect Ax followed by
Bx to happen in most cases. Hence, we naturally understand sentence (8) either
as “Most Ax are Bx”, or “Almost all Ax are Bx”, but not as “All Ax are Bx”.

A short analysis reveals that the previous example can be modeled in our theory
as follows:

E: (∀x)(Yellowx⇒⇒⇒¬¬¬Greenx),
T: (Mostx)(Canaryx,Yellowx),
D: (Mostx)(Canaryx,¬¬¬Greenx).

This is a special case of the valid syllogism ETD-I of the first figure. Its validity
was proved in [4].
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3.3 Sorites/falakros paradoxes

We argue that the classical sorites/falakros paradoxes are also cases of nonmono-
tonic reasoning. The following is a solution of the paradoxes using intermediate
quantifier “Not many”.

Theorem 2 Let σ = o(oε) be a type for natural numbers in fuzzy type theory
(cf. [1, Chapter 6]) and T be a consistent extension of the theory of intermediate
quantifiers T IQ that contains Peano arithmetics. Let 0, n,m0 ∈ Formσ represent
natural numbers and FN ∈ Formoσ. If the following formulas are provable

T `FN 0, (9)

T `(Not many n)((FNn), (FN(n+ 1)∨∨∨ (n ≡ m0)), (10)

T `(∃n)¬¬¬(FNn). (11)

then T is consistent.

It is interesting in the proof of this theorem that we may consider FN to be a finite
set of natural numbers, i.e., a set which contains all numbers n saying, that, e.g.,
a person having n hairs is bald. Moreover, the implication

(FNn)⇒⇒⇒ (FN(n+ 1)∨∨∨ (n ≡ m0))

is true for all n ∈ N. The number m0 is a number of, e.g., hairs on one’s head for
which we know that he/she is not bald. This is the number assured by axiom (11).

Interpretation of formula (10) can be rewritten as
∨

Z⊆FN
(
∧

n∈N
((FN |Z)(n)→ FN(n+ 1) ∨ [n ≡ m0]) ∧ FRSm ν̄νν(FN,FN |Z)) (12)

where [n ≡ m0] ∈ {0, 1} is a truth value of the equality n = m0.
We can see from (12) that the quantifier “Not many” contains the value

FRSm ν̄νν(FN,FN |Z) ∈ [0, 1]

which accompanies each step n. If the number of steps is too large, i.e., |FN | ≥ m0,
then FRSm ν̄νν(FN,FN |Z) = 0. This value can be taken as a characterization of how
much dubious is the implication FN(n)⇒⇒⇒ FN(n+ 1). Namely, FRSm ν̄νν(FN,FN |Z) =
1 means that the latter implication is not dubious at all and FRSm ν̄νν(FN,FN |Z) = 0
means, that it is completely dubious.

4 Conclusion

In this paper we pointed out some known problems of nonmonotonic logic and
demonstrated that they can be overcome in the theory of intermediate quantifiers.
Namely, it follows from vagueness of their semantics that existence of exceptions
to default rules does not lead to contradiction and we need no special modification
of the formal fuzzy logic. We also demonstrated that the classical sorites/falakros
paradoxes are also examples of nonmonotonic reasoning.
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1 Introduction

The purpose of this contribution is to show the connection and, in a sense, the sim-
ilarity between the known classical and non-classical results on the representation
and approximation of a continuous function.

2 Preliminaries

Theorem 1 (Kolmogorov, Arnold, Kahane, Lorentz, Sprecher) For any n ∈
N, n ≥ 2, there exist real numbers λ1, . . . , λn and continuous functions ϕk : I → R,
k = 1, . . . , 2n + 1, where I = [0, 1], with the property that for every continuous
function f : In → R there exists a continuous function g : R → R such that for
each (x1, . . . , xn) ∈ In,

f(x1, . . . , xn) =

2n+1∑

k=1

g(λ1ϕk(x1) + · · ·+ λnϕk(xn)). (1)

The cited above theorem (see it in e.g., [1, 3, 4]) is an answer to Hilbert’s 13th
problem, in which he conjectured that there is a continuous function f : I3 → R,
where I = [0, 1], which cannot be expressed in terms of composition and addition
of continuous functions from R2 → R, that is, as composition and addition of
continuous real-valued functions of two variables. It took more than 50 years to
prove Hilbert’s conjecture false.

2.1 Kolmogorov superposition theorem - Necessary Details

In this section, we present one of the generalizations of Kolmogorov superposition
theorem and outline its proof proposed by the Swedish mathematician Torbjörn
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Hedberg, which uses the work of George Gunter Lorentz, Jean-Pierre Kahane and
David A. Sprecher.

Below, we reproduce some necessary details of the proof for the n = 2 variable
case taken from [4]. Precisely, the proof will be given for a continuous function
f : I2 → R and the following representation formula:

f(x1, x2) =

5∑

k=1

g(ϕk(x1) + λϕk(x2)), (2)

where only the function g depends on f , in contrast to λ and ϕk.
We recall that the set C(I) of all continuous functions from I into R is a complete

metric space and it is a Banach space with the norm ∥f∥ = supx∈[0,1] f(x). Denote
Φk(x1, x2) = ϕk(x1) + λϕk(x2) and rewrite (2) as follows:

f(x1, x2) =

5∑

k=1

g(Φk(x1, x2)). (3)

Lemma 1 There exists a real number λ such that for any x1, x2, y1, y2 ∈ Q1,

x1 + λy1 = x2 + λy2, ⇒ x1 = x2, y1 = y2.

The following lemma [4] gives a constructive (albeit preliminary) description
of the functional parameters, which, after substituting these parameters into the
right-hand side of the equality (2), makes it approximate.

Lemma 2 We fix λ satisfying Lemma 1 and choose a function f ∈ C(I2) such
that ∥f∥ = 1. We define a set Uf ⊆ [C(I)]5 such that (ϕ1, . . . , ϕ5) ∈ Uf if and only
if there exists g ∈ C(R), such that

|g(t)| ≤ 1

7
for t ∈ R, (4)

and

|f(x, y)−
5∑

k=1

g(ϕk(x) + λϕk(y))| <
7

8
for (x, y) ∈ I2. (5)

Then Uf is an open dense subset of [C(I5)].

Below we repeat (following [4]) all necessary details of the proof.

2.1.1 Cover of the set I

Let us start with the describing special functions (ϕ1, . . . , ϕ5) ∈ [C(I)]5.

1) First, we will choose a sufficiently large N ∈ N, which we will refine later.

1Q denotes the set of rational numbers
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2) We then create a cover of I using five sets P1, . . . ,P5 of subintervals:

I =
5⋃

k=1

Pk, (6)

where Pk consists of all subintervals of I that remain after all intervals [ s
N ,

s+1
N ]

with 0 ≤ s < N , s ≡ k − 1 (mod 5) are deleted. These remaining Nk intervals,
which we will consider closed, will be called intervals of rank k.

3) For each k ∈ {1, . . . , 5}, we define ϕk : I → R, as any continuous function
satisfying the following requirements:

� ϕk is a constant equal to a rational number on each interval of rank k in
Pk;

� ϕk(x) ̸= ϕk(y) for x and y in different intervals of rank k;

� ϕk(x) ̸= ϕj(z) for x in any interval of rank k and z in any interval of rank
j, k ̸= j.

4) The set of all quintuples (ϕ1, . . . , ϕ5) of functions satisfying the conditions, given
in steps 1 - 3, will be denoted by UN . It is clear that the union

⋃
n>N Un is an

open dense subset of [C(I)]5.

2.1.2 Cover of the set I2

Let I be covered by subintervals according to (6), such that for each k = 1, . . . , 5,
Pk consists of the intervals of rank k. The length of any interval of rank k does
not exceed the value of 4

N . The Cartesian product of two intervals of rank k (one
lying in {0 ≤ x ≤ 1} and one lying in {0 ≤ y ≤ 1}, will be called a rectangle of
rank k. Rectangles of rank k will be denoted by Rk,1, Rk,2, . . .. The (finite) union
of all rectangles of all ranks k, k = 1, . . . , 5 forms a cover of I2.

We observe that the squared Euclidean distance between any two points (x, y)
and (x′, y′) in any rectangle of rank k is less than (or equal to) 32

N2 .
Continuing with the description of functions that fulfill (4) and (5), we define

Φk(x, y) = ϕk(x) + λϕk(y), k = 1, . . . , 5, (7)

where Φk : I2 → R. By the properties of functions ϕk, we have that each function
Φk is constant on each rectangle Rk,j , j = 1, . . ., of rank k, and by Lemma 1, the
(constant) value of Φk on Rk,j , denoted by Φk,j , does not equal to the (constant)
value Φk′,j′ of Φk′ on Rk′,j′ , if k ̸= k′ and j ̸= j′.

Now to prove (4) and (5) we choose Nf ∈ N such that

|f(x, y)− f(x′, y′)| < 1

56
if (x− x′)2 + (y − y′)2 ≤ 32

N2
f

. (8)
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Let us substitute the value Nf for N at step 1) of the procedure for describing
special functions (ϕ1, . . . , ϕ5) ∈ [C(I)]5.

Finally, we define g : R → R on the set {Φk,j | k = 1, . . . , 5; j = 1, . . .}:

g(Φk,j) =

{
1
7 . if f(x, y) > 0 for all x, y ∈ Rk,j ,

− 1
7 . if f(x, y) < 0 for all x, y ∈ Rk,j ,

(9)

and extend g to the whole R in a piecewise-linear fashion so that |g(t)| ≤ 1
7 for all

t ∈ R. Obviously, (4) is satisfied. Moreover, it can be proved (see e.g.,[4]) that (5)
is satisfied as well.

It is important to remark that (9) defines function g on a finite set of points,
i.e., on the set {Φk,j | k = 1, . . . , 5; j = 1, . . .} using only two values: 1

7 and − 1
7 .

2.1.3 Eliminating the dependence of Φk on f

The next step in proving the validity of the representation (2) (in its equivalent
form (3)) is to confirm inequalities similar to (4) and (5), but in which the functions
ϕ1, . . . , ϕ5 do not depend on f . For this purpose, a technique based on the Baire
category theorem 2 is used. The following lemma is proved in [4]:

Lemma 3 Let λ satisfy Lemma 1. There exist functions ϕ1, . . . , ϕ5 ∈ C(I), such
that given f ∈ C(I2) there exists g ∈ C(R), such that

|g(t)| ≤ 1

7
∥f∥, t ∈ R, (10)

and

∥f −
5∑

k=1

g ◦ Φk∥ <
8

9
∥f∥, (11)

where Φk(x, y) = ϕk(x) + λϕk(y), k = 1, . . . , 5.

To prove Lemma 3, we again assume that ∥f∥ = 1 and (following [4]) choose
a sequence of functions h1, h2, . . . from C(I2) (from the unit sphere of C(I2)) such
that the set {hj : j ∈ N} is dense in the unit sphere of C(I2). Therefore, there
exists m ∈ N such that ∥f − hm∥ ≤ 1

72 .
By the assertion in section 2.1, each function hj defines the set Uhj ⊆ (C(I))5.

Since each such Uhj is a dense open subset of the complete metric space (C(I))5,
then by the Baire category theorem their intersection is non-empty. Denote this
intersection as V and choose (ϕ1, . . . , ϕ5) ∈ V . For the chosen function hm and for
(ϕ1, . . . , ϕ5) ∈ V ⊆ Uhm

there exists a continuous function g, ∥g∥ ≤ 1
7 such that

∥hm −
5∑

k=1

g ◦ Φk∥ <
7

8
.

2The Baire category theorem, see [?]. Let (X, d) be a complete metric space. If X1, X2, . . . is
a sequence of open dense subsets of X, then the set

⋂∞
n=1 Xn is also dense in X.
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Therefore,

∥f −
5∑

k=1

g ◦ Φk∥ ≤ ∥f − hm∥+ ∥hm −
5∑

k=1

g ◦ Φk∥ <
1

72
+

7

8
=

8

9
.

2.1.4 Completing the proof of Kolmogorov superposition theorem

Having all the necessary technical details, we can formulate the main statement
(for the case of n = 2 variables), known as Kolmogorov superposition theorem [3].
For the original proofs, we refer to [1, 3, 4].

Theorem 2 (A. N. Kolmogorov) There exist a real number λ and continuous
functions ϕk : I → R, k = 1, . . . , 5, where I = [0, 1], which have the property that
for every continuous function f : I2 → R there is a continuous function g : R → R
such that for all (x1, x2) ∈ I2,

f(x1, x2) =

5∑

k=1

g(ϕk(x1) + λϕk(x2)). (12)

3 Inverse F-Transform in the Kolmogorov Super-
position Theorem

The purpose of this section is to combine two areas of research: classical functional
analysis and a part of fuzzy modeling based on the functional representation of
fuzzy sets with [0, 1]-valued membership functions. In particular, we aim to show
that a constructive proof of Lemma 2 can be given in a functional space with a
fuzzy partition, using analytical form known as the inverse fuzzy transform [5].

3.1 Fuzzy Partition of I
The concept of fuzzy partition does not have a unique definition in the fuzzy liter-
ature. Without going into details, we will focus on the evolution of this concept in
connection with the theory of fuzzy transform (see [5, 2, 8]).

A fuzzy partition of the real interval [a, b] with the Ruspini condition was in-
troduced in [5] as a collection of bell-shaped fuzzy sets A1, . . . An : [a, b] → [0, 1],
n ≥ 2, with continuous membership functions, such that for all x ∈ [a, b],

n∑

k=1

Ak(x) = 1.

This partition can be characterized as a “partition-of-unity”.
A fuzzy partition with the generalized Ruspini condition was introduced in

[8]. The generalization consists in replacing the “partition-of-unity” by a “fuzzy
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r-partition”, r ≥ 2, where for all x ∈ [a, b], the above given condition changes to

n+r−1∑

k=−r+2

Ak(x) = r.

In [7] a generalized fuzzy partition without the Ruspini condition was proposed
to obtain a better approximation using an inverse fuzzy transform. Below, in
Definition 1, we reproduce this definition and apply it to the interval I = [0, 1].

Definition 1 Let I = [0, 1], n ≥ 2, and let x1, . . . , xn be nodes such that 0 ≤
x1 < . . . < xn ≤ 1. Let I be covered by the intervals [xk − h′k, xk + h′′k ] ⊆ [0, 1],
k = 1, . . . , n, such that their left and right margins h′k, h

′′
k ≥ 0 fulfill h′k + h′′k > 0.

The basic functions3 A1, . . . , An : I → [0, 1] constitute a generalized fuzzy par-
tition of [0, 1] (with nodes x1, . . . , xn and margins h′k, h

′′
k, k = 1, . . . , n) if for every

k = 1, . . . , n, the following three conditions are fulfilled:

1. (locality) — Ak(x) > 0 if x ∈ (xk − h′k, xk + h′′k), and Ak(x) = 0 if x ∈
[0, 1] \ (xk − h′k, xk + h′′k);

2. (continuity) — Ak is continuous on [xk − h′k, xk + h′′k ];

3. (covering) — for x ∈ I,
∑n

k=1Ak(x) > 0.

Below we will use the covering (6) of the interval I proposed in section 2.1.1
and establish the corresponding fuzzy partition of the interval I. To do this, let us
return to section 2.1.1, where (for sufficiently large N ∈ N) the mentioned covering
was described. Recall that it consists of five sets P1, . . . ,P5 such that each set Pk,
k = 1, . . . , 5, is a finite set of closed subintervals of rank k. For technical reasons,
we are making slight changes to the definition of these sets. In what follows, the set
Pk will consist of all subintervals of I remaining after removing all open intervals
( s
N ,

s+1
N ) from 0 ≤ s < N , s ≡ k − 1 (mod 5). The remaining closed intervals

will be called intervals of rank k. For convenience, we denote intervals of rank k
as Ik,1, Ik,2, . . ., assuming that all elements of Ik,i are less than elements of Ik,j if
i < j. It is worth noting that if Ik,j = [lk,j , rk,j ], then it is possible that lk,j = rk,j .
Lastly, the number of intervals of rank k, denoted Nk, is finite, but different for
different k.

Lemma 4 Suppose N ∈ N and P1, . . . ,P5 are the sets of closed subintervals of rank
k defined above. For each k = 1, . . . , 5 we take Pk and define the corresponding set
Ak of fuzzy sets Ak,j : I → [0, 1] , j = 1, 2, . . . , Nk using the following assignment:

� Ak,j = 1, if x ∈ Ik,j;

� if Ik,j = [lk,j , rk,j ] and lk,j ̸= 0, then on the interval [lk,j − 1
N , lk,j ], Ak,j(x)

coincides with a linear function that goes through the points (lk,j − 1
N , 0) and

(lk,j , 1);

3Here, a basic function is a membership function of the corresponding fuzzy set in a fuzzy
partition.
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� if Ik,j = [lk,j , rk,j ] and rk,j ̸= 1, then on the interval [rk,j , rk,j +
1
N ], Ak,j(x)

coincides with a linear function that goes through the points (rk,j , 1) and
(rk,j +

1
N , 0);

� Ak,j = 0, if x ∈ I \ [max(lk,j − 1
N , 0),min(rk,j +

1
N , 1)].

Then

(i) for each k = 1, . . . , 5, the set Ak = {Ak,j : I → [0, 1], j = 1, 2, . . . , Nk}
constitute a generalized fuzzy partition of [0, 1] with the Ruspini condition;

(ii) the set
⋃5

k=1 Ak = {Ak,j : I → [0, 1], k = 1, . . . , 5, j = 1, 2, . . . , Nk} constitute
a generalized “fuzzy 5-partition” of [0, 1].

In both cases, the fuzzy partition nodes xk,j, k = 1, . . . , 5, j = 1, 2, . . . , Nk are
calculated as follows: xk,i = (rk,j − lk,j)/2; while margins (length up to 1

N ) are
described in the assumptions above.

3.1.1 Inverse F-Transform in the Kolmogorov superposition theorem

Having all the necessary technical details, we can formulate the main statement
(for the case of n = 2 variables).

Theorem 3 For each continuous function f : I2 → R and each ε > 0 there are
five generalized fuzzy partitions A1, . . . ,A5 of the interval I and five square real
matrices V 1, . . . , V 5 where a (Nk ×Nk)-matrix V k = (vkj,ℓ), k = 1, . . . , 5, such that

the sum of the inverse F-transforms V̂ k of the matrices V k, with respect to the
corresponding fuzzy partitions A2

k approximates f with the accuracy of ε, i.e. for
any (x, y) ∈ I2,

|f(x1, x2)−
5∑

k=1

Nk∑

j=1

Nk∑

ℓ=1

vkj,ℓAk,j,ℓ(x, y)| < ε. (13)
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ABSTRACT  
This research delves into the second phase of an experiment initially 
conducted by Jiroušek and Kratochvíl (2020), which sought to measure 
ambiguity aversion and explore the underlying psychological 
mechanisms behind it. While the first phase demonstrated the existence 
of ambiguity aversion and identified unexpected biases, such as positive 
attitudes toward ambiguity and ambiguity-seeking behaviors, this 
second phase adopts a qualitative approach to deepen the 
understanding of these findings. Data collection involved semi-
structured and in-depth interviews with twelve participants from the 
original experiment. The interviews analyzed using thematic analysis in 
Atlas.ti identified four key themes: ambiguity as a norm, situational 
ambiguity tolerance, coping strategies, and the limits of ambiguity 
tolerance. 
 
RESEARCH INTRODUCTION  
This manuscript reports on the second phase of an experiment, following 
the first phase previously published by Jiroušek and Kratochvíl (2020). 
The primary goal of their research was to measure the strength of 
ambiguity aversion, extending beyond Ellsberg's (1961) demonstration of 
its existence to estimate a personal coefficient of ambiguity aversion. The 
study sought to move from simply proving that ambiguity aversion exists, 
as Ellsberg did, to understanding how strongly individuals are affected by 
it and whether this strength can be quantified. 
In this context, the concept of expected value was employed to describe 
the value computed when uncertainty is formalized in a normative way, 
such as by probability measures or belief functions. However, Jiroušek 
and Kratochvíl (2020) also introduced the notion of "personal expected 
value," which takes into account the intensity of an individual's 
subjective ambiguity aversion. While the former concept is rooted in 
mathematical theory, the latter crosses into the psychological domain, 
reflecting how personal attitudes and biases influence decision-making 
under uncertainty. 
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During the experiments, participants displayed a range of behaviors, 
including unexpected positive attitudes towards ambiguity and 
instances of ambiguity-seeking behavior—patterns that deviate from 
traditional theories and align with findings by other researchers. To 
explore these behaviors, the study hypothesized that participants' 
preferences would be reflected in their willingness to pay more for 
preferred lotteries, thus indicating the strength of their ambiguity 
aversion. 
Data were collected from 192 participants across eleven sessions. 
However, it was observed that not all participants engaged seriously with 
the task, as some exhibited irrational or inconsistent betting behaviors. 
Despite these anomalies, all data records were analyzed, with only those 
whose behavior precluded meaningful computation being excluded. 
Among the participants, 128 displayed behavior that aligned with the 
study's rational criteria. 
The research findings suggest that while the goal of estimating a personal 
coefficient of ambiguity aversion from a single experimental session 
remains challenging and may not fully predict behavior in decision-
making under ambiguity, the model effectively captures collective trends 
in human behavior. Additionally, the study uncovered an unexpectedly 
high number of participants who exhibited positive attitudes toward 
ambiguity, alongside observed instability in these attitudes. These 
findings indicate that while progress has been made in understanding 
ambiguity aversion, the goal of precisely quantifying it and predicting 
individual behaviors remains a work in progress. 
Jiroušek and Kratochvíl's (2020) findings led to a second research phase 
with a qualitative design, which is the focus of the present report. The 
qualitative phase aimed to complement classical mathematical models 
of decision-making with phenomenological methods to triangulate and 
enhance the validity of the results. Specifically, this phase sought to: 1) 
delve deeper into the participants' thinking and strategies, and 2) explore 
their attitudes towards ambiguity using various research methods, 
capturing these attitudes in the broader context of everyday life rather 
than a singular moment (the moment of the game). This approach aimed 
to extend the focus from a specific decision-making instance to habitual 
decision-making and behavior, stepping out of the scientific bubble to 
uncover the underlying "why". 
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RESEARCH METHODOLOGY 
The qualitative phase of the study involved semi-structured interviews, 
conducted due to COVID-19 restrictions online, with participants from a 
previous experiment. The sample was saturated with 12 respondents, 
and each interview lasted approximately 30 minutes. The sample was 
homogeneous, composed of university students aged 19 to 24, 
corresponding to Generation Z. The interviews were conducted in two 
stages. The first phase focused on strategies and decision-making 
processes during the experiment, aiming to deepen insights gained from 
the quantitative research. This phase specifically explored whether 
participants' decision-making differed between experimental settings 
and their everyday lives. Contrary to concerns about lab vs. field bias, 
participants consistently reported that they behaved and made decisions 
as they would in real-life situations. The second phase seamlessly built 
on the first, drawing inspiration from Budner's (1962) scale of ambiguity 
intolerance. 
Budner (1962) developed a scale (see Figure 1) to measure tolerance-
intolerance of ambiguity, aiming to explore how individuals perceive and 
react to ambiguous situations. He defined "intolerance of ambiguity" as 
the tendency to see ambiguous situations as threatening, while 
"tolerance of ambiguity" was seen as the tendency to find such situations 
desirable. 
Ambiguous situations, according to Budner (1962), are those that cannot 
be easily structured or categorized due to a lack of sufficient cues. He 
identified three types of ambiguous situations: those that are completely 
new with no familiar cues, those that are complex with numerous cues to 
consider, and those that are contradictory, where different cues suggest 
conflicting interpretations. These situations are characterized by novelty, 
complexity, or contradiction, making them difficult for individuals to 
process. 
Budner's concept of perceiving ambiguity as a threat is central to his 
scale. He proposed that individuals respond to ambiguous stimuli on two 
levels: the phenomenological, which relates to perception and feelings, 
and the operative, which relates to actions and behaviors. When 
ambiguity is perceived as a threat, individuals may respond in ways that 
can be grouped into submission or denial. Submission might manifest as 
anxiety or discomfort on the phenomenological level or avoidance 
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behavior on the operative level. Denial, on the other hand, could involve 
repression or denial of the ambiguity on the phenomenological level, or 
attempts to alter the situation, either destructively or reconstructively, on 
the operative level. 
If an individual exhibits any of these responses in situations 
characterized by novelty, complexity, or contradiction, it is reasonable to 
infer that they are intolerant of ambiguity. To measure this, Budner (1962) 
developed a 16-item scale, with each item designed to capture a specific 
mode of response to different types of ambiguous situations. This scale 
provides a comprehensive tool for assessing how individuals cope with 
uncertainty and ambiguity across various contexts, offering insights into 
their tolerance or intolerance of ambiguity. 
 
FIGURE 1: Budner's scale of tolerance-intolerance of ambiguity 

 

 
Source: Budner (1962) 
 

Unlike Budner (1962), who presented his scale as a questionnaire, our 
approach was qualitative. Instead of expecting simple "agree" or 
"disagree" responses, we posed the questionnaire statements during 
interviews and engaged in discussions about their meaning for each 
participant. This allowed us to obtain a more nuanced and 
comprehensive understanding of their attitudes and levels of tolerance 
or intolerance towards ambiguity. The interviews were conducted via 
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video calls, recorded, transcribed, and analyzed using Atlas.ti as well as 
manually (see Figures 2 and 3). 
 
Figure 8: Atlas.ti analysis 

 
Source: Author 
 
Figure 3a: Manual analysis 

 
Source: Author 
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RESEARCH RESULTS  
Figure 3b: Manual analysis 

Thematic analysis identified four main 
themes: ambiguity as a norm, 
differentiating (situational ambiguity 
tolerance), strategies (ways for coping 
with ambiguity), and the limits of 
ambiguity tolerance (see Figure 4). The 
prevailing theory suggests that humans 
naturally avoid ambiguity. However, this 
study challenges the narrow 
understanding of ambiguity as a unique 
decision-making moment. It considers 
what happens when ambiguity becomes 
the norm and a regular context for 
decision-making. 
 

 
Figure 4: Results of the thematic analysis 

 
Source: Author 
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Reflecting on Budner's (1962) definition of tolerance and intolerance of 
ambiguity—where "intolerance of ambiguity" is described as the 
tendency to perceive ambiguous situations as threatening, and 
"tolerance of ambiguity" as the tendency to find such situations 
desirable—it can be concluded that our participants demonstrate a high 
tolerance for ambiguity. They do not see it as a threat but rather as a 
norm, an opportunity, and even a form of freedom. This pragmatic 
inclination towards ambiguity is evident in how they approach it as a 
natural part of life, likening it to "air and wings" that provide freedom and 
opportunities for new experiences. They differentiate, accommodate, 
and develop strategies to navigate ambiguity, treating it as a standard 
condition rather than an exception. However, their acceptance of 
ambiguity does have its limits, indicating that while they embrace it as a 
norm, they are also mindful of the boundaries within which they operate. 
 
Ambiguity as a norm 
Ambiguity is perceived as a desirable and liberating space where novel 
solutions can be explored and where individuals can break free from 
stereotypes, seeking alternatives and new experiences.  

DH: "A black-and-white world would just be too simple compared to a 
complex one, and there wouldn’t be anything new waiting for me there. I 
wouldn’t have anything to explore, and it would just slide into this kind of 

routine, and that wouldn’t be fun for me... Like, trying something new, 
you know, and if it doesn’t work out, it just doesn’t work out." 

ZV: "Well, I take it as a challenge, but yeah, I do feel some pressure or 
stress when there's a problem instead of being in a space where I’m 
comfortable and know I can handle it. But it’s not like I’d break down 

and want to go back to something familiar—that’s not me. I like pushing 
myself forward... and I get that a lot at work because we have different 

projects, and each one comes with its own set of problems to solve. So, 
I’ve kind of gotten used to it, and I think you can learn to deal with these 

kinds of feelings." 

This embrace of ambiguity transforms it into an adventure, offering a 
creative playground where rules are necessary but are also meant to be 
creatively bent or even broken, reflecting the concept of "creative 
destruction" or "creative misuse." 
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KJ: "Obviously, I enjoy it—the more complicated, the better ((laughs)), 
and even better if I can manage the whole process myself ((laughs))." 

MS: "I mean, yeah, sticking to some kind of procedure, sure, but most 
revolutionary results in history came from people breaking the rules (..), 
and that’s how they moved forward. So, I guess a certain level of safety 

and some kind of procedure to get the right outcome, yes, but strictly set 
rules? Not really." 

Ambiguity is seen as engaging and dynamic, while simplicity is viewed as 
dull and uninspiring. The complexity and challenge inherent in 
ambiguous situations are likened to a game—risky and potentially 
painful, but ultimately rewarding, as they lead to personal growth and 
strength. The vibrancy and diversity that ambiguity brings are essential 
for progress, offering a spectrum of possibilities and choices that 
symbolize freedom. 

MH: "It would be easier to live in a world where there are only 
contradictory opinions... But, I just had a flash of George Orwell and his 

novel, so I'm not sure if it would be good to take away these means of 
expressing our uncertainty or the uncertainty of the world around us. I 
would choose complexity because conflicting solutions are the same 
principle as the black-and-white versus colorful world. I don’t want to 

have only ‘this way or that way’ choices. I’m someone who needs 
freedom, free decision-making. I want to have a wide range of options to 
choose from, to find my own path, and to decide on my own terms, in my 

own way." 

This perspective frames ambiguity and complexity not just as obstacles 
to be overcome, but as opportunities for enjoyment and discovery. It is 
through solving problems and unraveling mysteries that individuals 
experience the true richness of ambiguity, which is understood as a 
multiplicity of solutions, opinions, and interpretations—a polyvocal 
symphony that represents freedom.  

MD: "Well, you can’t let everything get to you too much, I think that’s just 
part of life. You don’t have to completely accept it, but you should 
recognize that these things exist—we’re not always going to know 

everything. And maybe if we did have answers and solutions for 
everything, it wouldn’t be as fun... We don’t need a clear yes or no 
answer for everything; even some level of not knowing moves us 
forward. In some way, it’s exciting because we try to reduce that 

Klára Šimůnková
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uncertainty ourselves, to search for answers on our own instead of 
having everything spelled out for us." 

Moreover, complexity increases the likelihood of making a good decision, 
because when there are only good or bad options (contradictory), the 
probability decreases, while in complexity, the likelihood of solutions 
that are not entirely good but also not entirely bad increases. 
Additionally, what may seem like a bad solution now could turn out to be 
a quite good one tomorrow. Ambiguity and uncertainty allow for the 
consideration of unconventional solutions, which might ultimately prove 
to be the saving grace. 

MH: "In a colorful, complex world, even if something bad happens, it’s 
not 100% bad, so I can still find something in it that will benefit me in the 

future. But in a black-and-white world, what’s bad is just bad in every 
way. So, another advantage of the colorful world is that what seems bad 

at first glance doesn’t have to be entirely bad or bad in every aspect." 

The presence of threat is acknowledged by our participants, but it is seen 
as an intrinsic part of the opportunities that ambiguity provides, 
reinforcing the idea that challenge and risk are integral to the pursuit of 
growth and innovation. Ambiguity cannot be avoided; it must be dealt 
with. 

JZ: "I see it as a challenge, something you need to overcome instead of 
feeling bad about it because anxiety or fear doesn’t help in the moment. 

I just accept that ambiguity exists and always will, to some degree, 
whether more or less, around me, and I have to accept it as part of my 

reality. You can't let yourself get thrown off by what you don’t know—you 
have to take it as it is, that you often don’t know everything, and still 

make decisions even when you don’t have all the answers." 

MS: "I think it’s largely because of the sheer amount of information 
thrown at us daily. With fake news and everything, we never really know 
what’s true because we receive millions of pieces of information from 

different sources every day." 

VF: "For me, ambiguity feels like an adventure with a bit of threat mixed 
in ((laughs)). I think you can’t fully eliminate that threat, and I’m okay 

with the fact that it will always be there." 
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Differentiating 
Ambiguity cannot be avoided; it must be confronted and managed. It 
adds spice to life, akin to a seasoning that enhances the flavor of 
experiences. However, this "spice" can become too much, leading to 
discomfort and uncertainty. This ambivalence highlights the paradox of 
ambiguity: it offers freedom and potential for new possibilities but can 
also paralyze decision-making, as individuals struggle between the 
desire for freedom and the need for security.  
While ambiguity can be empowering, allowing for multiple 
interpretations and outcomes, it can also lead to indecision and anxiety. 
This ambivalence is particularly evident when individuals face situations 
where the consequences of their choices carry significant weight. When 
faced with serious situations, even those who usually embrace ambiguity 
tend to prefer clear, binary (contradictory) choices over multiple 
(complex) options.  

JK: "For me, it's kind of more complex, I’d say. When it comes to work 
processes, I prefer to follow established rules because they’re proven to 

work. But when it’s something that's purely personal, like studying, 
traveling, and so on, I like to dive into new things because, in that case, 

the responsibility falls solely on me. If something goes wrong, it’s 
basically just my own fault." 

There is no singular approach to dealing with ambiguity. In a world where 
ambiguity has become the norm, individuals must navigate it daily, 
adapting their strategies to different contexts. Ambiguity can be a 
desirable state, full of potential, or a condition to be mitigated, depending 
on the situation. Navigating ambiguity in form of differentiation is 
therefore situational. This distinction is evident in various aspects of life: 
in private life versus work, in online anonymity versus face-to-face 
authenticity, and in the comfort of home versus the uncertainty of travel. 

ZV: "In an unfamiliar situation with strangers, I probably wouldn’t feel 
completely comfortable. It also depends on the environment—whether 

it's an online setting or a social one. Social situations are much more 
stressful for me compared to being thrown into an online environment or 

a program or work setting. Being in a crowd of people and having to 
network, like at fairs or events, is something I wouldn’t actively seek out, 

but I think I’d manage it if I had to." 
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95



For some, the workplace represents a zone of responsibility where they 
avoid risk to protect others, while personal life remains a space for 
exploration and fun. For others, the reverse is true—personal life is 
prioritized, and everything else is secondary.  

DH: "The first rule for me is health, so making sure I don’t hurt myself or 
face any health issues is my main priority (laughs). Other than that, I 

don’t really follow any specific rules... survival is the only rule I stick to—
nothing else matters beyond that." 

MH: "I’m definitely the type of person who prefers to think things through 
three times before acting impulsively. My spontaneity is more present in 
my personal life, but in my professional life, which I currently view as a 

short-term business where maximum profit is the goal, I’m quite 
cautious." 

MD: "In my professional life, I definitely account for uncertainty more 
and am able to endure it better. I analyze it more because these are 
problems that don’t affect me personally as much as personal life 

issues, where I need more certainty and stability." 

Although easier options may be less stimulating, they are often chosen 
when peace of mind is the priority, illustrating that simplicity, while 
sometimes boring, is often the preferred choice when the need for calm 
outweighs the desire for challenge. 

JZ: "Before you mentioned that I should forget whether I enjoy it or not, I 
wanted to say that it would depend on the situation. If I enjoyed it, I 

would definitely choose the complex world with more options. But if it 
were something I found repulsive, I would definitely opt for the simpler 

world with just option A or B. In that case, I’d prefer the simpler choice to 
avoid spending time on something I don’t find enjoyable. A 

straightforward choice with no need for deep thinking." 

MD: "I have a bit of a mix. I can’t really agree or disagree entirely. There 
are things where I like to hold onto certain certainties; I need some level 

of certainty. On the other hand, I couldn’t live in that certainty all the 
time. I need to explore, discover new information, and have new 

experiences." 

 
 
 

Ambiguity as a norm: A research report

96



Strategies 
In navigating ambiguity, participants demonstrated a range of strategies 
that reveal both their adaptability and the inherent limits of their 
tolerance. Their approach to ambiguity is largely pragmatic, rooted in a 
recognition that uncertainty is an inevitable part of modern life. Rather 
than perceiving ambiguous situations as threats, they often view them as 
opportunities—spaces for freedom, exploration, and creative problem-
solving. This attitude reflects a broader cultural shift where ambiguity is 
not just tolerated but embraced as a norm, especially in a world where 
complexity and unpredictability are ever-present. The strategies can be 
summarized as follows: knowledge/information, intuition/chance, and 
mental peace. 

VF: "Today, it doesn't matter so much what a person immediately 
knows, but rather how capable they are of finding that information. I 

believe everything is available; it's just that people are often too lazy to 
look it up. So, I try to gather as much information as possible about the 

options to help me make a choice." 

Perhaps somewhat surprisingly, the participants mentioned intuition and 
chance as ways to handle situations in ambiguity, seeing them not as a 
form of risk-taking but as a way to engage other cognitive faculties 
beyond pure logic. This intuitive approach allows them to navigate 
uncertainty without feeling overwhelmed, leveraging their instincts to 
make decisions in situations where information is incomplete or 
contradictory.  

MH: "First impressions and intuition—I’m not sure if everyone links 
these concepts together, but I do rely on both. Experience shows that in 
uncertain situations, using first impressions and intuition often leads to 

decisions that are less likely to be regretted." 

Chance is an inevitable part of life, something that must be accounted 
for. In fact, chance can be seen as a form of certainty—the only sure thing 
in an uncertain world. Embracing chance as a factor in decision-making 
acknowledges the inherent unpredictability of life, and instead of 
resisting it, individuals can use it as a tool for navigating ambiguity. 

DH: "When it comes to important decisions, I want to gather as much 
information as possible and hear different perspectives before making a 
choice. For more routine decisions, I don't need as much information—I 

just try it and take the risk." 
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However, when ambiguity becomes too complex or challenging, and 
when the stakes are high, participants tend to revert to simpler, more 
straightforward solutions. This retreat to simplicity often arises from a 
desire for mental peace rather than certainty. In situations where effort 
outweighs the perceived benefits of complexity, they prefer clear, 
decisive actions that allow them to focus on other priorities. 

ZV: "It always depends on how significant the potential loss is. When the 
risk is small, I'm okay with taking a bit of a gamble, like adding 

something extra in an offline experiment setting and taking a chance. 
However, the greater the potential loss, the more cautious I become. I 

even used to follow a list where, if the expense was over a thousand 
crowns, I would wait a week before making the purchase. This approach 

helped me to deal with such decisions rationally and avoid impulsive 
buys that could later affect me." 

Strategy is rooted in knowledge, practice, and experience, and it plays a 
crucial role in reducing ambiguity. Effective strategies are not about 
eliminating ambiguity entirely but about managing it in a way that aligns 
with personal goals and comfort levels. Coping with ambiguity often 
involves setting intentions and trusting in the process—spreading one’s 
wings, taking a deep breath, and embracing the uncertainty with a touch 
of fatalism. Each person must navigate their limits individually, 
establishing personal boundaries that reflect their unique thresholds for 
ambiguity. Ultimately, the strategies for coping with ambiguity among 
participants reflect a delicate balance between embracing uncertainty 
and recognizing the need for boundaries. They differentiate between 
situations where ambiguity can be harnessed for creativity and growth, 
and those where it must be managed to avoid potential pitfalls. Their 
approach is fluid, adapting to the context and the stakes involved, 
illustrating a sophisticated understanding of ambiguity as both a 
challenge and a resource. 
 
Limits 
The limits of ambiguity tolerance among our participants are influenced 
by both external conditions and personal characteristics. While they 
generally exhibit a high tolerance for ambiguity, several boundaries exist. 
When ambiguity threatens their sense of ontological security—such as in 
life-or-death situations or when they are responsible for others—their 
tolerance diminishes, and they prefer clearer, more defined choices. In 
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these moments, the desire for stability and certainty outweighs their 
usual openness to ambiguity. 

KJ: "I'm always aiming towards new things and constantly creating, but I 
also occasionally need some certainty and anchors." 

Additionally, participants distinguish between contexts where ambiguity 
is welcome, such as in creative or non-critical situations, and those 
where it becomes overwhelming or undesirable. They tend to embrace 
ambiguity as a source of freedom, exploration, and innovation in their 
personal lives but often seek more clarity and simplicity in professional 
or high-stakes environments. Their tolerance also fluctuates depending 
on their level of knowledge and experience; ambiguity becomes more 
manageable and less threatening when they feel confident and informed. 
In essence, while our participants are generally comfortable with 
ambiguity, their tolerance is not limitless. It is shaped by the context in 
which they encounter ambiguity, the stakes involved, and their own level 
of preparedness and responsibility. 
 
Discussion  
This research challenges the conventional view that humans inherently 
avoid ambiguity, instead suggesting that ambiguity, when encountered 
regularly, becomes a normative context for decision-making. By bridging 
mathematical and psychological perspectives, this study provides a 
richer understanding of how individuals navigate ambiguity in both 
experimental and real-life contexts. 
Traditional theories and literature on ambiguity primarily focus on 
internal factors—such as the personal characteristics of decision-
makers—and the specific types of situations in which decisions are 
made, particularly the level of ambiguity inherent in those situations. This 
approach assumes that ambiguity is a situational variable and that 
individual responses to it are influenced by personal traits and the 
immediate context of decision-making. 
However, when ambiguity transcends individual situations and becomes 
a pervasive aspect of the human condition, it transforms from an 
exception into the norm. In a world increasingly characterized by rapid 
technological changes, global uncertainties, and hyperproduction of 
information, ambiguity is no longer an isolated phenomenon but a regular 
feature of everyday life. This shift necessitates a broader perspective on 
ambiguity. When ambiguity becomes a general condition of existence, it 
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is essential to include this broader context in studies of ambiguity 
tolerance. This means recognizing that ambiguity is not merely an 
attribute of specific situations but a fundamental aspect of the 
environment in which individuals not only decide and operate, but into 
which people are born, in which they learn, develop, and socialize.  
We propose considering not only personal and situational aspects but 
also the phenomenological dimension of ambiguity in terms of the 
degree of ambiguity in the lived environment and being in the world. This 
approach requires multidisciplinary collaboration and the sharing of 
insights from specialized discourse with other scientific perspectives 
and fields. However, it is essential for understanding the complexity of 
contemporary life and our “not-human-only” decision-making within it. 
Indeed, our participants demonstrate a tolerance for ambiguity. The 
following lines outline potential explanations, which should also be 
considered as suggestions for further research. 
The contemporary world is characterized by rapid change, complexity, 
and frequent disruptions, which means that ambiguity has become a 
common and often expected part of life. The availability of vast amounts 
of information and diverse perspectives through digital media might lead 
to an increased familiarity with and tolerance for ambiguity. Being 
accustomed to navigating complex and sometimes conflicting 
information could help participants manage ambiguity more effectively. 
Societal shifts towards valuing adaptability and innovation may 
encourage individuals to embrace ambiguity as a space for creativity and 
growth rather than a threat. This cultural orientation can make ambiguity 
seem more manageable and even desirable. Generation Z has grown up 
in a highly connected, digital environment, which has exposed them to 
diverse viewpoints and continuous information flow. This constant 
exposure may contribute to a higher comfort level with ambiguity, as they 
are used to handling varied and often incomplete information. This 
generation’s familiarity with rapid technological and social changes may 
foster a more positive attitude towards ambiguity, seeing it as a norm 
rather than an exception.  
It is time to examine the phenomenon of ambiguity and decision-making 
from different perspectives, as illustrated by the following statement of 
our participant:  

JZ: "It was actually something we discussed today with a professor who 
was puzzled by some participants and kept asking where the rationality 
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was, noting that they couldn’t win the game. I told him, 'Professor, it’s 
not about winning for them; you need to look at it differently...'" 
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Abstract

Linear programming is concerned with optimizing a linear function over
the set of solutions of a system of linear inequalities, or a system of linear
equations and inequalities.

The founders of linear programming are often regarded as George B.
Dantzig and John Von Neumann. However, the history of linear programming
dates back at least as far as to Josephs Fourier’s works on linear inequalities
in the early 1820’s, when Fourier invented an elimination method for solving
systems of linear inequalities, formulated the first linear programming prob-
lem as a problem of solving a system of linear inequalities, and devised a
procedure for solving linear programming problems that can be considered
as a prototype of Dantzig’s simplex algorithm developed in the second half
of 1940’s.

This paper is a preliminary (very preliminary and very subjective) brief
overview of the development of linear programming and closely related fields
from Fourier’s initial formulation to the present, including a brief discussion
of current open problems.

1 Introduction

Let us start with giving two quotes from the Carathéodory paper The Beginning of
Research in the Calculus of Variations presented on Aug. 31, 1936, at the meeting
of the Mathematical Association of America [1]. This can serve as our motto.

”I will be glad if I have succeeded in impressing the idea that it is
not only pleasant and entertaining to read at times the works of the old
mathematical authors, but that this may occasionally be of use for the
actual advancement of science.”

”It may happen that the work of most celebrated men may be over-
looked. If their ideas are too far in advance of their time, and if the
general public is not prepared to accept them, these ideas may sleep for
centuries on the shelves of our libraries.”
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Developing of linear programming as a modern formal mathematical discipline
started shortly after World War II in the late 1940’s and the beginning of 1950’s.
The very term ”linear programming” was used for the first time by G. B. Dantzig
on the suggestion of T. J. Koopmans as a name for referring to optimizing a linear
function over the set of solutions of a system of linear inequalities, or a system
of linear equations and inequalities. In ”Reminiscences about the origins of linear
programming” [2], Dantzig recalls:

When I had first analyzed the Air Force planning problem and saw
that it could be formulated as a system of linear inequalities, I called
my first paper: Programming in a Linear Structure. In the summer
of 1948, Koopmans and I visited the RAND Corporation. One day we
took a walk near the Santa Monica beach. Koopmans said: ”Why not
shorten Programming in a Linear Structure to Linear Programming?”.
I replied: ”That’s it! From now on that will be its name.”

The problem of minimizing (or maximizing) a linear function of a finite number
of real (or rational) variables over the set of solutions of a finite system of linear
inequalities may seem trivial from the point of classical mathematics because if a
feasible solution exists, then finding an optimal solution only requires examining
the objective function at a finite number of points. Nevertheless, we see at present
that linear programming is one of the examples of mathematics that has a number
of difficult open problems and a wide range of useful applications, and it is now
studied and applied by hundreds of thousands of people throughout the world..

Moreover, it is known that the following classes of computational problems are
equivalent in the sense that there is an easy way to transform solutions of one to
solutions of the other:

� solving linear programming problems,

� solving systems of linear inequalities,

� solving matrix games in mixed strategies,

� finding the best linear approximation in l∞ space (The discrete Chebyshev
approximation problem),

� finding the best linear approximation in l1 space (The least absolute devia-
tions fit).

The histories of these areas are inextricably linked, even though it may seem that
they arose and developed independently.

1.1 Linear programming and linear inequalities

There are many ways to represent instances of the linear programming problems.
One of the typical formulation of a linear programming problem is the task to
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maximize a linear function

c1x1 + c2x2 + · · ·+ cnxn

of real variables x1, x2, . . . , xn on the set of nonnegative solutions of the system

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
· · ·
am1x1 + am2x2 + · · ·+ amnxn ≤ bm

Briefly:
Maximize cx subject to Ax ≤ b, x ≥ 0

Inextricably linked to this problem is the task (called the dual problem) of mini-
mizing the linear function

y1b1 + y2b2 + · · ·+ ymbm

of real variables y1, y2, . . . , yn on the set of nonnegative solutions of the system

y1a11 + y2a21 + · · ·+ ymam1 ≥ c1
y1a12 + y2a22 + · · ·+ ymam2 ≥ c2
· · ·
y1a1n + y2a2n + · · ·+ ymamn ≥ cn

Briefly:
Minimize yb subject to yA ≥ c, y ≥ 0

Another typical formulation is the maximization of a linear function

c1x1 + c2x2 + · · ·+ cnxn

on the set of nonnegative solutions of the system

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2
· · ·
am1x1 + am2x2 + · · ·+ amnxn = bm

Briefly:
Maximize cx subject to Ax = b, x ≥ 0

Similarly, the dual problem to this problem is the task of minimizing the linear
function

y1b1 + y2b2 + · · ·+ ymbm
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on the set of solutions of the system

y1a11 + y2a21 + · · ·+ ymam1 ≥ c1
y1a12 + y2a22 + · · ·+ ymam2 ≥ c2
· · ·
y1a1n + y2a2n + · · ·+ ymamn ≥ cn

Briefly:

minimize yb subject to yA ≥ c
All these linear programming problems are mutually equivalent in the sense

that there is an easy way how to transform solutions of one to solutions of the
other and vice versa.

Von Neumann shown [3] that the solving the problem

maximize cx subject to Ax ≤ b

can be reformulated into a solution problem of the system linear inequalities

Ax ≤ b, x ≥ 0, yA ≥ c, y ≥ 0, cx ≥ yb.

This led directly into the development of duality and existence theorems of linear
programming by Gale, Kuhn and Tucker [4], and realization that optimization
problems of linear programming and solution problems of systems linear inequalities
are equivalent both theoretically and computationally.

1.2 Linear programming and matrix games

A matrix game is given by a real matrix with m rows and n columns

C1 C2 · · · Cn

R1 a11 a12 · · · a1n
R2 a21 a22 · · · a2n
...

...
...

...
Rm am1 am2 · · · amn

the rules of the game and the concept of solutions, . . .
Entry aij is the payoff to player R when R uses pure strategy Ri and player C

uses pure strategy Cj .
If players use mixed strategies p = (p1, p2, . . . , pm) and q = (q1, q2, . . . , qn), then

the expected payoff of player R is given by the sum

E(p, q) =

m∑

i=1

n∑

j=1

aijpiqj
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and the expected payoff of player C is −E(p, q). Solutions are pairs (p∗, q∗) such
that, for all (p, q),

E(p, q∗) ≤ E(p∗, q∗) and E(p∗, q∗) ≤ E(p∗, q).

Player C is interested in finding nonnegative values of q1, q2, . . . , qn that mini-
mize function

0q1 + 0q2 + · · ·+ 0qn + 1v

subject to
q1 + q2 + · · ·+ qn = 1

and
a11q1+ a12q2+ · · · +a1nqn − v ≤ 0
a21q1+ a22q2+ · · · +a2nqn − v ≤ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1q1+am2q2+· · ·+amnqn − v ≤ 0

Player R is interested in finding nonnegative values of p1, p2, . . . , pm that min-
imize function

0p1 + 0p2 + · · ·+ 0pm + 1v

subject to
p1 + p2 + · · ·+ pm = 1

and
a11p1+a21p2+· · ·+am1pm − v ≥ 0
a12p1+a22p2+· · ·+am2pm − v ≥ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a1np1+a2np2+· · ·+amnpm − v ≥ 0

Note that these two linear programming problems are mutually dual and that
it is known nowadays that the theory of linear programming is equivalent to game
theory in the sense that:

� The solution (in mixed strategies) of any matrix game can be obtained by
solving a suitably chosen linear programming problem and vice versa.

� The basic theorems of the theory of matrix games and linear programming
(the existence of solutions in mixed strategies and the duality of linear pro-
gramming) follow from each other.

1.3 Linear Programming and l∞ and l1 linear approxima-
tions

An l∞ linear approximation problem (a discrete Chebyshev approximation prob-
lem) is the problem of minimization of the function

max(|f1|, |f2|, . . . , |fm|)
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where f1, f2, . . . , fm are affine functions of n real variables.
This is reducible (in fact equivalent) to solving the linear programming problem:

minimize t subject to − t ≤ fi ≤ t (i = 1, . . . ,m).

An l1 linear approximation problem (least-absolute deviations fit) is the prob-
lem of minimization of the function

m∑

i=1

|fi|,

where f1, f2, . . . , fm are affine functions of n real variables.
This is reducible (in fact equivalent) to solving the linear programming problem:

minimize

m∑

i=1

ti subject to − ti ≤ fi ≤ ti (i = 1, . . . ,m).

2 From Fourier to Khachian and Karmarkar

The founders of linear programming as a modern mathematical discipline are often
regarded as George B. Dantzig, who proposed the simplex algorithm, and John von
Neumann, who laid a basis for the duality theory.

As almost always, there are predecessors. Now we know that the history of
linear programming dates back at least as far as to Josephs Fourier’s works on
linear inequalities in the early 1820’s, when Fourier invented an elimination method
for solving systems of linear inequalities, formulated the first linear programming
problem as a problem of optimizing over the solution set of a system of linear
inequalities, and devised a procedure for solving linear programming problems that
can be considered as a prototype of Dantzig’s simplex algorithm.

In this section, we give a brief overview of the development of linear program-
ming and closely related fields from Fourier’s initial formulation to the Khachiyan
and Karmarkar results on the computational complexity of linear programming.

On this journey, we will orientate ourselves by the following subjectively se-
lected milestones: Fourier (1820’s), Farkas (1890’s), Minkowski (1890’s), Dines
(1919), Motzkin (1936), Kantorovich (1939), Dantzig (1947), von Neumann (1948),
Khachian (1979), and Karmarkar (1984).

2.1 Before World War II

2.1.1 Fourier

Jean Baptiste Joseph Fourier (1768-1830) was born 21 years before the French Rev-
olution. The events of those unstable and violent times made his life so fascinating
that could serve as a script for an exciting movie. There are a number of books

Milan Vlach

107



and essays on Fourier life, but we refer to a recent essay by Bernard Maurey [5],
which contains enough material and references for interested readers.

Regarding mathematics and physics, Fourier is largely associated with the
mathematical analysis of heat diffusion, methods of solving partial differential equa-
tions by means of Fourier series, Fourier integrals, and Fourier principle of virtual
velocity. But his interests in mathematics included other fields also, and one of his
achievements related to linear programming was to invent an elimination method
for linear inequalities and the principle underlying Dantzig’s simplex algorithm.

Fourier never explained how he came to be interested in this problem. However,
it is possible to trace a few possible influences. He was an important member of
Bonaparte’s Egyptian campaign of 1798-1801, and organized the calculation of the
heights of the pyramids at Memphis by the separate measurement of the height of
each of their steps. This work might brought him to the problem of minimizing
the errors in results deduced from a large number of measurements.

Fourier did not complete his work on inequalities before he died but he did
publish a short paper Solution d’une question particuliére du calcule des inégalités
(1826) and he inserted two summaries on the subject in l’Histoire de l’Académie
Royale des Sciences, one for the year 1823, and the other for 1824. From these
publications it is clear that Fourier had a clear geometrical understanding of the
solution set to a system of linear inequalities in three variables as a polyhedron in
three dimensional space.

We consider a set of linear functions in the variables x, y, z, . . . , the
numerical values which enter these functions being given. [. . . ] Let us
suppose that we assign to x, y, z, . . . some numerical values and that,
after substituting these in each function, we compute the value of the
functions, which may be positive or negative.

We will regard this result as an error or deviation, and we will take its
absolute value as a measure of error. This done we ask which numerical
values X,Y, Z, . . . can be assigned to x, y, z, . . . in order to minimize
the maximum error. [. . . ] It should be stressed that this method can be
applied to systems of an arbitrary number of variables. [. . . ]

We will use an example in order to describe the method of minimizing
the largest absolute error. x and y are the coordinates of some point
in the horizontal plane. The vertical coordinate z is used to measure
the values of the given linear functions of x and y, and each inequality
is represented by a plane in three dimensions whose position is given.
This system of planes defines a vase which they delimit or envelop.
The shape of this extreme vase is that of a polyhedron which is convex
towards the horizontal plane. The lowest point of this vase or polyhedron
has coordinates X,Y, Z which are the subject of the enquiry, that is, Z
is the least possible value for the largest error and X and Y are the
values of x and y which give the absolute minimum. To locate this
lowest point of the vase quickly, one erects a vertical line at any point
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of the horizontal plane, for example at the origin, and determines its
intersection with the highest plane.

Let m1 be the point of intersection of this line with the most extreme
plane. One descends this plane from m1 to the point m2 on an edge
of the polyhedron, and following this edge, one descends to m3, the
common summit of three extreme planes. On leaving this summit one
continues to descend along a second edge to a new summit m4, and one
continues with the same procedure at each stage choosing that of the
two edges which leads to a lower summit. One thus arrives very quickly
at the lowest point of the polyhedron. This [geometrical] construction
represents the numerical operations which the analytical rule prescribes;
it clearly reveals the course of the method, which consists of passing from
one extreme function to another and diminishes little by little the value
of the largest error.

From this it is clear that (in the present language) Fourier describes the linear
programming problem

Minimize 0x+ 0y + 1z subject to

aix+ biy + ci − z ≤ 0, −aix− biy − ci − z ≤ 0, i = 1, 2, 3, . . . ,

whose solution minimizes the maximum absolute error

max
i
|aix+ bix+ ci|.

It is worth mentioning that de la Vallée Poussin gives an algebraic analogue to
Fourier’s method in 1911, see [6] and [7], where it is shown that the de la Vallée
Poussin procedure for the solution of linear minimax estimation problems can be
adjusted for solving a class of linear programming problems.

In the same summary, Fourier proposed a procedure for solving systems of linear
inequalities based on the elimination of variables. It can easily be used to solve
linear programming problems as well, but (without suitable modifications) it is not
advisable to use it because it could lead to a significant growth of inequalities in
each elimination step.

Fourier’s elimination procedure was rediscovered, rediscovered, and rediscov-
ered, recall the Carathéodory opening quote. For a long time it was called Motzkin’s
method of elimination. Now we most often encounter the name Fourier-Motzkin
method or Fourier-Dines-Motzkin method.

2.1.2 Farkas

Julius Farkas (1847-1930), a Hungarian theoretical physicist, focused on creating
the mathematical basis of the theory of linear inequalities at the end of the 19th
century. Farkas’ lemma, published at the beginning of the 20th century, did not
find real recognition until the 1930s in the works of Minkowski, and its significant
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applications had to wait until the development of linear programming theory after
World War II.

It is worth mentioning that Farkas’ interest in the theory of linear inequalities
was originally motivated by Fourier’s results on the equilibrium of systems of mass
points in analytical mechanics. Originally Farkas viewed linear inequalities as a
theoretical foundation for the Fourier inequality form of the principle of virtual
power: ”A system of points is in equilibrium precisely when the virtual work of
forces is not positive”.

The development of Farkas’ interest from the original motivation to an abstract
theory of linear inequalities can be clearly seen in the titles of the following sequence
of publications:

� (1897) Die Algebraischen Grundlagen der Anwendungen des Fourier’schen
Principes in der Mechanik.

� (1899) Die Algebraische Grundlage der Anwendungen des Mechanischen Prin-
cips von Fourier.

� (1901) Theorie der einfachen Ungleichungen.

In the introduction to his 1901 paper Farkas wrote:

Während der letzten sieben Jahre habe ich mich wiederholt mit Ungle-
ichungen beschäftigt und aus dem Gesichtspunkte der Anwendungen
eine vorläufig abgeschlossene Theorie derselben zu Stande gebracht.
Meine vereinzelt erschienenen Publicationen sind aber nicht geeignet,
ein klares und zusammenhängendes Bild des Ganzen zu liefern, und
davon abgesehen, ist ihre Zugänglichkeit auch beschränkt. Darum nehme
ich mir die Freiheit, hier eine systematische Darstellung, nebs einigen
Ergänzungen, dieser Arbeiten vorzulegen

(During the last seven years I have worked repeatedly on inequalities and from the
point of view of applications I have developed a provisional self-contained theory.
However my scattered publications are not suited to give a clear and coherent pic-
ture of the whole, and apart from that their accessibility are limited. Therefore I
here take the liberty to present a systematic presentation of these works and some
additions to them.)

2.1.3 Minkowski

Hermann Minkowski (1864–1909) is primarily known for his work on number theory
and mathematical physics. Minkowski developed his theory of linear inequalities in
connection with investigations in pure mathematics. His goal was to obtain results
in number theory. Linear inequalities appeared as a natural element in Minkowski’s
new geometry in the algebraic expression of supporting hyperplanes. Minkowski’s
geometrical intuition led him to characterize different kind of solutions to systems
of linear inequalities and the basic notion in his theory play the extreme solutions.
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2.1.4 Dines

The work of Lloyd Lyne Dines (1885–1964) on linear inequalities was a part of this
tendency towards generalizations, first as a generalization from systems of linear
equations to systems of linear inequalities and second, as a generalization from
finitely many unknowns to the continuum. Dines developed his theory not because
it was the theoretical foundation for other kinds of problems or because he needed
it as a tool for investigations in other branches of mathematics but because he
found an interest in linear inequalities for their own sake. He seems to have been
motivated by the lack of a theory for such systems, which he compared with the
matrix theory of systems of linear equations.

2.1.5 Motzkin

Theodore Motzkin (1908-1970) was born in Germany and studied in Göttingen and
Berlin. His thesis [9] Beitraege zur Theorie der Linearen Ungleichungen, published
in 1936 is important historically for at least two reasons: On the one hand, it
summarized the whole development of a theory of systems of linear inequalities up
to 1935. On the other hand, it became an important inspiration for the development
of the theory of linear programming that took place after the second world war.

The reader interested only in the theory of linear inequalities finds in [8] an ex-
cellent detailed description of contributions of Farkas, Minkowski, Dines, Motzkin.

2.1.6 Kantorovich

Leonid Vitalievich Kantorovich (1912-1986), the father of linear programming in
the USSR, is well known in the mathematical community not so for his achieve-
ments in linear programming but mainly for his work in functional analysis, ap-
proximation theory, and operator theory. The classic textbook by Kantorovich and
Akilov is still on the desk of many theoretical and applied scientists.

Kantorovich’s booklet [11] Mathematical Methods in the Organization and Plan-
ning of Production which appeared in 1939 is a convincing evidence of the birth of
linear programming. In the Editor’s Foreword, A. R. Marchenko, writes:

This work is interesting from a purely mathematical point of view since
it presents an original method, going beyond the limits of classical
mathematical analysis, for solving extremal problems. On the other
hand, this work also provides an application of mathematical methods
to questions of organizing production which merits the serious attention
of workers in different branches of industry.

Here Kantorovich gave (in current terminology) a dual-simplex-type method for
solving two kinds of transportation problems, one of which is equivalent to the
general linear programming problem.
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During the Second World War Kantorovich completed the first version of his
book [12] The Best Use of Economic Resources, which led to the Nobel Prize
awarded to him and Tjalling C. Koopmans in 1975.

2.2 After World Word II

A similar line of research on inequality constrained optimization problems took
place in the USA independently of the work of the Russians during the Second
World War.

2.2.1 Von Neumann

We have already mentioned in the Introduction that von Neumann was at the birth
of the theory of linear programming duality by formulating the dual problem to
the problem of the form

maximize cx subject to Ax ≤ b, x ≥ 0

and claiming that the original problem is equivalent to a solution problem of a
system of linear inequalities. Harold W. Kuhn reports in [?]:

After G. B. Dantzig visited John von Neumann in Princeton in May,
1948, von Neumann circulated privately a short typewritten note that
was published fifteen years later [3]. This note formulated the dual for
a linear program and gave a flawed proof of the equality of optimal
objective values based on an invalid inhomogeneous form of Farkas’
Lemma. (This error is corrected in the published version [3].)

Von Neumann was also among the first who observed that, for any matrix game,
there is a dual pair of feasible linear programming problems whose saddle points
yield equilibria of the game, which makes it possible to show that solving linear
programming problems is equivalent to solving matrix games (in mixed strategies).
A detailed description of this connection is carefully described in an essay by Kuhn
and Tucker, see [10].

2.2.2 Dantzig

G, B. Dantzig (1914-2005), like Kantorovich, viewed linear programming not just
as a qualitative tool in the analysis of economic phenomena, but also as a method
that could be used to compute actual answers to concrete real world optimization
problems.

One of Dantzig’s key contribution to linear programming is the development
of the simplex algorithm. This algorithm and its modifications are based on local
improvements technique by pivoting between basic feasible solutions. Dantzig’s
original formulation proposed in 1947 uses a natural pivoting rule. Namely, in each
step, the variable with the most negative reduced cost is chosen to enter the basis.
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There are several research directions that arise from the behavior of the algo-
rithm and the simplex algorithm and his various modifications remain an important
computational tool in linear and integer programming.

The story about the development of the simplex algorithm and comments about
its historical significance are nicely captured by Dantzig himself in [14].

2.2.3 Khachiyan

The ellipsoid method was originally developed by Yudin and Nemirovski (1976)
and Shor (1977) for the solution of convex function minimization problems. The
method can be considered also as modification of the ”gravity center method”
proposed in 1965 by A. Ju. Levin (Soviet Mat. Dokl. 6, 286-290), or a special
representative of methods with space dilatation in the direction of the subgradient.

The method become famous when Khachiyan (1979, 1980) used it to obtain a
weakly polynomial-time algorithm for linear programming. E. Lawler remembers
in the paper [15] ”The Great Mathematical Sputnik of 1979”:

In January 1979, Rainer Burkard brought the reprint of a Doklady paper
to Oberwolfach. The author, somebody named Khachian, purported to
have a polynomial-time algorithm for solving linear programming prob-
lems. The next week in Amsterdam, sitting at the elbow of Milan Vlach,
I scribbled out a translation. I sent this to a long list of people, and
before too long, Peter Gács and László Lovász had supplied Khachian’s
missing proofs and verified his results.

For further details, we refer to the following papers:

� Khachiyan (1979), A polynomial algorithm in linear programming, Doklady
A. Nauk SSSR, 244, 1093-1096.

� Khachiyan (1980), A polynomial algorithms in linear programming, Zhurnal
Vychislitelnoi Matematiki i Matematicheskoi Fiziki 20, 51-58.

� Gács and Lovász (1981), Khachiyan’s algorithm for linear programming,
Mathematical Programming Study 14, 61-68.

2.2.4 Karmarkar

The idea of moving through the interior of the feasible region goes back at least to
Frisch in 1955 who proposed using a logarithmic barrier function.

The modern version of these methods is due to Karmarkar, who established the
polynomial-time boundedness of the projective method in 1984.

In fact, the affine scaling method of Karmarkar had in fact been considered
already by Dikin, a student of Kantorovich, who proposed the basic affine scaling
algorithm in the Soviet Mathematics Doklady in 1967, and published a proof of
convergence in Upravlyaemye Sistemi in 1974.
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3 Open problems

Most of the unsolved problems in the field of linear programming are concened
with the computational complexity. For example:

� How fast is the Simplex Algorithm? Is it a (weakly) polynomial-time method?

� Similarly for other deterministic pivoting strategies.

� Is there a strongly polynomial method for LP?

� Polynomial Hirsh conjecture: The diameter of the graph of a d-polytope with
m facets is bounded above by a polynomial in d and m.

At the end of the last century, V. I. Arnold, on behalf of the International
Mathematical Union, asked a number of mathematicians to describe important
yet unsolved mathematical problems for research in the coming century. Ameri-
can mathematician S. Smale proposed 18 problems for the 21st century [16]. The
ninth problem concerns linear programming. Namely: Is there a polynomial algo-
rithm (given by a real number machine) that decides whether the system of linear
inequalities Ax ≥ b has a solution?
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Abstract

Potential factors such as worker errors, variations in operating times, parts
shortages, and machine failures can impact the scheduled delivery dates of
individual production stages. Delays in consecutive stages may subsequently
defer overall manufacturing production. This research proposes optimizing
worker assignments to meet product delivery deadlines and minimize the
total expected production cost. By examining a parallel production line, this
research addresses how to optimally allocate workers across various stages to
reduce costs when each production line contains a different number of stages.
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1 Introduction

In the field of production management, addressing issues related to production
scheduling and line balancing is crucial for enhancing productivity, reducing pro-
duction costs, and meeting delivery deadlines. In a serial production line operating
under uncertain conditions, the performance and efficiency of a given period are
often influenced not only by the activities within that period but also by the risks
encountered in preceding periods. Taking a standard serial production line as an
example, the ability of a specific stage (or period) to meet its delivery deadline
depends on the performance of the previous stage (or period). This scenario is
referred to as the restricted-cycle multiple production periods problem, where each
cycle’s success is contingent on the prior cycle’s results.

Despite the assembly line’s extensive use over several decades, it continues to
offer benefits in reducing operating costs and production time. However, the relia-
bility of machines on the assembly line, despite technological advancements, cannot
fully compensate for human error. Mistakes or failures by workers are inevitable
and can lead to delays in the entire production stage. The variability in work-
ers’ abilities means that the time taken for the same task differs from person to
person. Particularly, new recruits, who are less skilled, are more likely to cause
delays. Therefore, appropriately managing these new recruits, referred to as un-
trained workers in this research, is crucial. The first mathematical formalization
of assembly line balancing is established by Salveson [3] 60 years ago, and during
the assembly line balancing problem develops, Yamamoto et al. [5] produce the
restricted-cycle model with multiple periods (RCMwMP). This model is set with
constraint condition (e.g., the target operating time), which is repeated in every
multiple period. If the constraint condition is broken through, an expected cost
(e.g., penalty cost) will be increased.

Over the decades, numerous efforts have been made to tackle the scheduling
issues in flow shops. The primary goal of such scheduling is often the minimization
of make span. Many researchers have devoted their efforts to developing heuristics
that provide optimal or near-optimal solutions for large-scale problems. Another
significant objective in scheduling is the minimization of total flow time, or the
sum of job completion times, which leads to reduce in-process inventory. Heuris-
tics aimed at achieving this objective have been developed by Liu et al. [1] and ,
Rajendran et al. [2].

The RCMwMP is categorized into reset and non-reset models based on whether
the constraint condition (target operating time) is reset. In the domain of the
reset model, Yamamoto et al. [4] proposed a recursive formula for calculating the
total expected cost and an algorithm for determining optimal assignments. This
algorithm employs the branch and bound method to achieve efficient solutions.

Zhao et al. [7] introduced an inline series production line and investigated the
optimal assignment problem for a configuration where the workforce is divided
into three groups consisting of 1, 2, and n− 3 members respectively. They further
proposed a locally optimal assignment strategy specifically for scenarios where an
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untrained worker is assigned in the first stage, which operates under a constant
operating time.

In a global production network characterized by diverse product varieties, small
batch sizes, and workers with varying production capacities, it is crucial to optimize
worker assignments for different target operating times. Zhao et al. [6] addressed
this by proposing a model for the optimal assignment of three groups of work-
ers, specifically in scenarios where the target operating time follows a continuous
distribution.

In previous research, we examined an inline series production line and explored
how reassigning untrained and well-trained workers could reduce costs. In this
research, we shift our focus to a parallel production line, which more closely mirrors
real-world production environments and can accommodate more complex scenarios.
We propose an optimal assignment problem for three groups of workers aimed at
minimizing expected cost, particularly when the number of stages varies across
each line.

This research is structured in the prescribed order as follows: Initially, the
reset model, a simplified version of RCMwMP, is introduced. Subsequently, the
propositions for optimal assignment are demonstrated through detailed derivation.
Finally, the optimization rules for assignments concerning scenarios with minority
untrained or well-trained workers are discussed through numerical analyses.

2 Model Explanation

In this section, we consider the reset model which is a simple model of the RCMwMP.

2.1 Reset Model of RCMwMP

The model is based on definitions provided by Zhao et al. [6], as illustrated in
Figure 1. This figure depicts the relationship between expected cost and operating
time for a single series production line within a parallel configuration.

• We consider a production line with m parallel lines of n stages.

• The production (we call it job in the following article) is processed in a
rotation of stage 1, stage 2, ..., stage n of each line and m productions will
be processed by all mn stages.

• Z is the cycle time of all of the stages, which can be also considered as a target
operating time. All of the jobs should be accomplished in current stage and
moved to next stage by time Z.

• However, because of the various operating abilities of workers, the actual
operating time may not always obey the limit of target operating time Z.
Idle and delay should be also concerned in this model. For 1 ≤ w ≤ n , the
operating time of stage w is donated by Tw.
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Figure 1: Description of Idle and Delay Cost in Reset Model of RCMwMP

In this model, a regular operating cost Ct (> 0) per unit time will permanently
occur during a target operating time Z, regardless whether it is idle or delay. It is
for the reason that although the job is accomplished prematurely in current stage,
the next stage may be occupied by another job. The job must wait for its start.
As a result, an idle cost per unit time, CS (≥ 0), arises. On the other hand, if
the operating time exceeds Z, it is assumed that delays in process time can be
compensated by implementing overtime work or deploying spare workers at this
stage. Consequently, overtime or additional resources will be required to meet the
target operating time Z.

Thus, a delay cost per unit time, C
(h)
P (> 0) , arises (that is why we call the

model a “Reset model”). As a summary of above, we suppose the following costs:

• The operating cost per unit time, Ct (> 0), for the target operating time
limit occurs in each stage.

• When Tw < Z, the idle cost per unit time, CS (≥ 0) occurs.

• When Tw > Z, the delay cost per unit time, C
(h)
P (≥ 0), occurs in the stage

if delay occurs in consecutive h stages before its stage, for h = 1, 2, 3, ..., n.
If the delay continues for several stages, it can be considered that it will cost

more for recover the delay. It is supposed that C
(h)
P is increasing in h, which

can be expressed as 0 ≤ C
(1)
P ≤ C

(2)
P < · · · ≤ C

(n)
P .

2.2 The Assumption of Operating Abilities of Workers

This research aims to search the optimal assignment of workers for different operat-
ing abilities, so the reasonable assumption of the property of workers is particularly
important. The assumption is the following:
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• Only one worker can be assigned to each stage on each line, for a total of mn
workers. Each stage must be assigned with one worker.

• The operating time of workers is self-dependent. The operating ability is
decided by the property of worker own and is not influenced by the operating
status such as idle or delay.

• In this research, the workers are distinguished into three groups of workers
by the operating abilities, marking as A, B and C. Worker A (1 worker)
represents untrained worker whose operating ability is lower than others, C
(1 worker) represents well-trained worker and B (mn− 2 workers) represents
the general worker. In this research, we refer to both untrained and well-
trained workers collectively as “special workers”.

• ℓ represents the workers in a production each line. For ℓ = 1, 2, . . . ,m. These
workers have different probability of idle or delay. If the operating time of
worker is marked as Tℓ, where ℓ ∈ {A,B,C}.

– Pℓ: The probability of worker ℓ becoming idle,

– Qℓ: The probability of the worker ℓ becoming delayed,

– TSℓ: The expected idle time of the worker ℓ,

– TLℓ: The expected delay time of the worker ℓ.

Formally, we have

Pℓ = Pr{Tℓ ≤ Z},
Qℓ = Pr{Tℓ > Z},
TSℓ = E

[
(Z − Tℓ) · I(Tℓ ≤ Z)

]
,

TLℓ = E
[
(Tℓ − Z) · I(Tℓ > Z)

]
,

where I(O) is an index function and given as follows:

I(O) =

{
1 if O is true,

0 otherwise.

2.3 Optimal Assignment Problem under Reset Model

One of the most critical issues in this research is determining how to allocate
workers to stages to minimize the total expected cost. We refer to this issue as
the optimal assignment problem. To describe the optimal assignment problem for
parallel production lines, we define the following notations:

• By (i, j), we denote the j-th stage in the i-th line, where i = 1, 2, ...,m and
j = 1, 2, ..., n.
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• By Ω = {(i, j) | i = 1, 2, ...,m, j = 1, 2, ..., n}, we denote the set of all stages.

Let A,C ⊆ Ω satisfying A ∩C = ∅.

• By π(A,C), we denote an assignment in which workers A are assigned to
stages in the set A, workers C are assigned to stages in the set C, and
workers B are assigned in stages in the set Ω \ (A ∪C).

• By TC(p)(mn;π(A,C)), we denote the total expected cost of all mn stages
from stage 1 to stage mn of a parallel production line when special workers
are assigned the assignment π(A,C).

TC(p)(mn;π(A,C)) = mnCt + f (p)(mn;π(A,C)),

where f (p)(mn;π(A,C)) is the sum of total idle cost and total delays cost in
all mn stages from stage 1 to stage mn as a result of special workers being
assigned as specified in π(A,C).

By using these notations, the optimal assignment problem with multiple periods
becomes the problem of obtaining an assignment in the following equation:

TC(p)(mn;π(A∗,C∗)) = mnCt + min
A,C⊆Ω,A∩C=∅

f (p)(mn;π(A,C)).

In this research, we call π(A∗,C∗) the optimal assignment.

3 Preliminary Analysis in a Parallel Production
Line

In this research, we assume that three groups of workers based on their operating
abilities: one untrained worker A, one well-trained worker C and mn − 2 general
workers B. This section presents preliminary analysis results of the optimal as-
signment for configurations such as m = 2, n1 = 2, n2 = 3 (where the parallel
production line consists of two series lines, one with 2 stages and the other with 3
stages) and m = 2, n1 = 2, n2 = 4 (where one line has 2 stages and the other has
4 stages). We propose the optimal assignment propositions for these scenarios as
Proposition 1 and Proposition 2.

3.1 The Case of Two Series Lines, One Line has 2 Stages,
the other Line has 3 Stages

Here, the preliminary analysis results regarding the optimal assignment are de-
scribed for m = 2, n1 = 2, n2 = 3.

Proposition 1 Asumme that QA > QB > QC and TLB/QB > TLC/QC .
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1. If

C
(3)
P − C

(2)
P

C
(2)
P − C

(1)
P

<
(QA −QB) · (TLB − TLC)

(QB −QC) · TLB ·QB
− 1

QB
,

C
(3)
P − C

(2)
P

C
(2)
P − C

(1)
P

<
QA −QB

QB ·QB
,

C
(3)
P − C

(2)
P

C
(2)
P − C

(1)
P

>
QB −QC

QA ·QC −QB ·QB
,

Then the optimal assignment is π({(1, 1)}; {(1, 2)}).

2. If

C
(3)
P − C

(2)
P

C
(2)
P − C

(1)
P

>
(QA −QB) · (TLB − TLC)

(QB −QC) · TLB ·QB
− 1

QB
,

C
(3)
P − C

(2)
P

C
(2)
P − C

(1)
P

<
(QB −QC) · TLB

(TLB ·QC − TLC ·QB) ·QB
,

C
(3)
P − C

(2)
P

C
(2)
P − C

(1)
P

<
TLB − TLC

TLB ·QC
,

Then the optimal assignment is π({(1, 1)}; {(2, 2)}).

3. If

C
(3)
P − C

(2)
P

C
(2)
P − C

(1)
P

>
QA −QB

QB ·QB
,

C
(3)
P − C

(2)
P

C
(2)
P − C

(1)
P

>
(QB −QC) · TLB

(TLB ·QC − TLC ·QB) ·QB
,

C
(3)
P − C

(2)
P

C
(2)
P − C

(1)
P

>
TLB · (QA −QC) + TLC · (QB −QA)

TLB ·QA ·QC − TLA ·QB ·QB
,

Then the optimal assignment is π({(1, 1)}; {(2, 3)}).
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4. If

C
(3)
P − C

(2)
P

C
(2)
P − C

(1)
P

<
QB −QC

(QA ·QC −QB ·QB)
,

C
(3)
P − C

(2)
P

C
(2)
P − C

(1)
P

>
TLB − TLC

TLB ·QC
,

C
(3)
P − C

(2)
P

C
(2)
P − C

(1)
P

<
TLB · (QA −QC) + TLC · (QB −QA)

TLB ·QA ·QC − TLC ·QB ·QB
,

Then the optimal assignment is π({(2, 1)}; {(2, 2)}).

3.2 The Case of Two Series Lines, One Line has 2 Stages,
the other Line has 4 Stages

Here, the preliminary analysis results regarding the optimal assignment are de-
scribed for m = 2, n1 = 2, n2 = 4.

Proposition 2 Asumme that QA > QB > QC and TLB/QB > TLC/QC .

1. If

TLB − TLC

(QC −QB) · TLB
<

(C
(2)
P − C

(1)
P ) + (C

(3)
P − C

(2)
P ) ·QB + (C

(4)
P − C

(3)
P ) ·QB ·QB

(C
(2)
P − C

(1)
P ) · (QB −QA) + (C

(3)
P − C

(2)
P ) ·QB ·QB

,

QA −QB

QB ·QB
>

(C
(3)
P − C

(2)
P ) + (C

(4)
P − C

(3)
P ) ·QB

(C
(2)
P − C

(1)
P )

,

QB −QC

QA ·QC −QB ·QB
<

(C
(3)
P − C

(2)
P ) + (C

(4)
P − C

(3)
P ) ·QB

(C
(2)
P − C

(1)
P ) + (C

(3)
P − C

(2)
P ) ·QB

,

Then the optimal assignment is π({(1, 1)}; {(1, 2)}).
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2. If

TLB − TLC

(QC −QB) · TLB
>

(C
(2)
P − C

(1)
P ) + (C

(3)
P − C

(2)
P ) ·QB + (C

(4)
P − C

(3)
P ) ·QB ·QB

(C
(2)
P − C

(1)
P ) · (QB −QA) + (C

(3)
P − C

(2)
P ) ·QB ·QB

,

TLC ·QB − TLB ·QC >

(C
(2)
P − C

(1)
P ) · (QC −QB) · TLB + (C

(3)
P − C

(2)
P ) · (TLC − TLB) ·QB ·QB

(C
(3)
P − C

(2)
P ) ·QB + (C

(4)
P − C

(3)
P ) ·QB ·QB

,

TLB ·QA ·QC − TLC ·QB ·QB

QB −QA
>

(C
(2)
P − C

(1)
P ) · (TLC − TLB)− (C

(4)
P − C

(3)
P ) · TLB ·QB ·QC

C
(3)
P − C

(2)
P

Then the optimal assignment is π({(1, 1)}; {(2, 3)}).

3. If

QA −QB

QB ·QB
<

(C
(3)
P − C

(2)
P ) + (C

(4)
P − C

(3)
P ) ·QB

C
(2)
P − C

(1)
P

,

TLC ·QB − TLB ·QC <

(C
(2)
P − C

(1)
P ) · (QC −QB) · TLB + (C

(3)
P − C

(2)
P ) · (TLC − TLB) ·QB ·QB

(C
(3)
P − C

(2)
P ) ·QB + (C

(4)
P − C

(3)
P ) ·QB ·QB

,

(TLC ·QB ·QB − TLB ·QA ·QC)(C
(4)
P − C

(3)
P ) <

(
C

(1)
P ·QA − C

(2)
P (QA −QB)

)
· (TLC − TLB) + C

(2)
P · (QB −QC) · TLB +

(
(C

(3)
P − C

(2)
P ) ·QB − C

(1)
P

)
· (TLC ·QB − TLB ·QC) +

(C
(3)
P − C

(2)
P ) · (QB ·QB −QA ·QC) · TLB

Then the optimal assignment is π({(1, 1)}; {(2, 4)}).
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4. If

QB −QC

QA ·QC −QB ·QB
>

(C
(3)
P − C

(2)
P ) + (C

(4)
P − C

(3)
P ) ·QB

(C
(2)
P − C

(1)
P ) + (C

(3)
P − C

(2)
P ) ·QB

TLB ·QA ·QC − TLC ·QB ·QB

QB −QA
<

(C
(2)
P − C

(1)
P ) · (TLC − TLB) + (C

(4)
P − C

(3)
P ) · TLB ·QB ·QC

C
(3)
P − C

(2)
P

TLC ·QB − TLB ·QC >

(C
(2)
P − C

(1)
P ) · (QC −QB) · TLB + (C

(3)
P − C

(2)
P ) · (TLC − TLB) ·QB ·QB

(C
(3)
P − C

(2)
P ) ·QB + (C

(4)
P − C

(3)
P ) ·QB ·QB

,

(TLC ·QB ·QB − TLB ·QA ·QC)(C
(4)
P − C

(3)
P ) <

(
C

(1)
P ·QA − C

(2)
P (QA −QB)

)
· (TLC − TLB) + C

(2)
P · (QB −QC) · TLB +

(
(C

(3)
P − C

(2)
P ) ·QB − C

(1)
P

)
· (TLC ·QB − TLB ·QC) +

(C
(3)
P − C

(2)
P ) · (QB ·QB −QA ·QC) · TLB

Then the optimal assignment is π({(2, 1)}; {(2, 2)}).

4 Numerical Experiments

Note that the propositions mentioned previously hold for any operating time dis-
tribution. However, for numerical experiments, it is necessary to assume a specific
operating time distribution. In this case, we assume that the operating time of each
worker follows an exponential distribution. Throughout this section, we will refer
to fℓ(t) = µe−µℓt as the probability density function of worker ℓ’s operating time
for ℓ ∈ {A,B,C}. The following parameters are used in the numerical experiments:

• The Number of Stages: n1 = 2, n2 = 3, 4, 5.

• Delay Cost: C
(1)
P = 40, C

(2)
P = 50, C

(3)
P = 60, C

(4)
P = 70, C

(5)
P = 80.

• Target Operating Time: Z = 2.

• Idle Cost: CS = 20.

In this section, we describe the outcomes of numerical experiments conducted for
Propositions 1 and 2. These experiments involve varying the parameters µA and
µB , which represent the operating times of different worker groups. The results
demonstrate that the experimental findings align with the theoretical propositions
previously established, confirming their applicability and accuracy in modeling real-
world scenarios.
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Table 1: Optimal assignment for varying the operating ability µA of worker A
(µA = 0.1 ∼ 0.8)

µA µB µC n1 = 2, n2 = 3 n1 = 2, n2 = 4 n1 = 2, n2 = 5
0.1 0.9 1.0 AC,BBB AC,BBBB AC,BBBBB
0.2 0.9 1.0 AC,BBB AC,BBBB AC,BBBBB
0.3 0.9 1.0 AC,BBB AC,BBBB AC,BBBBB
0.4 0.9 1.0 AC,BBB AC,BBBB AC,BBBBB
0.5 0.9 1.0 BB,ACB BB,ACBB BB,ACBBB
0.6 0.9 1.0 BB,ACB BB,ACBB BB,ACBBB
0.7 0.9 1.0 BB,ACB BB,ACBB BB,ACBBB
0.8 0.9 1.0 BB,ACB BB,ACBB BB,ACBBB

Table 2: Optimal assignment for varying the operating ability µB of worker A
(µB = 0.2 ∼ 0.9)

µA µB µC n1 = 2, n2 = 3 n1 = 2, n2 = 4 n1 = 2, n2 = 5
0.1 0.2 1.0 BB,ACB BB,ACBB AB,BBCBB
0.1 0.3 1.0 BB,ACB BB,ACBB AB,BBCBB
0.1 0.4 1.0 BB,ACB BB,ACBB BB,ACBBB
0.1 0.5 1.0 BB,ACB BB,ACBB BB,ACBBB
0.1 0.6 1.0 BB,ACB BB,ACBB BB,ACBBB
0.1 0.7 1.0 BB,ACB BB,ACBB BB,ACBBB
0.1 0.8 1.0 AC,BBB AC,BBBB AC,BBBBB
0.1 0.9 1.0 AC,BBB AC,BBBB AC,BBBBB

Optimizing Worker Allocation for Enhanced Efficiency in Parallel Production Lines

126



5 Conclusion

In this research, we proposed an optimal assignment strategy aimed at minimizing
the total expected cost by utilizing a restricted-cycle model with multiple periods,
tailored to scenarios where the number of stages in each line varies. Additionally,
through numerical experimentation, we evaluated the performance of the optimal
assignment rule under conditions that deviate from those initially proposed, pro-
viding a broader perspective on the rule’s applicability and effectiveness.

As a future research, we propose an optimal assignment rule of parallel produc-
tion line with m lines and n stages.
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