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Abstract

This paper examines mutual conflict behavior between belief function structures
across different discernment frame sizes (Ω). Through experiments on Ω2 to Ω6, we
observe that as frame size increases, non-conflicting pairs and higher-order hidden
conflicts become exceedingly relatively rare despite of exponential grows of cardi-
nalities of their classes. The super-exponential growth of possible belief structures
complicates exhaustive analysis, leading us to employ random sampling. Our find-
ings reveal that cardinality of class of first-degree hidden conflicts (HC1) grows faster
than cardinality of non-conflicts as frame size increases, highlighting the challenges
and implications for applying belief function theory in complex decision-making sce-
narios.

1 Introduction
The theory of belief functions was developed to better express uncertainty in information,
extending beyond traditional methods such as second-order probability, which represents
the probability of a probability—or, more precisely, our confidence in the likelihood of a
single phenomenon.

In real life, we constantly deal with uncertainty. Consider, for instance, the weather
forecast many of us check on our smartphones. You may have noticed that different
websites or applications often provide varying predictions. These discrepancies arise from
the different models used and the data available to those models, resulting in different
sources of information that are typically inconsistent with one another. When faced with
this situation, how do we decide which prediction to trust? Instead of choosing just one,
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belief functions allow us to combine all available sources of information using rules such
as Dempster’s rule or its non-normalized version, often referred to as the Conjunctive
rule.

While combining conflicting information using these methods is possible, there are
well-known examples where such combinations lead to paradoxical or meaningless re-
sults. A famous example is the combination of medical diagnoses, such as cancer and
the flu, where conflicting evidence can produce highly counter-intuitive outcomes, such
as assigning an unreasonably high degree of belief to an almost impossible event. This
highlights the importance of quantifying the degree of inconsistency—often referred to as
the magnitude of conflict—between belief functions.

The simplest definition of conflict comes directly from the Conjunctive rule, where the
conflict is quantified by the probability mass assigned to the empty set by the combination
rule. The critical difference between the Conjunctive rule and Dempster’s rule lies in
how they handle this mass: the Conjunctive rule retains it in the empty set, whereas
Dempster’s rule proportionally redistributes it among all non-empty sets in the resulting
combination.

This definition of conflict is highly dependent on the structure of the belief functions
involved. The existence of conflict depends on the structure, and its magnitude is in-
fluenced by the size of the assigned probability masses. In this article, we focus on the
structures of belief functions and their impact on conflict. Specifically, we explore the
likelihood that two random structures will generate a conflict, the nature of higher-level
hidden conflicts, the numbers of conflicting and non-conflicting pairs, and the techni-
cal feasibility of examining these scenarios. These topics form the core of the following
discussion.

2 Basic Notions
This section will recall some basic notations needed in this paper.

Assume a finite frame of discernment Ω with elements denoted usually by ωi, i.e.,
{ω1, ω2, . . . , ωn} and their sets by capital letters. In the case of |Ω| = n, we will highlight
this fact using a subscript as Ωn. P(Ω) = {X|X ⊆ Ω} is a power-set of Ω. P(Ω) is often
denoted also by 2Ω, e.g., in Pichon et al. (2019).

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such that
∑

A⊆Ω m(A) =
1. The values of the bba are called basic belief masses (bbm). m(∅) = 0 is usually assumed.
We sometimes speak about m as of a mass function.

There are other equivalent representations of m: A belief function (BF) is a mapping
Bel : P(Ω) −→ [0, 1], Bel(A) =

∑
∅̸=X⊆A m(X). Because there is a unique correspon-

dence between m and corresponding Bel we often speak about m as of a belief function.
Let m be a belief function defined on Ω and A ⊆ Ω. If m(A) > 0 we say A is a focal

element of m. The set of focal elements is denoted by Fm (or simply F for short), and
we call it a structure of m. We say that a focal element X ∈ F is proper if X ̸= Ω. In the
case of mvac(Ω) = 1 we speak about the vacuous BF (VBF) and about a non-vacuous BF
otherwise. If all focal elements have a non-empty intersection, we speak about consistent
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BF. If focal elements are nested, we speak about consonant BF.
The (non-normalized) conjunctive rule of combination ∩⃝, see e.g. Smets (2005), is

defined by:
(m1 ∩⃝m2)(A) =

∑

X∩Y=A;X,Y⊆Ω

m1(X)m2(Y )

for any A ⊆ Ω. κ =
∑

X∩Y=∅;X,Y⊆Ω m1(X)m2(Y ) is usually considered to represent a
conflict of respective belief functions when κ > 0. By normalization of m12 = m1 ∩⃝m2

we obtain Dempster’s rule ⊕, see Shafer (1976). To simplify formulas, we often use
∩⃝3

1m = m ∩⃝m ∩⃝m, and also ∩⃝k
1(m1 ∩⃝m2) = (m1 ∩⃝m2) ∩⃝ . . . ∩⃝(m1 ∩⃝m2), where (m1 ∩⃝m2)

is repeated k-times.

3 Hidden conflict
Let us assume conjunctively non-conflicting belief functions m1 and m2, i.e., (m1 ∩⃝m2)(∅)
= m12(∅) = 0. In the case that there exists k ≥ 1 such that ( ∩⃝k+1

1 m12)(∅) > 0, then we
say that there is a hidden conflict of degree k between m1 and m2. Note that k is the
smallest with this property. We can formalize this in the following definition.

Definition 1 Assume two BFs m1 and m2 such that for some k>0 ( ∩⃝k
1(m1 ∩⃝m2))(∅) = 0.

If there further holds ( ∩⃝k+1
1 (m1 ∩⃝m2))(∅) > 0 we say that there is a conflict of BFs m1

and m2 hidden in the k-th degree (hidden conflict of k-th degree, abbreviated as HCk).
If there is already ( ∩⃝k+1

1 (m1 ∩⃝m2))(∅) = (m1 ∩⃝m2))(∅) > 0 for k = 0 then there is a
conflict of respective BFs which is not hidden or we can say that it is conflict hidden in
degree zero (HC0).

Arnaud Martin called ( ∩⃝k
1m)(∅) auto-conflict of of k-th order of m in Osswald and

Martin (2006). Thus conflict of m1 and m2 hidden in the k-th degree is auto-conflict of
m12 hidden in k-th degree, specially positive ak+1 of combined m12 = m1 ∩⃝m2 hidden
by zero ak(m12) (i.e., ak+1(m12) > 0 where ak(m12) = 0), see also our contribution in
CJS’17 Daniel and Kratochvíl (2017).

Hidden conflict and its degrees are extensions of the classic Shafer’s definition of
conflict. It is not an alternative definition or approach but a more detailed classification
of situations where m(∅) = 0.

This technical definition defines all degrees of hidden conflict using repeated combi-
nations1. However, the original observation of hidden conflict came from the analysis
of conflict Conf, defined in Daniel (2014), and its comparison with conjunctive conflict
in situations where Conf(m1,m2) > 0 while (m1 ∩⃝m2)(∅) = 0. For better insight into

1Repeated combination is only a technical tool here: we are interested only in m1, m2, and m12, not
in bbms of any repeated combination either of them, with the exceptipon of bbm assigned to empty set
by the non-normalized conjunctive rule ∩⃝, i.e., bbm which is normalized when Dempster’s rule is applied.
Regardles of this, considering two or more numerically same BFs does not mean anything about their
depenency, we can assume that both / all of them come from indepenent sources.
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this, we refer to the Introductory and Little Angel examples published in Daniel and
Kratochvíl (2020), for brief presentation of these examples see Appendix 1.

From a large amount of results about hidden conflicts and their degrees, we recall the
following principal theorem:

Theorem 1 Hidden conflict of non-vacuous BFs on Ωn, n > 1 is always of a degree less
or equal to n− 2; i.e., the condition

( ∩⃝n−1
1 (m1 ∩⃝m2))(∅) = 0 (1)

always means full non-conflictness of respective BFs, and no hidden conflict exists.

For more detail on the limitation of the degree of hidden conflicts in characteristic
situations, see Daniel and Kratochvíl (2020) and for comparison with related Pichon’s
approach, see Daniel and Kratochvíl (2022).

Analogously to degrees of hidden conflicts, degrees of non-conflictness were defined
in Daniel and Kratochvíl (2019). Analogously, to distinguishing internal conflict(s) of
individual BFs from mutual conflict between them, also internal hidden conflicts are
defined, and mutual hidden conflicts distinguished Daniel and Kratochvíl (2020), internal
hidden conflict was presented for the first time in CJS 2017 in Pardubice by Daniel and
Kratochvíl (2017) in fact. Considering this, a hidden conflict of two BFs is hidden internal
conflict of their combination.

Preparing the actual presentation of hidden conflict we have the following observed:
1. Consistent BFs have no internal conflict nor hidden internal conflict, i.e., their auto-
conflict any order is always equal to zero.
2. Non-consistent BFs always have some internal conflict, either hidden or non-hidden,
i.e., there is always positive auto-conflict of some order.
3. BFs m1 and m2 with consistent m1 ∩⃝m2 are in no conflict nor hidden conflict of any
degree. (Such mis are always consistent itselves.)
4. BFs m1 and m2 with non-consistent m1 ∩⃝m2 are always in hidden conflict of some
degree greater or equal to zero. (regardless whether m1 and/or m2 are/is consistent).

Lemma 1 (i) Two BFs m1 and m2 are in a hidden conflict of a positive degree whenever
(m1 ∩⃝m2)(∅) = 0 and m1 ∩⃝m2 is not consistent.
(ii) Specially, hidden conflict of the first degree appears whenever (m1 ∩⃝m2)(∅) = 0 and
m1 ∩⃝m2 has positive auto-conflict (of the second order: a(m1 ∩⃝m2) = a2(m1 ∩⃝m2) > 0).

Proof. Proofs follow Theorem 5 from Daniel and Kratochvíl (2022) and the previous
observations.

4 Conflict analysis
In our previous work Daniel and Kratochvíl (2022), we explored the concept of conjunctive
conflict, specifically focusing on the amount of probabilistic mass that the non-normalized
conjunctive rule assigns to the empty set. We found that the existence or absence of
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b b b b m(∅) = 1 b b b b b b b b
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b b b b b b b b

b b b b b b

b b b b

Table 1: All possible conjunctive combinations of belief structures and classes of non-
conflictness on Ω2: White – non-conflict, Green – hidden conflict, Red+Magenta – con-
flict. The table presents all possible combinations of belief function structures for Ω2.
The different structures are represented along the x and y axes. For Ω2, there are two
singletons and one set of cardinality 2, which represents the entire frame of discernment
Ω2. In the table, sets that are included in a particular structure are shaded black, while
those not included are shaded grey.

conjunctive conflict is determined solely by the belief functions’ structure. In contrast,
the magnitude of the conflict depends on the individual probability masses. However, our
primary interest lies in conflict’s mere existence or non-existence rather than its magnitude
in this study. Therefore, we concentrated on analysing the structures of belief functions.

Given the size of the frame of discernment Ω, we can enumerate the number of unique
belief function structures. This enables us to calculate all possible combinations of these
structures and determine how many are conflicting, hidden conflicting, or non-conflicting.
In our previous study Daniel and Kratochvíl (2022), we performed this analysis for the
three smallest frames, where |Ω| = 2, 3, 4. The complete set of structure combinations for
|Ω| = 2 is illustrated in Table 1 and for |Ω3| = 3 by bitmap in Appendix 2, while the counts
of conflicting and non-conflicting structures for different cardinalities are summarized in
Table 2.

NC C i.e., HC0 HC1 HC2 HC3

Ω2 17 28 4 – –
Ω3 649 14720 756 4 –
Ω4 258.785 1.071.676.416 1.738.492 2.592 4

Table 2: Number of conflicting belief structure couples in different degrees hiddeness of
conflictness/non-conflictness

We can immediately see that the most frequent cases are not hidden conflicts (C, i.e.,
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hidden in degree zero HC0). There are always four singular cases where hidden conflict
of degree n−1 (HCn−1) appears for Ωn. Cardinalities of all other classes rapidly increase
with the cardinality of the frame of discernment n.

For these small frames, it is interesting to note that the cardinality of HC1, and thus
the class of hidden conflicts in general, grows significantly faster than the cardinality
of the non-conflict class (NC). There are significantly fewer hidden conflicts on Ω2, but
already more on Ω3, and significantly more hidden conflicts than non-conflicts on Ω4.

The cardinality of HC2 is less than that of NC on Ω3 and Ω4. Nevertheless, it also
grows quicker than the cardinality of NC: it is about 160 times less on Ω3, while only
about 100 times less on Ω4.

5 Random sampling approach
As we attempt to extend our analysis to higher dimensions, we encounter a significant
computational challenge due to the super-exponential growth in the number of structures.
For example, with Ω5, there are 31 possible focal elements, resulting in 231 possible struc-
tures and 262 combinations of these structures. The sheer magnitude of these numbers
makes it infeasible to compute all possible combinations using current technology, and
the problem only worsens with Ω6 and beyond.

One potential solution is to employ random sampling. By selecting a sufficiently large
random sample of structure combinations, we can estimate the distribution of different
classes of conflicts, including different degrees of hidden conflict.

First, we validated our approach by performing random generation for Ω2,Ω3, and
Ω4 to ensure its accuracy. For these cases, we converted the results from Table 2 into
percentages. Table 3 compares our randomly sampled results and the original results
obtained from an exhaustive search of all possible combinations of the listed structures.
The first three rows of Table 3 represent the exact results from the complete search, while
the next three rows show the outcomes based on random sampling.

NC C HC1 HC2 HC3

Ω2 34.7 57.1 8.2 – –
Ω3 4.02 91.26 4.69 0.025 –
Ω4 0.024 99.814 0.162 0.00024 0.000000373

Ω2 sampling 35.41 56.22 8.37 – –
Ω3 sampling 4.09 91.17 4.72 0.025 –
Ω4 sampling 0.023 99.817 0.159 0.001 0.000

Table 3: Percentage representation of conflict levels across all possible combinations of
Belief function structures for a given frame of discernment

The generation of random structures was carried out in two steps. First, we determined
the number of focal elements for the generated structure. Then, we randomly selected
the corresponding number of distinct subsets from Ω, forming the desired structure. The
number of focal elements was generated such that the probability of selecting a given
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number corresponded to the frequency distribution of focal elements among all possible
structures on Ω. As is well-known from combinatorics, the most probable number of
focal elements is approximately 2|Ω|/2, which aligns with the highest number of possible
combinations of subsets. Due to applying this two-step generation, we validated it as
presented in Table 3.

Encouraged by our initial success, we proceeded to experiment with the Ω5 frame.
Given the vast number of possible combinations of the structures involved, we conducted
eight separate experiments, each consisting of 100 million random combinations. We
divided these into eight batches to assess the consistency of the intermediate results. The
results from these individual experiments are remarkably consistent and are summarized
in Table 4.

no. NC C HC1 HC2 HC3 HC4

1 1 99999968 31 0 0 0
2 0 99999969 31 0 0 0
3 1 99999960 39 0 0 0
4 0 99999961 39 0 0 0
5 0 99999963 37 0 0 0
6 1 99999950 49 0 0 0
7 0 99999953 47 0 0 0
8 0 99999965 35 0 0 0

Table 4: Results of random sampling for Ω5

For Ω6, the results were even more compelling. Given the enormous number of possible
structures and their combinations, we conducted 4 billion trials, organized into 160 sets
of 25 million pairs each. Despite the extensive sampling, we did not find a single non-
conflicting pair or a pair with a hidden conflict - summarized in Table 5. In other words, all
pairs exhibited conflict. This suggests that the probability of encountering a pair/couple
of non-conflicting belief functions for a larger frame of discernment is exceedingly close
to zero, and the same holds for couples in hidden conflict of various degrees.

NC C HC1 HC2 HC3 HC4 HC5

Ω6 0 4.000.000.000 0 0 0 0 0

Table 5: Results of random sampling for Ω6

6 Summary and Results Analysis
Presenting the results of our experiments on Ω5, we can confirm our observation that the
cardinality of HC1 grows much faster than NC, already reaching about a hundred times
greater in this case. Unfortunately, the 100 million generated samples were insufficient to
obtain a HCi case for i > 1.

On cardinalities of different degrees of Belief functions conjunctive conflictness

20



NC C HC1 HC2 HC3 HC4 HC5

Ω2 17 28 4 – – – –
Ω3 649 14 720 756 4 – – –
Ω4 258 785 1 071 676 416 1 738 492 2 592 4 – –
Ω5 1.725e10 4.611e18 1.771e12 (>> 3e3) (>> 4) 4 –
Ω6 ? 8.507e37 ? ? ? ? 4

Table 6: Numbers of conflicting belief structure couples in different degrees of
conflictness/non-conflictness. There are precise number for Ω2 – Ω4, and estimation
for entire space for Ω5 and Ω6

Since we know that the cardinality of HCn−1 is equal to 4 and that all HCi values are
greater for i > n− 1, we have marked 0+ in the cases where no samples were generated,
although they could theoretically exist. Similarly, for Ω6, even 25 million generated pairs
were not enough to encounter anything other than a conflict that is not hidden.

Analyzing our results, it is clear that all classes of conflict/non-conflict increase with n.
The largest class is always C ∼ HC0: the class of pairs with a classic unhidden conjunctive
conflict. The cardinality of HCi decreases from a maximum at i = 0 down to 4 for HCn−1.
The second-largest class, HC1, is greater than NC (the class of non-conflicting pairs) for
n ≥ 3 and grows faster than NC as n increases.

As we are interesting only in the belief structures, we have sizes of no conflicts nor
hidden conflicts here. Nevertheless, we should notice one exception which is structural:
i.e., full conflict where all focal elements of m1 have empty intersection with all focal
elements of m2, there appears m12(∅) = 0, the case where the conjunctive rule gives no
other information and Dempster’s rule is not applicable. There are two such cases on
Ω2, see red fields in Table 1, 36 on Ω3, and 1 154 on Ω4. This class also grows with the
size of frame, but we can see that its cardinality incomparably less with the class of all
conflicts HC0 and also less than cardinalities of NC, HC1 and on Ω4 less than HC2. I.e.,
cardinality of FC is less than cardinalities all classes investigated here, with the exception
of HCn−1 which is always equal to 4 in any frame.

NC C HC1 HC2 HC3 HC4 HC5

Ω2 34.7 57.1 8.2 – – – –
Ω3 4.02 91.26 4.69 0.025 – – –
Ω4 0.024 99.814 0.162 0.00024 3.73e-10 – –
Ω5 3.75e−9 100− 3.85e−7 0+ 0+ 8.67e−15 –
Ω6 0+ 100− 0+ 0+ 0+ 0+ 4.70e−36

Table 7: Actual (for Ω2 – Ω4) and estimated (Ω5 – Ω6) percentages of conflict types
among all possible combinations of structures for a given frame of discernment size

As the actual cardinalities of these rapidly growing classes are difficult to conceptual-
ize, it is more intuitive to compare the percentages of belief structure pairs in particular
conflict classes (see Table 7) or in direct comparison of the classes: for comparison of HCi
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classes with class of non-conflicting pairs and of class fully conflicting pairs with the other
classes see Table 8. We can see rapid increase relative comparison of HC1/N with the
size of the frame, while decrease of any comparison of FC, especially with the class of all
conflicting pairs C.

Since we did not observe any HCi situations for i > 1 within our random generation
for Ω5 and Ω6, but we know such situations exist, we have marked the corresponding
fields in Table 7 for Ω5 and Ω6 with 0+.

HC1/NC HC2/NC HC3/NC FC / NC FC / C FC/HC1 FC/HC2

Ω2 0.235 – – 1.176e-1 7.143e-2 5.000e-1 –
Ω3 1.166 0.006 – 5.547e-2 2.446e-3 4.762e-2 9.000e0
Ω4 6.718 0.010 1.545e-5 4.459e-3 1.077e-6 6.638e-4 4.452e-1
Ω5 102.666 (?) (?) (?) (?) (?) (?)

Table 8: Increasing of relative frequencies of HCi/NC with size of frame (columns 1–3).
Relative frequencies of full conflict in comparison with conflicting/non-conflicting classes
decreasing with size of frame (columns 4–7)

7 Conclusion
In this study, we investigated the behavior of conflict of couples of belief function struc-
tures, particularly focusing on the probability and distribution of conflicts across dis-
cernment frames Ω of different sizes. Through extensive experiments on Ω2 to Ω6, we
observed that the cardinality of all conflict classes, particularly non-hidden conflicts (C),
increases significantly with the size of Ω. Notably, our experiments on Ω5 and Ω6 re-
vealed that despite the growing of cardinalities of all degrees of hidden conflicts, that
even non-conflicting pairs and pairs of small positive higher-order degree of hidden con-
flicts (i = 1, 2) are exceedingly rare; confirming the hypothesis that the probability of
encountering such pairs is almost negligible as the frame size grows and completely gen-
eral2 belief functions are considered.

The results underscore the computational challenges posed by the super-exponential
growth in the number of possible belief structures and their combinations, making exhaus-
tive searches infeasible for larger frames. Our use of random sampling provided valuable
insights. However, the limitations of this method became apparent when no higher-order
hidden conflicts were observed in larger frames despite their theoretical existence.

Furthermore, our analysis highlighted the disproportionate growth of certain conflict
classes, particularly HC1, which quickly surpasses non-conflicting pairs as Ω increases.

These findings suggest that as the frame of discernment expands, the likelihood of
encountering meaningful, non-conflicting belief combinations diminishes, raising impor-
tant questions about the practical implications of belief function theory in large-scale
applications.

2It is, of course, different if some restricted class of belief function is considered: either from the point
of view of their structure or the limitation of the number or size of focal elements.
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In conclusion, while belief functions offer a robust framework for managing uncer-
tainty, our findings indicate that the prevalence of conflict, particularly in larger frames,
necessitates careful consideration in practical applications. Future work could explore
alternative methods for managing or mitigating conflicts in belief structures, especially
as the scale of analysis increases. Additionally, further research into the theoretical un-
derpinnings of conflict distribution may yield new insights that can enhance the utility of
belief function theory in complex decision-making scenarios.

References
M. Daniel. Conflict between Belief Functions: A New Measure Based on Their Non-

conflicting Parts. In F. Cuzzolin, editor, BELIEF 2014, volume 8764 of LNCS, pages
321–330, Cham, 2014. Springer. doi: 10.1007/978-3-319-11191-9_35.

M. Daniel and V. Kratochvíl. Hidden Auto-Conflict in the Theory of Belief Functions.
In Proceedings of the 20th Czech-Japan Seminar on Data Analysis and Decision Mak-
ing under Uncertainty (CJS’17), pages 34–45, 2017. URL http://hdl.handle.net/
11104/0276743.

M. Daniel and V. Kratochvíl. Belief Functions and Degrees of Non-conflictness. In
G. Kern-Isberner and Z. Ognjanović, editors, ECSQARU 2019, volume 11726 of LNCS,
pages 125–136, Cham, 2019. Springer. doi: 10.1007/978-3-030-29765-7_11.

M. Daniel and V. Kratochvíl. Classes of Conflictness / Non-Conflictness of Belief Func-
tions. In Proceedings of the 12th Workshop on Uncertainty Processing (WUPES’22) ,
pages 97–110. MatfyzPress, 2022.

M. Daniel and V. Kratochvíl. Hidden conflicts of belief functions. International Jour-
nal of Computational Intelligence Systems, 14:438–452, 2020. ISSN 1875-6883. doi:
https://doi.org/10.2991/ijcis.d.201008.001. URL https://doi.org/10.2991/ijcis.
d.201008.001.

C. Osswald and A. Martin. Understanding the large family of Dempster-Shafer theory’s
fusion operators — a decision-based measure. In 9th International Conference on In-
formation Fusion. IEEE, 2006. doi: 10.1109/ICIF.2006.301631.

F. Pichon, A.-L. Jousselme, and N. B. Abdallah. Several shades of conflict. Fuzzy Sets
and Systems, 366:63–84, 2019. doi: 10.1016/j.fss.2019.01.014.

G. Shafer. A mathematical theory of evidence, volume 1. Princeton university press
Princeton, 1976.

P. Smets. Decision making in the TBM: the necessity of the pignistic transformation.
International Journal of Approximate Reasoning, 38(2):133–147, 2005. doi: 10.1016/j.
ijar.2004.05.003.

Milan Daniel, Václav Kratochvíl

23



Appendix 1: Hidden Conflict Examples
In accordance to the body of this study, only belief structures are important for existence
and degree of conjunctive (hidden) conflict. Hence for our examples graphical presenta-
tions in Figures 1 and 2, are more important than any specific numeric belief masses.

In our examples, we would like to illustrate how a hidden conflict is revealed. Note that
because of the commutativity of ∩⃝, we can rewrite

(
∩⃝3

1(m1 ∩⃝m2)
)

into
(
∩⃝3

1(m1) ∩⃝ ∩⃝3
1(m2)

)
,

etc. Once a positive mass is assigned to the empty set, it cannot be removed by ∩⃝. Let us
highlight the first occurrence of a positive mass on an empty set to clarify the examples.

b

b bbb

∩⃝
b

b bbb

=
b

b bbb

b

b bbb

b

b bbb

b

b bbb

b

b bbb

∩⃝
b

b bbb

b

b bbb

∩⃝ = and
b

b bbb

b

b bbb

∅

Figure 1: Arising of a hidden conflict: focal elements of m′, m′, m′′; m′ ∩⃝m′, m′′; and of
m′ ∩⃝m′ ∩⃝m′′. Where ω1 is the top one element, ω2 and ω3 clock-wise numbered.

Introductory Example. Let us assume Bel′, Bel′′ on Ω3 where F ′ = {{ω1, ω2},
{ω1, ω3}} and F ′′ = {{ω2, ω3}} (see Fig. 1 ). Then (m′ ∩⃝m′′)(∅) = 0. But (m′ ∩⃝m′ ∩⃝m′′)(∅)
> 0 (as highlighted in Figure 1, where conflicting focal elements are drawn in red), which
implies ∩⃝2

1(m
′ ∩⃝m′′)(∅) > 0 as well. Thus, there is a conflict hidden in the 1st degree. For

detail, see Daniel and Kratochvíl (2020); and for an example of numeric bmms also Table
9. In comparison with (m′ ∩⃝m′ ∩⃝m′′)(∅) = (m′ ∩⃝m′′ ∩⃝ m′ ∩⃝m′′)(∅) = 0.48, the conflict
based on non-conflicting parts of belief functions (see Daniel (2014)) Conf(m′,m′′) =
0.40, see Daniel and Kratochvíl (2020).

X {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3}{ω1, ω2, ω3} ∅
m′(X) 0.0 0.0 0.0 0.60 0.40 0.00 0.00 –

m′′(X) = 0.0 0.0 0.0 0.00 0.00 1.00 0.00 –
(m′ ∩⃝m′′)(X) 0.00 0.60 0.40 0.00 0.00 0.00 0.00 0.00

(m′ ∩⃝m′′ ∩⃝m′ ∩⃝m′′)(X) 0.00 0.36 0.16 0.00 0.00 0.00 0.00 0.48

Table 9: Belief masses in the Introductory Example.

Little Angel Example. Let us have two BFs Bel1 and Bel2 on Ω5 = {ω1, ω2, ..., ω5}:
F1 = {A,B,C} = {{ω1, ω2, ω5}, {ω1, ω2, ω3, ω4}, {ω1, ω3, ω4, ω5}}, F2 = {D} = {{ω2, ω3,
ω4, ω5}}, i.e., |F1| = 3 while |F2| = 1. Respective structures can be seen in Fig. 2 where
sets of focal elements of individual BFs m1 (3×) and m2 (1×) are depicted in its first row
(ω1 is on the top with ωis clock-wise enumerated). Again, there is (m1 ∩⃝m2)(∅) = 0 (there
is no empty intersection of any X ∈ F1 with Y ∈ F2). Moreover, ∩⃝2

1(m1 ∩⃝m2)(∅) = 0 in
this example. Finally, ( ∩⃝3

1(m1 ∩⃝m2))(∅) > 0. Thus there is a hidden conflict of the 2-nd
degree. Following the second line of Figure 2, the empty set emerges as the intersection
of focal elements drawn by red color, i.e., it appears already in m1 ∩⃝m1 ∩⃝m1 ∩⃝m2.
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Figure 2: Little Angel example: focal elements of m1,m1,m1,m2; ∩⃝3
1m1,m2;

( ∩⃝3
1m1) ∩⃝m2

Consistency of both m1 and m2 is underlined in Daniel and Kratochvíl (2020), nev-
ertheless we already know, that non-consistency of their combination m1 ∩⃝m2 is more
important.

For numeric values, see the original instance of Little Angel example in Daniel and
Kratochvíl (2020), where is ( ∩⃝3

1(m1 ∩⃝m1))(∅) = 0.108 > 0 and Conf(m1,m2) = 0.1 > 0.

Appendix 2: Bitmaps of Couples of Ω3 Belief Structures
Analogously to Table 1 in Section 4 for Ω2, we can present situation for Ω3 by a bitmap
presented in Figure 3.

(a) Zoom of left upper part (32× 32) (b) Full 127× 127 bitmap

Figure 3: Hiddeness degree bitmap of conjunctive conflict of belief structures on Ω3:
White – full non-conflict (degree 3), Black – HC2, Orange – HC1, Red – conflict – HC0

(degree 0).

Milan Daniel, Václav Kratochvíl
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