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Abstract:Weperform via Γ-convergence a 2d-1d dimension reduction analysis of a single-slip elastoplastic body
in large deformations. Rigid plastic and elastoplastic regimes are considered. In particular, we show that limit
deformations can essentially freely bend even if subjected to the most restrictive constraints corresponding to
the elastically rigid single-slip regime. The primary challenge arises in the upper bound where the differential
constraints render any bending without incurring an additional energy cost particularly difficult. We overcome
this obstacle with suitable non-smooth constructions and prove that a Lavrentiev phenomenon occurs if we
artificially restrict our model to smooth deformations. This issue is absent if the differential constraints are
appropriately softened.
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1 Introduction

The elastoplastic behavior of a crystalline solid under the action of external loads results from a combination of
reversible elastic and irreversible plastic effects [13, 15]. The state of the body is specified in terms of its defor-
mation v : Ω → ℝn from a reference configuration Ω ⊂ ℝn . Elastic and plastic effect are classically assumed to
combine via the Kröner-Lee-Liu multiplicative decomposition of the total strain ∇v = FelFpl, see [14–16]. Here,
the elastic strain Fel describes elastic response of the material while Fpl records the accumulation of plastic
distortion. This decomposition and alternative modeling assumptions have recently been discussed in, e.g.,
[9, 10, 18]. It is usually considered that plastic distortion causes no volume change, i.e., det Fpl = 1; cf. [20]. Crystal
plasticity assumes that any deformation that is applied to a material is accommodated by the process of slip,
where dislocation motion occurs on a slip plane. In this article, we deal with a single slip which means that Fpl
differs from the identity Id ∈ ℝn×n by a rank-one and traceless matrix, i.e., Fpl = Id+γs ⊗ m, where s,m ∈ ℝn
are unit andmutually perpendicular vectors denoting the slip direction and the slip-plane normal, respectively,
and γ measures the amount of slip. Note that det Fpl = 1 always holds. Elastoplastic evolution results from the
competition of elastic-energy storage and plastic-dissipation mechanisms. A common and powerful approach
to the description of elasto-plastic evolutionary behavior is via variational methods and semidiscretization in
time, see, e.g., [1]. Thus, we can define a condensed-energy-density function arising from a time-incremental
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problem as
W(F) = inf

F=FelFpl
(Wel(Fel) +Wpl(Fpl) + Diss(Fpl)). (1.1)

Here,Wel : ℝn×n → [0,∞] denotes the elastic stored energy density (i.e., a potential of the first Piola–Kirchhoff
stress), Wpl : SL(n)→ ℝ is the defect energy (see, e.g., [13]), and Diss : SL(n)→ ℝ represents the density of
energy dissipated if we change the plastic strain from the identity (i.e., purely elastic deformation) to Fpl in
one time step of the rate-independent plastic evolution. We refer to [17] for more details.

The elastoplasticity is occasionally modeled as elastically rigid, meaning that Wel(Fel) is finite only if
Fel ∈ SO(n), i.e., if the elastic deformation is a rotation, see, e.g., [8]. We refer in this work to such situations as
to the hard constraint. Usually, the stored energy density is assumed to be proportional to the distance of the
right Cauchy–Green strain Cel = F⊤elFel from the identity, or in other words, to the distance of Fel to the set of
proper rotations. This will be for us the soft constraint. For additional information and some generalizations
the reader is referred to [3, 6, 8], see also [4, 5] for more recent results.

In this article, wewill study the 2d-1d dimension reduction problem associated with the static minimization
problem with a plastic energy density subject to either the soft or the hard constraint, with the main result
given by Theorem 1.1 phrased in the language of Gamma-convergence. As we will see, a central difficulty in
its proof, more precisely, for the construction of recovery sequences, is precisely the potential rigidity of the
hard constraint. In particular, this makes it hard to locally bend in any way without incurring additional energy
cost. By contrast, if the constraint is softened enough, this is no longer an issue as shown in Proposition 3.1.
We overcome the challenges stemming from the strict differential constraints with a construction specifically
tailored to our single-slip shear constraint, in essence given in Lemma 2.6 (see also Figures 2 and 3). We also
show that this or a similar non-smooth mode of bending is crucial for the hard constrained model in the sense
that a Lavrentiev phenomenon occurs in the dimension reduction problem if we artificially restrict our model
to smooth deformations, at least in the special case s = ±e1 (slip along the membrane): On the one hand, for
smooth deformations, bending is impossible without paying energy of the order of the membrane thickness h
as shown in Proposition 3.3, where bending is forced by “short” boundary conditions. On the other hand, general
(non-smooth) admissible deformations can approach short (and therefore bent) limit deformations with a cost
of o(h), which is reflected in the fact that limit membrane energy of all short deformations after dimension
reduction is zero by Theorem 1.1 (in case s = ±e1; see also Lemma 2.1(a)). Here, note that our hard constraint is
much more restrictive than, say, the natural constraints on nonlinear elasticity which are also known to cause
Lavrentiev phenomena, but so far only in very specific circumstances [12].

1.1 Setup of the problem and main results

For h > 0 we set Ωh := (0, L) × (−h, h) as the reference configuration of a two-dimensional thin beam with
length L > 0 and thickness 2h > 0. The slip direction and slip-plane normal shall be given by s,m ∈ S1 with
m = s⊥ = R π

2
s. Then we consider the energies

Eh : W1,2(Ωh;ℝ2)→ [0,∞], v → ∫
Ωh

W(∇v) dy, (1.2)

with

W(F) =
{
{
{

|Fm|2 − 1 if F ∈Ms ,
∞ otherwise,

F ∈ ℝ2×2 , (1.3)

where the setMs is consists of all rotated shears in direction s with slip-plane normal m, i.e.,

Ms := {F = R(Id+γs ⊗ m) : R ∈ SO(2), γ ∈ ℝ} = {F ∈ ℝ2×2 : det F = 1, |Fs| = 1}.

It is easy to see that

|Fm|2 − 1 = γ2 if F = R(Id+γs ⊗ m) ∈Ms for R ∈ SO(2) and γ ∈ ℝ, (1.4)
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i.e., W in formula (1.3) measures the amount of slip, so that we can put Wel = 0 on SO(2) and Wpl(Fpl) = γ2

for Fpl = Id+γs ⊗ m in (1.1). Here, we are interested in the limit behavior of two-dimensional elastoplastic struc-
tures if the thickness in the y2 direction tends to zero. More precisely, after a common thin structure rescaling,
i.e., setting

u(x) = v(y) with x = (x1 , x2) = (y1 , 1h y2), (1.5)

we obtain the energies per unit volume

Ih : W1,2(Ω;ℝ2)→ [0,∞], u → ∫
Ω

W(∇hu) dx, (1.6)

where ∇hu = (∂1u, 1h ∂2u) denotes the rescaled gradient and Ω := Ω1. The Γ-limit of the sequence of rescaled
energies is described in our following main result.

Theorem 1.1. The sequence (Ih)h as in (1.6), see also (1.3), Γ-converges with respect to the weak topology
inW1,2(Ω;ℝ2) to

I : W1,2(Ω;ℝ2)→ [0,∞], u →
{{{{
{{{{
{

2
L

∫
0

Wc
(u) dx1 if u ∈ A,

∞ otherwise,
withA := {u ∈ W1,2(Ω;ℝ2) : ∂2u = 0}. The functionW : ℝ3 → [0,∞] is given by

W(ξ) = min
d∈ℝ2

W(ξ|d), (1.7)

and ( ⋅ )c stands for the convex envelope.
Moreover, any sequence (uh)h ⊂ W1,2(Ω;ℝ2)with vanishing mean value and bounded energy, i.e., ∫Ω uh dx =

0 and Ih(uh) < C for a constant C > 0 and all h > 0, has a subsequence (not relabeled) such that uh ⇀ u
inW1,2(Ω;ℝ2) for u ∈ A as h → 0. Additionally, if s = ±e1, then u satisfies |u| ≤ 1 a.e. in (0, L).

The next corollary concerns the soft-constraint case, where we do not require rigid elasticity but allow a div-
erging elastic energy contribution as in [6].

Corollary 1.2. For ε > 0 let

Wε : ℝ2×2 → [0,∞), F → inf
γ∈ℝ
(
1
ε dist

2(F(Id−γs ⊗ m), SO(2)) + γ2) (1.8)

and consider the (rescaled) penalized energy

Iε,h : W1,1(Ω;ℝ2)→ [0,∞), u → ∫
Ω

Wε(∇hv) dx;

moreover, for any sequence (εk , hk)k with (εk , hk)→ (0, 0)we set Ik := Iεk ,hk . Then the sequence (Ik)k Γ-converges
with respect to the weak topology inW1,1(Ω;ℝ3) to

I : W1,1(Ω;ℝ2)→ [0,∞], u →
{{{{
{{{{
{

2
L

∫
0

Wc
(u) dx1 if u ∈ A,

∞ otherwise.

Moreover, any sequence (uk)k ⊂ W1,1(Ω;ℝ2) with vanishing mean value and bounded energy has a subse-
quence (not relabeled) such that uk ⇀ u in W1,1(Ω;ℝ2) for u ∈ A as k →∞. Additionally, if s = ±e1, then u
satisfies |u| ≤ 1 a.e. in (0, L).

Remark 1.3. (a) In the same spirit as in [6], we can generalize our result to the case where we replace the elastic
termWel(Fel) = 1

ε dist
2(Fel , SO(2)) in (1.8) by one that satisfies

c dist2(Fel , SO(2)) ≤ εWel(Fel) ≤ C dist2(Fel , SO(2))

for constants c, C > 0.
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(b) The densityWε as in (1.8) has linear growth, cf. [6, equation (1.4)]. Therefore, the corresponding energy
functional is defined onW1,1(Ω;ℝ2) and the Γ-convergence result in Corollary 1.2 is formulated with respect to
the weak topology inW1,1(Ω;ℝ2) in contrast to theW1,2(Ω;ℝ2)-setting in Theorem 1.1.

(c) In Lemma 2.1, we compute an explicit expression of the limit densityWc depending on the slip direction
s. We find thatWc has quadratic growth and coercivity if s ̸= ±e1, while the cases s = ±e1 yield a trivial density
with either zero or an infinite energy contribution.

This paper is organized as follows. After introducing some notation, we provide the reader in Section 2.2 with
some basic about the limit density and rank-one compatibility within Ms . In Section 2, we establish the key
lemmas for the construction of piecewise affine recovery sequences for the hard-constraint case of Theorem 1.1.
The proof of this main theorem is addressed in Section 3.1; the soft-constraint version, Corollary 1.2, is handled
in Section 3.2. We finish this paper in Section 3.3 with a discussion why the recovery sequences for the hard-
constraint case (at least for s = ±e1) are required be non-smooth with jumps in the derivative.

2 Preliminaries

2.1 Notation

We recall some notation used throughout the article. The vectors e1 , . . . , en ∈ ℝn for n ∈ ℕ denote the standard
basis vectors in ℝn . We denote the Euclidean (and Frobenius) norm on ℝn (and ℝn×n) by | ⋅ |, and Sn−1 is the
unit sphere in ℝn centered at zero. The set of proper rotations on ℝn is defined as

SO(2) = {A ∈ ℝn×n : A⊤A = AA⊤ = Id, det A = 1}.

For an angle φ ∈ ℝ we write

Rφ := (
cos φ − sin φ
sin φ cos φ

) ∈ SO(2),

and set a⊥ = R π
2
a for a ∈ ℝ2. Let𝕋1 denote the one-dimensional flat torus, i.e., the interval [0, 2π]with the end

points identified, reflecting 2π-periodicity. For θ ∈ 𝕋1 and γ ∈ ℝ, define

M(θ, γ) = M(θ, γ; s) := Rθ(Id+γs ⊗ m) ∈Ms .

Notice that for any F ∈Ms there exist uniquely defined (θ, γ) ∈ 𝕋1 ×ℝ such that F = M(θ, γ). The function 𝟙E
denotes the indicator function of a set E ⊂ ℝm , which equals 1 on Ewhile vanishing elsewhere. Given a function
W : ℝn → ℝ, W c denotes its convex envelope, i.e., the pointwise supremum of all affine functions not greater
thanW . The set

A := {u ∈ W1,2(Ω;ℝ2) : ∂2u = 0}

is the subspace of all Sobolev functions on Ω = (0, L) × (−1, 1) that are constant with respect to x2. This set can
alternatively be identified withW1,2((0, L);ℝ2).

In the rest of this section, we collect some auxiliary results needed for the proofs of the main results in
Section 3.

2.2 A few basic observations

First, we provide an explicit expression forWc, cf. (1.7).

Lemma 2.1. Let s,m ∈ S1 with m = s⊥ andW as in (1.7).
(a) If s = ±e1, then

W c
(ξ) =
{
{
{

∞ if |ξ| > 1,
0 if |ξ| ≤ 1,

for all ξ ∈ ℝ2.
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(b) In the case s ̸= ±e1, it holds that

Wc
(ξ) =
{{{
{{{
{

1
s22
|ξ|2 − 2 |s1|

s22
√|ξ|2 − s22 +

s21
s22
− 1 if |ξ| > 1,

0 if |ξ| ≤ 1,

for all ξ ∈ ℝ2; in particularWc satisfies

c|ξ|2 − C ≤ Wc
(ξ) ≤ C(1 + |ξ|2) (2.1)

for some constants c, C > 0. Moreover, for every ξ ∈ ℝ2 with |ξ| ≥ 1, there exist θ ∈ 𝕋1 and γ ∈ ℝ such that

ξ = M(θ, γ)e1 and W c
(ξ) = W(ξ) = γ2 .

Proof. Let ξ ∈ ℝ2. Then ξ is the first column of an element in Ms if and only if there exists γ ∈ ℝ and θ ∈ 𝕋1
such that ξ = M(θ, γ)e1 = Rθ(Id+γs ⊗ m)e1. This is equivalent to the existence of γ ∈ ℝ with

|ξ|2 = |(Id+γs ⊗ m)e1|2 =

(
1 + γs1m1
γs2m1

)


2

= 1 + 2γs1m1 + γ2m2
1 = 1 − 2γs1s2 + γ

2s22 . (2.2)

The energy contribution associated to this shear is then exactly

W(Id+γs ⊗ m) = γ2 . (2.3)

(a) If s = ±e1, then (2.2) can only be satisfied if |ξ| = 1. In this case, we choose γ = 0 to minimize (2.3).
A subsequent convexification of the energy yields the desired result.

(b) Now, let s ̸= ±e1. Analogously to the case s = ±e1, it suffices to consider the case |ξ| > 1, since |ξ| = 1
yields a vanishing energy contribution with γ = 0. Solving (2.2) for γ produces the solutions γ± with

γ2± =
1
s22
|ξ|2 ± 2 s1

s22
√|ξ|2 − s22 +

s21
s22
− 1.

After selecting the solution with smaller magnitude, we obtain the formula in question. The quadratic growth
and coercivity is apparent from the explicit formula.

The next lemma about rank-one connections withinMs is extracted from [2, Lemma 3.1] and is essential in the
construction of piecewise affine functions whose gradients are contained inMs . The proof is essentially based
on the case s = e1 considering thatMs =Me1ST with S = (s|m) ∈ SO(2).

Lemma 2.2. Let s ∈ S1, θ1 , θ2 ∈ 𝕋1, and γ1 , γ2 ∈ ℝ. Then M(θ1 , γ1) and M(θ2 , γ2) are rank-one connected if and
only if one of the following two conditions holds:
(i) θ2 = θ1 and γ1 ̸= γ2; in this case,

M(θ2 , γ2) − M(θ1 , γ1) = (γ2 − γ1)Rθ1 s ⊗ m.

(ii) θ1 ̸= θ2 and γ2 − γ1 = 2 tan( θ2 ) with θ = θ2 − θ1 ∈ (−π, π); in this case,

M(θ2 , γ2) − M(θ1 , γ1) =
γ2 − γ1

4 + (γ2 − γ1)2
Rθ((γ2 − γ1)s + 2m) ⊗ (2s + (γ2 + γ1)m).

2.3 Building blocks for the construction of recovery sequences

Below, we present a collection of lemmas intended as building blocks for the construction of a piecewise defined
recovery sequence. For the first few elementary lemmas, the general philosophy is the following: We start with
a given admissible deformation whose gradient coincides with fixed, prescribed rotated shears at the both
ends (i.e., for x1 ≫ 0 and x1 ≪ 0), and then modify it to another of essentially the same kind, but with changed
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parameters for the rotated shears at the two ends. Ultimately, we intend to glue many such pieces to construct
suitable recovery sequences, in such a way that wherever two pieces overlap, they have identical gradient, so
that a continuous transition is easily achieved by adding appropriate constants if necessary. The crucial ele-
mentary building block is the one that allows us to form a kink without violating the hard constraint, presented
in Lemma 2.6 for the cases of s ∈ {±e1 , ±e2}, to be generalized later with the help of the other lemmas. The
joint result of the constructions is summarized in Lemma 2.8, which then is used at the heart of the proof of
Theorem 1.1.

Lemma 2.3 (Change s globally). Let s, ̂s ∈ S1 with s ⋅ ̂s ≥ 2− 12 (i.e., forming an angle of at most π
4 ), and B > 0.

Moreover, let w ∈ W1,∞
loc (ℝ × (−B, B);ℝ

2) such that ∇w ∈Ms a.e. and

∇w(x1 , ⋅ ) =
{
{
{

M(θ1 , γ1; s) for x1 < − 12B,
M(θ2 , γ2; s) for x1 > 1

2B.
(2.4)

Then there exists a function v ∈ W1,∞
loc (ℝ × (−

1
8B,

1
8B);ℝ

2) such that ∇v ∈M ̂s a.e. and

∇v(x1 , ⋅ ) =
{
{
{

M(θ1 , γ1; ̂s) for x1 < − 78B,
M(θ2 , γ2; ̂s) for x1 > 7

8B.
(2.5)

Proof. Since s ⋅ ̂s ≥ 1
√2
, there exists θ ∈ [− π4 ,

π
4 ] such that ̂s = Rθs. We abbreviate b := 1

8B and define

v(x) := Rθw(R−θx)

for |x1| ≤ 7b and |x2| < b, whence
∇v(x) = Rθ(∇w)(R−θx)R−θ ∈M ̂s ,

the latter because (Id+γs ⊗ m)R−θ = R−θ + γs ⊗ (Rθm) = R−θ(Id+γ ̂s ⊗ m̂) for all γ ∈ ℝ. If we continuously
extend v by affine functions on both sides for |x1| > 7b, with constant gradients given by (2.5), the function v is
well defined on ℝ × (−b, b) as long as R−θ maps the two borderlines in (2.5) to sets where ∇w is fixed by (2.4),
i.e., if

R−θ maps {7b} × (−b, b) into ( 12B,∞) × (−B, B), and
R−θ maps {−7b} × (−b, b) into (−∞, − 12B) × (−B, B),

see also Figure 1. Since 72b2 + b2 < B2, it is clear that R−θ(±7b, ±b)⊤ ∈ (−B, B)2. It remains to show that
|e1 ⋅ R−θ(±7b, ±b)| > 1

2B. This does hold for all |θ| ≤
π
4 since

cos(|θ|)7b − sin(|θ|)b ≥ 1
√2

7b − 1
√2

b = 1
√2

3
4B >

1
2B,

which proves the lemma.

14b

2b

R−θ

B

2B

Figure 1: A part of the domainℝ × (−b, b) of v relevant for the boundary conditions in (2.5) for ̂s = 1
√2
(e1 + e2) and its image under R−θ

for θ = π
4 embedded into the larger domainℝ × (−B, B) of w with boundary conditions (2.4) for s = e1. The dashed lines describe the

(deformed) slip directions.
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Lemma 2.4 (Change shear for s ̸= ±e1). Let s ∈ S1 \ {±e1}, let θ1 , θ2 ∈ 𝕋1, let γ1 , γ2 ∈ ℝ and let A, B > 0. More-
over, let w ∈ W1,∞(ℝ × (−B, B);ℝ2) such that ∇w ∈Ms a.e. and

∇w(x1 , ⋅ ) =
{
{
{

M(θ1 , γ1; s) for x1 < −A,
M(θ2 , γ2; s) for x1 > A.

Then for all γ̃1 , γ̃2 ∈ ℝ, there exists v ∈ W1,∞
loc (ℝ × (−B, B);ℝ

2) such that ∇v ∈Ms a.e. and

∇v(x1 , ⋅ ) =
{
{
{

M(θ1 , γ̃1; s) for x1 < −a,
M(θ2 , γ̃2; s) for x1 > a,

where a := A + |m2|B
|m1|

> A. (2.6)

Proof. Let σ := m1
|m1|
∈ {−1, 1}; this is a fixed sign chosen so that σm1 > 0.We define μ > 0 and sets Si ⊂ℝ × (−B, B)

by
μ := A + |m2|B > 0,
S1 := {x ∈ ℝ2 : x ⋅ (σm) ≤ −μ},
S2 := {x ∈ ℝ2 : x ⋅ (σm) ≥ μ},
S0 := ℝ2 \ (S1 ∪ S2).

As defined,
Γj := ∂Sj ∩ (ℝ × (−B, B)), j = 1, 2,

are lines parallel to s. Moreover, by the definition of μ, Γ1 and Γ2 do not intersect (−A, A) × (−B, B), only touching
one corner while passing it on the left or right: For any x2 ∈ (−B, B) and x1 such that x = (x1 , x2) ∈ Γ2 (the case
of Γ1 is analogous), we have x1σm1 = μ − σm2x2 > μ − |m2|B = A. In particular, (−A, A) × (−B, B) ⊂ S0.

Now let v := w on S0 ∩ (ℝ × (−B, B)), and continuously extend it toℝ × (−B, B) by two affine functions on S1
and S2, respectively, with fixed gradients given by the two matrices of (2.6). Since ∂S0 ∩ [ℝ × (−B, B)] = Γ1 ∪ Γ2,
this gives a well defined function inW1,∞(ℝ × (−B, B);ℝ2)with ∇v ∈Ms a.e.. Here, recall that by Lemma 2.2 (i),
M(θj , γ̃j) andM(θj , γj) are rank-one connectedwith normalm and therefore compatible across the interfaces Γj .
Finally, we also have (2.6) since a = sup{|x ⋅ e1| : x ∈ S0}.

Lemma 2.5 (Change angle globally). Let s ∈ S1, let θ1 , θ2 , θ ∈ 𝕋1, let γ1 , γ2 ∈ ℝ and let A ≥ B > 0. Moreover, let
w ∈ W1,∞

loc (ℝ × (−B, B);ℝ
2) such that ∇w ∈Ms a.e. and

∇w(x1 , ⋅ ) =
{
{
{

M(θ1 , γ1) for x1 < −A,
M(θ2 , γ2) for x1 > A.

Then there exists v ∈ W1,∞
loc (ℝ × (−B, B);ℝ

2) such that ∇v ∈Ms a.e.,

∇v(x1 , ⋅ ) =
{
{
{

M(θ1 + θ, γ1) for x1 < −A,
M(θ2 + θ, γ2) for x1 > A.

Proof. The function v := Rθw has the asserted properties.

As we have seen in Lemma 2.3, we can only transform maps whose gradients lie inMs for some s ∈ S1 to those
with gradients inM ̂s for ̂s ∈ S1 if s and ̂s form an angle of at most π

4 . This is why it is necessary and sufficient
to explicitly construct building blocks only for the slip directions s = ±e1 and s = ±e2.

We first present a piecewise affine construction that allows a (small) change of angle on one side of the
domain while keeping the shear fixed on both sides.

Lemma 2.6 (Changing angles for s ∈ {±e1 , ±e2}). Let B > 0 and s ∈ {±e1 , ±e2}. There exists θmax ∈ (0, π] (indepen-
dent of B) such that for every |θ| ≤ θmax there is w ∈ W1,∞

loc (ℝ × (−B, B);ℝ
2) satisfying ∇w ∈Ms almost every-

where and

∇w(x1 , ⋅ ) =
{
{
{

Id for x1 < − 12B,
Rθ for x1 > 1

2B.
(2.7)
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Proof. The case θ = 0 is trivial. In the following, we will split the domain E = ℝ × (−B, B) into four pieces:

E1 = {(x1 , x2) ∈ E : x2 ≤ −x1 cot φ, x1 ≤ 0},
E2 = {(x1 , x2) ∈ E : −x1 cot φ < x2 , x1 ≤ 0}
E3 = {(x1 , x2) ∈ E : x2 ≥ x1 cot φ, x1 > 0},
E4 = {(x1 , x2) ∈ E : x2 < x1 cot φ, x1 > 0},

(2.8)

where φ ∈ (0, arctan( 14 )]. The upper bound comes from tan φ ≤
B
2
2B =

1
4 , see the boundary conditions in (2.7).

Part 1: The case s = ±e1. Let us first assume that θ > 0. Considering the partition (2.8), we define a piecewise
affine function wφ : E → ℝ2 with gradients

∇wφ(x) =

{{{{{{
{{{{{{
{

Id if x ∈ E1 ,
M(ω2 , 2 tan φ;±e1) if x ∈ E2 ,
M(ω3 , −2 tan φ;±e1) if x ∈ E3 ,
Rω4 if x ∈ E4 ,

x ∈ E (2.9)

and
ω2 = 2 arctan(tan φ) = 2φ,
ω3 = −2 arctan(2 tan φ) + ω2 = −2 arctan(2 tan φ) + 2φ,
ω4 = 2 arctan tan φ + ω3 = 4φ − 2 arctan(2 tan φ),

see Figure 2. Lemma 2.2 (ii) immediately yields that this deformation wφ is continuous since the rank-one com-
patibilities along all appearing interfaces are satisfied. Moreover, we observe that ω4 is continuous, increasing
in φ, and satisfies

lim
φ→0

ω(φ) = 0 and lim
φ→ π

2

ω4(φ) = 4
π
2 − 2

π
2 = π.

We now set θmax = ω4(arctan( 14 )) and find for any given θ ∈ (0, θmax] some φ̄ ∈ (0, arctan( 14 )] such that
θ = ω4(φ̄). The desired map w is then given by wφ̄ as in (2.9), see also Figure 2.

If θ < 0, then we mirror the previous construction. Precisely, we set A = e1 ⊗ e1 − e2 ⊗ e2 and define
w(x) = ATwφ̄(Ax) for every x ∈ E. We then observe that w satisfies the desired boundary values and that
∇w(x) ∈Me1 since

ATM(θ, γ;±e1)A = M(−θ, −γ;±e1)

for any θ, γ ∈ ℝ.

Part 2: The case s = ±e2. We start again with θ > 0. In light of Lemma 2.2 ii), we find that the piecewise affine
function wφ : E → ℝ2 with gradients

∇wφ(x) =

{{{{{{
{{{{{{
{

Id if x ∈ E1 ,
M(ω2 , 2 cot φ;±e2) if x ∈ E2 ,
M(ω3 , −2 cot φ;±e2) if x ∈ E3 ,
Rω4 if x ∈ E4 ,

x ∈ E (2.10)

and
ω2 = 2 arctan(− cot φ) = 2φ − π, ω3 = ω2 , ω4 = arctan(− cot φ) + ω3 = 4φ − 2π

is continuous. Note thatwemay replace the expression forω4 byω4 = 4φ since R4φ−2π = R4φ . Similarly to before,
we set θmax = ω4(arctan( 14 )) = 4 arctan(

1
4 ) and set φ̄ =

1
4 θ ∈ (0, arctan(

1
4 )] for θ ∈ (0, θmax]. The desired map w

is then given by wφ̄ as in (2.10), see also Figure 3. If θ < 0, then we mirror this construction exactly as in Part 1
of this proof.

Now that we established how to ensure an adjustment in the angle while keeping the shear parameter
for s ∈ {±e1 , ±e2}, it is time to address all remaining cases. As we discussed earlier, this will be a direct
consequence of Lemma 2.3.
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2B

B
wφ

ω4 = θmax

Figure 2: On the left: a part of the reference configurationℝ × (−B, B) partitioned into the four colored subsets E1 , E2 , E3 , E4 in (2.8) for
the maximal choice φ = arctan( 14 ); the dashed lines indicate the slip direction s = e1. On the right: The image under the continuous
piecewise affine map wφ as in (2.9).

2B

B
wφ

ω4 = θmax

Figure 3: On the left: A part of the reference configurationℝ × (−B, B) partitioned into the four colored subsets E1 , E2 , E3 , E4 in (2.8) for
the maximal choice φ = arctan( 14 ); the dashed lines indicate the slip direction s = e2. On the right: The image under the continuous
piecewise affine map wφ as in (2.10).

Lemma 2.7 (Changing angles for any slip direction). Let B > 0 and s ∈ S1. For every |θ| ≤ θmax (with θmax as in
Lemma 2.6) there exists a function w ∈ W1,∞

loc (ℝ × (−B, B);ℝ
2) such that ∇w ∈Ms a.e., and

∇w(x1 , ⋅ ) =
{
{
{

Id for x1 < −7B,
Rθ for x1 > 7B.

Proof. The proof technically distinguishes between the two scenarios s ⋅ e1 ≥ 1
√2

and s ⋅ e2 > 1
√2
.

First, we set B̃ = 8B and apply Lemma 2.6 for B = B̃ to obtain w̃ ∈ W1,∞(ℝ × (−8B, 8B);ℝ2) that satisfies
w̃s ∈Me2 a.e. and

∇w(x1 , ⋅ ) =
{
{
{

Id for x1 < − 12 B̃ = −4B,
Rθ for x1 > 1

2 B̃ = 4B.

The final ingredient is Lemma 2.3 applied to w = w̃ and B = B̃: If s ⋅ e2 > 1
√2
, we switch from s = e1 to ̂s = s,

otherwise we replace e2 by e1.

Finally, we combine all previous building blocks to establish a lemma about the construction of recovery
sequences for Theorem 1.1 on a thin strip with height 2h.

Lemma 2.8 (Change rotated shears). For any given s ̸= ±e1, θ1 , θ2 ∈ 𝕋1, γ1 , γ2 ∈ ℝ, and h > 0, there exist r > 0
(independent of h) and a map v ∈ W1,∞

loc (ℝ × (−h, h));ℝ
2) such that ∇v ∈Ms and

∇v(y1 , ⋅ ) =
{
{
{

M(θ1 , γ1) for y1 < −rh,
M(θ2 , γ2) for y1 > rh.

Moreover, it holds that
h

∫
−h

rh

∫
−rh

|∇v|2 dy ≤ Ch2 (2.11)

for a constant C > 0 independent of h.
If s = ±e1, then the same holds true if γ1 = γ2 = 0.
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Proof. This proof is essentially a combination of the previous building blocks that facilitate the switch from one
rotated shear to another. We begin with the easiest case s = ±e1, for which we assume that γ1 = γ2 = 0, which
means that we merely switch from one rotation Rθ1 to another Rθ2 .

Step 1: The case s = ±e1. If not specified otherwise, we always apply the previous Lemmas for A = B = h
for h > 0. Let θmax > 0 be as in Lemma 2.6, set n = ⌈ |θ2−θ1|θmax ⌉ and choose

0 = ω1 , ω2 , . . . , ωn+1 = θ2 − θ1 ∈ 𝕋1 such that |ωk+1 − ωk| ≤ θmax . (2.12)

In the following, we construct inductively for h > 0 and any k ∈ {1, . . . , n} a functionwk ∈W1,∞
loc (ℝ × (−h, h);ℝ

2)

∇wk(y1 , ⋅ ) =
{
{
{

R−ωk+1 for y1 < − h2 + 2h(k − 1),
Id for y1 > h

2 + 2h(k − 1).
(2.13)

For k = 1, we apply Lemma 2.6 for θ = ω2 − ω1 = ω2 and subsequently Lemma 2.5 for θ = −ω2 (recall (2.12)) to
obtain w1 ∈ W1,∞

loc (ℝ × (−h, h);ℝ
2) satisfying ∇w1 ∈Me1 , and

∇w1(y1 , ⋅ ) =
{
{
{

R−ω2 for y1 < − h2 ,
Id for y1 > h

2 .

Now, assume that wk is already constructed for some k ∈ {1, . . . , n − 1}. We then design wk+1 as follows: An
application of Lemma 2.6 for θ = ωk+2 − ωk+1, which can be done due to (2.12), and a translation of the argument
by 2khe1 yields w̃k+1 ∈ W1,∞

loc (ℝ × (−h, h);ℝ
2) satisfying w̃k+1 ∈Me1 and

∇w̃k+1(y1 , ⋅ ) =
{
{
{

Id for y1 < − h2 + 2hk,
Rωk+2−ωk+1 for y1 > h

2 + 2hk.
(2.14)

In light of (2.13) and (2.14), we find that the map

wk+1(y1 , ⋅ ) :=
{
{
{

Rωk+1−ωk+2wk(y1 , ⋅ ) for y1 < − h2 + 2hk,
Rωk+1−ωk+2 w̃k+1(y1 , ⋅ ) + dk+1 for y1 ≥ h

2 + 2hk,

is continuous for suitable dk+1 ∈ ℝ2, contained in W1,∞
loc (ℝ × (−h, h);ℝ

2), and satisfies ∇wk+1 ∈Me1 as well as
the desired boundary conditions (2.13) for k + 1.

Finally, we set
v(y) := Rθ2wn(y + h(n − 1)e1), y ∈ ℝ × (−h, h)

to obtain the desired function with r = n − 1
2 .

Step 2: The cases s ̸= ±e1. In these scenarios we have to additionally accommodate the shear parameter at
the start and at the end. We first proceed almost exactly as in Step 1, the only difference being that we apply
Lemma 2.7 instead of Lemma 2.6 for B = h. This way, we produce some ̄r > 1 and v̄ ∈ W1,∞

loc (ℝ × (−h, h);ℝ
2)

such that ∇v ∈Ms and

∇v̄(y1 , ⋅ ) =
{
{
{

M(θ1 , 0) = Rθ1 for y1 < − ̄rh,
M(θ2 , 0) = Rθ2 for y1 > ̄rh.

Thenwe apply Lemma 2.4 for A = rh, B = h,w = v̄, γ̃1 = γ1, γ̃2 = γ2 to generate a real number r > ̄r > 1 depend-
ing on s, and a function v ∈ W1,∞

loc (ℝ × (−h, h));ℝ
2) such that ∇v ∈Ms and

∇v(y1 , ⋅ ) =
{
{
{

M(θ1 , γ1) for y1 < −rh,
M(θ2 , γ2) for y1 > rh.

As we can see from the explicit constructions made in Lemmas 2.3–2.7, the norm of ∇v in L∞((−rh, rh) ×
(−h, h);ℝ2×2) does not depend on h and v is piecewise affine; the same is true for the case e = ±e1. This proves
the desired estimate (2.11).
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3 Proof of the main results

3.1 The Γ-limit with hard constraints

Proof of Theorem 1.1. We divide the proof into four steps.

Step 1: Compactness. Let (uh)h ⊂ W1,2(Ω;ℝ2) be a sequence with ∫Ω uh dx = 0 and suph Ih(uh) <∞. In light
of (1.3), the latter yields that

|∇huhs| = 1 a.e. in Ω and (∇huhm)h is bounded in L2(Ω;ℝ2). (3.1)

It is then evident that (∇uh)h is bounded in L2(Ω;ℝ2), and thus, (uh)h is bounded inW1,2(Ω;ℝ2)due to Poincaré’s
inequality in mean value form. This is why we may select a subsequence (not relabeled) and u ∈ W1,2(Ω;ℝ2)
such that uh ⇀ u in W1,2(Ω;ℝ2). Moreover, we find that ∂2uh → 0 = ∂2u in L2(Ω;ℝ2) due to the definition of
the rescaled gradient; if s = e1, thenwe even find that |∂1u| = |u| ≤ 1 in view of (3.1), and theweak convergence
∂1uh ⇀ ∂1u = u.

Step 2: Lower bound. Let (uh)h and u be as in Step 1. If s = ±e1, then the lower bound is trivial due to |u| ≤ 1
a.e. in (0, L) and

Ik(uk) ≥ 0 = I(u).

Otherwise, the energy satisfies

lim inf
h→0

Ih(uh) = lim inf
h→0
∫
Ω

W(∇huh) dx

≥ lim inf
h→0
∫
Ω

Wc
(∂1uh) dx ≥ ∫

Ω

Wc
(u) dx = 2

L

∫
0

Wc
(u) dx.

Step 3: Upper bound for s ̸= ±e1. The methodology for constructing recovery sequences is based on an approx-
imation by piecewise affine functions together with Lemma 2.1 and Lemma 2.8. We first cover the cases s ̸= ±e1,
and deal with s = ±e1 later on.

Step 3a: Recovering piecewise affine limit deformations with large derivatives. Let u : (0, L)→ ℝ2 be piecewise
affine with |u| ≥ 1 almost everywhere. Then there is a partition

0 = t(0) ≤ t(1) ≤ ⋅ ⋅ ⋅ ≤ t(N) = L (3.2)

such that u is constant on each interval (t(n−1) , t(n)) with u|(t(n−1) ,t(n)) =: ξ(n) for n ∈ {1, . . . , N}. In light of Lem-
ma 2.1 (b) and |u| ≥ 1 almost everywhere, we can find θ(n) ∈ 𝕋1 and γ(n) ∈ ℝ such that

u = ξ(n) = M(θ(n) , γ(n))e1 and W c
(u) = (γ(n))2 on (t(n−1) , t(n)). (3.3)

The goal is now to fatten the function u suitably. As a consequence of Lemma 2.8, we find an r > 0 and
a deformation v(n)h ∈ W

1,∞((t(n) − 2rh, t(n) + 2rh) × (−h, h);ℝ2) with n ∈ {1, . . . , N − 1} such that ∇vh ∈Ms
a.e. in (t(n) − 2rh, t(n) + 2rh) × (−h, h) and

∇v(n)h (y1 + t
(n) , ⋅ ) =

{
{
{

M(θ(n) , γ(n)) if y1 < −rh,
M(θ(n+1) , γ(n+1)) if y1 > rh.

For h sufficiently small, we set Γh := ⋃N−1n=1 (t(n) − rh, t(n) + rh) ⊂ (0, L) and define vh ∈ W1,2(Ωh;ℝ2) as a contin-
uous and piecewise affine function with gradients

∇vh(y1 , ⋅ ) :=
{
{
{

M(θ(n) , γ(n)) if y1 ∈ [t(n−1) , t(n)) \ Γh for some n ∈ {1, . . . , N},
∇v(n)h (y1 , y2) if y1 ∈ [t(n−1) , t(n)) ∩ Γh for some n ∈ {1, . . . , N}.

Note that this construction yields ∇vh ∈Ms a.e. in Ωh .
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In light of (3.2) and estimate (2.11) for v(n)h , we find for the energy of Eh(vh) as in (1.2) that

Eh(vh) = ∫
Ωh

W(∇vh) dy

=
h

∫
−h

∫
(0,L)\Γh

W(∇vh) dy +
h

∫
−h

∫
Γh

W(∇vh) dy

=
h

∫
−h

∫
(0,L)\Γh

Wc
(u) dy +

h

∫
−h

∫
Γh

|∇vhm|2 − 1 dy

≤ 2h
L

∫
0

Wc
(u) dx1 + C(N − 1)h2

for a constant C > 0 independent of h. Passing to the limit as h → 0 then yields that

lim sup
h→0

1
h
Eh(vh) ≤ 2

L

∫
0

Wc
(u) dx1 = I(u).

Finally, we invoke the change of variables (1.5) to generate a sequence (uh)h ⊂ W1,∞(Ω;ℝ2) that converges to u
uniformly on Ω and has the same (rescaled) energy as (vh)h , that is, Ih(uh) = 1

hEh(vh). In other words, (uh)h is
a recovery sequence for the piecewise affine function u.

Step 3b: Approximation by piecewise affine functions and relaxation. Let u ∈ A and find a sequence (ṽj)j of piece-
wise affine functions such that ṽj → u inA. In light of the quadratic growth ofW c , see (2.1) in Lemma 2.1, it holds
that

lim
j→∞

L

∫
0

W c
(ṽj ) dx1 =

L

∫
0

W c
(u) dx1 .

For every j ∈ ℕ, there is a partition
0 = t(0)j ≤ t

(1)
j ≤ ⋅ ⋅ ⋅ ≤ t

(Nj)
j = L

such that ṽj = ξ
(n)
j on (t(n−1)j , t(n)j ) for all n ∈ {1, . . . , Nj}. As we have seen in Step 3a, the cases |ξ(n)j | ≥ 1 produce

a non-trivial quadratic energy contribution; we now deal with the cases |ξ(n)j | ≤ 1, which can be obtained as
weak limits of suitable piecewise affine functions.

Let Jj = {n ∈ {1, . . . , Nj} : |ξ(n)j | < 1} and let n ∈ Jj be fixed but arbitrary. Then there exist R
(n)
j ∈ SO(2) and

θ(n)j ∈ 𝕋
1 such that

ξ(n)j = cos θ
(n)
j R(n)j e1 .

Now, define for i ∈ ℕ,
φ(n)j,i : I(n)j := (t(n−1)j , t(n)j )→ ℝ

2 , t → 1
i φ
(n)
j (it),

where φ(n)j : I(n)j → ℝ
2 is piecewise affine with φ(n)j = ṽj on ∂I

(n)
j , and gradients

(φ(n)j )
 =
{
{
{

R(n)j Rθ(n)j
e1 on (t(n−1)j , τ(n)j ),

R(n)j R−θ(n)j
e1 on [τ(n)j , t(n)j ),

with
τ(n)j =

1
2 (t
(n−1)
j + t

(n)
j ).

It then holds that φ(n)j,i ⇀ ṽj inW1,2(I(n)j ;ℝ2) for i →∞. Indeed, the Riemann–Lebesgue Lemma yields that

(φ(n)j,i )
 ⇀

1
|I(n)j |
∫

I(n)j

(φ(n)j )
 dt = 12R

(n)
j (Rθ(n)j

+ R−θ(n)j
)e1 = R(n)j cos θ(n)j e1 = ξ(n)j

in L2(I(n)j ;ℝ2), and due to φ(n)j,i = ṽj|I(n)j
on ∂I(n)j we may apply Poincaré’s inequality to conclude the desired
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convergence. We are thus lead to consider the piecewise affine functions vj,i : (0, L)→ ℝ2 given by

vj,i = ṽj + ∑
n∈Jj
𝟙I(n)j
(φ(n)j,i − ṽj),

which satisfy

vj,i ⇀ vj inW1,2(Ω;ℝ2) for i →∞ and |vj,i| ≥ 1 a.e. in (0, L) for all j, i ∈ ℕ,

as well as

lim
j→∞

lim
i→∞

L

∫
0

W c
(vj,i) dx1 =

L

∫
0

W c
(u) dx1 .

SinceW c is coercive (2.1), we may select a diagonal sequence vj = vj,i(j) such that

vj ⇀ u inW1,2(Ω;ℝ2), lim
j→∞

I(vj) = I(u), |vj | ≥ 1. (3.4)

Step 3c: Diagonal sequence. Let u ∈ A and vj be as in Step 3b. By applying Step 3a for vj with j ∈ ℕ, we obtain
a sequence (uj,h)h ⊂ W1,2(Ω;ℝ2) that satisfies, under consideration of (3.4),

lim
j→∞

lim
h→0
‖uj,h − u‖L2(Ω;ℝ2) = 0 and lim sup

j→∞
lim sup
h→0

Ih(uj,h) ≤ I(u).

This allows us to select a diagonal sequence in the sense of Attouch (uh)h = (uj(h),h)h such that

uh → u in L2(Ω;ℝ2) and lim sup
k→∞

Ih(uh) ≤ I(u).

Finally, we repeat Step 1 for the sequence (uh)h to conclude that uh ⇀ u inW1,2(Ω;ℝ2) due to the uniqueness
of weak limits.

Step 4: Upper bound for s = ±e1. We deal with this case by selecting, with the help of standard results in the
context of asymptotic and convex analysis, for u ∈ A with |u| ≤ 1 a.e. in (0, L) a sequence (ṽj)j of piecewise
affine functions with |ṽj| = 1 a.e. in (0, L) such that ṽj ⇀ u inW1,2(Ω;ℝ2) similar to Step 3b. Then apply Step 3a
for u = vj for each j ∈ ℕ to obtain uj,h ∈ W1,2(Ω;ℝ2) such that

lim
j→∞

lim
h→0
‖uj,h − u‖L2(Ω;ℝ2) and lim sup

h→0
Ih(uj,h) = 0 = I(u) for every j ∈ ℕ.

The rest can be handled exactly as in Step 3c.

3.2 The Γ-limit with soft constraints

Proof of Corollary 1.2. The methodology of the lower bound is primarily inspired by [7, Section 4.1]. For the
reader’s convenience, we provide a self contained proof.

Step 1: Compactness. Exactly as in [6, equation (3.1)], we rewrite every Q ∈ SO(2) as Q = a ⊗ s + a⊥ ⊗ m with
a ∈ S1, and the energy densityWεk as

Wεk (F) = min
γ∈ℝ, a∈S1

(
1
εk
|F(s ⊗ s + m ⊗ m − γs ⊗ m) − a ⊗ s − a⊥ ⊗ m|2 + γ2)

=
1
εk
(|Fs − aεk (F)|2 + |Fm − γεk (F)Fs − a⊥εk (F)|

2) + γ2εk (F),
(3.5)

where aεk (F) ∈ S1 and γεk (F) ∈ ℝ are the minimizers that defineWεk (F).
Let (uk)k ⊂ W1,1(Ω;ℝ2)with bounded energy and vanishing mean value. In the following, we write briefly

ak := aεk (∇hkuk) and γk = γεk (∇hkuk). The rescaled gradient of uk can be written as

∇hkuk = Ak + Bk ,
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where
Ak = ak ⊗ s + (γkak + a⊥k ) ⊗ m,

Bk = (∂hks uk − ak) ⊗ s + (∂hkm uk − γεk∂
hk
s uk − a⊥k ) ⊗ m + γk(∂

hk
s uk − ak) ⊗ m,

(3.6)

with ∂hks uk = (∇hkuk)s and ∂hkm uk = (∇hkuk)m. In light of (3.5), we deduce that (γk)k ⊂ L2(Ω) is bounded and
that

∂hks uk − ak → 0, ∂hkm uk − γεk∂
hk
s uk − a⊥k → 0 in L2(Ω;ℝ2).

Via Hölder’s inequality, we conclude that γk(∂hks uk − ak)→ 0 in L1(Ω;ℝ2). Finally, since (ak)k ⊂ L∞(Ω;ℝ2), we
may select a subsequence (not relabeled), such that

Ak ⇀ A in L2(Ω;ℝ2×2), Bk → 0 in L1(Ω;ℝ2×2) (3.7)

for some A ∈ L2(Ω;ℝ2×2), which implies that ∇hkuk ⇀ A in L1(Ω;ℝ2). In particular, we obtain that ∂2uk → 0
in L1(Ω;ℝ2). Since uk has vanishingmean value, we infer fromPoincaré’s inequality that uk ⇀ u inW1,1(Ω;ℝ2)
for u ∈ A.

Moreover, if s = ±e1, then |u| ≤ 1 almost everywhere as the weak limit of ∂1uk = Ake1, which satisfies
|Ake1| = 1 almost everywhere.

Step 2: Lower bound. Let (uk)k ⊂ W1,1(Ω;ℝ2) and u as in Step 1. The lower bound for s = ±e1 is exactly as in the
proof of Theorem 1.1. As for s ̸= ±e1, we combine (1.3) with (3.5), (3.6) and (3.7), to conclude that

lim inf
k→∞

Ik(uk) = lim inf
k→∞
∫
Ω

Wεk (∇
hkuk) dx ≥ lim inf

k→∞
∫
Ω

γ2k dx = lim inf
k→∞
∫
Ω

W(Ak) dx

≥ lim inf
k→∞
∫
Ω

W c
(Ake1) dx ≥ ∫

Ω

W c
(Ae1) dx = 2

L

∫
0

W c
(u) dx1 = I(u).

Step 3: Upper bound. We proceed exactly as in the proof of Theorem 1.1. The only difference is that the dif-
ferent growth of Ik yields, in Steps 3c and 4, merely the weak convergence of the diagonal sequence uk ⇀ u
inW1,1(Ω;ℝ2) as opposed toW1,2(Ω;ℝ2).

The following proposition shows that, under suitable scaling relations between the parameters ε and k, which
govern the diverging elastic energy contribution and the thickness of the film, the recovery-sequence for Corol-
lary 1.2 can bemade smooth. However, we will see in Section 3.3 that this is not always possible for other scaling
regimes and non-smooth sequences are required to produce optimal energy.

Proposition 3.1. Let (εk , hk)k be any sequence with (εk , hk)→ (0, 0) such that

hαk
εk
→ 0 (3.8)

for some α ∈ (0, 2). Then the recovery sequence for the Γ-convergence result in Corollary 1.2 can be chosen to be
smooth.

Proof. The methodology for constructing recovery sequences is based on the techniques used in the context
of 3d-1d dimension reduction results for hyperelastic strings [19, Theorem 4.5], see also [11, Theorem 4.1]. The
case s = ±e1 can be dealt with in the same way as in the aforementioned works (with only minor adjustments)
due to the trivial structure of the Γ-limit andWεk (F) ≤ 1

εk dist
2(F, SO(2)) for all F ∈ ℝ2×2. We shall thus assume

that s ̸= ±e1.
As before, we begin by recovering piecewise affine limit deformations. Let u : (0, L)→ ℝ2 be piecewise

affine with |u| ≥ 1 a.e. in (0, L) and recall (3.2) and (3.3) for suitable θ(n) ∈ 𝕋1 and γ(n) ∈ ℝ.
Set β = 2 − α ∈ (0, 2), where α is given as in (3.8) and for k large enough, we define the disjoint union

Γk = ⋃N−1n=1 [t(n) , t(n) + h
β
k).We then set the smooth functions θk : Γk → SO(2) and γk : Γk → ℝ such that θk = θ(n)

and γk = γ(n) in a neighborhood around t(n), θk = R(n+1) and γk = γ(n+1) in a neighborhood around t(n) + h
β
k , as

well as θk = 0 and γ

k = 0 when near the boundary of Γk . Then these sequences satisfy

‖θk‖L∞(Γk ;ℝ2×2) = O(1), ‖θ

k‖L∞(Γk ;ℝ2×2) = O(h

−β
k )
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as well as
‖γk‖L∞(Γk) = O(1), ‖γk‖L∞(Γk) = O(h

−β
k ).

A recovery sequence for u is then given by

uk(x) =

{{{{{{{{
{{{{{{{{
{

M(θ(1) , γ(1))xhk + b
(1)
k if x1 ∈ [0, t(1)),

x1

∫

t(n)

M(θk(t), γk(t))e1 dt+d(n)k +hkx2M(θk(x1), γk(x1))e2 if x1 ∈ [t(n) , t(n)+h
β
k) for n = 1, . . . , N −1,

M(θ(n+1) , γ(n+1))xhk + b
(n)
k if x1 ∈ [t(n)+h

β
k , t
(n+1)) for n = 1, . . . , N −1,

for x ∈ Ωwhere xhk = x1e1 + hkx2e2; the translations b
(n)
k , d(n)k ∈ ℝ

2make uk continuous. The rescaled gradients
of uk then have the form

∇hkuk(x) =
{{{{
{{{{
{

M(θ(1) , γ(1)) if x1 ∈ [0, t(1)),

M(θk(x1), γk(x1)) + hkE(x) if x1 ∈ [t(n) , t(n) + h
β
k) for n = 1, . . . , N − 1,

M(θ(n+1) , γ(n+1)) if x1 ∈ [t(n) + h
β
k , t
(n+1)) for n = 1, . . . , N − 1,

with
E(x) = x2(

d
dx1

Rθk(x1) +
d
dx1
(γk(x1)Rθk(x1))s ⊗ m)e2 ⊗ e2 (3.9)

for x ∈ Ω. By design, we obtain that
uk → u inW1,2(Ω;ℝ2).

Joining (1.8) with (3.3)–(3.9), and |Γk| = h
β
k , we compute that

Ik(uk) = ∫
Ω

Wεk (∇
hkuk) dx

≤ 2 ∫
(0,L)\Γk

W c
(u) dx1 + ∫

Γk×(−1,1)

1
εk

dist2(Rθk(x1) + hkE(x)(Id−γk(x1)s ⊗ m), SO(2)) + γk(x1)2 dx

≤ 2
L

∫
0

W c
(u) dx1 + ∫

Γk×(−1,1)

1
εk
h2k|E(x)(Id−γk(x1)s ⊗ m)|

2 + γk(x1)2 dx

≤ I(u) + O(
h2−βk
εk
) + O(hβk).

Finally, we exploit (3.8) to conclude that
lim sup
k→∞

Ik(uk) ≤ I(u).

The rest can be done exactly as in Steps 3b–4 in the proof of Theorem 1.1.

3.3 The smoothness gap of the hard contraint

In this section, we will see that the hard constraint case for s = e1 exhibits some unexpected extra rigidity when
constrained to smoother functions preventing jumps of the rotation or shear parameter, leading to a Lavrentiev
phenomenon. The basis of this is the following necessary condition obtained by combining the constraint with
gradient structure.

Lemma 3.2. Suppose that Ω is a bounded domain in ℝ2 and v ∈ W1,1(Ω;ℝ2) satisfies the hard constraint
for s = ±e1, i.e.,

∇v(x) = M(θ(x), γ(x);±e1) = Rθ(x)(Id+γ(x)e1 ⊗ e2) for a.e. x ∈ Ω (3.10)
with γ ∈ W1,1(Ω;ℝ) ∩ C0(Ω;ℝ) and θ ∈ W1,1(Ω;𝕋1) ∩ C0(Ω;𝕋1). Then

∂1θ = ∂1γ and ∂2θ = γ∂1θ in Ω, (3.11)

in the sense of distributions.
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Proof. Clearly, Curl∇v = 0 in Ω (row-wise curl) in the sense of distributions. Expressing this in terms of θ and γ,
we infer from (3.10) that

0 = ∂2 (
cos θ
sin θ
) − ∂1 (

γ cos θ
γ sin θ
) − ∂1 (

− sin θ
cos θ
) . (3.12)

Exploiting that all appearing quantities are contained inW1,1(Ω;ℝ) ∩ C0(Ω;ℝ), we observe by density of smooth
functions that

∂2 (
cos θ
sin θ
) = (∂2θ)(

− sin θ
cos θ
) ,

∂1 (
− sin θ
cos θ
) = −(∂1θ)(

cos θ
sin θ
) ,

∂1 (
γ cos θ
γ sin θ
) = (∂1γ)(

cos θ
sin θ
) + (∂1θ)γ(

− sin θ
cos θ
) .

(3.13)

Since (cos θ, sin θ) and (− sin θ, cos θ) are orthonormal, (3.12) and (3.13) combined yield (3.11).

The first equation in (3.11) couples shear and bending of the fibers (the lines in direction e1 in Ω). This implies
a minimal energy cost associated to bending, for instance if it is forced by shortening the distance between the
“ends” of v (at x1 = 0 and x1 = L).

Proposition 3.3. RecallΩh := (0, L) × (−h, h), L, h > 0, and let v ∈ W2,1(Ωh;ℝ2) ∩ C1(Ωh;ℝ2) satisfy (3.10) onΩh .
In particular, γ ∈ W1,1(Ωh;ℝ) ∩ C0(Ωh;ℝ) and θ ∈ W1,1(Ωh;𝕋1) ∩ C0(Ωh;𝕋1). If v satisfies

1
L |v(0, ⋅ ) − v(L, ⋅ )| ≤ δ (3.14)

for some δ ∈ [0, 1), then
Eh(v) = ∫

Ωh

γ2 dy ≥ ch

for a constant c > 0 independent of h and v, cf. (1.4), (1.2), and (1.3).

Proof. For η ∈ (0, 1) (to be chosen later), define

Gη = Gη(y2 , γ) := {y1 ∈ (0, L) : η ≤ |γ(y1 , y2)|}, y2 ∈ (−h, h).

This allows us to estimate the energy as follows:

Eh(v) =
h

∫
−h

L

∫
0

γ2 dy1 dy2 ≥
h

∫
−h

∫
Gη(y2)

η2 dy1 dy2 = η2
h

∫
−h

|Gη| dy2 .

If |Gη| ≥ η for a.e. y2 ∈ (−h, h), we obtain the assertion for c := 2η3.
Otherwise, there exists a set of positive measure V ⊂ (−h, h) such that |Gη| < η for all y2 ∈ V . We claim that

for a suitably small choice of η = η(L, δ), this case is impossible, essentially because it is not compatible with
the “short” boundary conditions on v (3.14) combined with Lemma 3.2.

Due to the first equation in (3.11), there exists α : (−h, h)→ ℝmeasurable such that for all y = (y1 , y2) ∈ Ωh ,

γ(y) = θ(y) + α(y2) for a.e. y = (y1 , y2) ∈ Ωh . (3.15)

For each y2 ∈ (−h, h), choose an orthonormal basis b1(y2), b2(y2) of ℝ2 such that det(b1|b2) = 1 and b1 points
in direction of v(0, y2) − v(L, y2), i.e.,

b1(y2) ⋅ (v(0, y2) − v(L, y2)) = |v(0, y2) − v(L, y2)|, b2(y2) ⋅ (v(0, y2) − v(L, y2)) = 0 (3.16)

and
(b1|b2) ∈ SO(2), whence (b1|b2) = Rθ0 for some θ0 = θ0(y2).

We set
θ̂(y) := θ(y) + θ0(y2) and α̂(y2) := α(y2) − θ0(y2) for y ∈ Ωh ,
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and find with basic computations and (3.15) that

(
cos θ̂(y)
sin θ̂(y)

) = Rθ̂(y)e1 = Rθ0(y2)Rθ(y)e1 and γ(y) = θ̂(y) + α̂(y2).

Moreover, for all y2 ∈ (−h, h),

1
L

L

∫
0

sin θ̂ dy1 =
1
L

L

∫
0

b2 ⋅ (
cos θ
sin θ
) dy1 =

1
L
b2 ⋅

L

∫
0

∂1v dy1 = 0, (3.17)

the latter by (3.16). Similarly, (3.16) and (3.14) give that

0 ≤ 1
L

L

∫
0

cos θ̂ dy1 =
1
L
b1 ⋅ (v(0, ⋅ ) − v(L, ⋅ )) ≤ δ. (3.18)

On the other hand,
γ(y) = θ̂(y) + α̂(y2) ∈ (−η, η) for y1 ∈ (0, L) \ Gη(y2),

by the definition of Gη . If y2 ∈ V so that |Gη(y2)| < η, we obtain that

L

∫
0

|sin θ̂ − sin(−α̂)| dy1 ≤ 2|Gη| + ∫
(0,L)\Gη

|sin(γ − α̂) − sin(−α̂)| dy1

< 2η + ∫
(0,L)\Gη

|γ| dy1 < 2η(1 + L).
(3.19)

Analogously, we can estimate
L

∫
0

|cos θ̂ − cos(−α̂)| dy1 < 2η(1 + L) (3.20)

for all y2 ∈ V . As α̂ = α̂(y2) is independent of y1, we can combine (3.17) and (3.18) with (3.19) and (3.20), respec-
tively, to get that for all y2 ∈ V ,

|sin(−α̂)| < 2η(1 + L) and − 2η(1 + L) ≤ cos(−α̂) ≤ δ + 2η(1 + L). (3.21)

Here, notice that since δ < 1, (3.21) for small η means that α̂ has to stay close to the set πℤ = sin−1({0}) while
keeping a distance from πℤ = cos−1({±1}), the same set. Of course, this is impossible if η = η(δ, L) is small
enough.
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