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Abstract. We investigate the problem of dimension reduction for plates in nonlinear magne-
toelasticity. The model features a mixed Eulerian-Lagrangian formulation, as magnetizations are
defined on the deformed set in the actual space. We consider low-energy configurations by rescaling
the elastic energy according to the linearized von Kdrman regime. First, we identify a reduced model
by computing the I'-limit of the magnetoelastic energy, as the thickness of the plate goes to zero.
This extends a previous result obtained by the first author in the incompressible case to the com-
pressible one. Then, we introduce applied loads given by mechanical forces and external magnetic
fields, and we prove that sequences of almost minimizers of the total energy converge to minimizers
of the corresponding energy in the reduced model. Subsequently, we study quasistatic evolutions
driven by time-dependent applied loads and a rate-independent dissipation. We prove that energetic
solutions for the bulk model converge to energetic solutions for the reduced model, and we establish a
similar result for solutions of the approximate incremental minimization problem. Both these results
provide a further justification of the reduced model in the spirit of the evolutionary I'-convergence.
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1. Introduction. Magnetoelasticity concerns the interaction between magnetic
fields and deformable solids [12, 20, 44]. Indeed, it is known that magnetic materials
can change their strain upon the application magnetic fields, and this behavior is
termed magnetostriction. Conversely, it is possible to modify the magnetic response
of such materials by means of mechanical loads. Both these phenomena are of great
interest in engineering since they constitute the basic operating principle of many
technological devices such as sensors and actuators.

Internally, magnetic materials are subdivided into regions of uniform magnetiza-
tion called magnetic domains [31]. This structure originates from the competition of
two effects: the magnetocrystalline anisotropy, that is, the existence of preferred mag-
netization directions, called easy axes, determined by the underlying crystal lattice;
and the long-range interactions between magnetic dipoles which favor configurations
with divergence-free magnetization throughout the specimen. When a magnetic field
is applied, a reorganization of the domain structure is observed: the boundaries be-
tween these domains shift, and the domains themselves rotate. This is mainly due
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to the more favorable orientation of certain easy axes with respect to the direction
of the external field [34]. As a result, these movements produce a macroscopic strain
and, in turn, lead to the deformation of the specimen.

According to the variational theory of Brown [12], the magnetoelastic energy is
a function of deformations and magnetizations, and equilibrium states correspond to
minima of the energy functional. The model contemplates finite strains. Therefore,
while deformations are defined on the reference configuration (Lagrangian), magneti-
zations are defined on the deformed set in the actual space (Eulerian).

Apart form magnetoelasticity [5, 11, 36], mixed Eulerian-Lagrangian formulations
appear also in other contexts, such as the theory of liquid crystals [4, 30], phase
transitions [28, 51], and finite plasticity [33, 52]. From the mathematical point of view,
the analysis of such models is very challenging. Indeed, several standard techniques
are no longer available in this setting, so that novel strategies are required. For these
reasons, in recent years, mixed Eulerian-Lagrangian variational problems caught have
attracted the attention of the mathematical community.

Rigorously derived lower-dimensional models of continuum mechanics play an
important role in applications because they preserve the main features of the bulk
model, but they are usually simpler from the computational point of view [40, 41].
Fundamental results obtained in [24, 25] have initiated remarkable progress in this
area and have established the prominent role of I'-convergence [7] in the validation
of reduced models for thin structures. For micromagnetics, among others, important
results have been achieved in [13, 26]. However, in the case of magnetoelasticity,
few rigorous results are available. Two-dimensional models were first derived in [35]
for Kirchhoff-Love plates starting from linearized magnetoelasticity, and then in [16]
for nonsimple materials in the fully nonlinear membrane regime. In the first case,
rate-independent evolutions were also studied.

In this contribution, we derive a reduced model for plates in the linearized von
Kérman regime starting from nonlinear magnetoelasticity. Our results develop the
investigations initiated in [8] for incompressible materials to various extents. We
consider compressible materials, and we make more realistic assumptions on the elastic
energy density. Also, we include applied loads given by mechanical forces and external
magnetic fields. Unlike [8], our analysis covers both the static the quasistatic settings.
In the first case, we employ I'-convergence techniques to study the asymptotic behavior
of minimizers of the magnetoelastic energy, as the thickness of the plate goes to zero.
In the latter, we investigate the dimension reduction in the framework of evolutionary
I'-convergence [46].

Let k> 0 denote the thickness of a thin magnetoelastic plate €, := S x hl C R3,
where S C R? represents the section and I := (—1/2,1/2). Deformations are maps
¢: Q — R3 while magnetizations are given by maps m: ¢(Q;) — R3. Deformations
are assumed to be injective and orientation-preserving in order to exclude the
interpenetration of matter, and satisfy clamped boundary conditions [37]. Also, for
sufficiently low constant temperature, deformations and magnetizations are subject
to the magnetic saturation constraint [12, 32, 49], which, up to normalization, reads

|m o ¢|det Vo =1in Qp.

The magnetoelastic energy per unit volume is accounted for by the functional

(1.1)

1 1 , 1 ,
Gom) = gy [ WiVame)axy [ wmpag e g [ vumtag
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This consists of three contributions: the elastic energy, which is rescaled by h%+! with
B > 6 and depends on the elastic density Wj; the exchange energy, which penalizes
spatial changes of magnetizations; and the magnetostatic energy, which involves the
stray field potential ¥, : R? — R3 given by a solution of Maxwell equations:

Ay, = div (X¢(Qh)m) in R3.

In particular, we specify the structure of the elastic energy density W}, in (1.1), which
is assumed to take the form

(1.2) Wi(F,\) = ((I—i—ch/\(detF) ®>\(detF))_lF>,

where ® is a frame indifferent energy density satisfying physical growth conditions
and ¢;, ~ hP/? is a positive parameter. Similar expressions, with the nematic director
in place of the magnetization, are widely accepted in the context of liquid crystals
[19], and we refer the reader to [2] for a specific example in the case of plates.
Expressions of the elastic energy that are formally analogous to the one in (1.2) have
already been considered in the dimension reduction of prestrained materials [38, 39]
and heterogeneous multilayers [17, 50].

Assuming that ® is minimized at the identity, formula (1.2) induces the competi-
tion of the deformation gradient and magnetization in the minimization of the elastic
energy which characterizes magnetostrictive effects. Therefore, the constitutive as-
sumption in (1.2) makes this setting more realistic compared with the one in [8], where
the elastic energy is minimized at the identity independently on the magnetization.

Our main results are contained in Theorems 3.1 and 3.13 for the static setting,
and in Theorems 4.3 and 4.9 for the quasistatic setting. The enunciation of these
results requires the specification of the setting and the introduction of a considerable
amount of notation. Therefore, we limit ourselves to briefly describing them, and we
postpone the precise statements to sections 3 and 4.

In Theorem 3.1, we compute the I-limit of the magnetoelastic energy in (1.1),
as h — 0. This is computed with respect to the convergence of the averaged dis-
placements [25], and of the composition of magnetizations with deformations. The
limiting energy that we obtain is purely Lagrangian and is naturally given by inte-
grals on the section S. The elastic term in the reduced model is obtained by the
linearization of ® at the identity similarly to [25]. In contrast with [8], this term
exhibits a strong coupling between elastic and magnetic variables in agreement with
models of linearized magnetoelasticity [18]. Also, as in [13, 26], the magnetostatic
term simplifies substantially in the reduced model.

In Theorem 3.13, we consider applied loads given by mechanical forces and ex-
ternal magnetic fields, all dependent on the thickness of the plate. In particular, the
energy contribution determined by the external magnetic field, usually called Zeeman
energy, is of Eulerian type. The total energy is given by the difference between the
magnetoelastic energy and the work of applied loads. Having prescribed the asymp-
totic behavior of the applied loads, we prove that sequences of almost minimizers
of the total energy converge, as h — 07, to minimizers of the corresponding energy
functional in the reduced model. Because of the rescaling of the elastic energy, the
analysis is quite involved since the coercivity of the total energy functional is not
immediate.

In the quasi-static setting we adopt the framework of rate-independent processes
with the notion of the energetic solution [45]. We consider time-dependent applied
loads, and we introduce the dissipation distance
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((gz),m),(q?;,ﬁi)) H%/ Imo ¢det Ve — mi o pdet V| dX.
Qp

Our results are in the spirit of evolutionary I'-convergence [46]. The first one,
namely Theorem 4.3, states the convergence energetic solutions for the bulk model
to energetic solutions of the reduced model, as h — 0%. Here, the existence of ener-
getic solutions for the bulk model is part of the assumptions, while the existence for
the reduced model follows as a byproduct. However, our setting is compatible with
the existence of energetic solutions for the bulk model in the sense that, under an
additional assumption on the density ®, this can be ensured. We refer the reader to
Remark 4.4 for more details.

Subsequently, we present a variant of the previous convergence result. For every
h >0, we consider the approximate incremental minimization problem [46], a relaxed
version of the incremental minimization problem that has been introduced in order
to cope with the possible lack of minimizers of energy functionals. Indeed, this ap-
proximate problem always admits solutions. In Theorem 4.9, we show that, given a
sequence of partitions of the time interval whose size vanishes together with some tol-
erances, as h — 07, the piecewise-constant interpolants corresponding to solutions of
the approximate incremental minimization problems for suitably well-prepared initial
data converge, as h — 0T, to an energetic solution of the reduced model.

We emphasize that all the results in this paper are achieved without resorting to
any regularization of the energy. However, our argument to prove the compactness
of magnetizations works only under some restriction on the scalings. Precisely, the
scaling of the elastic energy in (1.1) has to satisfy the condition 8 > 6 V p, where
p > 3 is the integrability exponent of deformations, while the linearized von Karmén
regime corresponds to 8 > 4. Note that the restriction p > 3 is merely technical.
Indeed, although some techniques to tackle the case p > 2 have been developed in
the literature [5], these are not sufficient for our arguments, which rely on explicit
estimates of the rate of convergence of the deformation towards the identity.

The paper is structured as follows. In section 2, we introduce the mathematical
model, and we list all the assumptions. In section 3, we address the static setting:
Theorems 3.1 and 3.13 are stated and proved in subsections 3.1 and 3.2, respectively.
Finally, section 4 is devoted to the quasi-static setting. Theorems 4.3 and 4.9 are
presented in subsections 4.2 and 4.3, respectively. We conclude with subsection 4.4
by briefly mentioning an alternative choice for the dissipation distance.

Notation. For scalars a,b € R, we use the notation a A b := min{a,b} and
aVb:=max{a,b}. Given a= (a',a?,a3)" € R3, we set @’ :=(a',a?)" € R2. The null
vector in R? is denoted by 0, so that 0" is the null vector in R2. The same notation
applies also to space variables, and V' and (V’)? denote the gradient and the Hessian
with respect to the first two variables, respectively. Given A = (A;);zllé?; € R3%3,
we set A" = (A;);zll% € R?*2. The null matrix and the identity matrix in R3*3 are
denoted by O and I; thus O” and I are the corresponding matrices in R?*2. The
tensor product of a,b € R? is given by a ® b€ R**?, where (a ® b)’; := a'’ for every
i,7 € {1,2,3}. The identity map on R? is denoted by id.

We denote general points in the physical (unscaled) space, in the reference space,
and in the actual space by X, x, and &, respectively. Accordingly, the integration with
respect to the three-dimensional Lebesgue measure will be denoted by d X, dx, and
d&, respectively. The integration with respect to the one- and the two-dimensional
Hausdorff measure in the reference space will be denoted by dl and da, respectively.
We denote by x4 the characteristic function of a set A C RY, where N € {1,2,3}.
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We will use standard notation for Lebesgue, Sobolev, and Bochner spaces, and
for spaces of functions of bounded variation. Given S C R? open and an embedded
submanifold M C RM | where M € N, we denote by W14(S; M), where 1 < g < oo,
the set of maps n € W14(S;RM) such that n(z’) € M for almost every ' € S. In the
following, M will be either the unit sphere S? C R? or the special orthogonal group
SO(3) c R3*3.

Finally, the topological degree of a map y € C°(Q;R?), where Q C R? is open and
bounded, at a point &€ € R3 \ y(99) will be denoted by deg(y, 2, £).

We make use of the Landau symbols 0 and O. When referring to vectors or ma-
trices, these are to be understood with respect to the maximum of their components.
We will adopt the common convention of denoting by C,C4,C5... positive constants
that can change from line to line. We will identify functions defined on the plane with
functions defined on the three-dimensional space that are independent on the third
variable. In general, we will think of the parameter h > 0 as varying along a sequence
even if this is not mentioned. The particular sequence of thicknesses considered will
be specified only in a few circumstances, when this is particularly important for the
understanding.

2. Basic setting. In this section we describe the general setting of the paper.
First, in subsection 2.1, we introduce the mechanical model and we list all the as-
sumptions. Then, in subsection 2.2, we perform a standard change of variables in
order to work on a fixed domain.

2.1. The static model. Let §;, := S x hl represent a thin magnetoelastic
plate in its reference configuration. The section S C R? is a bounded connected
Lipschitz domain, while the parameter h > 0 gives the thickness of the plate and
I:=(-1/2,1/2).

The plate experiences elastic deformations given by maps ¢ € W1P(Qy,;R3) for
some fixed p > 3. By the Morrey embedding, any such map admits a continuous
representative with whom it is systematically identified. Every deformation ¢ is
required to be orientation-preserving, namely to satisfy the constraint det V¢ > 0
almost everywhere in €1, and to be almost everywhere injective. This means that
there exists a set X C Qj with £?(X) =0 such that ¢|q,\ x is injective. Recall that
any such map ¢ has both Lusin properties (N) and (N71), that is, #3(¢(X)) =0
for every X C Qp, with Z3(X) = 0 and .Z3(¢ *(Y)) = 0 for every Y C R? with
Z3(Y) =0. Also, the area formula and the change-of-variable formula hold for such
a map [43]. We impose clamped boundary conditions by requiring each deformation
¢ to satisfy

(2.1) ¢=1id on 0S x hl.

Given a deformation ¢, we define Qf = @(Qr)\ @(0924). This set is open [11, Lemma
2.1] and 33’(¢(Qh)\9f) = 0 thanks the Lusin property (N). Magnetizations are
defined as maps m € Wl’Q(Qf;R?’) subject to the saturation constraint:

(2.2) |mo ¢|det V=1 a.e. in Q.

Neglecting all material parameters, the energy corresponding to the state (¢, m) is
given by

1 1
(23) Gulg.m)i= 5 [ WiVomo@)aX + | |Vmae+g [ Vi de
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The first term in (2.3) represents the elastic energy, and it is rescaled according to
the linearized von Kédrman regime [25]. Precisely, we assume

B>6Vp.

Note that, by the Lusin property (N~1), the composition m o ¢ is measurable, and
its equivalence class does not depend on the choice of the representative of m. The
elastic energy density Wj,: X — [0,400), where we set

X:i={(F,A) eRY? xR*: (det F)[A|=1},
is continuous and takes the form
(2.4) Wi(F,A):=® (Ly((det F)X)~"F)
for some function ®: R3*? — [0,+00). In (2.4), we define Ly : S —R3*® by setting
(2.5) Ly(z)=I+cpz® z,

where ¢;, > 0. Regarding the asymptotic behavior of (c;), we assume the existence of
the limit

s Ch
(2.6) co = hli>nOl+ ek 0.
A direct computation shows that
(27) det Lh(z) =1+ Chp,

for every z € S?. In particular, the matrix Ly (2) is invertible, and its inverse is given
by
Ch,

-1 N
(2.8) Luz) ' =T- o ze

The function ® is assumed to have the following properties:
(i) Normalization:

(2.9) ®(I)=0=min P.
(ii) Frame indifference:
(2.10) YRe SO(3), VE€RY?, O(RE)=®(E).

(iii) Growth: there exist Co,C1,Co >0 and a > 1 such that

(2.11) VEEeRY, @) > Cydist®(E;S0(3)) V dist?(E; S0(3)),
and
C
. EcR>3, BE)> ——— — O,
(2.12) VE e R}, ()_(detE)“ Co

(iv) Regularity:
(2.13) ® is continuous and of class C? in a neighborhood of SO(3).

In view of (2.8), we have
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(2.14) VReSO(3),VzeS? Lp(Rz) '=RLy(z)"'R".

This, together with (2.10), yields the frame-indifference of W},, namely

(2.15) VReSO(3),V(F,A)eX, Wip(RF,R\)=W(F,X\).

From (2.9) and (2.15), we realize that the function W}, is minimized on the set
{(RF,R\): ReSO(3), (F,A\)eX, F=Ly((det F)\)}.

By (2.11), the map ® has global p-growth and quadratic growth close to SO(3). In
particular, there exist C,Cs > 0 such that, for ¢ € {2,p}, it holds that

VEEeRY?, @(E)>C Bl - Cs.

The specific form of the growth condition of ® with respect to the determinant in
(2.12) is assumed just for simplicity. Actually, because of the rescaling of the elastic
energy, we could also assume a = 1. More generally, assumption (2.12) can be replaced
by the requirement

VEeRY?, @(E)>1(detE),
where v: (0,4+00) — [0, 4+00] is continuous and satisfies

1)=0=min~, lim hvy(h) = .

7(1) min -y Jim hry(h) = +o0

Assumptions (2.9) and (2.13) justify the second-order Taylor expansion of ® close to
the identity. Precisely, we have the following:

1
(2.16) VEcRYS: |B|«1, @(I+E):§Q(E)+w(5).

The quadratic form Q is defined by Q(E) := D?®(I)(E,E), while w(E) = o(|E|?),
as |E| — 07. Note that @ is positive semidefinite and, in turn, convex by (2.9).
Additionally, exploiting (2.11) and (2.16), by arguing as in [47, p. 927] one can show
that @ is positive definite on symmetric matrices, that is, there exists C' > 0 such
that

(2.17) VEcR*?  Q(E)=Q(symE) > C|sym E|*.

The last two terms in (2.3) are of Eulerian type. The second one is the exchange
energy, while the third one is the magnetostatic energy. This last term involves the
stray-field potential 1, : R® — R3, which is a weak solution of the magnetostatic
Maxwell equation

(2.18) Atpm, = div (xgpm) in R3.

It is proved that weak solutions of (2.18) exist and are unique up to additive constants
[5, Proposition 8.8]. Therefore, the magnetostatic energy is well defined.

We mention that the magnetostatic term usually comprises other terms such as
the anisotropy energy [34] that here, for simplicity, we are neglecting.
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2.2. Change of variables and rescaling. For i > 0, we introduce the rescaling
map 7, defined by 7 () := ((z') ", has) " for every x € R3. Set Q:= 8 x I. Given
any ¢ € WP (Q;R3), we consider the map y := ¢ o wy|q € WHP(Q;R3). Recalling
(2.1), this map satisfies

(2.19) y=mp on 0S5 x I.

Also, given Q¥ := y(Q) \ y(99), there holds Q¥ = Qf and, in view of (2.2), each
magnetization m € WH2(Q¥;R3) satisfies

(2.20) lmoy|det Vy=h a.e. in Q.
Therefore, we define the class of admissible states as

Q= {(y,m) sy e WHP(Q;R?), det Vy >0 a.e., y a.e. injective,
(2.21)
y=mp, on dS x I,me WH2(Q¥;R?), [moy|det Vy =h a.e. in Q}

Recalling (2.3) and applying the change-of-variable formula, we obtain

1 1 U omiaes L ,
FOu@m) = [ Wiigmoy)de+ ;[ (VmPags g [ 90l de,

where the scaled gradient is defined as Vy, := (V’,h~193). Hence, we define the energy
functional Ej: Qp — [0,4+00) by setting

1 1 1
(2.22) En(q) ZZ*/Wh(Vh%moy)der*/ IVm|2d€+f/ |Vehm |? €,
h¥ Q h Qv 2h R3

where g = (y,m). We denote the three terms on the right-hand side by Ef'(q),
Ef*¢(q), and E,"*#(q), respectively. Given (2.18), the function ¢y, in (2.22) is a weak
solution of the equation

Atpp, =div (xgvm) in R3.

More explicitly, this means that 1, € V12(R?) and satisfies
(2.23) Ve VE2(R3), / Vi) - Vgodﬁz/ xovm - Vpd€.
R3 R3

Here, we adopt the same notation in [48, subsection 2.7.3], and we set

(2.24) V2R :={pe L (R?): Vype L*(R%R?)}.
In particular, testing (2.23) with ¢ = 1,,, and applying the Hélder inequality, we
obtain

(2.25) Vol L2 r3rs) < [ Xavm||L2®sigs)-

Remark 2.1 (Invariance with respect to rigid motions). The functional Ej is
invariant with respect to rigid motions. Let ¢ = (y,m) € Qy, and let T be a rigid
motion of the form T(§) := Q& + ¢ for every & € R3, where Q € SO(3) and ¢ € R3.
If we set ¢ = (y,m) € Q) with § :=T oy and m := QmoT ', then it holds that
En(q) = En(q). Indeed, by (2.15), ES(q) = E§l(q) and, by the change-of-variable
formula, Ef*°(q) = E*°(q). Moreover, if ¢, is a stray-field potential corresponding
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to g, then we check that 1), 0T~ is a stray-field potential corresponding to g. Clearly,
this yields E},"*¢(q) = E;,**(q).

Remark 2.2 (Existence of minimizers for the bulk model). In the present work,
we do not deal with the problem of the existence of minimizers, and we do not even
specify the topology on Qp. We just mention that, without further assumptions
on the elastic energy density W}, the functional Ej in (2.22) does not necessarily
attain its infimum. However, if the function ® in (2.4) satisfies feasible polyconvexity
assumptions, then the existence of minimizers of E}, can be proved [9, 11].

3. Static setting. In this section we study the asymptotic behavior of the energy
Ej in (2.22), as h — 07, in the static case. First, in subsection 3.1, we compute the
I-limit the sequence (E}). Then, in subsection 3.2, we consider applied loads, and we
prove that sequences of almost minimizers of the total energy converge to minimizers
of the corresponding energy in the reduced model.

3.1. Static I'-convergence. We introduce some notation that is going to be
employed in the rest of the paper. For h > 0 and g = (y,m) € Qj, we define the
(scaled) horizontal and vertical averaged displacements and the (scaled) first moment,
respectively,

Un(q): S —R?, Vi(q): S — R, Whiq): S —R3,

by setting
Un(q)(x) =L (v (x',23) — ') da:
n\q = hﬁ/Q | Yy s 43 35
1
e e

Wi(q)(z') := # /Il’z (y(2', x3) — wp (2, 23)) das

for every ' € S. Furthermore, we define

Miu(q): Q—R3, Nu(q): Q— R3>3, Zn(q): Q—§?

by setting

(3.1) Mui(q) := (xavm) o mp,
(3.2) Ni(q) := (xquVm)omp,
(3.3) Zn(q) :=moydet V,y.

We stress that the map Zj(q) is sphere-valued as a consequence of (2.20).
Recall the quadratic form @ in (2.16). As in [25], the reduced quadratic form is

defined by
O/
0 >+C®63+63®C>2 CGR3}

b))
3.4 Qred(X) :=min< Q
(34) (%) { ()7
for every 3 € R?*2, The positive definiteness and the convexity of Q,eq follow from
that of Q. Moreover, from (2.17), we deduce that Qeq is also positive definite on
symmetric matrices; namely, there exists C' > 0 such that
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(35) VEER??, Qred(T) = Qrea(symX) > Clsym =%,
Set
(3.6) Qo := Wy ?(S;R?) x W2(S) x Wh2(S;S?).

The I-limit of the functionals (E}) in (2.22), as h — 0T, is given by Ey: Qo — [0,+00)
defined as

Eo(qy) == % /s Qred(symV'u — co¢’ @ ¢') dx’ + 1 /S Qrea((V)?v) da’

24
1
_’_/>|v/c|2dl:/_i_7/K—3|2da:l7
S 2 S

where gy = (u,v,¢) and ¢o > 0 is the constant in (2.6). We denote the sum of the first
two terms on the right-hand side by E§'(q,) and the last two terms on the right-hand
side by E§*“(q,) and E;*®(q,), respectively. Note that the limiting functional Ey is
purely Lagrangian and that it trivially admits minimizers.

Our first main result claims the I'-convergence of (E},) to Eg, as h — 0", and the
equi-coercivity of the sequence (E},).

(3.7)

THEOREM 3.1 (Static I-convergence). Assume p>3 and 8> 6V p. Suppose that
the elastic energy density Wy, has the form in (2.4), where the function ® satisfies

(2.9)-(2.13).
(i) (Compactness and lower bound). Let (q) with q;, = (y;,,mp) € Qn be such
that
(3.8) sup En(q,) <C.

h>0

Then, there exists q, = (u,v,{) € Qo such that, up to subsequences, the
following convergences hold as h — 0% :

(3.9) up, :=Up(q,)— w in WH2(S;R?),
(3.10) vp = Vu(gy,)— v in WH2(9),
(3.11) zn = Zn(qy)— ¢ in L1 (Q;R3).

Moreover, the following inequality holds:

(3.12) Eo(qy) <liminf Ey(qp,)-
h—0+t

(i) (Optimality of the lower bound). For every g, = (u,9,¢) € Qq, there exists
(gy,) with q, € Qp such that the following convergences hold as h— 07 :

wp, :=Up(q,)— u in WH2(S;R?),
Op :=Vu(q))— 0 in WH2(S),
2= Z0(d),)— C in L1(Q;R3).

Moreover, the following equality holds:

(3.13) Eo(@,9,0) = lim En(d@y)-
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Note that Theorem 3.1 is not a proper I'-convergence statement in the sense of the
abstract definition [7] since the functionals Ej, and Fy are defined on different spaces.
However, Theorem 3.1 can be reformulated as a rigorous I'-convergence statement
similarly to [8, Corollary 3.4].

Remark 3.2 (More general boundary conditions). More general Dirichlet bound-
ary conditions, like the ones in [37], can be considered in Theorem 3.1. Precisely, let
we W2 (5;R?) and v € W3°(S). For h> 0, let the deformation g, € W (Q;R?)

be defined as
. o —
wome 5 2 () ()

If ' C 95 is given by a finite union of closed connected subsets of 0.5 with nonempty
interior in the relative topology, then Theorem 3.1 still holds true if we replace the
boundary condition in (2.19) with

y=y,onl xI.
Accordingly, the limiting class Qg in (3.6) needs to be replaced by the set

{(u,v,C) € WH2(S;R?) x W22(S) x Wh2(S;8?): w=7 on T,
v=vonl, Vv=V'v on F}.

The main changes concern the construction of recovery sequences, as we need to
approximate the limiting averaged displacements uw and v with regular maps satisfying
the boundary conditions above. This is achieved by employing [24, Proposition A.2],
which requires the above-mentioned regularity of I'.  For more details, we refer the
reader to [10].

The remainder of the subsection is devoted to the proof of Theorem 3.1.

3.1.1. Compactness. For future reference, we start by collecting some pre-
liminary compactness results which we present in a more self-contained form. The
compactness of deformations is proved by adapting the techniques in [25] to our set-
ting. A fundamental tool in these arguments is the celebrated rigidity estimate [24,
Theorem 3.1]. For convenience, given h >0 and y € WP({;R?), we set

(3.14) Ru(y) ::/ dist?(V5y; SO(3)) V dist? (V5,y; SO(3)) de.
Q
We will use the following slight modification of [25, Theorem 6] which was given in

[8, Lemma 4.1].

LEMMA 3.3 (Approximation by rotations). Lety € WP(£;R3). For every h > 0,
set v, := Ru(y) and Fj, := Vyy. Suppose that r,/h?> — 0, as h — 0F. Then, for
h <1, there exist R, € W1P(S;50(3)) and Q,, € SO(3) such that, for q € {2,p}, the
following estimates hold:

| Fp — Rh”Lq(Q;]Rfixfi) < Cri/q, ||V/Rh||Lq(S;R3><3><3) < Ch_lri/q,
Ry — Q|| na(simsxsy < Ch ™)/ % | F — Qull pa(umsxs) < Ch~ ')/

The next proposition provides a simple reformulation of the compactness results
in [25]. Henceforth, mo denotes projection map defined by mo(z) := ((z')7,0)" for
every & € R3.
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PROPOSITION 3.4 (Compactness of deformations). Let (g,) C WH2(;R3) and
let (en) C Ry be such that en/h* — 0, as h — 0%, Set r, == Ru(yy,) and suppose
ti/z\at ry, < Cey, for every h > 0. Also, set Fy, := VY, and suppose that there exists
(Ry,) C WY2(8;S0(3)) such that, for every h> 0, the following estimates hold:

||j:\‘h — _/R\h”LQ(Q;RSXS) <C./rp, HV’R}LHL2(S;RSX3X3) < Ch_la/rh,
| Ry — I||L2(S;R3X3) <Ch7! Th, | F'y, — I||L2(S;R3X3) < C’h_lx/rh.

Also, for every h >0, assume the following:
(3.15) either Y, — mwy, has null average over Q or y, =my on 0S5 x I.
Define uy,: S —R2, Uj,: S =R, and Wy, : S — R? by setting
u (m’)':}ﬂ/\l/(@/ (x',23) — ') d
h . en \/a ; h sy L3 3
h
-~ / =37,/
= d
) = [ e as)das,
. 1 .
wp(x') = \/76711 /ng (yh(m’,xg) - wh(m’,xg)) dxs

for every @’ € S. Then, the following estimates hold:

_ Th | Th Th
3.16 2sme) <O (/= +—A ,
(3.16) w25z < ( en * en hzﬁ)

~ Th
(3.17) ||'Uh||L2(S;]R3><3) <C .
h
—~ T
(318) ||w}L||L2(S;R3><3) SC i

Moreover, there exist &€ W12(S;R?) and v € W22(S) such that, up to subsequences,
the following convergences hold as h — 07 :

(3.19) p— @ in W2(S;R?),
(3.20) B § in WL2(S),
-
(3.21) Wy— —L <V0”> in Wh2(S;R).

Proof. The convergences in (3.19)—(3.21) have been proved in [25, Lemma 1] and
[25, Corollary 1]. Also the estimates in (3.16)—(3.18) are implicitly established in
these results. Note that assumption (3.15) is needed in order to apply Poincaré and
Korn inequalities. Indeed, if Y, — 7 has null average over €2, then the same property
holds for wy and vy, while, if g, = 7, on 95, then u;, and vy, satisfy homogeneous
Dirichlet boundary conditions. ]

In the next result, we show how the clamped boundary conditions can be exploited
to establish the convergence of the sequence of constant rotations provided by Lemma
3.3 towards the identity matrix. The arguments are adapted from [37].

LEMMA 3.5 (Clamped boundary conditions). Let (y,) C W12(;R3) and let
(en) C Ry be such that en/h®> — 0, as h — 0F. Set r, := Ru(y,) and suppose
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that r, < Cey, for every h > 0. Also, set Fj, := Vyy, and suppose that there exist
(Ry,) C WH2(S5;50(3)) and (Q,,) C SO(3) such that, for every h > 0, the following

estimates hold:

(3.22)  ||Fn — Ryl p2(msxs) < Cy/rh, V' Ry || p2(smsxsxsy < Ch™!
(323) ||Rh 7QhHL2(S;]R3><3) §0h71 Th, ||Fh 7Qh||L2(S;]R3><3) SChil\/E

Additionally, suppose that y, = m, on 0S X I for every h > 0. Then, for h < 1, it
holds that

(321 Q. ~1j<c¥™
Moreover, denoting by ci, € R3 the average of Q;yh — 7 over €Y, it holds that
(3.25) el gcﬁ.

Proof. We first prove (3.24). Define y,, := Qly, — cp, with ¢, € R? chosen so that

y;, — 75, has null average over Q. Set F'j, := V},y,, and Rh = Qh R;,. Assumptions
(3.22)—(3.23) immediately yield

||ﬁ'h — 1~%h||L2(Q;R3x3) < C\/TT“ HvlﬁhHL2(S;R3x3x3) < Ch_l\/ﬁ,
| Ry — I||L2(S;R3X3) <Ch7! Th, | F'y, — I||L2(S;R3X3) < Ch_l\/a.

Define uy: S —R?, 75, : S — R, and wy,: S — R? by setting

)= (0 ) [ @ ) o
op (') : \ﬁ/yh x' x3)dxs,
(e = = /I 25 () — 1) das.

Applying Proposition 3.4 to ¥y, = ¥y, and then the trace inequality, we obtain the
estimates

~ Th | Th Th
3.26 r2) <C — A
(3.26) B losa <O (/22 + 2 n ).

~ T
(3.27) [Tn | 2 (05) < Cy /=,
€n
~ T
(3.28) |whllL2osms) < Cy i-

Analogously, define uy: S = R2, v, : S = R, and wy,: S — R3 by setting

up(x') = <h2 A \;) /I (yh(fc x3) — ') dzs,

op (2’ 5:7/%3’3 r3)drs,
N

wp(z) = — —7p) dos.
7
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In view of the clamped boundary condition satisfied by y;,, the following hold:
(3.29) uy, =0 on 88, v, =0 on OS, wy, =0 on 0S.

For simplicity, set dj, := Qj,cn. Then

ga (A — @D () v,

h_l\/avh h env
h ~

(331) Ve = 15(@y ~ Des + V@, .
From (3.31), given (3.28)—(3.29), we obtain

€h ||~ Th
(3.32) (@~ Desl < OV b psan < OV
In turn, we also have
(3:33) (@]~ Des| <0V

Looking at the first two components of (3.30), we estimate

’ eh ~
Q) — I")a' +d),[| L2952 < C (ﬁ v \/eh) lwnll L2 (05:r2)

en i~
(3.34) + anvhHL?(BS)
sc(vz};eh +\/E+Z’;> gc@.

Here, in the last inequality, we exploited the two conditions rj, < Cej, and ey, /h? — 0,
as h— 07,
Up to translations, we can assume that

/ xz'dl=0".
as

’ r
(3:35) Q) 1" + 1y < V™

In this case, (3.34) yields

Combining (3.32)—(3.33) with (3.35), we establish (3.24).
Similarly, looking at the third component of (3.30) and exploiting (3.26)—(3.27),
(3.29), and (3.33), we estimate

€ ~ €h |~
- 481 < 0 (5 v v/am) liinll 2oszsy + O Y [l 2cos)
+OIQT ~ Desl s OY™.
Thus, (3.25) follows from (3.35)—(3.36). 0

To identify the limiting strain, we employ the following result taken from [25,
Lemma 2].
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LEMMA 3.26 (Identification of the limiting strain). Let (g,) C W12(;R3) and
let (en) C Ry be such that en/h* — 0, as h — 0%, Set ry, == Ru(yy,) and suppose
that r, < Cey, for every h > 0. Also, set Fh = V1Y, and suppose that there exists
(Rh) CW12(8;50(3)) such that, for every h >0, the following estimate holds:

Hj\’—‘h — Rh||L2(Q;R3X3) <C\/rp.

Define up,: S —R? and Ty : S — R by setting

up (') 11* /\ 7/ (', x3) /) das,

~

'Uh(:I}/) = ﬁlﬂh (33 ,1’3)(1%3

for every &' € S, and assume that there exist u € WH2(S;R?) and v € W22(S) such
that the following convergences hold:

up, —u in WH2(S;R?), o, — 0 in WH2(9).
Then, there ezists G € L?(Q;R3%3) such that

Gr:= (R, Fy — 1) = G in LY (QR),

Furthermore, there exists Sel? (€, R?*2) such that, for almost every x € Q, it holds
that

G (x,23) = S(a') — (V)20 (a)as.
Eventually, if er,/h* — 0, as h— 0%, then sym Y = symV'a.

The compactness of magnetizations is established by refining the techniques in-
troduced in [8, Proposition 4.3]. We will use the following notation. Given n >0, we
set S7:={z’ € S: dist(z';0S) <n} and S7":= {z’ € R3: dist(x;S) < n}. Moreover,
for 1 >0, we set Q) := 5" x I and Q, " := S xI. Recall the notation in (3.1)—(3.3).

PropPOSITION 3.7 (Compactness of magnetizations). Let (g,) with g, € Qn and
q, = (Y, mp) be such that

(3.37) sup { E51(q,) + E(g,) } < C.
h>0

Suppose that there exists o > 1 such that, for every h >0, the following hold:

(3.38) Yy, — Wh”cﬂ(ﬁ;RS) <Ch%,
(3.39) |F5 — I oumsy < CHP/P71,

Then, there exist Z € W12(S;S?) and X € L*(R?;R3) such that, up to subsequences,
the following convergences hold as h — 0%

(3.40) B, = Mu(@5)— ol in L2(R3;R3%3),

(3.41) Nj, = Ni(@,)— xa(V'CIX) in L2(R3;R¥3),
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(3.42) My, 0Y,— € in LY(Q;R3),
(3.43) 2= Z,(q),)— C in L (Q;R33).
Proof. For the reader‘s convenience, the proof is subdivided into three steps.

Step 1 (Approximation of the deformed configuration). The estimate (3.38) entails
the following two statements:

(3.44) Vn>0,v0<9<1, 3h(n9)>0: YO<h

< h(n,v), Q, C Q¥
(3.45) Vn>0,Y¢>1, Jh(n,£)>0: YO <h<h(n,

(n,6), Q¥ C Q.
To see (3.44), fix >0 and 0 <9 < 1. Let £ € Q},. As a> 1, there exists h(n,9) >0
such that for every h < h(n,?) it holds that
dist(€;09,) > 1 A (1 —0)h/2 > Ch®
so that, by (3.38), we obtain
1Y — 7nllco@ps) < dist(§;0Qp) = dist(&; m,(09)).

By the stability property of the topological degree [21, Theorem 2.3, Claim (1)], this
entails € ¢ y,(0Q) and deg(y,, 2, &) = deg(wp,Q,&) = 1. Then, by the solvability
property of the topological degree [21, Theorem 2.1], we deduce & € Q¥r. As € € Qn,
was arbitrary, this proves (3.44).

To see (3.45), fix n > 0 and ¢ > 1. Again, as o > 1, there exists h(n,¢) > 0 such
that for every h < h(n,¢) it holds that

dist(2,;0Q,,7) >n A (L —1)h/2 > Ch*.
Thus, by (3.38), we have
Q¥r €y + B(0,Ch%) C Q).
Similarly to (3.44), we also have the following:

YO<my<n VO<I<iy<1, Hﬁ(n,no,ﬂ,ﬂo)>0:

(3.46) - v
V0<h<h(na770719,190)3 Qghcyh(QgZ)

Step 2 (Identification of the limiting magnetization). Employing the notation in
(2.8) and (3.3), we set Fj, := Vg, and Ej, := L;,(21,(q),)) ' Fp. Thanks to (2.7) and
(2.12), we have

1 1
7Adw: 1+C _a/i/\dw
/Q (det Viy,,)” ( 2 Q (det Ep)®
< (1+ch)_“{/ cI)(éh)dac—l—C}
Q
<(L+cn) “{r’E;N(q,) +C} <C,

(3.47)

where in the last line we used (2.6), (2.12), and (3.37). As a > 1, we infer that
(1/det Dpy,,) is equi-integrable by the de la Vallée-Poussin criterion [22, Theorem
2.29].

Let n >0 and 0 < ¢ < 1. By (3.44), for h < h(n,?), the composition ¢, :=
my, 0 wyqn is well defined as a map in Wh2(Q7:R3). Then, employing the change-
of-variable formula, we estimate
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N - 1 .
/ \Ch|2d$:/ \mhoﬂ'h\gdw:*/ [m, |* g
oy ol h Jay,

[
1 _ 1 —_ o~ ~
(3.48) g—/ |mh|2d£§7/ |m 0 y,,|? det Vy,, dx
h Jaon h Ja

N ~ 1
= \moyh\Qdechyhdw:/
0

———d=z,
o det Vypy,

where in the last line we exploited the magnetic saturation constraint
(3.49) |my, 0y, |det Vg, =1 a.e. in Q.

Thus, by (3.47), the sequence (C;,) is bounded in L2(27; R3).
From (3.37) and (3.44), employing again the change-of-variable formula, we obtain

~ |2 - 1 _
/ thh‘ dac:/ |th07rh|2dm:—/ Vs |? de
QTI QU h, QTI

(3.50) ® L ®
< f/ |Dmiy,|? dg = E5*°(g,) < C.
h QYn

Therefore, (C},) is bounded i in wh 2(9" R3), so that there exists ¢ € W 2(Q1R3)
such that, up to subsequences, ¢, — ¢ in W12(Q%;R3). Also, by (3 50), there exists
a map x € L?(2);R?) Such that, up to subsequences, h~ 1334;1 —x in L?(2);R3), as
h— 0+. This yields 93¢ = 0, so that ¢ € Wh2(S7;R3).

In principle, both the subsequences and the weak limits E and X depend on the

arameters 77 and Y. However, by means of a diagonal argument, we can assume that
¢ e W,L2(S;R?) and X € L? (Q;R3), and that, for a not relabeled subsequence, the
following holds:

loc

Vn>0,V0o<d <1, Zh —~Cin Wh2(Q7:R3) and Zh —¢C ae. in Ql,

(3.51) M
h=105¢;, — X in L2(Q2);R3).

Here, we exploited the Sobolev embedding, which is applicable since ) is a Lipschitz
domain, at least for n < 1 and 1 — 9 <« 1. Note that the sequences in (3.51) are
defined only for h < 1 depending on 7 and ¥. In view of (3.47)—(3.48) and (3.51), by
lower semicontinuity, for every >0 and 0 < < 1, it holds that

(3.52) 19/ |E|2da;':/ |E|2da;ghmmf/ ¢, l2dz < C.
Sm Q" h=0+ Jqn
Similarly, by (3.50) and (3.51), for every >0 and 0 < ¢ < 1, it holds that

9 |v'2|2dx+/ |>2|2dm:/ \VE|2dw+/ % de

Sn
< liminf
h—0t Q7

Letting n — 07 and ¥ — 17 in (3.52)—(3.53), we deduce that Ce Wh2(S;R3) and
X € L2(S;R3). -

Set f1), := My (qy) and Nyj, := N3 (q,). Note that these two maps are defined on
the whole space for every h > 0. We claim that (1) is bounded in L?(R3;R3). To
see this, exploiting (3.49) and applying the change-of-variable formula, we compute

(3.53) e
thh\ de < C.
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- — 1 _
/ |Nh|2dw:/ R \thﬂ'thw:E/A [, |* A€
R3 ™, (QYh) Q¥n

1 N ~ N ~
(3.54) =z /Q [y, 09y, |* det Vg, dz = /Q [y, 0 Gy |* det V5,5, da

o~ 1
= my, o dx = / ———dx.
/Q | Uil o det V5,

Then, the claim follows from (3.47). We deduce the existence of g € L?*(R3;R3)
such that, up to subsequences, i, — @ in L?(R3;R3). However, by (3.44)—(3.45),
Xay(@on) = X holds almost everywhere, which, together with (3.51), yields p;, —
xol almost everywhere in R?, as h — 0. Also, by (3.45), the maps My, are supported
in a common compact set containing Q for h < 1, so that fi, — xo¢ in L'(R*R?)
by the Vitali convergence theorem. Thus, gt = xqo, and this establishes the weak
convergence in (3.40).
To prove (3.41), we observe that

1 —
(3.55) EZXC(qh):E/QA |th|2d§:/ 1

Pl —
h n

|th|2oﬂ'hd.’13:/ |Nh‘2d.’13,
on) RS

(th

where we employed the change-of-variable formula. In view of (3.37), this shows the
boundedness of (N ,) in L2(R3;R3*3). To check (3.41), let ® € L2(R?;R3*?) and set
N :=xa(V'¢|X). Given >0 and 0 < ¥ <1, we write

(3.56) /R3(Nh—ﬁ):<1>dm:/

(ﬁh—ﬁ)@dwr/ (N, —N): ®da.
Q

v RAQ]
The first integral on the right-hand side of (3.56) goes to zero, as h — 0. Indeed, by
(3.44), for every h < h(n,d), we have

/m <Nh *N) P de = /m (Vﬁz\h oy — (V’aj\()) P dx
:/ (thh - (V’Zlfc)) : P dx,
Q3

where the right-hand side goes to zero, as h — 0T, by (3.51). The second integral on
the right-hand side of (3.56) goes as well to zero, as h — 0. Indeed, by (3.45) and by
the boundedness of (IN}) in L?(R3;R3*3), for every ¢ > 1 and for every h < h(n, (), it
holds that

/R3\Qg (ﬁh - ﬁ) P dx /Q;"\Qg (ﬁh — ﬁ) - Pda

As the right-hand side can be made arbitrarily small by properly choosing 7, ¥, and
¢ according to ® only, this establishes (3.41).

Step 3 (Convergence of compositions). We now prove (3.42). Recall that the
sequence (1/det V,y;,) is equi-integrable thanks to (3.47). Thus, in view of (3.49), so
is (T, 0yy,). For this reason, in order to prove the claim, it is sufficient to show that,
for every >0 and 0 < <1, we have my, 0y, — ¢ in L'(Q];R3).

Fix >0 and 0 <9 < 1. Recall (3.44) and consider h < h(n,9). We have

S CHQHLZ(Q;"\QZ;R?’X:‘)'

(3.57) / |mho@h_2|2dx§/ |mho@h_6h|2dm+/ ¢, — C|* da.
Qn Qg

n
9 Qﬂ
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By (3.51), up to subsequences, the second integral on the right-hand side of (3.57)
goes to zero, as h — 0T. Thus, we focus on the first one, and we show that, up to
subsequences, it goes to zero as well, as h — 0F.

Let € > 0 be arbitrary. Let also 0 <n; <n and 0 <9 <¥; <1. Observe that, for
h <h(n1,91), the sequence (¢},) is equi-integrable on Q' by (3.51). Therefore, there
exists d(n1,91,€) > 0 such that the following property holds:

VA CQy measurable: L3(A) <5(m,01,¢),
(3.58) sup / [min 0 Gy, — Cpldz < e
h<h(ny,01) /A

Set Ay ), := @gl(ﬂgh). Let 1 <ng <n and 9 <y <7 be such that
(3.59) L2 QP \QY]) < 6(m, ).

By (3.46), for every h < E(n,no,ﬁ,ﬁo), we have Ay, C QP and we write

[ e, - Glde= [ [@nod, - Glde
(360) Qﬁ QﬂmArﬂ,h R
b [ e Gilda
QI\AY .

We focus on the second integral on the right-hand side of the previous equation. For
convenience, set oy, := det Vg, — 1. Thus, o5, — 0 in L}(Q) by (3.39) since 8> p > 3.
Using the change-of-variable formula, we compute

det Vy,, da:zhﬁQ(Ag,h)Jrh/ op de.

n
Ai?,h

22 =L @A) = [

Then

LA ) = L) /A o da,

so that
ZQ(QZ\AZJI) < fQ(QZZ\AZ,h) = XQ(QZ?)) - 32(Ag,h)

:.,2”2(93‘;)—92”2(93)—&—/ op de.

n
Agon

Here, we exploited the inclusion A37 nC Qg‘; This yields
limsupiﬂ(Qg\Ag’h) < XQ(QZ%\QZ) <d(m,v,e),
h—0t+
where we used (3.59). Therefore, from (3.58), we obtain
(3.61) limsup/ [T oGy, — Cp| <e.
QA

n
h—0t K

To estimate the first integral on the right-hand side of (3.60), we proceed as
follows. Without loss of generality, we can assume that Q) is a Lipschitz domain. In
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this case, the map Eh € W12(05;S?) admits an extension Zy € WH2(R3;R3), possibly
dependent on £ and ¢, which satisfies

| Znllwa2sre)y < C(0,0) 1Chllwaz @ rs).-

In particular, recalling (3.50), we have

(3.62) Hvzhan(Rs;RSxS) < C(T],ﬂ) (/Q ) |Z’h‘2da: +/Q |V2h|2 d:l:) < C(n,ﬁ).
! )

Define J/\Zh =Zp0 7'('}:1. By construction, J/\Zh|Qgh = Tn\h|Qgh and, by (3.62) and the
change-of-variable formula, the following holds:

— ~ _ 1 P _
/RB|VMh\2d£:/RS|VhZho7rh1|2d£§ﬁ/Rg|VZho7rh1|2d£

1 S C(n,9)
= — ;72 2 <77 .
h/RS| < h

(3.63)
Let A > 0. By a Lusin-type property of Sobolev maps [1], there exists a measurable
set Fyp C R? such that Mh|FA’h is Lipschitz continuous with constant CA > 0, that
is,

(3.64) VEEEFan, |Mu(€)— Mu(€)|<CAE—E|.

Moreover, thanks to (3.63), the measure of the complement of the set F} 5, is controlled
as follows:

C — C(n,9
(3.65) L3R\ Fy ) < 7/ - VM2 de < #
A J(vaga a2} Ah
where we used (3.63).
Going back to the first integral on the right-hand side of (3.57), setting

Xon =" (Fan), Yau =75 (Fan),

we split it as

(3.66) 2045 (QFNAG L IN(XARNYA,R)
+/ ‘/"\Lhogh_zh‘dﬂf-
(ngAg‘h)\(XA,hﬂYA,h)

For the first integral on the right-hand side of (3.66), note that, for every = € (2] N
Aj ) N (Xan N Yy ), both g, () and 7p,(z) belong to Qg N Fy ». Thus, by (3.38)
and (3.64), we have

/ [min 0y, — ¢yl de

(Q3NAY )N(XA MY R)

(3.67) :/ \J/\Zlho@h—]\//\IhOﬂh\da:
(Q3NAG ,)N(XA,mNYA 1)

< C)‘”@h - 7Th||00(§;]R3) < CARC.
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For the second integral on the right-hand side of (3.66), observe that
(3.68) (5 N AG )\ (Xoun NYaR) C (25 \ Xan) U (5 \ Yan) .

By the change-of-variable formula, there holds

LG QD \Fa) = L2 @G\ X)) = / det Vg, dz
Qg\X)\’h
:h$2(QZ\X,\,h)+h/ oy da.
QINXxn

From this, recalling (3.65), we obtain

1 N
LX) = LGE\BD+ [ onde
(3.69) AN
C(n,7)

< +/ op dex.
A2h? QINXan

Instead, applying the change-of-variable formula and exploiting (3.65), we estimate

C(n,9)
22h2

(3.70) LAOUN\Yan) = L2 (7, (5, \Fap)) = %%(Qgh\&,h) <

Now, recalling that o > 1, we choose A = h~? for some 1 < b < . In this case, the
bound in (3.67) yields

(3.71) lim Mg, 0 gy, — Cpl dz =0,
h=0% J(QInAT , )N(Xx,nNYA )

Also, from (3.68)—(3.70), we obtain

lim 22((Q) N AJ )\ (Xan N Yan) =0,

h—0t

which, by (3.58), entails

(3.72) limsup [mn oGy, — Cp|de <e.

h—0t /(QgﬂAgyh)\(XA,hmYA,h)

Therefore, combining (3.61) and (3.71)—-(3.72), we obtain

hmsup/ |my, 0y, — €| da < 2e.
h—0t JQJ

Since € > 0 is arbitrary, this shows that the first integral on the right-hand side of
(3.57) goes to zero, as h — 0T,

Step 4 (Improved convergences)* We are left to prove the strong convergences in
(3.40) and (3.43), and the identity || =1 almost everywhere in S. Thanks to (3.39),
ﬁ‘h — I in LP(Q;R3*3) and, up to subsequences, det 1?‘/@ — 1 almost everywhere. By
(3.42), up to subsequences, we also have my, o Y, — ¢ almost everywhere. Taking
into account (3.49), this gives (3.43) by the dominated convergence theorem. From
(3.49), passing to the limit, as h — 0%, we check that \E| =1 almost everywhere in Q.
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Equivalently, ZG W12(S;S?). Finally, passing to the limit, as h — 07, in (3.54), we
obtain

Jim [ fag=2@) = [ xallde.
Since we already proved the weak convergence, this yields the strong convergence in
(3.40). d

The compactness properties of sequences of admissible states with equi-bounded
energy deduced from the previous results are summarized in the next proposition.

PRrROPOSITION 3.8 (Compactness). Let (q,) with qp, = (yp,,mn) € Qn be such
that

(3.73) sup { E5!(qy,) + E;'*%(q,)} < C.
h>0

Then, there ezist q, = (u,v,¢) € Qo and x € L*(R3;R3) such that, up to subsequences,
the following convergences hold as h — 07 :

(3.74) =Up(q,)— u in WH2(S;R?),

(3.75) =Vn(g,)— v in Wh2(9),

(3.76) = Wa(gn)— — (%“) in WL2(S;R?),
(3.77) Wy, = Mp(q,)— xof in L2(R3;R3),

(3.78) N :=Nu(g,)— xa (V'¢]x) in L2(R3;R3%3),
(3.79) my oy,— ¢ in L (Q;R3),

(3.80) zn = Zp(qp)— ¢ in LY(Q;R3).

Additionally, there ezist (Ry) C WH2(S;580(3)) and G € L*(;R3*3) such that,
setting F'y, :=Vyy,, we have

(3.81) R,— I in L?(Q;R3%3),
(3.82) G :=hP2(R] F), — I)— G in L*(Q;R3*3),
and, for almost every x € Q, it holds that
(3.83) G’ (x) =symV'u(z') — (V') *v(z')) 3.
Proof. Recall (2.4)-(2.8). For simplicity, we set
Fy,:=Vyy,,  Lp:=Ly(\,(detFy)), E,:=L,"'F}.
First, thanks to (2.5)-(2.6), we estimate
dist(F'p; SO(3)) < |Fy, — By | + dist(En; SO(3)) < |Lp, — I||E| + dist(Zp; SO(3))
< CHBI2|Zy| + dist(Ep: SO(3)) < C (hﬁ/2 + dist(E,; 50(3))) .

Thus, for ¢ € {2,p}, we have

/ dist?(F; SO(3)) d < C (W/”q + / distq(Eh;SO(3))da:) :
Q Q
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Recalling (2.11) and adopting the notation in (3.14), we see that
(3.84) Ru(yr) < Ch? (Ef(q,) +1).
Thus, setting 7, := Rx(y,,), from (3.73) we obtain the bound rj, < Ch”.

By applying Lemma 3.3, we find (R;,) C WP(S;S0(3)) and (Q,,) C SO(3) such
that the following estimates hold for ¢ € {2,p}:

(3.85)  |[Fn — Rullpaqums<s) < Cry/*, IV’ Rin| pa(smsxsxsy < Ch™1rp/ 9,
(3.86)  [|Rh — QpllLa(smoxsy <Ch™'r/%  ||Fy — Qpllpoqsimsxs) < Ch™ ')/
Then, thanks to Lemma 3.5, we obtain the estimate

Q.- 1<c¥V"

which, together with (3.86), yields
(3.87)  ||Rn — I||pa(smoxs) <Ch™'r)/% ||[Fp — I pagsimsxs) < Ch™'ry/ %
At this point, we apply Proposition 3.4 to y =1y, with e, = h”, so that (3.74)(3.76)
are proved.
Now, given the assumption 8> 6V p, we have 5/2—1>0 and 5/p—1>0. Let

0<s<1 and let 2<q, <p be such that 1/¢; =s/2+ (1 — s)/p. By the interpolation
inequality [27, Proposition 1.1.14] and the second estimate in (3.87), it holds that

(388) |1 Fn — Llpomses) < 1Fn — Il 1Fo — I s, < Cho,
where we set o :=5(8/2—1)+ (1 —s)(8/p —1). We choose s in order to have
(3.89) gs >3, as > 1.

Note that these two conditions are equivalent to

2(p—3) . 2(2p — B)
3(p—2) Blp—2)’

s <

respectively. Therefore, as

22 8) _2(p~3)
Blp—2) 3(p-2)
if and only if 8 > 6, such a value 0 < s < 1 always exists. Hence, from (3.88), by

applying the Poincaré inequality and the Morrey embedding, we obtain the following
estimate:

(3.90) ||yh — Tl'h”CO(Q;R:B) < Ch®s.

Note that, here, we implicitly exploited the first condition in (3.89). Therefore, in view
of (3.87) and (3.90), claims (3.77)—(3.80) follow at once by applying Proposition 3.7 to
gy, = q;,- Eventually, we note that (3.81) immediately follows from the first estimate
in (3.87), while (3.82)—(3.83) are established by applying Lemma 3.6 to ¥y, =y, with
en, = hP taking into account (3.74)—(3.75) and the first estimate in (3.85). |
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Remark 3.9 (Norm of the averaged displacements). With the notation employed
in the proof of Proposition 3.8, from (3.84), we see that

h—ﬁgC(E (g,) +1).

Hence, by applying Proposition 3.4 to g, = y, with e, = h”, taking into account
(3.85) and (3.87), we obtain the following estimates for h < 1:

lanllins sims) < c( B (a) + 1) ,

lonllwss) < c( B (a) + 1) ,

lwnllwrsss) < C (\/E:)(qh) + 1) .

The first estimate is justified because 7, /h* — 0, as h — 0%, so that, for h < 1, it

holds that
Th Th T“h
hB/ 242 -

3.1.2. Lower bound. We now move to the the proof of the lower bound. For
future reference, we highlight the result regarding the convergence of the magneto-
static energy. This has already been proved in [8, Proposition 4.7] by adapting the
results in [13, 26]. For the reader‘s convenience, we briefly sketch the proof, and we
refer the reader to the first paper for details. Recall the notation in (2.24) and (3.3).

PROPOSITION 3.10 (Convergence of the magnetostatic energy). Let (g),) with
q;, = (Y, mp) € Q. Suppose that there exists ¢ € WY2(S;S?) such that the following
convergence holds as h — 0% :

(3.91) By, := My (@) = xal in L2(R%;R3).

Then, the following equality holds:

(3.92) lim E;"*%(qy) /|§3 Zda'.

h—01

Proof. Denote by ¢, € V1:2(R3) a stray field potential corresponding to g,,. Thus,
we have the following:

(3.93) Ve VH2(R3), / Vi, - Vipdé :/ Xoon M - Vi déE.
R3 R3
By (2.25), it holds that

IVnllL2@sre) < IXqon Tkl L2 (R R3) -

Taking the square at both sides and applying the change-of-variable formula, we
estimate

oy [ IViPdgs [ s Pae= [ fPomtdg=n [ (7
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Define py, := p o ), € V12(R3). From (3.94), using again the change-of-variable
formula, we estimate

R —~ 1 ~ ~
/ \VhphIdeZ/ |v¢h|2°7"hdw:ﬁ/ \th|2d£§/ |, [* d€.
R3 R3 R3 R3

As the right-hand side is uniformly bounded in view of (3.91), we deduce that (Vy,pp)
is bounded in L?(R3;R3). From this, we deduce two facts. First, there exists Y €
L?(R3) such that, up to subsequences, d3p,/h — X in L*(R3) and, in turn, d3p;, — 0
in L?(R3), as h — 0". Second, exploiting the Hilbert space structure of the quotient
V12(R3)/R, we infer the existence of p € V12(R3) such that, up to subsequences,
it holds that Vp, — Vp in L?(R3;R3), as h — 0%. These two facts together imply
that d3p = 0 almost everywhere, which, as Vp € L?(R?;R?), yields V'p = 0’ almost
everywhere. R

Now, testing (3.93) with ¢ =y, and applying the change-of-variable formula, we
write

1 g ~ 1 R N
/ Xqon M - Vi d§ = / By, - Vipn dx
2h R3 2 R3

1 [ N L [ _303pn
== V'pnde + = da.
Z/RBH}L Ph w+2/RBHh n 4T

Then, recalling (3.91) and passing to the limit, we obtain

E,(qy) =

(3.95) hrgl E8(qy,) /(

Thus, if we show that ¥ = XQE 3 almost everywhere in R3, then (3.92) follows from
(3.95). To check this, we go back to (3.93). Using once more the change-of-variable
formula, we deduce that py, satisfies the following:

Ve VH2(R3), / Vhﬁh-vhgodw:/ by, Vipde.
R3 R3
Multiplying by h and then passing to the limit, as h — 0T, we obtain
Ve VIZ(R?), / (%~ xal?) dspda =o0.
R3

Given the arbitrariness of ¢, this entails that the function ¥ — XQE 3 does not depend
on the third variable. However, as this function belongs to L?(R?), we necessarily
have X — xa( (3 =0 almost everywhere. 0

The next result asserts the existence of a lower bound, and, for future reference,
it is presented in a more self-contained form.

PROPOSITION 3.11 (Lower bound). Let (g,,) with g, ( nymp) € Qp. Set
Fp = Vhyﬁ Suppose that there exist (Rh) CWhH2(8;50(3)), G € L*(Q;R**3), and
q, = (u,v,¢) € Qg such that, as h— 0%, it holds that

3.96) R, — I in L'(S;R3%3),
3.97) ah = h*ﬂ/2(ﬁ2ﬁh - G in LQ(Q;]RSXS),

—_—~ o~

and, for almost every x € ), we have
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1

(3.98) G (z) =symV'a(z') + (V')20(z')) 3.

Moreover, suppose that there exists X € L?(R3;R3) such that, as h — 0%, the following
convergences hold:

(3.99) By, := My (@,)— xol in L2(R3;R3),
(3.100) N :=Nu(q,)— xa(V'¢|X) in L*(R?R3*3),
(3.101) Zh = Zn(q,)— ¢ in L (L R3).

Then, the following inequality holds:

(3.102) Ey(q,) <liminf E,(q),)-
h—0t
Proof. Tt is sufficient to prove the following:
(3.103) E§\(4@p) < liminf Ef'(gy,),
h—0t
(3.104) E§*°(q,) < liminf E;*°(q,,).
h—0t

Indeed, thanks to (3.99), the limit in (3.92) holds by Proposition 3.10. Thus, com-
bining (3.103)~(3.104) with (3.92), we obtain (3.102).

Recalling (3.55), we see that claim (3.104) follows immediately from (3.100). In-
deed, by lower semicontinuity, we have

liminf/ |Nh|2dmz/ |V'Z|2da:+/ \;2|2da;2/ V¢ da’.
h—0t Jgr3 Q Q S

We thus focus on (3.103). This is proved similarly to [25, Corollary 2]. Recall
(2.4)-(2.8). For simplicity, set A, := M 0y, and Ly, := Ly (R}, 2). By (3.96) and
(3.101), recalling (2.6) and (2.20), we have
(3.105) Kn=h 2L, )=cl®Cin L'(QR3*3),

Define Ay, := {|Gp| < h=/4}, so that, by (3.97), xa, — 1 in L'(€). Note that, on
Ap, it holds that

(3.106) L, Ry B =T+1"%(Gy — Ky) +O(h*19).

el ~T ~
Recalling (2.16), for h <« 1 we have |L; R;, Fj —I| < 1 on Aj. Then, exploiting
(2.15) and (3.106), we write

~ ~ ~T ~ ~T A~
/ W}L(Fh,)\h)d.’lj:/ Wh(Rh Fh,-Rh )\h)dﬂi
Q Q

1 ~T ~ a1 ~T ~
:/@(thRhFh)dxz/XAhcb(thRhFh)dm
Q Q

:/ xa, @ (T+192(G, — K) + O(*Y)) da
Q

hB
=5 A

+/ XA,wW (hﬂ/2(éh - ff\h) + O(h35/4)) dx.
Q

Q (XAh (G‘h — f{\h) + O(hgﬁ/4)) dx

Thus
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1 . —~
B @) > 5 [ Q(xalsymGy ~ Ky + 00 da
(3.107) " o
hﬁ/XAh (n*/2(sym G — K) + O(h¥/4)) dz,

To provide a lower bound for the first integral on the right-hand side of (3.107), w
exploit the convexity of Q. By (3.97) and (3.105), we have x a,, G, — Gin L*(9; R3X3)
and x4, Kh — COC ® C in L1(Q;R3*3), as h— 0. Thus, by lower semicontinuity, we
get
timinf [ Q (xa, (G~ Kn) +00) da > [ QG- @ Q)da
Q Q

h—0+
N ~ o~
Z/Qrcd(G *COC ®C)dw
Q

where the last inequality is justified by the definition of Qeq in (3.4). Given (3.98),
this proves (3.103) once we show that the second integral on the right-hand side of
(3.107) goes to zero, as h — 0F. To prove this, for every s > 0, we set

F
w(s) :=sup { |TI(712) : FERYS |F|< 5} .

By definition, the function @ is decreasing and satisfies w(s) — 0, as s — 0. Then,
recalling the definition of A, we have

hiﬂ/QXAh ‘w (hﬁ/Q(@h ~K») +O(h35/4))’ da

~ — 2
(n9/2(G, — Ko+ 071

< /QXAM (n7721G — Konl + O(n*14)) = da
o~ o~ 2
_w(O(hﬂ/‘*))/ ’Gh ~ K, +O(h5/4)‘ da,
Q
where the right-hand side goes to zero, as h — 0. ]

3.1.3. Optimality of the lower bound. The following result ensures the ex-
istence of recovery sequences.

PROPOSITION 3.12 (Recovery sequences). Let q, = (u,v, E) € Qo. Then, there
exists (qy,) with q, = (y,,mp) € Qp such that the following convergences hold as
h—0%:

(3.108) Up :=Uu(q,)— @ in WH2(S;R3),
(3.109) Dh == Vi(q),)— 0 in W22(S),
i~
(3.110) ’I/J\Jh = Wh(;]\h)% 7% <V0U> in Wl’Q(S;RB),
(3.111) iy, := My (@5)— xal in L2(R%R?),
(3.112) N = Nu(@y)— xa(V'C|0) in L2(R3;R3%3),
(3.113) My 0y, — C in L1(QLR3),
(3.114) Zp = Z(q),)— € in LY R33).

Moreover, the following equality holds:
(3.115) Eo(qo) = hlg{; En(gy).
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Proof. For the reader‘s convenience, the proof is subdivided into three steps.
Step 1 (Construction of the recovery sequence). First, we additionally assume
that @ € C2(S;R?), v € C3(S), and ¢ € C1(S;S?). Let @,b € C?(S;R?). Deformations
of the recovery sequence are constructed according to the classical ansatz for the
linearized von Karman regime [25]. Thus, for every h >0, we define

~ !/ 175 ~
G, =m0 + hP/? (g) + pP/21 (%) L (VOU) +2hP/ 2 L a@ + BP2H 20,

Observe that g, € C?(2;R?) and it holds that

(3.116) 1G5 — 7l cogmay < CRP2 1
We compute

=~ \%

F=1+1h"? ( “

/ O/ +h5/2_1 O” _Vli)\
o) o (Vo) | 0

B/2 (V’)Qﬁ 0’ B/2 =~ B/2 .. % B/2+1
— hP 24 o7 | o +2h°*a®es +2h7“x3b® ez + O(h ),

(3.117)

so that we immediately deduce
(3.118) 1F) — Il cogpansy < CHP/27L

Recall the identity (I+F)T(I4+F)=I+2sym F+F ' F for every F € R3*3, Thanks
to the assumption > 6, we have

T R R
(3.119) (Fh) Fh:I‘Fhﬁ/Z(A—FJL‘:;B)—|—O(hﬁ/2+1)7

where

0/
0
O/
0

A symV'u
()7
B o (v/)Z@\
(097
Using the identity det(I + F) =1+ trF + tr (cof F) + det F for every F € R3*3, we
obtain

>+a®e3+e3®a,

) 1 b®es+e;@b.

(3.120) det =1+ 0(hP/?),  V(det F,) = O(h*/?).
This ensures that
(3.121) 1/2 < det Fj, < 3/2 in Q,

at least for h <« 1. In particular, by the inverse function theorem, ¥, is a local
diffeomorphism of class C2 with Vg, = (Vg,) L og; " in QU

We claim that the map y,, is injective. To see this, we argue as in [14, Theorem
5.5-1, Claim (b)]. Fix , € Q with @ # Z. By [14, Exercise 1.9], there exists a
finite number of distinct points Z1,...,Z,, € Q with £; = £ and x,, = Z such that
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each segment connecting &; to &;41 is entirely contained in @ and Y/~ | [€;41 — &;| <
C|x — x| for some constant C' > 0 depending on € only. Then, applying the mean
value theorem in combination with (3.118), we estimate

[Yn(®) = 45 (@) — (70 (2) — 70 (2))|

< Z (Y (@is1) = 7 (@ig1)) — (U, (@:) — 7 ()]

m
S Hv§h - vwhl|00(§;R3x3) Z |ii+1 — ill
i=1

<CRPP2 g — 3| < CRP272 |y, () — 7o, (B)).

Since 3 > 4, for h < 1, we obtain

Yn(®) =Yy (@) — (ma(2) — 74 (2))| < |7n(2) — 70 (2)].

As mp(x) # 7, (Z), we necessarily have y,(x) # y,,(€), which proves the claim.
By the invariance of domAain theorem, the map ¥, is a homeomorphism. Hence,
we actually have @gl € C?(Q¥;R3). Moreover, setting Iy, := Vry, it holds that
-1
L,VG, =1 (Va,) o, = (Vi o, 1)

(3.122) N B
Z(Fhoﬂﬁl) =F, oy, "

From (3.117), using Neumann series, we compute
(3.123) P, =I+00°?",
which, in view of (3.122), yields

(3.124) VG5 | co@psy <A

Now, define my,: Q¥» — R? by setting

~—1

— Coyp
my = T <~ 1
det Vhyh oYy

Observe that my, € W172(Q§h;£R3) thanks to the regularity of g;, = and to (3.121).
Moreover, my, o g, det Vg, = ¢ in Q, so that g, := (g, mn) € Qp.

The convergences in (3.109)—(3.110) follow by direct computation, while (3.114)
is trivial. From (3.121) and (3.123), we also have

~ _ 1 _
(3.125) det Fj, — 1in C°(Q), ~ —1inC%Q),
det F'n
and
(3.126) V(det F) »0in CO(LR?),  F, — I in CO(LR),

Thus (3.113) follows.
We prove (3.111). We have

~
~ - Coy; omp
Kr = Xrt(Qon)

detﬁ‘h og,:l o),
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First, as 8 > 4, from (3.116) we establish (3.44)—(3.45) by arguing as in Step 1 of the
proof of Proposition 3.7. Let € R3\(, so that « € R3*\Q, " for some n >0 and ¢ > 1.
Then, (3.45) entails that @ € R3\ 7, ' (Q¥») for h < h(n,£). Instead, let = € 2, and
let 7> 0 and 0 < ¥ < 1 be such that = € Q). By (3.44), we have z € =} ' (Q¥») for
h <h(n,?¥) and, in turn, x;, :=g;, (7,(x)) € Q. From (3.116), we see that

1~ 1. _
||7"h1 0y, —1id ||00(§;R3) < E”yh - Trh”CU(ﬁ;RS) < ChP/2-2,

Let € > 0 be arbitrary. For h < 1, the right-hand side of the previous equation is
smaller than e, so that

~1 1~ 1~ .
[z =gy, (mn(@)| = |7, G (2n) — 2a| < |7, 0 Gy, — id || gopsy <&

This shows that g, ' (wn(x)) — @, as h — 0. Since ¢ is continuous and (3.125)

holds, we deduce that fi;, — i almost everywhere in R?, where fi := xol. As (fiy,) is

uniformly bounded and, for h < 1, supported in a compact set containing €2 by (3.45),

the convergence in (3.111) follows by applying the dominated convergence theorem.
To prove (3.112), first we compute

V(Cog,') Coby V(detF)og,")
det F'j, 0 g, ! (det F, 0, )2

Vmy, =

Since E is a function of the plane variable only, it holds that E: E ompla. Thus
P, | o ~—1 - ~—1 ~—1 P e -
V(€oy, )=V(Comyoy, )=V(ompoy, I, VY, =V(oy, F, oy, ,
where, in the last line, we used (3.122). Also, we have

~ T —~ —~ ~—1
(V(detphoggl)) =V(det Fp,) og;, ' VY, ' =V(det Fy) o gy, ' I, F, o9y,

where we employed again (3.122). Thus

PR P e T U TP B
:VCoythh oyhl_CothV(dech)oyhlIthh oy, !

vmy, L <—
det F'r, oy, (det Fp,oyy, )

)

so that

o~ ~1 ~—1 ~1
VCOyh OTthh OYp OTh

V= X ) det Fp o, omy,

~ 1 = ~—1 P |
Coyh oth(dech)Oyh OTrh,Ih Fh °Yp OTh
(det Fy 09, omy)?

~ Xg;H(QFn)

With arguments similar to the ones previously employed, exploiting the continuity of
V'¢ together with (3.44)-(3.45), (3.120)-(3.121), and (3.125)-(3.126), we show that
N}, — N almost everywhere, where N := xq(V’¢|0). As both maps are bounded
and supported in a compact set containing €, claim (3.112) follows by applying the
dominated convergence theorem.

Step 2 (Attainment of the lower bound). We now compute the limit of the mag-
netoelastic energy along the recovery sequence. Recalling (3.55) and Proposition 3.10,
from (3.111)—(3.112) we obtain

(3127) hlifg+ EZXC (ah) — ESXC (60), hli}rgg» E;Lnag (ah) — Eglag (ZI\O).
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We show the convergence of the elastic energy. By the p_Plar decomposition theorem,
there exists (P) C C*(S; SO(3)) such that F, = P, (F,, Fj,)*/2. Thanks to (3.118)~
(3.119), passing to the limit, as h — 0T, in the previous identity, we see that Py — I

~ ~T
uniformly in Q. For convenience, set L; := L, (P, Z;). By (2.6) and (2.8), the
following holds:

(3.128) Kn=h52(I—-L, )= cl®Cin L'(QR3*3),
Recalling (2.10) and (2.14), we write
PN T e AT 12
Wh(Fh,)\h):cI)(Lh(zh) 1Fh>:<I><Lh(zh) 1P, (FhFh> )
AT AT\ /2 aol /T \1/2
:<I><Pth(zh) 1P, (F Fh) >:<I>(Lh (FhFh) )

Thus, given (2.8), we have

(3.129)

T~ \1/2 ~ o~ ~
(3.130) L, (Fh Fh> = I+ 12 (A K+ ng) + O(RPI2HL),
Using (2.16) and (3.129)—(3.130), we compute
1 aml faT o~ \1/2
@) = 5 /Qcp (Lh (Fh Fh) ) de
1 ~ = ~
:5/ Q(A—Kh+:ch+O(h)) de
Q
1 o~ ~
+— [ w <h5/2 (A K+ xSB) + O(hﬂ/2+1)) da.
he Jo
Then, thanks to (3.128), applying the dominated convergence theorem, we obtain

(3.131) hm ESNg,,) /Q —COC®C+ng)

Therefore, combining (3.127) and (3.131), we have

i 15,(d,) = /Q el @) duw+ /Q dw+/|VC|2dm /|<;3|2da:

Step 3 (Diagonal argument). To conclude the proof, we employ a standard diag-
onal argument. By the definition of Q,eq in (3.4), there exist a,b: S — R3 such that

(3132)  QrealsymV'a—C¢' ©¢)=QA-C®C),  Qua((V)*)=Q(B),

where we set

A symV'u
(09"
In particular, thanks to (2.17), we have a, b € L%(S;R®). Let (4 ;) C C2(S;R?),

(v;) C C3(S) and (a;), ( ;) C C2(S;R3) be such that the following convergences hold
as j — oo:

o'
0

>+a®e3+e3®a, f3::—<

0\ -~ ~
0 +bRes+e3®b.
(3.133) Uu; —uin WH2(S;R?), 9, =0 in W2(9),
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(3.134) a; —ain L*(S;R%), b, —bin L*(S;R%).

If we set

~ symV'a,; | 0"\ PPN V20, |0\ =~ ~
A= ( y(o,)T ! 0 ) +a;Qe3+es®a;, B :=— <((0,))TJ 0 ) +b;®e3+e3®by,
then, by (3.133)—(3.134), we immediately have

(3.135) A; - Ain L2(S;R*3), B, — Bin L*(S;R**3),

as j — 0o. Also, thanks to [29, Theorem 2.1], there exists a sequence (Z]) C C*(S;S?)
such that

(3.136) ¢;— ¢ inWh2(S;R?),

as j — 0o, and, in turn, it holds that

o~

(3.137) (;0¢ —»Coin LY(S;R¥),

as j — oo. 4
By Step 1, for every fixed j € N, there exists (/d;f))
such that the following convergences hold as h — 07:

~() _ (A(J) ;13)) € o,

with g Yy,

(3.138) a7 =y, (@)~ aj in WH2(S;R?),

(3.139) 59 =V, (G7)— 5; in W22(S),

(3.140) @ = Wh(@))— - % <v0u]> in Wh2(5;R3),
(3.141) | = Mu(@)— xal; in L*(R%R?),

(3.142) N = @) Xa(V'C;]0) in L*(R3;R¥3),
(3.143) m) O@Ej)—f in L!(Q;R3),

(3.144) 20 = 2,@0)— ¢; in L' (1 R3).

Moreover, we also have

lim Ej,(q /Q NG ®C dx+24/Q

h—0t
/|vc |dz’ + = /| C32da’.
~(7)

In view of (3.133)-(3.145), we select a subsequence (h;) such that, setting y,, := =Y,

my, = mg), and gy, = (Yj,,,Mn;) € Qp;, the convergences in (3.108)- (3.114) hold

for h hj, as j — oo, and also

(3.145)

lim B! (q,,) /QA c®cdw+—/Q

(3.146) e ~
+ [ 197¢P +§/|§3|2dm.
S S
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As the right-hand side of (3.146) equals E§!(g,) by (3.132), this establishes (3.115)
for the subsequence indexed by (h;). |

At this point, our first main result has been basically proved.

Proof of Theorem 3.1. Since claim (ii) has already been proved in Proposition
3.12, we only have to show claim (i). Suppose (3.8). By applying Proposition 3.8, we
find g, = (u,v,{) € Qo such that, up to subsequences, the convergences in (3.74)-
(3.82) as well as (3.83) hold true. In particular, this shows (3.9)—(3.11). Then, in view
of (3.77)—(3.78), (3.80), and (3.81)—(3.83), by Proposition 3.11, we establish (3.12). O

3.2. Convergence of almost minimizers. Henceforth, we consider applied
loads determined by body forces and by external magnetic fields. For simplicity,
applied surface forces are not considered, but these can be easily included in the
analysis. According to the assumption of dead loads, the work of mechanical forces is
described by a Lagrangian term. Conversely, the energy contribution corresponding
to the external magnetic field, usually called Zeeman energy [34], is of Eulerian type.

Given h > 0, let f, € L?(S;R?), g, € L?(S), and h;, € L?(R3;R3) represent a
horizontal force, a vertical force, and an external magnetic field, respectively. The
work of applied loads is determined by the functional Ly : Qp — R defined by

Ln(q):= hiﬁ/ﬂfh (y —x)dz + hiﬁ/ﬂghy?’der %/thh~md£,
where ¢ = (y,m). Thus, the total energy Fj,: Qp — R reads
(3.147) Fr(q) := En(q) — Li(q),
where we recall (2.22). Regarding the asymptotic behavior of the applied loads, we

assume that there exist f, € L?(S;R?), go € L*(S), and ho € L*(R?%R?) such that
the following convergences hold as h — 0*:

(3.148) h=B/2f, —~ f,in L?(S;R?),
(3.149) h=B/2=1g, — gy in L2(S),
(3.150) hy, o p— xrho in L2(R3;R3).

We stress that the limiting magnetic field h is assumed to be independent on the
variable x3. The limiting total energy Fy: Qp — R is defined as

(3.151) Fo(go) = Eo(qo) — Lo(go)-

Here, the functional Ly: Qp — R is given by
Lofao) = [ fo-uda’+ [ gpoda’+ [ ho-¢da’
s s s

where g, = (u,v,¢), and we recall (3.7). Observe that the limiting total energy is
purely Lagrangian.

Our second main result claims that sequences of almost minimizers of (Fy) in
(3.147) converge, as h — 0T, to minimizers of the energy Fy in (3.151).

THEOREM 3.13 (Convergence of almost minimizers). Assume p > 3 and also
B>6Vp. Suppose that the elastic energy density Wy, has the form in (2.4), where the
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function ® satisfies (2.9)—(2.13), and that the applied loads satisfy (3.148)—(3.150).
Let (q;,) with q;, = (yy,, mp) € Qp, be such that

(3.152) lim {Fh(qh) ~ inf Fh} =0.
h

h—0t

Then, there exist gy = (u,v,{) € Qo such that, up to subsequences, the following
convergences hold, as h — 07 :

(3.153) wp, =Un(q,)— u in WH2(S;R3),
(3.154) vp = Vh(qy)— v in WH2(9),
(3.155) 2h = Zn(qy)— ¢ in L'(QR?).

Moreover, q, € Qo is a minimizer of Fy in Qp.

We mention that the weak convergence in (3.153) can be improved to strong con-
vergence by arguing as in [25, subsection 7.2]. Also, more general boundary conditions
as in Remark 3.2 can be imposed.

Remark 3.14 (Existence of minimizers for the reduced model). The existence
of minimizer of Fy in Qg is a consequence of Theorem 3.13. However, under our
assumptions, this can be established directly. First, note that the functional Fj
is lower semicontinuous with respect to the product weak topology in view of the
convexity of Qreq. Thus, in order to apply the direct method, one only has to show
that the functional Fj is coercive on Qy. This is done by exploiting the positive
definiteness of Qyeq On symmetric matrices in (3.5) and applying Korn and Poincaré
inequalities in view of the homogeneous boundary conditions in (3.6).

The major difficulty in proving Theorem 3.13 is to deduce the equi-boundedness
of the elastic energy starting from the equi-boundedness of the total energy. This is
accomplished by arguing by contradiction, similarly to [37, Theorem 4].

LEMMA 3.15 (Energy scaling). Let M >0 and let (q;,) with g, € Qp, be such that

(3.156) sup Fi(qp) < M.
h>0

Then, there exist C(M) > 0 and h > 0, where the former does not depend on (q,,),
such that

(3.157) sup En(g,) <C(M).
h<h

Proof. We introduce some further notation. Given h > 0 and g = (y,m) € Qy,
we set

(3158) Ih(q) Z:/QW}L(Vhy,mOy)dCL',

Ju(@) = In(q) - / oo (v —a')dz+ / gnyP dz.

For the reader‘s convenience, the proof is subdivided into three steps.
Step 1 (Preliminary estimates). First, we check that

(3.159) In(gy) < C(M)R/2.
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Let q;, = (y;,,mp) and, for simplicity, set
Fy:=Vy,, Ani=mpoy,, Ln:=Ly(A(detFy)), Ej:=L; Fy.
As in (3.84), for every h > 0, we have
(3.160) rhi=Ri(y,) <Ch° + I(ay),
which yields
1F | 2 (msxs) < C (|| dist(Fa; SO3))l| 120 +1)
<C(Vrn+1)
<O (VIlay) +1).

Then, using the Poincaré inequality with trace term, we obtain

Yy — 7Lz mrs) < C|Fn — If|2(orsxs)

<C(IFullzazsa +1) <C (V@) +1)

Given (3.148) and (3.161), applying the Holder inequality, we estimate

‘hlﬁ/ﬂfh'(y -

(3.161)

1 :
< h*ﬁ”thL?(s;W) lyn, — [ L2 (k2

C ’
(3.162) < 3578 lyn = 2l 2 me)

S%(\/Ih(iqh)jtl).

Similarly, exploiting (3.149), we obtain

1
‘hﬁ/gh yhdm

C
(3.163) < a7t (vt = haesll ez +1)

< % (\/ In(qy) + 1) .

Set p, := Mp(q;). Recalling (3.150) and using the change-of-variable formula, we
estimate

e H9h||L2(s) ||yh||L2(Q)

1
‘/ hh~mhd§‘—
h QYh

<Nhn ol L2 rsre) [lnl 2o s)
<C (\/Ih(qh) + 1) .

Indeed, as in (3.47)—(3.54), the following holds:

dx I 1
/ | / Tt Fr ch / |dech|a <C(In(qp) +1).
The combination of (3.162)—(3.164) yields

hpomy - p, dz
R3

(3.164)

(3.165) Lntan)| < 257 (VIdan +1).
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so that, applying the Young inequality, we obtain

1 c’
Fr(an) 2 350(an) = 1573 (\/Ih qn) +1) In(an) = 757

This entails (3.159) thanks to (3.156). From (3.160), we immediately get
(3.166) rn < C(M)RP/2,

Also, we obtain

(3.167) In(an) < C(M)R?,

since

b Jn(an) < Fu(ay) + 7
QYhn

hh'mhd£§M+C(\/m+l)§C(M)a

thanks to (3.156), (3.159), and (3.164).
Step 2 (Improved estimates). We claim that I;,(q,,) is actually of order h?. By
contradiction, suppose that

1
(3.168) limsup -5 11, (q),) = +o0.

h—0+t

Note that, since 3 >4, r,/h?> — 0, as h — 0, by (3.166). By means of Lemma 3.3,
we find (Ry) C WHP(S;50(3)) and (Q),) C SO(3) such that the following estimates
hold:

HFh - RhHLz(Q;H@XL”) < C\/E, ||v/Rh||L2(S;R3><3><3) < Chil\/T‘;h,
IRr — QullL2(simsxsy <Ch ™'/, [|Fn = Qyll 2 (msxsy < Ch™'/ry.

Let ey, = I (qy,). Given (3.168), up to subsequence, we have
(3.169) lim —— =0,

which, together with (3.160), yields

(3.170) limsup 2 < 1.
h—0t+ €h

Also, applying Lemma 3.5, we deduce

\Qh—I\SC@-

Now, define Uy, : S —R? and V},: S — R by setting

h2
Up(x'):= a/\— yh x’ x;;)—a:) das,

Vi(2') = ﬁ/]yh(w ,x3) dws.
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As the sequence (r/ep) is bounded because of (3.170), Proposition 3.4 entails that

(Uy) and (V4) are bounded in W12(S;R?) and W12(S), respectively, for h < 1.
Hence, taking into account (3.148)—(3.149) and (3.169), we compute

1 —z')d — d
i {2 - L i)

= li w2y O [ s gy ae + PO [ eaeetg, e b — o
hs* \/\/671 s In h$+\/as In o '

This, in turn, gives

. 1
1= hrn+ afh(qh)

h—0

I 1J()+1/f (v, :c’)doc—i—l/ 5 da
= lim §— — . - —

nos \en rdp, en Jot Yn en Qghyh

i J C 1 h

i, oo Jn(gn) < C(M) lim - =0,

where in the last line we exploited (3.167) and (3.169). This provides a contradiction
and, in turn, we necessarily have

1
(3.171) L:=limsup - I r(qp) < +oo.
h—0+ h
Step 3 (Bound on the constant). Clearly, the constant L >0 in (3.171) depends
on the sequence (g;,). We claim that

(3.172) L<C(M)

for some constant C(M) > 0 depending on M but not on (gq;). First, observe that
Th

3.173 li —<C L, lim -— =0
(3473 g ORI g

thanks to (3.160) and (3.171). Set wp := Un(qy) and vy := Vi(q,). By applying
Proposition 3.4 to ¥, =y, with e;, =h?, we deduce the two estimates:

Th Th
(3.174) [unllwrz(sme) <€ (}\L{; + hﬁ/2+2) ’
Th
(3.175) [vnllw2(s) < ChT\/;-

Then, recalling (3.148)—(3.149) and (3.167) and employing the Hélder inequality, we
estimate

1 1
7ain(an) =75 n(an) + /Shfﬁﬂfh'uhd$'+/sh76/27lghvhd$/
<C(M)+C(

[unL2(sim2) + llvnll2(s)) -

Exploiting (3.174)—(3.175), we take the superior limit, as k — 07, at both sides of the
previous inequality with the aid of (3.171) and (3.173). This yields

L<C(M)+CVL,

which entails (3.172) by applying the Young inequality.
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Hence, in view of (3.171), we have proved that

In(gy) < C(M)H’

for h < 1 depending on (g;). At this point, from (3.165), we infer L(g,;,) < C(M)
and, recalling (3.156), also (3.157). |

We are now ready to prove our second main result.

Proof of Theorem 3.13. Given h > 0, let nj,: ), — S? be constantly equal to
some fixed e € S2. In this case g, := (wh,nh) € Qp,. We claim that Fj,(q,) < C and,
in turn, infg, F, < C. To see this, using (2.16), we compute

1 hP/?

_E/Q —#e(@e d:c—f—i/ —L/Qe@@e de<C
24 1+ hB/2 hA 14 hB/2 -

Denote by v, the stray-field potential corresponding to g,,. By (2.25) and the change-
of-variable formula, we have

Eps@) =y, [ IVTIE<h 20 = 27S)

Thus, En(g,) < C. Moreover, by (3.150) and the change-of-variable formula, the
following holds:

‘Lh(qh —’ / hy, - edﬁ‘ /|hho7rh|dac<C’Hhho7thLz R5R3)<C

Therefore, the claim is proved.

At this point, (3.152) yields the boundedness of the sequence (F},(qy)), which,
thanks to Lemma 3.15, yields the one of (E(q,)). By Proposition 3.8, we find a
limiting state q, = (u,v,{) € Qp and x € L*(R?*;R3) such that (3.74)—(3.83) hold
true. In particular, this shows (3.153)—(3.155).

Given (3.77)—(3.80) and (3.81)—(3.83), we apply Proposition 3.11 to g; = q;, and
we conclude that

Eo(qy) <liminf E
0(qo) < liminf F(qy),

while exploiting (3.74)—(3.75) and (3.77), and applying the change-of-variable formula,
we see that

L = lim L .
O(QO) h 1I€+ h(qh)
These two facts together clearly entail

(3.176) Fo(go) <liminf Fi,(qy,)-
h—0t

Now, let g, = (4,7, Z) € Qp. By Proposition 3.12, there exists (g,,) with g, € Qy, such
that (3.108)—(3. 09) (3.111), and (3.115) hold true. Hence, we have

(3.77) Fo(@) = lm Fa(@,):
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Eventually, combining (3.152) with (3.176) and (3.177), we obtain
F < liminf F) <liminf Fj,(q,) = Fo(q,).
0(qo) <liminf £y, (g,) < lim inf F,(g,) = Fo(o)

Since g, is arbitrary, this shows that g, is a minimizer of Fy on Qj. 0

4. Quasistatic setting. In this last section, we study the variational model
under quasistatic evolution in the presence of dissipative effects. The evolution is
driven by time-dependent applied loads, and our framework is the theory of rate-
independent systems [45].

4.1. The quasistatic model. We start by describing the setting. Let 7' > 0 be
the time horizon. Given h > 0, let

Ffr, €eWHH0,T; L2(S;R?)),  gn € WHY(0,T5L2(S)), hy € WH(0,T; L*(R3;R?))

represent a time-dependent horizontal force, vertical force, and external magnetic
field, respectively. Without loss of generality, we assume that all these functions are
absolutely continuous in time. The corresponding functional Ly, : [0,T] x Qp — R is
defined by

1 o 1 / ; 1/
= Sy — - )
Ln(t,q) hﬂ/ﬂfh(t) (y w)dafH—hﬁ Qg;L(t)y da:+h - n(t) - mdg,
where g = (y,m), and the total energy Fy,: [0,T] x Qj, — R reads

(4.1) Fu(t,q) = En(q) — Ln(t,q).

Recalling (3.3), we define the dissipation distance Dy, : Qp x Qp, — [0, 400) by setting

(42) Du(a.0)= [ 124(a) - Z1(@)dz.
Thus, the energy dissipated along an evolution q: [0,7] — Qj within the time interval
[r,s] C[0,77] is given by

N
Varp, (g;[r, s]) :=sup {ZDh(q(ti), q(t™1)): = (¢°,...,t") partition of [r, s]} .
i=1
Here, by a partition of the time interval [r,s] C [0,T] we mean any finite ordered set
= ¢, ... tN) C [r,s]¥*! with N € N arbitrary and r =t < #! < ... <tV =s.
Also, its size is defined as

ITI|:=max{t' —t""':i=1,...,N}.

For the reduced model, we also have an evolution driven by time-dependent ap-
plied loads. Precisely, we assume that there exist

fo €WHH0,T;L2(S;R?)), g0 € WHH(0,T5L2(S)), ho € WhH(0,T; L?(R*;R?)),
such that, as h — 07, the following convergences hold:

(4.3) h=PP2f,— fo in WH(0,T; L2 (S;R?)),
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(4.4) h=8/2= g, — go in WH1(0,T; L3(9)),
(45) hy omp— X]ho in Wl’l(O,T; LQ(R?’;RB)).

Also here, we assume that the functions f, go and hg are all absolutely continuous in
time. In (4.5), we trivially set hy o7 (t) := hy(t) o7y, for every ¢ € [0,T]. This gives a
map in W11(0, T; L?(R3; R?)) whose time derivative is given by hy, o7y, (t) := hy, (t) oy,
for every t € (0,T). Note that the limiting magnetic field h is a priori assumed to be
independent of x3.

We define the functional Lo: [0,7] X Qo — R by setting

Lo(t,q) ::/ folt) .udw'+/go(t)vdw’+/ ho(t) - ¢ dz,
s s s
where g, = (u, v, ), so that the limiting total energy Fy: [0,7] x Qo — R reads

(4.6) Fo(t,q0) == Eo(qo) — Lo(t, qo)-

The dissipation distance Dy: Qg X Qg — [0, +00) for the reduced model is defined as
(47) Doao.d0) = [ 1¢~C]da,

where q, = (u,v,¢) and g, = (’TJ,,@\,E). Therefore, the energy dissipated by an
evolution q,: [0,T] — Qq, where gy(t) = (u(t),v(t),¢(t)), within the time interval
[r,s] C[0,T7] is given by

N
Varp, (qg;[r, s]) := sup {ZDO(qO(ti), qo(t1)) : I = (¢°,...,tV) partition of [r, s]} .
i=1
In the theory of rate-independent systems, one defines energetic solutions as time
evolutions satisfying two requirements: a global stability condition and an energy-
dissipation balance [45, Definition 2.1.2]. We recall below the definition for both the
bulk model and the reduced model.

DEFINITION 4.1 (Energetic solution to the bulk quasistatic model). A function
q;,: [0,T] — Qy, is termed an energetic solution to the bulk quasistatic model at thick-
ness h > 0 if t — O Fn(t,q,(t)) belongs to L*(0,T) and, for every t € [0,T], the
following two conditions are satisfied:

(i) Bulk global stability at thickness h:

(48) v/dh € Qha Fh(t7q}z(t)) S fh(tv/q\h) + Dh(qh(t)v/q\h)'

(ii) Bulk energy-dissipation balance at thickness h:

(4.9)  Fu(t, q,(t)) + Varp, (gy,; [0,4]) = Fi(0,q,,(0)) + /O OrFn(T,q,(7)) 7.

DEFINITION 4.2 (Energetic solution to the reduced quasistatic model). A func-
tion qy: [0,T] — Qo is termed an energetic solution to the reduced quasistatic model
if t = O Fo(t,qo(t)) belongs to LY(0,T) and, for every t € [0,T), the following two
conditions are satisfied:

(i) Reduced global stability:

(410) Vao S Q07 ]:O(tvqo(t)) S fO(ta ZI\O) +D0(q0(t)7ao)
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(ii) Reduced energy-dissipation balance:

@11)  Folt,qo(t)) + Varn, (o: [0,4]) = Fo(0, o (0 / 0, Fo (7, qy(7)) dr.

The main results of the section are Theorems 4.3 and 4.9, which represent the
counterparts of Theorems 3.1 and 3.13 in the quasistatic setting. These will be pre-
sented in the next two subsections.

4.2. Evolutionary I'-convergence. Our third main result states the evolu-
tionary I'-convergence of the sequence (F3) to the functional Fy, as h — 0F. More
explicitly, we prove that sequences of energetic solutions to the bulk model converge
to energetic solutions to the reduced model.

THEOREM 4.3 (Evolutionary I'-convergence). Let (¢%) with g% = (y%,m%) € Q,
and suppose that, for every h >0, the following condition is satisfied:

(4.12) VG, € Qn, Fn(0,q)) < Fn(0,d),) + Dula),Gp)-

Also, assume the existence of g3 = (u®,v°, CO) € Qo such that, as h — 0%, the following
convergences hold:

(4.13) u) == Up(g))— u® in WI(S;R?),
(4.14) v :=Vp(q%)— v° in WH2(9),
(4.15) z) = Z,(q))— CO in L'(Q;R3),
(4.16) Fn(0,9)— Fo(0,43).-

Let (q;,) with q,,: [0,T] — Qp be an energetic solution to the bulk quasistatic model at
thickness h > 0.

Then, there exists a function qq: [0,T] — Qo with qy(t) = (u(t),v(t),{(t)) for
every t € [0,T] satisfying the initial condition q,(0) = q which is an energetic so-
lution to the reduced quasistatic model. Moreover, up to subsequences, the following
convergences hold, as h — 0% :

(4.17) Vte[0,T], zn(t):=2Zn(q,(t)— ¢(t) in LY(QR3),
(4.18) vte[0,T], Varp,(qy;[0,t])— Varp,(qo;|[0,t]),

(4.19) Vte[0,T], Fn(t,q,(t)— Fo(t,qo(t)),

(4.20) 0 Fn(,q,)— 0 Fo(-,qo) in LY(0,T).

In particular, the function q, is measurable and bounded. Also, t — ((t) belongs to
BV ([0,T); LY(Q;R3)), while t — Fo(t,qy(t)) belongs to BV ([0,T]).

In the previous theorem, the measurability of g, is meant with respect to the
Borel sets of the space W’ 2(5 R2) x W22 (S) x W12(S;R3) equipped with the weak
product topology. Similarly, the boundedness of the map g, is understood as the one
of the function

t= flu(t) w2 smey + o) lw22cs) + 1SE)[wr2(s;rs)-

Remark 4.4 (Existence of energetic solutions to the bulk model). We stress that
Theorem 4.3 is just a convergence result: the existence of energetic solutions to the
bulk quasistatic model is part of the assumptions. However, our setting is compatible
with the existence of energetic solutions. Indeed, recalling Remark 2.2, we see that if
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the function @ in (2.4) satisfies a feasible polyconvexity assumption, then the existence
of energetic solution to the bulk model can be established [9, 11].

Remark 4.5 (Time-dependent boundary conditions). So far, we are not able to
treat time-dependent Dirichlet boundary conditions in the proof of Theorem 4.9.
Indeed, given the Eulerian character of some energy terms, the approach developed
in [23, section 4] seems not to be applicable in our setting. Still, time-dependent
boundary conditions like the ones in Remark 3.2 can be enforced in a relaxed form,
as we will briefly discuss.

Let we WhH1(0,T; W1o°(S;R?)) and v € WH1(0,T; W2°°(S)). For every h > 0,
we define the time-dependent deformation g, € Wh1(0,T; W1>°(Q;R?)) by setting

(0= mn 072 () oz (0) ot (V0

Let I' C OS be measurable with respect to the one-dimensional Hausdorff measure
with 221 (T) > 0. For every h > 0, the boundary condition

vte[0,T], y=9y,(t)onT xT
on admissible deformations is imposed in a relaxed form by augmenting the energy
Fn by the term
(@) o [y - m@ldat o [y - g da
»q hB/Q - Yy Yn hﬁ/2,1 Pl Yy Yn )

where g = (y,m). Of course, in this case, we remove the clamped boundary conditions
from the definition of Qy, in (2.21). The scalings are chosen in such a way that the
corresponding term in the reduced model, which has to be added to Fy, is given by

(t,qo) — lu —a(t) +23(V'v — V'5(t))| da —|—/ |lv—o(t)|dl,
IxI r

where gy = (u,v, ). This latter term imposes in a relaxed form the following limiting
boundary conditions:

vtel0,T], wu=u@)onl, ov=v(t)onTl, Vwv=V'5(t)onT.
Clearly, Lemma 3.5 must be suitably modified. Note that, contrary to Remark 3.2,
no particular assumption on I' is required in this case.

The rest of the subsection is devoted to the proof of Theorem 4.3. We begin with
some preliminary results. The first one constitutes the analogue of Lemma 3.15 for
the quasistatic setting.

LEMMA 4.6 (Energy scaling). Let M >0 and let (q;,) with q;,: [0,T] — Qp, satisfy

(4.21) sup sup Fp(t,q,(t)) <M.
h>0 t€[0,T]

Then, there exist C(M) > 0 and h > 0, where the former does not depend on (q,),
such that

(4.22) sup sup Ejn(g,(t)) < C(M).
h<h te[0,T]
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Proof. The proof of Lemma 4.6 works like the one of Lemma 3.15. In this case,
we consider

rh = sup Rn(y,(t)), en = sup In(qy(t)),
te[0,T] te[0,T]

where g, (t) = (y,(t), mp(t)). Here, we employ the notation in (3.14) and (3.158).
Then, we follow the same strategy of Lemma 3.15. 0

The second preliminary result shows that the sequence of functionals (F},) satis-
fies suitable controls with respect to time. These controls represent one of the main
assumptions of the theory of evolutionary I'-convergence for rate-independent pro-
cesses [46]. For convenience, we denote by Z C (0,7T") the complement of the set of
times at which all the functions f;,, gn, and hy, for every h > 0 as well as the functions
fos 90, and hg are differentiable. Thus, it holds that #*(Z) =0.

LEMMA 4.7 (Time-control of the total energy). Let M > 0. Then, there exist
two constants C(M), L(M) >0 such that, defining kj, € L*(0,T) by setting
kp(t) :=C(M) (hiﬁ/QHfh(t)”LQ(S;R?) + hiﬁ/%l||Qh(f)\|L2(s)+||hh o TFh(t)||L2(R3;R3)> ;
we have that, for every (q,,) with q,, € Qp satisfying

(4.23) sup En(q,) <M,
h>0

there exists h >0 such that the following estimates hold for every h < h:

(4.24) Vte (0,T\Z, |0 Fn(t,q@p)l < wn(t) (Fa(t,qy) + L(M)),
(4.25) Vs,t€[0,T], Fu(t,qy) + L(M) < (Fu(s,@y,) + L(M)) el KO~ Kr )l
(4.26)

vt € (0,T)\Z, Vs € [0, T, |0, Fn(t,@n)| < kn(t) (Fuls, @y) + L(M)) e FntO=Fnlol,

In the previous estimates, we define K, € AC([0,T)]) by setting

t
Kp(t) ::/ Ky (r)dr.
0
In particular, the constant L(M) >0 satisfies

4.2 inf inf £.G,) > —L(M).
(4.27) gmel[r&ﬂfh(,qh)f (M)

Eventually, defining ko € L*(0,T) and Ko € AC([0,T]) as
ko (t) := C(M) (Hfo(t)HLQ(s;Rz) + 90Ol L2(s) + ||X1h0(t)||L2(R3;R3)) ;
Kolt):= [ o(r)ar

the following hold:

(4.28) Kn— o in L'(0,T),
(4.29) Kp— Ko uniformly in [0,T].

We stress that, in the previous statement, h depends on (g, ), while the constants
C(M) and L(M) depend only on M.
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Proof. First, (4.28)—(4.29) come directly from (4.3)—(4.5). By (4.23) and Remark
3.9, setting uyp :=Up(qy) and 0y, := Vi (q},), we have

(4.30) o sy + 8 lovr.ags) < C(M) (x/Eﬁ(ah) n 1) .

Let g, = (Yp,,mn) and set g, := Mp(q,). Recalling (2.7), (2.12), and (3.54), we
estimate

1 1
o Qdm:/iAdm<C/7Adm<C RPESNG,) +1),
[P | e de<0 | o an <0 (7B @)+ 1)

so that
(4.31) K L2 (rosray < C ( E;\@,) + 1) :

Using (4.30)—(4.31) and the Holder inequality, we control the work of applied loads.
For t € (0,T)\ Z, we have

|La(t,qp)| < +

/ R=PI2f, (1) - Ty da’
S

/ P21 g (4) Ty, da!
S

+

/ hho7rh(t)-ilhd:c
R3
<CM) (lwnllwr2cszrey + [Onllwrzcs) + sl L2 @ers))

<con (v +1).

Here, we exploited the uniform boundedness of (h=?/2f,), (h=?/271g,), and (hjom})
with respect to time, which follows from (4.3)—(4.5) by the Morrey embedding. Then,
using the Young inequality, we obtain
Fn(t: 1) = En(@y) — [Ln(t@5)| = En(gy,) — C(M) (\/ Eil(@,) + 1)

> C(M)Enw(qy) — L(M)

for some constants C (M), L(M) > 0.
Now, for convenience, set

(4.32)

Fn(t) == hiﬁ/QHfh(t)”L?(S;R% + hiﬁ/zilngh(t)HL%S) +||An o ()| L2 (r3R3)-

Making use of the Holder inequality together with (4.30)—(4.31), we estimate

0. Fn(t,d)| < / h=PI2f, (t) -y da'| + / h=B2 L g, (8) T, A’
S S

hh OTl'h(t) . ﬁhdw
R3

<Fn(t) (I[Tnllwr2sirz) + [0nllwr2(s) + 1Bl L2 @5 rs))

< CODF(E) (\/E,e:(ah) n 1) |

Combining this with (4.32), we obtain

_|_

|0:Fn(t,qp)| < C(M)ER(E) (Fr(t,qy) + L(M)),
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which proves (4.24). Note that (4.27) holds in view of (4.32). From (4.24), we deduce
(4.25) thanks to the Gronwall inequality. Eventually, (4.26) follows. O

We now proceed with the proof of Theorem 4.3.

Proof of Theorem 4.3. We rigorously follow the scheme in [46]. Therefore, the
proof is subdivided into six steps.

Step 1 (A priori estimates). Let h > 0 and t € [0,T]. Let g, € Qp, be defined as
in the proof of Theorem 3.13. Testing (4.8) with g, =qj,, we obtain

(4.33) Fu(t,qn(t)) < Fu(t,qp) + Dulan(t),qyn)-

As the applied loads are uniformly bounded with respect to h > 0 and ¢ € [0, T thanks
to (4.3)—(4.5) and the Morrey embedding, we check that the first term on the right-
hand side of (4.33) is uniformly bounded with respect to both h > 0 and ¢ € [0,7]
by arguing as in the proof of Theorem 3.13. The second term on the right-hand side
of (4.33) is also uniformly bounded with respect to h >0 and t € [0,T] because both
g, (t) and g, satisfy the magnetic saturation constrain. Therefore, we deduce (4.21)
for some M >0 and, by applying Lemma 4.6, also (4.22) for some h > 0.
Applying Lemma 4.7 to q;, = q,,(T'), we see that

(4.34) inf F (T,q,(T) = ~L(M),

and, for h < h, the following holds:
(4.35) Ve (0,T)\Z, |0:Fn(t,q,(t)) < kn(t) (Fu(t qu(t)) + L(M)).

By (4.9), we have

(4.36)  Varp, (g,;(0, 7)) = Fu(0,q3) — Fa(T,qu(T)) +/O O Fn(7,q,(7))dr.

The first term on the right-hand side of (4.36) is uniformly bounded by (4.16), and
so is the second one because of (4.34). Additionally, thanks to (4.35), we estimate

T T
/ |OcFn (T, q,(7))| dT g/ ko (7) (F (7, @, (7)) + L(M)) oEn(m) qr
0 0

(4.37)
< (M + L(M)) (eKMT) — 1) < C(M,T),

where in the last line we used (4.21) and the uniform boundedness of (Kj},), which
comes from (4.29). Therefore, we obtained the following a priori estimate:

(4.38) sup sup Fp(t,q,(t))+ sup Varp, (q,;[0,T]) < C(M).
h>0 0<t<T h<h

For every h > 0, we define fp,: [0,7] — R by setting fr(t) := Fn(t,q,(t)). In view of
the previous estimate, we already know that (f5) is uniformly bounded. We claim
that this sequence has also uniformly bounded total variation. Observe that, by (4.9),
for every s,t €[0,T] with s <t, it holds that

fh(t,qh(t))+Var1>h(qh;[3,t])=fh(8,qh(5))+/ OrFn (T, q,(7)) d7.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/10/24 to 128.130.235.134 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A REDUCED MODEL FOR PLATES IN MAGNETOELASTICITY 3153

Let T = (t°,...,t") be a partition of [0,7]. In this case, we estimate
N . . N . . N tl
Do) = fu@ | < D Varp, (@ (£ 8) + Z/A [0nFn(r.ap(r))| dr
i=1 i=1 =17/t

= Varp, (¢;;[0,77]) —l—/o |0¢Fn(T,q,(T))| dT.

As the right-hand side is uniformly bounded by (4.37)—(4.38), given the arbitrariness
of II, we deduce

(4.39) sup Var (fr;[0,T]) < C(M).
h<1

Step 2 (Compactness). For every h > 0, set
Moo= |J {@neQn: Fut, ) <M}, Kn:={24(@)): G € Hn}.
0<i<T

Then, define

He=JHn,  K:=JKn

h>0 h>0
Observe that, by Lemma 4.6, every sequence (q;) C H satisfies

sup sup Ej(g,) < C(M).
<1 0<t<T

Therefore, by Proposition 3.8, the sequence (Z,), where zj, := Z5,(q,) for every h >0,
is compact in L'(€;R3). This shows that K is a compact subset of L({;R3).

Now, in view of (4.21), the sequence (q;,) takes values in H. For convenience, for
every h >0, we define

zp: [0,T] = LY(QR3), 6, [0,T] — [0, +00),
by setting
zn(t) = 2n(gx(t)), 0n(t):=Varp,(g,;[0,t]).

By (4.38)—(4.39), the sequence (f;) is uniformly bounded in BV ([0,T]). By construc-
tion, (zp) takes values in K while, by (4.38), it has uniformly bounded variation.
Eventually, by definition, each map ¢ is increasing and the sequence (dy) is uni-
formly bounded by (4.38). At this point, we apply the Helly compactness theorem
[42, Theorem 3.2]. This yields the existence of three maps

f:]0,T) = [0,400), =z:[0,T] = L*(Q;R3), §:1[0,T]— [0, +00),

with f € BV([0,T]), z € BV(0,T;L*(;R3)), and § increasing, such that, up to
subsequences, the following convergences hold:

(4.40) Ve [0,T], fu(t)— f(1),
(4.41) Vte[0,T], zn(t)— z(t) in L*(R3),
(4.42) Vte[0,T], Ou(t) —d(t).
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To construct the candidate solution g,: [0,7] — Qg of the reduced model we
proceed as follows. For every h > 0, define the functions

wp: [0,7] = WH2(S;R?), wvp: [0,T] = WH2(S), wy: [0,T] — WH2(S;R?),
wy,: [0, 7] — LA(R3R?),  Np: [0,T] — L*(R?R3*?)
by setting
up(t) :==Un(qn(t), onl(t) =Valgy(t)), wn(t):=Whiq,(t)),
pi(t) == Mp(gn(t), Ni(t):=Nu(gs(t))

Recalling (4.22), by Proposition 3.8, we have that
sup sup {[lun(t)lwrz(smz) + o) wrzcs) + lwn@)llwreszs) }
h<h t€[0,T]

+supsup; o7y { [1n ()| 22 rs me) + [ Nw(t)]| 2 smoxe) } < C(M).
h<h

(4.43)

Now, define X as the set of all quintuplets

(W, 0, @, i, N) € WE2(S;R?) x W2(S) x Wi2(S;R?) x L2(R3; R?) x L2(R%; R?*?)

[ (@, 0, w, g1, N ) |lw1.2 (5,82) x W12 (8) x W2 (5583) x L2 (R3;R3) x L2 (R8;R8x3) < C'(M),

where C(M) > 0 is the same constant in (4.43). The space X is endowed with the
product weak topology, which makes it a complete and separable metric space. For
every h > 0, we define &: [0,T] — P(X) by setting & (t) := {sx(t)}, where

s (t) = (un(t), vn(t), wn(t), py (1), Ni()).

In view of (4.43), this map indeed takes values in P(X). Consider &: [0,T] — P(X)
with &(¢) defined as the set of all limit points of the sequence (s, (t)) in X. For every
t € [0,7], this is a closed subset of X, so that the set-valued map & is measurable
thanks to [3, Theorem 8.2.5]. From (4.43), by weak compactness, we deduce that
the set &(t) is nonempty for every t € [0,T]. Therefore, by the measurable selection
theorem [3, Theorem 8.1.3], there exists s: [0,7] — X measurable with s(t) € &(¢) for
every t € [0,T]. For any such ¢, let s(t) = (u(t),v(t),w(t), u(t), N(t)). By definition
of &(t), there exists a subsequence (hy), possibly depending on ¢, with hy — 0, as
k — oo, such that the following convergences hold as k — oo:

(4.44) wp, (£)— w(t) in WH2(S;R?),
(4.45) vp,, (H)—v(t) in WH2(S),
(4.46) wp, () — w(t) in WH2(S;R?),
(1.47) i () pi(1) i L*(R%R),
(4.48) N, (t)— N(t) in L2(R%R3*3).

Applying Proposition 3.8 to the sequence (q;, (t)) and appealing to the Urysohn
property, we deduce several facts. First,

=L (740
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so that v € Wg?(S). Second, there exist ¢(t) € W12(S;S?) and x(t) € L*(R%;R?)
such that

(4.49) p(t)=xal(t), N()=xa(VCOIXD)).
Third, we have

(4.50) zp, (1) = €(t) in LY (4 R3),

which, together with (4.41), entails

(4.51) z(t) =¢(t).

Eventually, Proposition 3.8 ensures the existence of (R (t)) C W1P(S;S0(3)) and
G(t) € L*(;R3*3) such that, setting Fj(t) := V,y,,(t), we have

4.52) Ry (t)— I in L2(;R3%3),
(4.53) Gu(t) :==h7P2 (Ry(t) " Fu(t) — I)— G(t) in L>(QR3*3),

and, for almost every x € €, the following holds:
(4.54) G’ (t,x) =symV'u(t,z’) — (V') ?v(t,x')) 3.

From the measurability of the map t — Vw(t) from [0,T] to L?(R3*3), we infer
the measurability of v as a map from [0,7] to W*2(S). Similarly, from the measur-
ability of p and IN, we deduce the measurability of ¢t — {(¢) as a map from [0,7] to
Wh2(S;R3). Hence, defining q,: [0,7] — Qg by setting g, (t) := (u(t),v(t),{(t)), this
map turns out to be measurable. Also, given (4.43)—(4.48), by lower semicontinuity,
we see that map g, is bounded.

For every h >0, let P,: (0,7) — R be defined by setting Py (t) := 0, Fn(t, g, (1)).
By Definition 4.1, P, € L*(0,T). Thanks to (4.21) and (4.35), for every t € (0,T)\ Z,
we have

(4.55) [ Pn(t)] < () (Fi(t, @5 (1) + L(M)) < C(M)kn(t).

In view of the previous inequality, the equi-integrability of (), which comes from
(4.28) by the Vitali convergence theorem, implies the one of (P,). Thus, by the
Dunford-Pettis theorem [22, Theorem 2.54], there exists P € L'(0,T) such that, up
to subsequences, we have

(4.56) P, — P in L}(0,T).
Define P: (0,T) — R by setting

P(t) :=limsup Py (t).
h—0t
Exploiting (4.28) and(4.55), we check that 13A€ LY(0,T). Also, by the reverse Fatou
lemma [53, Corollary 5.35], we see that P < P almost everywhere in (0,7).
Define Py: (0,7) — R by setting Py(t) = 0:Fo(t,qy(t)). We claim that P = P
almost everywhere in (0,7"). Recalling (4.3)—(4.5), for almost every t € (0,T)\ Z, we
have

WP, (t)— folt) in L2(S;R?),
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P21 g (1) = go(t) in L2(S),
hy, o 7y (t)— xrho(t) in L?(R3;R?),

and
Pult) = hﬁ/fh ~a') dz =5 [ ant)i o
/ Fun(t) - o () d€
QYR ()
/h BI2f, (1) - up(t) da’ —/h B2 g, () o (t) da’
= [ om0 w0 de.
Rd

Without loss of generality, we can assume that the subsequence (hy) in (4.44)(4.48)
additionally satisfies Pp, (t) — P(t), as k — oo. Thus, taking the limit along the
subsequence (hy), as k — 00, at both sides of the previous identity, we obtain

—/Sfo(t)~u(t)da:—/Sgo(t)v(t)dm’—/sho(t)~C(t)da:’.

As the right-hand side of the previous equation coincides with Py(t) for almost every
t € (0,7)\ Z, this proves the claim.

Step 3 (Reduced stability). Fix t € [0,7] and consider the subsequence (hy) in
(4.44)-(4.48). Let gy = (u,7,{) € Qp and let (g;) be the sequence provided by
Proposition 3.12. For every k € N, the global stability condition (4.8) gives

(457) ]:hk (t’ qh;C (t)) g ]:hk (tv ahk) + th (qhk (t)a ahk)

For the left-hand side, in view of (4.3)-(4.5), (4.44)—(4.45), and (4.47)-(4.54), we
obtain

(458) Folt.qo(t)) < limint Fi, (1,5, (1)) = £(1).

Here, we applied Proposition 3.11, and we also exploited (4.40). For the right-hand
side, given (4.3)—(4.5), (3.108)—(3.109), (3.115), and (3.111)(3.112), it holds that

klim ]:hk (t, Z]\hk) = .7:0(157 60)7
— 00
while (3.114), (4.41), and (4.51) yield
klggo Dy, (Qhk (t), ahk) =Do(qo(1),q)-
Therefore, taking the inferior limit, as & — oo, in (4.57), we obtain

Fo(t,qo(t)) < Fo(t,90) + Po(go(t): qo)-

As @, is arbitrary, this proves (4.10) for ¢ fixed.
Step 4 (Upper reduced energy-dissipation inequality). Fix ¢ € [0,T] and let (hy)
be the sequence in (4.44)—(4.48). By (4.9), for every k € N, the following holds:

t
(459) ‘Fhk (t7qhk (t)) + Varth (qhk; [O7t]) = ]:hk (O7q2k) + / Phk (T) dr.
0
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For the left-hand side, we recall (4.58). Also, (4.41)—(4.42) and (4.51) entail
(460) VarDo (Q(]; [07 tD S hkrggf VaI‘th (qhk; [Oa t]) = 6(t)

For the right-hand side, we have (4.16). Also, given (4.56), it holds that

t t t

lim [ Py, (7) dT:/ P(7) dTS/ Py(7)dr,
k—oo Jq 0 0

where we employed the inequality P < Py almost everywhere in (0,7"). Therefore,

taking the inferior limit, as k — oo, in (4.59), we obtain

Fo(t,qo(t)) + Varp, (qo; [0,]) < f(#) +6(t)

(4.61) 0 t 0 t
<Fol0.a})+ [ Pr)ar<Fa0.ah)+ [ Pulr)dr,
0 0
which is the upper reduced energy-dissipation inequality for fixed ¢ € [0,T].
Step 5 (Lower reduced energy-dissipation inequality). We claim that, for every
€ [0, T}, the following holds:

Fo(t: go(t)) + Varp, (go; 0, ¢]) zfo(O,q8)+/O OrFo(T:qo(T)) dT.

Thanks to (4.10), the claims follows by applying [45, Proposition 2.1.2.3].

Step 6 (Improved convergences). We are left to prove (4.18)—(4.20). First, in
view of (4.11) and (4.61), we have f(t) + 0(¢t) = Fo(t,qq(t)) + Varp,(qgy;[0,¢]) for
every t € [0,7]. Recalling (4.58) and (4.60), this entails f(t) = Fo(t,q,(t)) and
d(t) = Varp,(qy;[0,t]), so that (4.18)—(4.19) are proved. Finally, (4.11) and (4.61)
yield P = P, almost everywhere on (0,7'). Thus, (4.20) follows by applying [23,
Lemma 3.5]. O

4.3. Convergence of solutions of the approximate incremental mini-
mization problem. In order to state our fourth main result, we introduce the ap-
proximate incremental minimization problem. This is a relaxed version of the in-
cremental minimization problem that has been introduced in order to cope with the
possible lack of energy minimizers [47]. This is exactly our situation since, with-
out further assumptions, minimizers of the total energy do not necessarily exist; see
Remark 4.4.

DEFINITION 4.8 (Approximate incremental minimization problem). For h > 0,
let Iy, = (19,... ,t}]y") be a partition of [0,T), oy, >0, and q € Q. The approzimate
incremental minimization problem (AIMP) determined by I, with tolerance ay, and
initial datum qY reads as follows: for every i€ {1,...,Ny}, find qi € Qy such that

(4.62)  Fulth,qh) +Dnlay ' i) < ( Z*tﬁfl)aﬁigf {Fn(th, )+ Dula, )}

Our fourth main result claims that, for a sequence of partitions whose sizes vanish
jointly with the thickness of the plate together with a sequence of tolerances, solu-
tions to the approximate incremental minimization problem, or better their piecewise-
constant interpolants, converge to energetic solutions to the reduced model.

THEOREM 4.9 (Convergence of solutions of the AIMP). Assume p > 3 and also
B >6Vp. Suppose that the elastic energy density Wy, has the form in (2.4), where the
function @ satisfies (2.9)-(2.13) and that the applied loads satisfy (4.3)—(4.5).
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Let (1) be a sequence of partitions of [0,T] such that |II,| — 0, as h — 0T, and
let (ap) C Ry be such that oy, — 0, as h— 0. Let (¢%) with 5 = (y%,m%) € Q) be
such that (4.12) holds. Moreover, assume that there exists q8 = (u,09,¢%) € Qo such
that the convergences in (4.13)—(4.16) hold true, as h— 0%. For every h >0, consider
a solution to the AIMP determined by I, with tolerance ay, and initial datum q% and
denote by q;,: [0,T] = Qp its right-continuous piecewise-constant interpolant.

Then, there exists a function qq: [0,T] — Qo with qy(t) = (u(t),v(t),{(t)) for
every t € [0,T] satisfying the initial condition q,(0) = q) which is an energetic solution
to the reduced quasistatic model. Moreover, up to subsequences, the convergences in
(4.17)—(4.20) hold true, as h — 0T. In particular, the function q is measurable and
bounded. Also, t — ((t) belongs to BV ([0,T]; L*(Q;R3*3)) while t — Fo(t,qy(t))
belongs to BV ([0,T]).

We mention that also Theorem 4.9 can be adapted by imposing time-dependent
boundary conditions as in Remark 4.5.

Remark 4.10 (Existence of energetic solutions for the reduced model). As a conse-
quence of Theorem 4.3, we deduce the existence of energetic solutions for the reduced
quasistatic model. However, under our assumptions, this can be established directly.
Indeed, the limiting total energy Fy satisfies suitable compactness properties in view
of the coercivity of Q,eq noted in (3.5) and the dissipation distance Dy is continuous
on the sublevels of Fj, so that the existence of energetic solutions for the reduced
model can be proved following the usual scheme [45, Theorem 2.1.6].

We move towards the proof of Theorem 4.9. We begin with a preliminary result
concerning solutions to the AIMP.

PROPOSITION 4.11 (Solutions of the AIMP). Let (II;,) be a sequence of partitions
of [0,T) and let (o) C R with ay, > 0 be bounded. Also, let (qY9) with q% € Qy, be such
that

(4.63) sup F1(0,q%) < C.
h>0

For every h >0, let I, = (19, .. 7tN’l) and let (q3,. ..,thh) be a solution to the AIMP
determined by Iy, with tolerance oy, and initial datum q%. Then, there exists M > 0
such that

(4.64) sup  sup  Fu(th,q)) < M.
h>0 i€{0,...,Np}

Moreover, for every h<< 1 and i € {1,..., Ny}, the following estimates hold:

(4.65) VG, €Qn,  Fulth.ah) <t —th Don + Futh.d) + Pu(ah.dn).
Fu(th.ah) +Dulay . ah) < (), — th Dow + Fult) ) ")
th _
(4.66) + / ) O Fn (T, q};l)dT,
t};
(4.67)

Tty qi)+L(M +2Dh @71 ) < (Fu(0, )+ L(M)+tia) Xn(ti)
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Eventually, if ¢¥) satisfies (4.12) for h < 1, then, for every i€ {1,...,Ny}, there holds
|fh( ;wq%,) - ‘Fh(tﬁlilquil) + Dh(qul’qzﬂ < (t;L - téfz) ap,

4.68 L
(4.68) +(fh(t2‘1,q§fl)+1)(eKh”h)*Kh(th 1>—1),

where we set t;l :=0.
Proof. Let h>0 and i € {1,...,N,}. For simplicity, we set a}, := (t} — t: Day,.
Given (4.62), for every g, € Qp, we have
Fulth,ah) < @+ Fu(th,@n) + Dula, ', dn) — Dulay, ' qh)
< aj, + Fn(th,qn) + Du(dh,, @),
where, in the last line, we employed the triangle inequality. This shows (4.65).

We check (4.66). For simplicity, set fj := Fi(t},q}) and di := Dy(q) ', qi).
From (4.62), by applying the fundamental theorem of calculus, we obtain

(4.69)

fo= B+ di<ah =57+ Pt g, )
=+ Filthdi ) = Bt )
, th .
=ap+ [ lat}'h(T,qﬁfl)dT,

b

(4.70)

which gives (4.66).

Testing (4.65) with g;, = g,,, where the latter is defined as in the proof of Theorem
3.13, we have

Fu(th:aqn) < ap, + Fr(th, @n) + Dn(qy, qn)-

Exploiting the uniform boundedness of the applied loads with respect to time, which
follows from (4.3)—(4.5) by the Morrey embedding, with computations analogous to
the one in the proof of Theorem 3.13 we check that the right-hand side of the previous
inequality is uniformly bounded with respect to h > 0 and i € {0,..., Ny}. Here, we
also take advantage of (4.63) and of the boundedness of (ay,). Therefore, (4.64) is
proved.

Now, for the sake of clarity, we specify the sequence (h,) such that h, — 07, as
n — 00, in place of A > 0. Thus, (q}bn yeens qﬁ[:") is a solution to the AIMP determined
by II;,, with tolerance o, and initial datum q%n for every n € N. By applying Lemma
3.15 with (q;,) given by the sequence

0 1 Noy 00 1 Ny 0o 1 Nn
qh17qh1>"'7qh1 ’qhQ’qhQ""’qh2 7"'7qhn7qhna"'aqh n7"'

n

we deduce the existence of @ € N such that

(4.71) sup  sup By, (q},) <C(M).

n>mi€{0,1,...,.Np,, }

Here, we exploit once more the uniform boundedness of the applied loads. Moreover,
by Lemma 4.7, for every n > 7 and for every i € {0, 1,..., Ny }, the following estimates
hold:

Vie (OvT)\Za |at‘7:hn (tqunﬂ < Kh, (t) (‘th (tqun) + L(M)) s

Vs, t €[0,T),  Fn,(t,q} )+ L(M) < (Fu,(s,q, )+ L(M)) el =K ()]
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Vte (0,T)\Z, Vs €[0,T7,
00Fn, (6 ah,)| < #n, (8) (P, (5.ah, ) + L)) el Kt D=0 0L

Henceforth, for simplicity, we go back to writing h as a subscript without specifying
the sequence of thicknesses and we set h := hz. Accordingly, for every h < h and
i€{0,1,..., N}, we have

(472) Ve (0,DNZ,  |0nFn(t,qi)| < rn(t) (Fult qp) + LIM)),

(4.73) Vs, t€[0.T),  Fu(t.qp) + L(M) < (Fuls,qp) + L(M)) el O,
(4.74) vt e (0,T)\Z, Vs € [0,T],

(4.74) 0T (8 @) < n(t) (Fn(s. qh) + L(M)) el O CL,

Going back to the proof of (4.67), let h <h and i € {1,..., N, }. For convenience, set
K} := Kp(t!). Combining (4.66) with (4.74), we compute
fi<hirdi<ai+ 7+ [ aFnaar
th
4

. . . h i
<ol 4+ fit 4 ( i1y L(M))/ ko (T)eKn (M=K, “ar

i—1
th

= o+ £ (7 4 L) (R 1)
—af, — L(M) + (fi" + L(M)) 50 K3
Thus ) )
fi+ L(M) <ol + (fi" + L(M)) K0 K

from which, by induction, we obtain

i

(4.75) FALM) < [ 2+ LM) + Y e Fhad | eFi.
j=1

Here, we set f:=F,(0,q%). From (4.66), using (4.74), we estimate
o o th )
- fi7 v d <ah+ [ onFr gy ar
ti-
, . th i
ga;l_’_( ;Lfl_‘r_L(M))/ K}h(T)eKh(T)_Kh(th )d7—

i—1
th

<ol + (fi7t + L(M)) (eKWi)*Ki‘l - 1) .

(4.76)

Then, summing (4.76), with j in place of 4, for j € {1,...,i} and employing (4.75),
with 7 — 1 in place of i, we obtain

Fit S LMY < J L)+ Y o+ 30+ L)) (KR 1)
= Jj=1 j=1

%
<P ALM)+> o
j=1
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i Jj—1 _ o
#37 (sm nan + Sotap) (oot )
j:l k=1

—Zah (f)+L(M K’L—l—Z(e h— e )Ze Kha

<Zah (ff + L( ))eK'i+Z(eK'{ —eK’Jfl)ZafL
j=1 k=1
= 2+ L)+ aj | e,

which yields (4.67).
Finally, we prove (4.68). Testing (4.65) for ¢ — 1 if ¢ > 1 or (4.12) if i =1 both
with @), = gi, we have

it <al P+ Fut g + dy

Here, in the second case, we set oz(,)1 := 0. From this, employing the Fundamental
Theorem of Calculus and (4.74), we compute

=S dy <ot = (Falthgh) — Falty . gh)

i
th,

=aj - [ ) OwFn (T, qh) dr
t’;l7

(4.77) _ ‘ ¢ .

<ap '+ (fyHH L(M) / k()T dr

ti71
. . " i i—1

Sai (T ) (SR 1)

Combining (4.76)—(4.77), we obtain (4.68). ad

We now present the proof of our fourth main result.

Proof of Theorem 4.9. Again, the proof follows the well-established scheme in
[46], and it is subdivided into six steps.

Step 1 (A priori estimates). For every h > 0, let (q}L,...,th") € QhN" be the
solution to the AIMP determined by ITj, = (¢9,. ..,thNh’) with tolerance «y, > 0 and
initial datum g% € Qp,. We introduce the piecewise-constant interpolant gj,: [0,7] —
O by setting

Np

(1) = g ! ifti !t <t<t for some i€ {1,..., Ny},
D= g ift=T

Let t € [0,T]. Given h >0, let i € {1,..., N, } be such that ¢, ! <t <t} . By definition,
we have

(4.78) ay(t)=q;",  Varp,(g;;[0,1]) ZDh @, .q))-
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Thus, using (4.67) and (4.73), we infer
Fi(t, @, () + L(M) + Varp, (g,:[0,4]) < (Fu(t; ", g5 ) + L(M))elr O —Kr(t D

i—1
+ZDh(q%717q€L)
j=1
1—1 , - .
< | Fulty a )+ LIM) + ) Du(ay " qj) | "5
j=1

< (Fn(0,q0) + L(M) +t:  ap) (eKh(t) - 1)

< (Fa(0,00) + L(M) + Tay) (F+T) — 1)

Since the sequences (F,(0,¢%)), (an), and (K, (T)) are all bounded, we obtain the
estimate

(4.79) sup sup Fn(t,q,(t)) +sup Varp, (q5,;[0, 7)) < C(M,T).
h>01t€[0,T] h>0

For every h > 0, define fr,: [0,7] — R and z,: [0,7] — L'(Q;R3) by setting
In(t) :==Fn(t,q,(t)) and z,(t) := Zn(q,(t)). From (4.79), we immediately get

(4.80) sup sup fx(t) +sup Varp(ors)(2s;[0,7]) < C.
h>0 te[0,T] h>0

We now establish a uniform bound for the total variation of fj. For simplicity, for
every h>0 and i € {1,..., N}, set

f;l ::fh(tz}-mq;z)a d;z = Dh(qz_l;‘ﬁl)a K;L = Kh(ﬁz)ﬂ a;z = (t;L - til_l)ah'

Also, for convenience of notation, we set t,:l := 0. First, denote by [ fn]? the jump of
fn at time ti. Exploiting the continuity of ¢ — F(t, ¢} ') and employing (4.68) and
(4.73), we compute

(4.81)
111 = | B {506~ it =0} = |, {74(thoa) = i . )
1= £ = Faltioay ™) - Al )

) ) th ]
<Ifi= £+ [0 ldr
by,

<Ifh— M+ ( ,Zfl—s—L(M))/ ko (F)efn (=K g

i—1
th,

<1f = 7+ (M 4+ L) (R 1)

<dy + i b+ 2(M + L(M)) (el’“ﬂ’@"’f1 - 1) .

Second, for t € (i1, t1), we have fu(t) = Fu(t,qi"). Thus, fi(t) = 0 Fu(t,q} ).
Making use of (4.73) once more, we compute
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tifl tifl

h . h .

/ " ()] dr = / "o Fu(r g dr
t, t

ty

(4.82) o (P)eH =K g

<uiton) [

2
th

< (M + L(M)) (505" 1))

Thus, combining (4.81)—(4.82), we obtain

Var<fh;[o,T1>=Z{[fhm+ / ! |f'h<7>|dr}

i=1 t},

N,
(483) <3 {d+af + it 30 + L) (e — 1))
i=1

< Varp, (q;;[0,T]) + 2Tay, + 3(M + L(M)) (eth - 1) ;

where in the last line we computed

Ny, Ny, Ny,
i i—1 i—1 i i—1 i i—1
g (eK}sz}Z — 1) = E eiK;I (eK;m — eK)i ) S E (eK;L — eK;I ) :eKh(T) — 1
1=1 ]

=1

Thus, recalling the boundedness of («,) and (K5 (T)), where the latter follows from
(4.29), the inequality (4.83) together with (4.79) gives

(4.84) it;;())\/ar(fh; [0,T]) <C(M,T).

Step 2 (Compactness). For every h > 0, define d5: [0,7] — [0,+00) and the
functions

wp: [0,T] = WH2(S;R?), vy [0,T] — WH2(S), wp: [0,T] — WH?(S;R?),
wy: [0,T] — LA(R%R?),  Ny: [0,T] — L?(R3;R3*3)

as in Step 2 of the proof of Theorem 4.3. Exploiting the a priori estimates (4.79),
(4.80), and (4.84), with the aid of the Helly compactness theorem [42, Theorem 3.2],
we establish the existence of functions f € BV([0,T]), z € BV([0,T]; L*(;R?)),
and 0: [0,7] — [0,4+00) such that, up to subsequences, the convergences in (4.40)—
(4.42) hold true. Moreover, employing the measurable selection theorem, we identify
a function gq,: [0,T] — Qo with q,(t) = (u(t),v(t),{(t)) which is measurable and
bounded. This function is characterized by the property that, for every t € [0,77,
there exists a subsequence (hy), possibly depending on ¢, such that (4.44)—(4.45) hold
true and also

tn, (B)= x(t) in L*(R%R?),
N (t)= xe(V'C(1)[x(t) in L*(R?R>*?)

for some x: [0,7] — L?(R*;R3) measurable and bounded. Then, for every h > 0,
we define Pp,: (0,7) — R as in Step 2 of the proof of Theorem 4.3 and, with the
same arguments, we prove that (4.56) holds true for some P € L'(0,T). Furthermore,
defining Py: (0,7) = R and P: (0,7') — R as in Step 2 of the proof of Theorem 4.3,
we show that P < P and P = Py almost everywhere in (0,7).
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Step 3 (Reduced stability). In view of (4.65), for every h > 0, the following holds:

(4.85) Ytp €y, Vqy, € Qn,  Fultn,qy(tn)) < Mplan + Fn(th. qy) +DPr(gy(ts). gy)-

Define 73,: [0, 7] — II}, by setting 7 (t) :={s € I, : s <t}. Since || —0, as h— 0T,
we have 7, (t) = ¢, as h — 0. Fix t €[0,T] and let (hy) be the subsequence such that
(4.44)—(4.48) hold. By definition, we have g, (t) = qy,, (7h, (t)). Let g, € Qo and let
(g;,) be a corresponding recovery sequence given by Proposition 3.12. By (4.85), it
holds that

(486) ]:hk (Thk (t)v qp, (t)) < |Hhk | QO + ]:hk (Thk (t), ahk) + th (qh;C (t)7ahk)'

We focus on the left-hand side. First, arguing as in Step 3 of the proof of Theorem
4.3, we obtain

(487) Folt,ao(1)) < liminf Fo 4y, (1)) = £(1).

Second, applying the Fundamental Theorem of Calculus and employing (4.74) and
(4.79), we estimate

t

Faltsan) ~ )< [ T o)l

(4.88) < (Fu(rn(t), @, (ma(1)) + L(M))/ Hh(T)eKh(T)_Kh(Th,(t)) dr

Th(t)

— (M + L(M)) (eKMt)—Khm(t)) _ 1) _

Thanks to the equi-integrability of (xj ), which follows from (4.28), the right-hand side
of the previous equations goes to zero, as k — oo. Hence, combining (4.87)—(4.88), we
obtain

(439) Folt,qo(t)) < limint Fy, (m, (8), a1, (1)) = 1 0)

Similarly for the right-hand side of (4.86), by arguing as in Step 3 of the proof of
Theorem 4.3 and exploiting the continuity of the applied loads with respect to time,
we compute

(490)  Fo(t,@0) + Po(ao(t),do) = lim {Fu, (70 (1), @) + D (an, (6):@,)}-

Thus, in view of (4.89)-(4.90), taking the inferior limit, as k — oo, at both sides of
(4.86), we obtain

Folt.aolt)) < lmink Fy, (7, (1), 4, (1)
< limint {1, | any + Fny (0, (8), @, ) + Dy (@, (1), @, ) }
= Fo(t,qo) + Dolqo(t), do),
which proves (4.10) for ¢ fixed.
Step 4 (Upper energy-dissipation inequality). We prove the following;:

(4.91) Vte€[0,T], Folt,qu(t))+ Varp,(qo;|0,t]) S]-"O(O,qg)—i—/o O Fo(T,qo(T))dr.
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First, fix t € [0,T]. Given h >0, let 7, (t) =t where i € {1,..., N} and recall (4.78).
Summing the inequality (4.66), with j in place of i, for j € {1,...,4 — 1} we obtain

Fu(mn(t), @i (ta(t))) + Varp, (@y,; [0, 7(8)]) < 7 (t) o + Fr(0, )

(4.92) i (t)
—I-/ Oy Fn(T,qp, (7)) dT.
0

By definition
Varp, (qh; [07 t]) = Varp, (qh; [0’ Th (t)])
Thus, (4.88) and (4.92) yield

Fu(t,qn(t)) + Varp, (gy;[0,t]) < Fn(7a(t), g5 (7a(t))) + Varp, (@, [0, 74 (1)])
+ (M + L(M)) (eKh(t)—Kh(Th(t)) _ 1)

(4.93) L
<7h(t)an + Frn(0,q;) +/ Pp(r)dr
0

(M + L(M)) (exha)—m(m(t)) _ 1) _

Now, let (hj) be the subsequence such that (4.44)—(4.48) hold. For the first term on
the left-hand side, we have (4.87). For the second one, by lower semicontinuity, (4.41)
entails

Varp, (qq; [0,t]) = Varp1(o.rs)(2;[0,1]) < lilcminfvarLl(Q;R3)(th; [0,2])
—00
=liminf Varp, (qy,;[0,t]) =4d(t).
k—oc0 'k k

Thus, taking the inferior limit along the subsequence (hy), as k — oo, at both sides
of (4.93), we obtain

Fo(t,qo(t)) + Varp, (qo; [0,t]) < f(t) +6(t)

t
< Fo(0,q3) + / P(r)dr
0

t
<Fal0.})+ | Pulr)dr.
0
This proves (4.91).

Step 5 (Lower energy-dissipation inequality). As in Step 5 of the proof of Theorem
4.3, the lower energy-dissipation inequality is deduced from the reduced stability (4.10)
by applying [45, Proposition 2.1.2.3].

Step 6 (Improved estimates). To check (4.19)—(4.18), we identify the functions f
and V in (4.40)—(4.41) by arguing as in Step 6 of the proof of Theorem 4.3. Eventually,
to show (4.20), we check that P = Py almost everywhere in (0,7') again by arguing as
in Step 6 of the proof of Theorem 4.3. ]

4.4. Alternative dissipation. We conclude the section by mentioning an alter-
native notion of dissipation proposed in [11]. In the same paper, it has been observed
that the dissipation distance in (4.2) allows for the dissipation of energy by means of
composition with rigid motions. Although this possibility is discouraged by energy
minimization, this fact is certainly questionable from the modeling point of view.
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This observation motivates the introduction of an alternative dissipative variable.
Let h >0 and let ¢ = (y,m) € Q}, be an admissible state. Similarly to (3.3), we define

(4.94) Z3(q) == (adjVyy)moy,

where the adjugate matrix simply denotes the transpose of the cofactor matrix. The
quantity in (4.94) constitutes a flux-preserving pull-back of the magnetization m to
the reference space and has the appreciable feature of being frame indifferent [11].

In view of (2.20), up to assuming a > p/(p — 2) in (2.12), we have Z,(q) €
LY(;R?) for every q € Qp with Ej(g) < +00. Therefore, we can define the alternative
dissipation distance Dp,: Qp x Qp — [0,+00) by setting

(4.95) Br(a,d) = / Z4(a) ~ Z1(@)] da

Standing the more restrictive growth condition in (2.12), it can be shown that the
distance Dy, is lower semicontinuous with respect to the natural topology on Qp; see
[9, 11]. However, the existence of energetic solutions to the bulk model is out-of-reach
within this framework. This can be achieved by means of a suitable regularization of
the energy in the spirit of gradient polyconvexity [6]. We refer the reader to [11] for
more details.

Nevertheless, one might aim to prove convergence results analogous to Theorems
4.3 and 4.9 in this alternative setting. In this case, a substantial obstacle is the absence
of a priori bounds on the dissipation distance in (4.95). Such bounds are crucial in
order to be able to establish the compactness of the sequence (g;,) in Theorems 4.3
and 4.9.

A practicable way to overcome this issue is to enforce some uniform bound on
the dissipative variable into the definition of the class of admissible states in a form
of a locking constraint [6]. This is what is substantially done, in a more implicit
way, in [15] and [47] for the problem of dimension reduction and linearization in finite
plasticity, respectively. Alternatively, one can replace the distance in (4.95) with the
function Dy, : Qp x Qp — [0,+00) given by

Dua = [ | 210 _ 2@

1Z2n(@)|  12n(9)]
This distance is not lower semicontinuous with respect to the natural topology on Q.
However, in both cases, convergence results analogous to Theorems 4.3 and 4.9 can
be established by having Dj, in place of D), without introducing any regularization.

dx.
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