
MATLAB Implementation of Hp Finite
Elements on Rectangles Using
Hierarchical Basis Functions

Alexej Moskovka1 and Jan Valdman2,3(B)

1 Department of Mathematics, Faculty of Applied Sciences, University of West
Bohemia, Technická 8, 30100 Plzeň, Czech Republic

2 Department of Computer Science, Faculty of Science, University of South Bohemia,
Branǐsovská 31, 37005 České Budějovice, Czech Republic

3 The Czech Academy of Sciences, Institute of Information Theory and Automation,
Pod vodárenskou věž́ı 4, 18208, Prague 8, Czech Republic

jan.valdman@utia.cas.cz

Abstract. A MATLAB implementation of hierarchical shape functions
on 2D rectangles is explained and available for download. Global shape
functions are ordered for a given polynomial degree according to the
indices of the nodes, edges, or elements to which they belong. For a uni-
form p-refinement, the hierarchical structure enables an effective assem-
bly of mass and stiffness matrices. A solution to a boundary value prob-
lem is approximated for various levels of uniform h and p refinements.

Keywords: MATLAB vectorization · finite elements · mass and
stiffness matrices · uniform hp-refinement · boundary value problem

1 Introduction

hp-FEM is a numerical method for solving partial differential equations based
on piecewise polynomial approximations that employ elements of variable size
(h) and degree of the polynomial (p). The origins of hp-FEM date back to the
work of Ivo Babuška and his coauthors in the early 1980 s s (e.g. [11,12]) who
discovered that the finite element method converges exponentially fast when the
mesh is refined using a suitable combination of h-refinements (dividing elements
into smaller ones) and p-refinements (increasing their polynomial degree). Many
books (e.g. [3,4,6,9]) have been written explaining the methodology of hp-FEM
accompanied by software codes [13,14] in C++. Implementing hierarchical shape
functions, particularly in the case of hp adaptivity, is not straightforward, and

A. Moskovka was supported by the MSMT CR project 8J21AT001 Model Reduction
and Optimal Control in Thermomechanics. J. Valdman announces the support of the
Czech Science Foundation (GACR) through the GF21-06569K grant Scales and shapes
in continuum thermomechanics.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 287–299, 2023.
https://doi.org/10.1007/978-3-031-30445-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_24&domain=pdf
http://orcid.org/0000-0003-0091-151X
http://orcid.org/0000-0002-6081-5362
https://doi.org/10.1007/978-3-031-30445-3_24

288 A. Moskovka and J. Valdman

special data structures are needed [5,10]. A recent MATLAB contribution [8]
provides an object-oriented approach to implement hp-FEM on triangles with
adaptive h-refinement.

Our focus is on a simple hp-FEM implementation on rectangles directly based
on [4]. We provide eight examples that demonstrate the basics of hp-FEM assem-
blies, including:

• constructions of basis functions and their isoparametric transformations to
general quadrilaterals (Sect. 2),

• the ordering of global shape functions using indexing matrices (Sect. 3),
• assemblies of the mass and stiffness matrices (Sect. 4),
• solution of a particular diffusion-reaction boundary value problem using uni-

form h and p refinements (Sect. 5).

A complementary software for this paper is available at

https://www.mathworks.com/matlabcentral/fileexchange/111420

for download and testing. The codes for the evaluation of the shape functions
were provided by Dr. Sanjib Kumar Acharya (Mumbai). The assemblies of FEM
matrices are partially based on vectorization techniques of [1,2]. The names of
most of the mesh attributes and the domain triangulation algorithms are taken
from [7].

2 Hierarchic Shape Functions

We consider the basis functions for the dimensions of space d ∈ {1, 2} (see [4]).
For a reference element Tref = [−1, 1]d and p ∈ N we denote by

Sp(Tref) (1)

Fig. 1. The hierarchic shape basis functions Nm(ξ), m = 1, . . . , 6, where p is the
corresponding polynomial degree.

https://www.mathworks.com/matlabcentral/fileexchange/111420

MATLAB Implementation of Hp Finite Elements 289

the space of polynomials of degree p defined on Tref . The basis functions that
span the space are called shape functions. We define them using Legendre poly-
nomials for x ∈ [−1, 1]:

P0(x) = 1 , P1(x) = x ,

Pn+1(x) =
(2n + 1)xPn(x) − nPn−1(x)

n + 1
, n ≥ 1 .

(2)

Hierarchic shape functions on Tref = [−1, 1] are functions Nm(ξ) : Tref →
R, m ∈ N defined using (2) as:

N1(ξ) =
1 − ξ

2
, N2(ξ) =

1 + ξ

2
,

Nm(ξ) =
1

√
2(2m − 3)

(
Pm−1(ξ) − Pm−3(ξ)

)
, m ≥ 3 .

(3)

All Nm(ξ), m ≥ 3 vanishes at the endpoints of Tref .

Example 1. The first hierarchical shape functions are shown in Fig. 1 and the
pictures can be reproduced by the script

example1_draw_hp_basis_1D

2.1 Hierarchic Shape Functions on Tref = [−1, 1]2

For p ∈ N we define the trunk space Sp(Tref) spanned by polynomials ξiηj ,
where i, j ∈ N0 satisfies i + j ≤ p, supplemented by the polynomial ξη for p = 1
and the polynomials ξpη, ξηp for p ≥ 2. Its dimension is given by

np,ref = dim(Sp(Tref)) =

{
4p , p ≤ 3
4p + (p − 2)(p − 3)/2 , p ≥ 4 .

(4)

There are three types of 2D shape functions: nodal (Q1), edge, and bubble (some-
times called internal). The nodal shape functions that span the space S1(Tref)
are defined as follows:

N1(ξ, η) =
1
4
(1 − ξ)(1 − η) , N2(ξ, η) =

1
4
(1 + ξ)(1 − η) ,

N3(ξ, η) =
1
4
(1 + ξ)(1 + η) , N4(ξ, η) =

1
4
(1 − ξ)(1 + η) .

(5)

The function of the i-th nodal shape is equal to one in the i-th node of Tref and
vanishes in other nodes. The edge shape functions are constructed by multiply-
ing one-dimensional shape functions Nm(ξ), m ≥ 3 from (3) by linear blending
functions. We define φp(x) = Np+1(x), p ≥ 2, and the edge shape functions by

N (1)
p (ξ, η) =

1
2
(1 − η)φp(ξ) , N (2)

p (ξ, η) =
1
2
(1 + ξ)φp(η) ,

N (3)
p (ξ, η) =

1
2
(1 + η)φp(−ξ) , N (4)

p (ξ, η) =
1
2
(1 − ξ)φp(−η) .

(6)

290 A. Moskovka and J. Valdman

Fig. 2. Examples of nodal (the top row), edge (the middle row) and bubble (the bottom
row) shape functions. Here, m denotes the index of the shape function, p its polynomial
degree and s is the local index.

For j ∈ {1, 2, 3, 4}, the restriction of N
(j)
p on the j-th edge is equal to the

corresponding one-dimensional edge shape function of the p-th degree, and it
vanishes along the other edges. The bubble functions are defined as

Nβ
p (ξ, η) = φp−(β+1)(ξ)φβ+1(η) , 1 ≤ β ≤ p − 3 , p ≥ 4 (7)

and any of them attains zero values on all edges. Table 1 shows the number of
shape functions in Tref for 1 ≤ p ≤ 7.

Local Indexing. The shape functions of the p th degree in Tref are ordered by
a unique index m ∈ N given by

m =

{
4(p − 1) + s , for p ≤ 4 ,

4(p − 1) + (p − 3)(p − 4)/2 + s , for p ≥ 5 ,
(8)

where for p = 1: s is the index of a node i ∈ {1, 2, 3, 4},
for p ≥ 2: s is the index of an edge j ∈ {1, 2, 3, 4},

MATLAB Implementation of Hp Finite Elements 291

Table 1. The numbers of shape functions.

polynomial degree p # of nodal functions # of edge functions # of bubble functions # of all functions

1 4 0 0 4

2 4 4 0 8

3 4 8 0 12

4 4 12 1 17

5 4 16 3 23

6 4 20 6 30

7 4 24 10 38

for p ≥ 4: s = 4+β, where β is the local index of a bubble function (7).

Example 2. Several shape functions are depicted in Fig. 2 and can be reproduced
by the script

example2_draw_hp_basis_2D

The degree of the polynomial p and the local index s are evaluated by the
function [s,p] = shapeindx(m).

Fig. 3. The isoparametric transformation of Tref indicated by the blue frame (bottom-
left) to eight quadrilaterals indicated by red frames (right) and the transformation of
the function cos (3π

4
ξ) cos (3π

4
η) approximated for p = 4. (Color figure online)

Mapping From Tref to a quadrilateral T. Transformation of a reference
element Tref to a quadrilateral T is performed by the isoparametric mapping
Q : Tref → T defined as (x, y)(ξ, η) = Q(ξ, η), where

Q(ξ, η) =
(4∑

i=1

Xi Ni(ξ, η) ,

4∑

i=1

Yi Ni(ξ, η)
)

, (9)

and (Xi, Yi), i ∈ {1, 2, 3, 4} are the coordinates of the i-th node of T . For a given
p ∈ N, we denote by

Sp(T) (10)

the space of functions spanned by Nm

(
Q−1(x, y)

)
, where Nm ∈ Sp(Tref).

292 A. Moskovka and J. Valdman

Example 3. The transformation of Tref into eight different quadrilaterals form-
ing a flattened annulus is shown in Fig. 3 and can be reproduced using the script

example3_isoparametric_transformation

It also visualizes the approximation of the function f(ξ, η) = cos (3π
4 ξ) cos (3π

4 η),
(ξ, η) ∈ Tref for p = 4 and its transformation into quadrilaterals.

3 Global Shape Functions

A domain Ω ⊂ R
2 is approximated by a triangulation T into closed elements

(quadrilaterals). We denote by N , E and T the sets of nodes, edges, and elements,
respectively, and by |N |, |E| and |T | their sizes. For a given p ∈ N we define it
by

Sp(T) (11)

the space of all global shape functions on T and by np its dimension given by

np =

{
|N | + (p − 1) |E| , p ≤ 3 ,

|N | + (p − 1) |E| + 1
2 (p − 2)(p − 3) |T | , p ≥ 4 .

(12)

We denote by N
(g)
m , 1 ≤ m ≤ np the m-th global shape function defined by its

restrictions on elements Tk ∈ T , 1 ≤ k ≤ |T | in the following way:

N
(g)
m is a nodal shape function corresponding to the i-th node: If Tk is adjacent

to the i-th node, then N
(g)
m

∣∣
Tk

= Ñl,k, where Ñl,k is the l-th local nodal shape

function on Tk which is equal to one in the i-th node. Otherwise, N
(g)
m = 0.

Fig. 4. Function u ∈ Sp(T) ∈ of (13) and the underlying rectangular mesh with indices
of elements.

MATLAB Implementation of Hp Finite Elements 293

N
(g)
m is an edge shape function corresponding to the j-th edge: If Tk is adjacent

to the j-th edge, then N
(g)
m

∣∣
Tk

= Ñl,k, where Ñl,k is the l-th local edge shape
function on Tk whose restriction on the j-th edge is the corresponding edge
shape function in 1D. Otherwise, N

(g)
m = 0.

N
(g)
m is a bubble shape function corresponding to the k-th element:

N
(g)
m

∣∣
Tk

= Ñl,k, where Ñl,k is the corresponding l-th local bubble shape func-

tion on the k-th element. Otherwise, N
(g)
m = 0.

Example 4. We assume a triangulation T of Ω = (−3, 3) × (0, 2) with |N | = 24,
|E| = 37, |T | = 14, np = 149 and the function u ∈ S4(T) defined as

u(x, y) = N
(g)
10 (x, y) − 2N

(g)
34 (x, y) − 2N

(g)
142(x, y) , (x, y) ∈ Ω (13)

shown in Fig. 4. The nodal function N
(g)
10 corresponds to the node adjacent to

T1, T2, T8, T9, the edge function N
(g)
34 to the edge adjacent to T4, T5, and the

bubble function N
(g)
142 is defined in T7. Figure 4 is generated by the script

example4_draw_hp_basis_2D_global

3.1 Global Indexing

The relation between the topology of T and the global shape function indices is
represented by three essential matrices.

Table 2. The matrix B(T , p) for T with |N | = 4, |E| = 4, |T | = 1 and p = 5. Zero
values are replaced by symbol ′−′.

p the global node index the global edge index the global element index the local bubble index

1 1 – – –

1 2 – – –

1 3 – – –

1 4 – – –

2 – 1 – –

2 – 2 – –

2 – 3 – –

2 – 4 – –

3 – 1 – –

3 – 2 – –

3 – 3 – –

3 – 4 – –

4 – 1 – –

4 – 2 – –

4 – 3 – –

4 – 4 – –

4 – – 1 1

5 – 1 – –

5 – 2 – –

5 – 3 – –

5 – 4 – –

5 – – 1 1

5 – – 1 2

294 A. Moskovka and J. Valdman

A Matrix B(T , p) is of size np × 5 and stores the key attributes of the global
shape functions N

(g)
m ∈ Sp(T), 1 ≤ m ≤ np which are uniquely determined by:

the degree of N
(g)
m (the first column of B(T , p)), the type of N

(g)
m (nodal, edge or

bubble) specified by the global index of the respective node (the 2nd column),
edge (the 3rd column), or element (the 4th column). Additionally, the type of
bubble requires a local index of a bubble (the 5th column). The key advantage
of this approach is that for the same T and 1 ≤ p1 < p2 the first np1 rows of
both matrices B(T , p1) and B(T , p2) are the same.

A Matrix C(T , p) of size np,ref ×|T | collects for individual elements the indices
of the corresponding global functions. In particular, Cl,k(T , p) = m means that
N

(g)
m

∣∣
Tk

corresponds to the l-th local shape function on the k-th element.

A Matrix S(T , p) of size np,ref × |T | for the l-th row and the k-th column
returns the sign of the l-th local function on the k-th element. For edges adjacent
to two elements, the corresponding local edge functions of odd degrees have to
be assigned opposite signs to ensure the continuity of the corresponding global
edge functions.

Example 5. We assume a triangulation T with |N | = 4, |E| = 4, and |T | = 1.
Tab. 2 depicts for p = 5 the corresponding matrix B(T , p) with 23 (the value of
np) rows and 5 columns that can be generated by the script

example5_B_matrix

Example 6. We assume a triangulation T with |N | = 6, |E| = 7 and |T | = 2.
Tab. 3 depicts for p = 3 the corresponding matrices C(T , p) and S(T , p) with 12
(the value of np,ref) rows and 2 (the value of T) columns that can be generated
by script

example6_C_S_matrices

Fig. 5 shows the global edge function N
(g)
17 of the 3rd degree. The left part exploits

the right orientation with opposite signs providing continuity, and the right part
exploits the wrong orientation leading to discontinuity.

Table 3. Matrices C(T , p) (left) and S(T , p) (right) of Example 6.

l T1 T2

1 1 2

2 2 3

3 5 6

4 4 5

5 7 9

6 10 11

7 12 13

8 8 10

9 14 16

10 17 18

11 19 20

12 15 17

l T1 T2

1 1 1

2 1 1

3 1 1

4 1 1

5 1 1

6 1 1

7 1 1

8 1 1

9 1 1

10 −1 1

11 1 1

12 1 1

MATLAB Implementation of Hp Finite Elements 295

4 Mass and Stiffness Matrices

4.1 The Reference Mass and Stiffness Matrices

are for a given p ∈ N matrices of size np,ref × np,ref defined by

Mref
i,j =

∫

Tref

NiNjdx , Kref
i,j =

∫

Tref

∇Ni · ∇Njdx . (14)

Functions

mass_matrixQp_2D_reference(p)

stiffness_matrixQp_2D_reference(p)

Fig. 5. The right (left) and wrong (right) orientation of N
(g)
17 of Example 6.

evaluate the corresponding reference mass and stiffness matrices using the Gaus-
sian quadrature rule. For a given p, the function [X,W] = intrec_hp(p) returns
the Gauss points X ∈ Tref together with the corresponding weights stored in a
vector W .

4.2 The Global Mass and Stiffness Matrices

are for a specific p and T matrices of size np × np defined by

Mi,j =
∫

T
N

(g)
i N

(g)
j dx , Ki,j =

∫

T
∇N

(g)
i · ∇N

(g)
j dx (15)

and assembled by adding the contributions of local mass and stiffness matrices
M(Tk) and K(Tk) of size np,ref × np,ref to the corresponding entries. In partic-
ular, Mi,j(Tk) and Ki,j(Tk) contribute to the ck

i -th row and the ck
j -th column

of M and K, respectively, where ck is the k-th column vector of C(T , p).
For any Tk ∈ T , 1 ≤ k ≤ |T | the local mass matrix M(Tk) is given by

M(Tk) =
|Tk|

|Tref |M
ref =

|Tk|
4

Mref , (16)

296 A. Moskovka and J. Valdman

however, this formula cannot be applied to the assembly of the local stiffness
matrix K(Tk). Instead, we apply the chain rule to evaluate

Ki,j(Tk) =
∫

Tk

∇Ñi(x, y) · ∇Ñj(x, y)dx =

=
∫

Tk

∇Ni

(
Q−1(x, y)

)
· ∇Nj

(
Q−1(x, y)

)
dx ,

(17)

where Ñi and Ni, 1 ≤ i ≤ np,ref are the i-th local function on Tk and Tref ,
respectively. Using the chain rule, one can write

∇Ñi

(
Q−1(x, y)

)
=

(∂Ñi

∂ξ

∂ξ

∂x
+

∂Ñi

∂η

∂η

∂x
,

∂Ñi

∂ξ

∂ξ

∂y
+

∂Ñi

∂η

∂η

∂y

)
, (18)

where (∂ξ

∂x
,
∂η

∂x

)
=

∂Q−1

∂x
(x, y) ,

(∂ξ

∂y
,
∂η

∂y

)
=

∂Q−1

∂y
(x, y).

Additionally, we apply derivative of the formula of inverse function to evaluate
(

∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

)

= ∇Q−1(x, y) =
(
∇Q(ξ, η)

)−1 =

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)−1

. (19)

Table 4. Mesh properties (left) of the uniform mesh refinements of Example 7 and
numbers of global shape functions for different polynomial orders (right).

level |N | |E| |T |
2 2.5 · 101 4.0 · 101 1.6 · 101

3 8.1 · 101 1.4 · 102 6.4 · 101

4 2.9 · 102 5.4 · 102 2.6 · 102

5 1.1 · 103 2.1 · 103 1.0 · 103

6 4.2 · 103 8.3 · 103 4.1 · 103

7 1.7 · 104 3.3 · 104 1.6 · 104

8 6.6 · 104 1.3 · 105 6.6 · 104

9 2.6 · 105 5.3 · 105 2.6 · 105

level n1 n2 n3 n4 n5

2 2.5 · 101 6.5 · 101 1.1 · 102 1.6 · 102 2.3 · 102

3 8.1 · 101 2.3 · 102 3.7 · 102 5.8 · 102 8.5 · 102

4 2.9 · 102 8.3 · 102 1.4 · 103 2.2 · 103 3.2 · 103

5 1.1 · 103 3.2 · 103 5.3 · 103 8.4 · 103 1.3 · 104

6 4.2 · 103 1.3 · 104 2.1 · 104 3.3 · 104 5.0 · 104

7 1.7 · 104 5.0 · 104 8.3 · 104 1.3 · 105 2.0 · 105

8 6.6 · 104 2.0 · 105 3.3 · 105 5.3 · 105 7.9 · 105

9 2.6 · 105 7.9 · 105 1.3 · 106 2.1 · 106 3.2 · 106

Example 7. For Ω = Tref = [−1, 1]2 the script

example7_M_K_matrices_times

runs a nested loop on different p and levels of uniform refinements of Ω. The mass
and stiffness matrices are assembled by the functions mass_matrixQp_2D(mesh)
and stiffness_matrixQp_2D(mesh), respectively. Tables 4 and 5 contain the
properties of the mesh and the corresponding assembly times. Assembly times
were obtained on a MacBook Air (M1 processor, 2020) with 16 GB memory
running MATLAB R2022a.

MATLAB Implementation of Hp Finite Elements 297

Table 5. Assembly times of mass and stiffness matrices in Example 7 measured in
seconds.

p = 1 p = 2 p = 3 p = 4 p = 5

level M [s] K [s] M [s] K [s] M [s] K [s] M [s] K [s] M [s] K [s]

2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

3 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01

4 0.00 0.01 0.00 0.00 0.01 0.02 0.01 0.02 0.01 0.03

5 0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.05 0.02 0.09

6 0.00 0.02 0.01 0.04 0.02 0.08 0.03 0.16 0.07 0.33

7 0.01 0.08 0.03 0.15 0.07 0.32 0.25 0.71 0.45 1.46

8 0.04 0.31 0.15 0.66 0.48 1.44 0.98 3.14 2.00 6.20

9 0.22 1.29 0.91 2.86 1.94 6.01 5.26 12.43 11.17 27.31

5 Solving Partial Differential Equation in 2D

We solve a diffusion-reaction boundary value problem

−Δu + ν u = f in Ω ,
∂u

∂n
= 0 on ∂Ω (20)

by applying the hp-FEM method to the weak formulation of (20) given by
∫

T
∇u · ∇N (g)

m dx + ν

∫

T
uN (g)

m dx =
∫

T
f N (g)

m dx , ∀N (g)
m ∈ Sp(T) . (21)

It leads to an algebraic system of linear equations in the form of

(K + ν M) ũn = b , (22)

where M and K are global mass and stiffness matrices, un is the numerical
solution of (21) represented by the vector ũn ∈ R

np of coefficients in the cor-
responding hp basis and the vector b ∈ R

np is given by bm =
∫

T fN
(g)
m dx. We

assume the domain Ω = Tref = [−1, 1]2 and the parameter ν = 0.1. It is easy to
show that

u(x, y) = (1 − x2)2 (1 − y2)2

represents the solution of (20) corresponding to the function

f(x, y) = ν u(x, y) − 4
(

− 2 + 5y2 − y4 + x4(−1 + 3y2) + x2(5 − 12y2 + 3y4)
)

for (x, y) ∈ Ω. To study the convergence of hp approximations, we take several
levels of uniform refinements of Ω defined by |T | squares of same size, where
|T | = 4level, level = 1, . . . , 7 and solve (22) for different polynomial orders p,
1 ≤ p ≤ pmax = 5. The exact solution u is approximated in Sp̃(T), p̃ = pmax +2
by the vector ũ. The corresponding error e in the energy norm is given by

e2 =
∫

T

(
‖∇u − ∇un‖2 + (u − un)2

)
dx ≈ (ũ − ũn)T (K + M)(ũ − ũn) . (23)

298 A. Moskovka and J. Valdman

Fig. 6. Examples of solutions of (21) and convergence in the energy norm.

The script example8 diffusion reaction BVP utilizes a nested for loop on
p (inside) and mesh refinement levels (outside). Two particular numerical solu-
tions are shown in Fig. 6 (left). The corresponding errors (23) are shown in Fig. 6
(right), where the crosses on different lines correspond to the mesh refinement
levels and both x and y labels are log-scaled. The calculation confirms a theoret-
ical expectation e ≈ hp, where p is a chosen polynomial order and h is a chosen
square size satisfying |T | = 4h−2.

References

1. Anjam, I., Valdman, J.: Fast MATLAB assembly of FEM matrices in 2D and 3D:
Edge elements. Appl. Math. Comput. 267, 252–263 (2015)

2. Rahman, T., Valdman, J.: Fast MATLAB assembly of FEM matrices in 2D and
3D: Nodal elements. Appl. Math. Comput. 219, 7151–7158 (2013)

3. Szabó, B., Babuška, I.: Finite Element Analysis. Wiley-Interscience, New York
(1991)

4. Szabó, B., Babuška, I.: Introduction to Finite Element Analysis, John Wiley &
Sons (2011)

5. Bangerth, W., Kayser-Herold, O.: Data structures and requirements for hp finite
element software. ACM Trans. Math. Softw. (TOMS) 36(1), 1–31 (2009)

6. Šoĺın, P., Segeth, K., Doležel, I.: Higher-Order Finite Element Methods, Chapman
& Hall/CRC (2004)

7. Moskovka, A., Valdman, J.: Fast MATLAB evaluation of nonlinear energies using
FEM in 2D and 3D: nodal elements. Appl. Math. Comput. 424, 127048 (2022)

8. Innerberger, M., Praetorius, D.: MooAFEM: an object oriented Matlab code for
higher-order adaptive FEM for (nonlinear) elliptic PDEs. Appl. Math. Comput.
442, 127731 (2023)

MATLAB Implementation of Hp Finite Elements 299

9. Demkowicz, L.: Computing with hp-ADAPTIVE FINITE ELEMENTS, Volume
1, Chapman & Hall/CRC (2007)

10. Demkowicz, L., Oden, J.T., Rachowicz, W., Hardy, O.: Toward a Universal h-p
Adaptive Finite Element Strategy. Part 1. Constrained Approximation and Data
Structure. Comput. Methods Appl. Mech. Eng. 77(1–2), 79–112 (1989)

11. Babuška, I., Szabó, B., Katz, I.: The p-version of the finite element method. SIAM
J. Num. Anal. 18(3), 515–545 (1981)

12. Babuška, I., Guo, B.Q.: The h-p version of the finite element method. Comput.
Mech. 1, 21–41 (1986)

13. Schöberl, J.: C++11 Implementation of Finite Elements in NGSolve. Vienna Uni-
versity of Technology, Institute for Analysis and Scientific Computing (2014)

14. Šoĺın, P., Korous, L., Kus, P.: Hermes2D, a C++ library for rapid development
of adaptive hp-FEM and hp-DG solvers. J. Comput. Appl. Math. 270, 152–165
(2014)

