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Abstract. Two minimization problems are added to the Moskovka and
Valdman MATLAB package (2022): a Ginzburg-Landau (scalar) problem
and a topology optimization (both scalar and vector) problem in linear
elasticity. Both problems are described as nonlinear energy minimiza-
tions that contain the first gradient of the unknown field. Their energy
functionals are discretized by finite elements, and the corresponding min-
ima are searched using the trust-region method with a known Hessian
sparsity or the Quasi-Newton method.
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1 Introduction

For solving problems given by (a system of) partial differential equations, the
variational approach is based on finding a minimum of the corresponding energy
functional

J(u) = min
v∈V

J(v) , (1)

where V is a space of test functions defined in a domain Ω and includes Dirichlet
boundary conditions on ∂Ω. Problems of this type appear in various applica-
tions of physics and are mathematically studied in the calculus of variations.
The energy functionals are then described by integrals over domains in two- or
three-dimensional space. The finite element method [9] can be applied as an
approximation of (1) and results in a minimization problem

J(uh) = min
v∈Vh

J(v) (2)

formulated in the finite-dimensional subspace Vh of V.
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A recent MATLAB implementation of [5,6] using the simplest linear nodal
basis functions allows us to solve (2) efficiently. The energy formulations of the
studied problems, including p-Laplace and hyperelasticity, contain the first gra-
dient parts of searched functions discretized by the finite element method (FEM)
and formulated as the sum of energy contributions from local elements. The key
ingredient is the vectorization of exact or approximate energy gradients in the
nodal patches (sets of elements adjacent to particular nodes). This leads to a
time-efficient implementation with a higher memory cost. New attempts to
apply available techniques to problems of elastoplastic deformations of layered
structures and shape memory alloys are reported in [11,12].

In this contribution, we comment on the implementation of the Ginzburg-
Landau model in superconductivity [1,3,4] and the topology optimization prob-
lem of the elastic medium [2,8]. The resulting MATLAB codes are provided
for download and testing at the following link:

https://www.mathworks.com/matlabcentral/fileexchange/97889

Assembly times were obtained on Lenovo ThinkPad T14 Gen 1 (Intel Core i7
processor, 2021) with 16 GB memory running MATLAB R2018a.

2 Finite Element Method and Minimization

The subspace Vh is spanned by a set of nb basis functions ϕi(x) ∈ Vh, i =
1, . . . , nb, and a trial function v ∈ Vh is expressed by a linear combination

v(x) =
nb∑

i=1

vi ϕi(x), x ∈ Ω, (3)

where v̄ = (v1, . . . , vnb
) ∈ R

nb is a vector of coefficients. We consider only the
case Vh = P 1(T ), where P 1(T ) is the space of piecewise linear nodal basis func-
tions defined on a triangulation T of the domain Ω with a Lipschitz boundary.
Note that the number of nodes corresponds to the number of all the basis func-
tions of Vh, therefore, nb = |N |. Consequently, the minimizer uh ∈ Vh of (2)
is represented by a vector of coefficients ū = (u1, . . . , u|N |) ∈ R

|N | and some
coefficients of ū, v̄ related to the Dirichlet boundary conditions are prescribed.

An appropriate minimization method is needed to solve (2). We use the MAT-
LAB Optimization Toolbox [10] which provides minimization techniques based
on two methods. The first, the Quasi-Newton method, computes a descent direc-
tion and the corresponding optimal step length to compute a new iteration. This
method does not need to know the gradient vector of J(v) from (2) explicitly but
instead computes the numerical gradient and the corresponding Hessian matrix
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update formula. The sec-
ond, the trust-region method, is based on approximating the objective function
using the quadratic model function with the appropriate trust-region radius.
Contrary to the Quasi-Newton method, the trust region also requires knowledge

https://www.mathworks.com/matlabcentral/fileexchange/97889
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of the discrete gradient of J(v). The gradient can be explicitly derived or evalu-
ated numerically using the central difference scheme. Additionally, the Hessian
sparsity can be specified and follows directly from the FEM discretization (see
Fig. 1).

Fig. 1. Discretization of a rectangular domain (left) including Dirichlet boundary nodes
(red) and the corresponding Hessian sparsity (right). (Color figure online)

If the Hessian matrix is sparse (i.e. for the Ginzburg-Landau problem), the
trust-region method is much more time-efficient than the Quasi-Newton method.
In contrast, if the Hessian matrix has many non-zero elements (i.e. for the topol-
ogy optimization), the trust-region method can be significantly slower.

2.1 Solution Algorithm

consists for d = 2 of several typical steps:

– triangulation of the domain Ω into triangles and assembly of structures
’mesh’ and ’patches’ [6].

– defining the corresponding discrete energy functional J(v) from (2) as a sum
of the energy contributions of every element.

– if the trust region method is chosen, the ’patches’ structure is used to define
a function that represents the gradient of the discrete energy functional. This
gradient can be evaluated either exactly (in the case that the partial deriva-
tives of J(v) from (2) can be derived explicitly) or numerically using the
central difference scheme. The Hessian sparsity follows automatically from
the FEM discretization.

– the choice of a stopping criterion of the minimization process.
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3 Ginzburg-Landau Problem

Superconductors are certain metals and alloys that, when cooled below a critical
(typically very low) temperature, lose their resistivity, allowing permanent cur-
rents to circulate without loss of energy. Superconductivity was discovered by
Ohnes in 1911. As a phenomenological description of this phenomenon, Ginzburg
and Landau introduced in 1950 the Ginzburg-Landau model, which has been
proven to effectively predict the behavior of superconductors and that was sub-
sequently justified as a limit of the Bardeen-Cooper-Schrieffer (BCS) quantum
theory. It is a model of great importance in physics, and Nobel prizes have been
awarded for it to Abrikosov, Ginzburg, and Landau in 2003. For more details on
the physical and mathematical description of the models studied, see [3,4].

Fig. 2. Two numerical solutions of G-L problem on a rectangular domain Ω for ε =
10−2 and zero Dirichlet boundary conditions on the boundary ∂Ω. We can identify
flat regions, where the solutions satisfy u = 1 or u = −1. The computational mesh
consists of 512 elements and 289 nodes including 64 Dirichlet boundary nodes. The
mesh is shown independently in Fig. 1.

Leaving out the dependence on the magnetic field, we consider the simpler
Ginzburg-Landau minimization problem [1] for a scalar test function v ∈ V , and
the minimizer u ∈ V means the order parameter that indicates the local state
of the material (normal or superconducting). The energy functional reads

J(v) =
∫

Ω

(ε

2
‖∇v‖2 +

1
4
(v2 − 1)2

)
dx, (4)

where Ω ⊂ R
d is a given domain, ε a given small positive parameter and

∇v =
( ∂v

∂x1
, . . . ,

∂v

∂xd

)
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denotes the vector gradient in the dimension d and ‖ · ‖ its euclidean norm. The
space V above contains testing functions v : Ω → R having the first (generalized)
derivatives and satisfying the Dirichlet boundary condition

v = 0 on ∂Ω . (5)

It is possible to show that the structure of (4) allows for more minimizers that
satisfy the corresponding Euler-Lagrange equation formulated as the boundary
value problem for the nonlinear partial differential equation

εΔu = u3 − u in Ω ,

u = 0 on ∂Ω
(6)

or its weak form
∫

Ω

ε

2
∇u · ∇v dx −

∫

Ω

(u − u3)v dx = 0 for all v ∈ V. (7)

Figure 2 shows two different solutions generated by two different initial
approximations, and Table 1 the performance of the trust-region method with
the specified Hessian sparsity pattern for different levels of uniform refinements.
The stopping criteria related to the first-order optimality, tolerance on the argu-
ment, and tolerance on the function equal to 10−6 are considered.

Table 1. Performance of G-L minimizations for ε = 10−2.

exact gradient numerical gradient

level |T | dofs time [s] iters J(u) time [s] iters J(u)

2 128 49 0.39 8 0.3867 0.08 8 0.3867

3 512 225 0.06 6 0.3547 0.05 6 0.3547

4 2048 961 0.13 7 0.3480 0.12 7 0.3480

5 8192 3969 0.28 6 0.3462 0.34 6 0.3462

6 32768 16129 1.11 7 0.3458 1.26 7 0.3458

7 131072 65025 6.63 8 0.3457 7.17 8 0.3457

8 524288 261121 56.97 8 0.3456 64.98 10 0.3456

Note that the original nonvectorized implementation [1] of the Newton-
Ralphson solver based on the weak form (7) requires, for example:

level 6 - 4.33s and 6 iterations,
level 7 - 54.46s and 6 iterations,
level 8 - 936.47s and 6 iterations.



336 A. Moskovka et al.

Our implementation only needs a slightly higher number of iterations. The under-
lying MATLAB code is heavily vectorized and therefore faster. The part most
computationally consuming is the function ’energy’ that evaluates the corre-
sponding energy J(v) for a given vector v ∈ R

|N | together with the numerical
gradient ∇J(v). The MATLAB profiler shown in Fig. 3 outputs the number of
calls and the total evaluation time of every code line related to the function
evaluating (4) and its gradient.

Fig. 3. MATLAB profiler for level 8 refinement.

The energy evaluation consists of the following steps:

– (line 79) assembly of the matrix ’v elems’ of nodal values of v on the ele-
ments.

– (line 80) evaluation of the cell ’F elems’ of gradients of v on elements stored.
– (line 81) evaluation of the vector ’densities elems’ of energy densities in

the elements. This is done by the function ’densities’ processing both the
gradient and the reaction terms of (4). Gaussian quadrature is applied for
the evaluation of the reaction term.

– (line 82) the total energy ’e’ is given by the sum of the energy contributions
of every element multiplied by their areas.

The energy gradient evaluation procedure is similar, but includes the for loop
over two components of the input vector ’eps’, which are −ε and +ε. Therefore,
the numbers of calls of lines 87–92 are twice as high.

– (line 85) assembly of the matrix ’v patches’ of the nodal values of v on
patches.
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– (line 87) perturbation of the nodal values by the corresponding component
of ’eps’ resulting in a vector ’v patches eps’.

– (line 88) evaluation of the cell ’F patches’ of gradients of ’v patches eps’
on patches.

– (lines 89–90) evaluation of the vector ’e patches’ of energy densities on
patches.

– (line 91) assembly of vector ’cumsum all e’ containing the cumulative sums
of vector ’e patches’.

– (line 92) evaluating a vector ’e’ of differences of cumulative sums using the
’indx’ vector (described in detail in [6]).

This implementation facilitates an easy extension to higher-order difference
schemes.

4 Topology Optimization in 2D

Structural topology optimization (TO) is a numerical method that aims, through
a density function, to optimally distribute a limited amount of material within
a volume, representing the initial geometry of a body that undergoes specific
loads and displacement boundary conditions. Among the approaches to solving
TO problems ([2]), we focus on the so-called phase field approach. We consider
a domain Ω ∈ R

d where the material is distributed using a scalar phase field
variable φ, representing a density fraction of the material, hence φ ∈ [0, 1] with

φ ≡ 0 corresponding to the void (no material),
φ ≡ 1 to the bulk material.

Adopting a linear elastic model, the state equations are of the form

div(σ) = 0 in Ω ,

u = 0 on ΓD ,

σ · n = g on ΓN .

(8)

Here, we have the stress tensor σ = σ(φ), the displacement vector u and with
zero value (in sense of traces) at the Dirichlet boundary ΓD, the external load g
vector at the Neumann boundary ΓN with the normal unit vector n.

The stress tensor reads

σ(φ) = C(φ) : ε(u)

with the fourth-order linear material tensor C = C(φ) and the symmetric strain
ε(u) is defined as

ε(u) = (∇u + ∇uT )/2.

The symbol ’:’ denotes the contraction of two tensors in the form that yields
σij = Cijklεkl, where the Einstein summation is applied. We consider the void
as a very soft material, adopting the following equation for C:

C(φ) = Cbulkφp + Cvoid(1 − φ)p.
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In practical calculations, we set p = 3, and Cvoid = 10−2
Cbulk and the matrix

Cbulk is specified by two material parameters (the first Lamé parameter λ and
the shear modulus μ). The weak form of the linear elastic problem (8) can be
written as ∫

Ω

σ(φ) : ε(v) dx =
∫

ΓN

g · v dx (9)

for any test displacement field v and σ(φ) = C(φ) : ε(v). The goal is to minimize
the compliance of a given structure by optimally distributing a limited amount
of material. For this purpose, we introduce an objective functional J(φ, u(φ))
defined as:

J
(
φ, u(φ)

)
=

∫

ΓN

g · u(φ) dx + κ

∫

Ω

[γ

2
‖∇φ‖2 +

1
γ

ψ0(φ)
]
dx , (10)

where for a given φ the corresponding displacement u(φ) is given as the solution
of (9). The first integral represents a measure of the compliance of the global
system, the term γ

2 ‖φ‖2 penalizes nonconstant values of φ, while 1
γ ψ0(φ), where

ψ0(φ) = (φ − φ2)2 ,

represents the double-well potential function penalizing values of φ different from
0 and 1. The parameter γ is usually set between 10−4 and 10−2 (for a finer mesh,
the lower value provides better results). Minimization of the functional (10) is
imposed under the assumption of distributing a limited constant quantity of
material within the domain; therefore, we introduce the constraint

∫

Ω

φ dx = m|Ω|

with 0 < m ≤ 1 representing a volume fraction of the target domain.
Figures 4, 5 and 6 illustrate topology optimization solutions for different

domains and the corresponding Dirichlet and Neumann boundary conditions.
For the sake of clarity, the computational meshes on the left side are depicted
for lower levels of refinement. Red circles indicate the nodes corresponding to
ΓD and green circles indicate the nodes that belong to ΓN .

Three models are given by the following parameters.

The first model:

– a rectangular domain (0, 0.02) × (0, 0.01),
– γ = 10−4,
– the left side of the boundary is fixed,
– a constant traction force g = 5 · 106 acts on the bottom side of the boundary

from x = 0.016 to x = 0.02 downwards.

The second model:

– an L-shaped domain given by the union of rectangles (0, 0.06) × (0, 0.06),
(0, 0.06) × (0.06, 0.2) and (0.06, 0.2) × (0, 0.06),
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Fig. 4. The first model: triangulation of the rectangle domain (left) with 3600 elements
and the solution (right).

Fig. 5. The second model: triangulation of the L-shaped domain (left) with 3672 ele-
ments and the solution (right).

Fig. 6. The third model: triangulation of the pincer domain (left) with 3600 elements
and the solution (right).

– γ = 10−3,
– the top side of the boundary is fixed,
– a constant traction force g = 106 acts on the bottom side of the boundary

from x = 0.14 to x = 0.2 downwards.

The third model:
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– a pincer domain given by the union of rectangles (0, 0.005) × (0, 0.02),
(0.005, 0.04) × (0, 0.005) and (0.005, 0.04) × (0.015, 0.02),

– γ = 10−3,
– the left side of the boundary from y = 0.005 to y = 0.015 is fixed,
– a constant traction force g = 2 ·105 acts on the top (upwards) and the bottom

(downwards) sides of the boundary from x = 0.035 to x = 0.04.

The following parameters are the same for all models:

– E = 12.5 · 108 (Young modulus), ν = 0.25 (Poisson ratio),
– κ = 100, m = 0.4.

Contrary to the Ginzburg-Landau problem, a small change of φ in a single
node affects the corresponding displacement u(φ) given by (9) throughout the
domain. In this case, the corresponding Hessian matrix is full, and therefore the
trust-region method is ineffective, and the quasi-Newton method is used instead.
Table 2 shows the performance of the quasi-Newton method for different levels
of uniform mesh refinements of the rectangular domain corresponding to the
first model. The same stopping criteria as for the GL-problem equal to 10−4 are
considered.

Table 2. Performance of TopOpt minimizations with domain and parameters from the
first model.

quasi-Newton

level |T | dofs time [s] iters J(u)

1.0 100 120 2.11 50 28.0815

1.5 240 270 9.52 44 24.2585

2.0 400 440 25.88 52 23.5845

2.5 900 960 194.13 82 21.4105

3.0 1600 1680 1079.45 125 21.0503

3.5 3600 3720 15737.81 323 20.3108

Similarly to 3, the MATLAB profiler shown in Fig. 7 outputs the number of
calls and the total evaluation time of code lines related to the function evaluating
(10). The energy evaluation consists of the following steps:

– (line 48) assembly of a vector ’z elems’ containing averaged values of φ on
the elements.

– (lines 49–50) evaluating vectors ’mu elems’ and ’bulk elems’ that store the
values of shear and bulk modulus, respectively, on the elements.

– (lines 52–55) an update of the elastic stiffness matrix [7].
– (line 57) restriction of the stiffness matrix on free degrees.
– (line 58) a new displacement field in free degrees is evaluated based on (9).
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Fig. 7. MATLAB profiler for level 3 refinement.

– (lines 60–62) evaluating the first (elastic), second (gradient) and third
(double-well potential) part of (10).

– (line 64) the final energy given as a sum of its three components.

The profiler shows that the main cost of the evaluation lies in the reassembling
of the elastic stiffness matrix and the solutions of the linear systems of equations
in each energy evaluation.

5 Conclusions and outlooks

We introduced a Ginzburg-Landau and topology optimization problem that
appears in physics and implemented them using the concept of our codes from
[5] based on a minimization of energy functionals.

A comparison with the original implementation of Ginzburg-Landau [1] based
on the Newton-Raphson method demonstrates the effectiveness of our vectoriza-
tion concepts, leading to significantly better evaluation times, but higher memory
cost. It shows that the trust region method requires only a slightly higher num-
ber of iterations. It would be interesting to apply our vectorization concepts to
the assembly of the Hessian matrix in the Newton-Raphson method.

A simple implementation of topology optimization of an elastic medium using
the Quasi-Newton method has proved feasible. The elasticity stiffness matrix
needs to be assembled and the resulting linear system of equations solved in
every energy iteration. The original assembly code of [7] is effectively split using
precomputed structures that do not change during the minimization process.
Practically, it still takes the majority of the evaluation time. Although this app-
roach is highly inefficient from an optimization point of view, it should allow for
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a simple extension to more complicated problems, such as topology optimiza-
tion of elastoplastic materials, where the elastoplasticity solver of [7] replaces
the original elasticity solver. To reduce the number of evaluations, we plan to
implement schemes of gradient flow type [8].

Acknowledgment. We thank Prof. Ulisse Stefanelli and Dr. Stefano Almi (Univer-
sity of Vienna) for inspiring discussions on topology optimization models and their
numerical implementation.
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