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Abstract
Weight optimization of frame structures with continuous cross-section parametrization is a challenging non-convex problem
that has traditionally been solved by local optimization techniques. Here, we exploit its inherent semi-algebraic structure
and adopt the Lasserre hierarchy of relaxations to compute the global minimizers. While this hierarchy generates a natural
sequence of lower bounds, we show, under mild assumptions, how to project the relaxed solutions onto the feasible set of the
original problem and thus construct feasible upper bounds. Based on these bounds, we develop a simple sufficient condition
of global ε-optimality. Finally, we prove that the optimality gap converges to zero in the limit if the set of global minimizers
is convex. We demonstrate these results by means of two academic illustrations.

Keywords Topology optimization · Frame structures · Semidefinite programming · Polynomial optimization · Global
optimality

1 Introduction

Finding cross-section parameters that minimize the weight
of frame structures for given performance constraints consti-
tutes a fundamental problem of structural design (Bendsøe
and Sigmund 2004; Saka and Geem 2013). This problem
naturally arises, e.g., in civil (Thevendran et al. 1992; Mos-
quera and Gargoum 2014), automotive (Zuo et al. 2016), or
machine (Tyburec et al. 2019) industries.

In contrast to optimization of trusses, for which several
convex formulations were established thanks to the linear
dependence of the stiffness matrix on the cross-section areas
(Stolpe 2017; Kočvara 2017; Bendsøe and Sigmund 2004),
the stiffness of frame elements is non-linear due to the
non-linear coupling of cross-section areas with moments of
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Prague 8, Czech Republic

3 School of Mathematics, The University of Birmingham,
Birmingham B15 2TT, UK

inertia. Therefore, the emergent optimization problems are
non-convex in general and very challenging to be solved
globally (Yamada and Kanno 2015; Tyburec et al. 2021; Tor-
agay et al. 2022).

Due to the non-convexity, majority of methods for opti-
mizing frame structures are either local, or (meta-)heuristic
(Saka and Geem 2013), thus converging to structures of
unknown quality with respect to the global minimizers.
For example, Saka (1980) optimized the weight of frame
structures while accounting for stress and displacement con-
straints using sequential linear programming, and Wang and
Arora (2006) improved over its solution efficiency by adopt-
ing sequential quadratic programming instead. For the same
setting, Khan (1984) and Chan et al. (1995) developed opti-
mality criteria methods. Further, Yamada and Kanno (2015)
optimized theweight of frame structures for a prescribed fun-
damental free-vibration eigenfrequency lower bound using a
sequence of semidefinite programming relaxations, conclud-
ing that good-quality local optima are attained.

Several optimization methods have also been developed
for the discrete setting of the frame optimization problem,
i.e., considering a catalog of available cross-sections. The
associated optimization methods are naturally enumerative,
with the global optimizers reachable by branch-and-bound-
typemethods. For example,Kureta andKanno (2013);Hirota
and Kanno (2015) and Mellaert et al. (2017) formulated
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mixed-integer linear programs, and Kanno (2016) developed
a mixed-integer second-order conic programming formula-
tion. Another related approach was introduced byWang et al.
(2021), who solved a single semidefinite programming relax-
ation whose solution served as an input to a (meta-heuristic)
neighborhood search of a differential evolution algorithm.
Many other heuristic and meta-heuristic approaches were
presented, we refer the reader to (Saka and Geem 2013) for
an extensive review.

Returning to the continuous case, which is the purpose of
this work, only three global approaches have been presented
to the best of our knowledge. First, Toragay et al. (2022)
tackled the displacement-constrained weight minimization
problem of frame structures by casting it into a mixed integer
quadratically constrained program. This formulation further
involved constraints preventing virtually intersecting frame
elements, bounds on the cross-section areas, and a set of
additional cut constraints to reduce the feasible design space.
The emergent optimization problems assumed parametriza-
tion of the moments of inertia by degree-two polynomials
of the cross-section areas, and were solved globally using a
branch-and-bound method.

The remaining two methods are based on a fairly different
concept: they provide hierarchies of relaxations of increas-
ing size, hence avoid the need for enumeration. Using the
sum-of-squares (SOS) hierarchy of specific semidefinite pro-
gramming relaxations (Kojima 2003), (Murota et al. (2010),
Section 5.3) optimized the weight of frame structures while
bounding the fundamental free-vibration eigenvalue from
below. Despite theoretically guaranteed convergence of the
objective function values (Kojima andMuramatsu 2006), the
associated optimal solutions may remain unknown.

Adopting a dual approach to Murota et al. (2010)—the
moment-sum-of-squares (MSOS) hierarchy (Lasserre 2001;
Henrion and Lasserre 2006)— Tyburec et al. (2021) consid-
ered compliance optimization of volume-constrained frame
and shell structures while accounting for multiple loading
scenarios and self-weight. Similarly to the SOShierarchy, the
MSOS hierarchy guaranteed a convergence of the objective
function values, but further maintained a simple procedure
for extracting the globalminimizers at the convergence (Hen-
rion and Lasserre 2006). Furthermore, Tyburec et al. (2021)
provided a simplemethod for projecting the relaxed solutions
onto the feasible set of the original problem, thereby provid-
ing both lower- and feasible upper-bounds. These bounds
naturally assess the quality of the relaxations and guarantee
performance gap of the upper-bound designs with respect to
the global minimizers. Finally, they showed that the optimal-
ity gap approaches zero if the global minimizer is unique.

1.1 Aims and novelty

In this contribution, we investigate global weight optimiza-
tion of frame structureswith bounded compliance ofmultiple
loading scenarios. This is achieved by extending our original
results for global compliance optimization of frame struc-
tures via the MSOS hierarchy (Tyburec et al. 2021).

In the MSOS hierarchy, exactness of relaxations follows
from a rank condition. If not satisfied, the relaxation is not
exact and its quality is generally uncertain. The goal of
this paper is thus to estimate the quality of inexact relax-
ations for the weight optimization problem by providing
a method for constructing feasible upper bounds from the
relaxed solutions. These ingredients also settle a simple suf-
ficient condition of global ε-optimality, vanishing in the limit
for problems with the global minimizers forming a convex
set.

In contrast to (Toragay et al. 2022), our work avoids
the need for an enumerative exploration of the feasible
space. Moreover, our setup naturally accommodates degree-
three (and possibly higher-degree) polynomials, which are
necessary, e.g., for the height optimization of rectangular
cross-sections, or for thickness optimization of plates and
shells (Tyburec et al. 2021, Section 3.5).

This contribution is organized as follows. We start by
a brief introduction to the moment-sum-of-squares hierar-
chy in Sect. 2 and formalizing the investigated optimization
problem in Sect. 3.1. Section3.2 provides basic mathemati-
cal properties of the compliance function. In particular, we
show that compliance is monotonic w.r.t. the scaling of the
cross-section areas and also derive the bounds for the com-
pliance function. Sect. 3.3 is devoted to construction of upper
bounds to the optimization problem. Its idea relies on scalar-
izing the optimization problem and showing that the bounds
to the compliance function remain the same in most cases,
rendering the scalarized compliance constraint feasible if the
original problem admits a solution. Finally, Sect. 3.4 presents
an optimization problem formulation that satisfies conver-
gence assumptions of themoment-sum-of-squares hierarchy,
constructs feasible upper bounds from the relaxations, and
develops a certificate of global ε-optimality. We illustrate
these theoretical findings numerically in Sect. 4, and sum-
marize our contribution in Sect. 5.

2 Moment-sum-of-squares hierarchy

We start with a brief introduction to the moment-sum-of-
squares hierarchy. We refer the reader to (Lasserre 2001,
2015; Henrion and Lasserre 2006) for a more thorough treat-
ment.

123



Global weight optimization of frame... Page 3 of 10 257

Let us consider optimization problems of the form

min
x

f (x) (1a)

s.t. G(x) � 0, (1b)

where f (x) : R
n �→ R and G(x) : R

n �→ S
m are real

polynomial mappings and Sm stands for the space of m ×m
real symmetric square matrices. Further, the notation • � 0
(• � 0) denotes positive definiteness (semi-definiteness) of
• and K(G(x)) represents the feasible set of (1b).

Let now x �→ bk(x) be the polynomial space basis of
polynomials in Rn of degree at most k

bk(x) =
(
1 x1 . . . xn x21 x1x2 . . . x2n . . . xkn

)
. (2)

Then, using a coefficient vectorq ∈ R
|bk (x)|, we canwrite any

polynomial p(x) : Rn �→ R of degree at most k as a linear
combination of the monomial entries in the basis bk(x), i.e.,
p(x) = qTbk(x).

Also, let
{
α ∈ N

n : 1Tα ≤ k,
∏n

i=1 x
αi
i ∈ bk(x)

}
be a

multi-index and y ∈ R
|bk (x)| the moments of probability

measures supported on K(G(x)). In this work, we label
the moment vector entries associated with the monomials∏n

i=1 x
αi
i ∈ bk(x) as yα = y∏n

i=1 x
αi
i
.

Furthermore, we need to set a formal definition of the
(matrix) sum-of-squares decomposition:

Definition 1 ThematrixΣ(x) : Rn �→ S
m is a (matrix) sum-

of-squares function if there exists a matrix H(x) : R
n �→

R
m×o such that ∀x : Σ(x) = H(x) [H(x)]T.

Notice that when m = 1, Definition 1 reduces to the case
of scalar sum-of-squares polynomials.

Using this definition and 〈X,Y〉 = Tr(XYT) to denote the
inner product on Sm , we provide the (Archimedean) assump-
tion of algebraic compactness:

Assumption 1 (Henrion andLasserre 2006)There exist sum-
of-squares polynomials p0(x) : R

n �→ S
1 and R(x) :

R
n �→ S

m such that the superlevel set
{
x ∈ R

n : p0(x) +
〈R(x),G(x)〉 ≥ 0

}
is compact.

If Assumption 1 holds, (1) is equivalent to an infinite-
dimensional linear semidefinite (and hence convex) program

f (r) = min
y

qT0 y (3a)

s.t. M2r (y) � 0 (3b)

M2r−d(Gy) � 0, (3c)

with the relaxation degree r → ∞. For r ∈ N and finite,
(3) then provides a finite-dimensional truncation of (1). In

(3), d denotes the maximum degree of a polynomial inG(x),
andM2r (y)withM2r−d(Gy) are the (truncated)moment and
localizing matrices associated with the moments y and Gy,
respectively. We refer the reader to (Henrion and Lasserre
2006, Section D) for more details.

With increased relaxation degree r , larger portions of the
infinite-dimensional program are incorporated, so that a con-
vergence to the optimum value f ∗ of f is obtained in the
limit.

Theorem 1 (Henrion and Lasserre 2006) Let Assumption 1
be satisfied. Then, f (r) ↗ f ∗ as r → ∞.

However, the convergence is generically finite (Nie 2013)
and usually occurs at a low r . In addition to the convergence
of the objective function value, the global optimality can
be recognized and the corresponding minimizers extracted
using the flat extension theoremofCurto and Fialkow (1996).
We again refer an interested reader to (Henrion and Lasserre
2006; Lasserre 2015) for more information.

3 Methods

This section introduces the main theoretical results of this
article. In particular, we first formalize the optimization
problem in Sect. 3.1. Section3.2 develops bounds for the
compliance function and shows that the compliance func-
tion is monotonic w.r.t. scaling of the cross-section areas. In
Sect. 3.2, we rely on the assumption of a statically admissible
design.We show that scaling the corresponding cross-section
areas preserves the bounds of the compliance function under
mild assumptions, which allows us to construct feasible
upper bounds to the original optimization problem. Finally,
Sect. 3.4 modifies the original optimization problem formu-
lation for the moment-sum-of-squares hierarchy, presents a
sequence of lower and upper bounds, and develops a simple
sufficiency condition of global ε-optimality.

3.1 Optimization problem formulation

This paper deals with a global solution of the weight mini-
mization (4a) problem with bounded compliances of the nlc
load cases (4c) under linear-elastic equilibrium (4b) and non-
negativity of the design variables (4d):

min
a,u

ne∑
e=1

ρe�eae (4a)

s.t. K j (a)u j = f j , ∀ j ∈ {1, . . . , nlc}, (4b)

c j − fTj u j ≥ 0, ∀ j ∈ {1, . . . , nlc}, (4c)

a ≥ 0. (4d)
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In (4), a ∈ R
ne≥0 is the vector of the design variables such

as the cross-section areas of frames, ne denotes the num-
ber of elements, � ∈ R

ne
>0 stands for a vector of volume

multipliers so that the volume of the e-th element amounts
to �eae, and ρ ∈ R

ne
>0 are the element densities. Further,

c ∈ R
nlc
>0 are upper bounds for the compliance of the nlc

load cases, and u j ∈ R
ndof , j with f j ∈ R

ndof , j stand
respectively for the generalized displacement and force vec-
tors of the j-th load case, with ndof, j being the number of
degrees of freedom. Without loss of generality, we assume
that ∀ j ∈ {1, . . . , nlc}} : f j �= 0.

For bending-resistant structures, such as frames and flat
shells, the structural stiffness matricesK j (a) follow from the
assembly

K j (a) = K j,0 +
ne∑
e=1

[
aeK

(1)
j,e + a2eK

(2)
j,e + a3eK

(3)
j,e

]
, (5)

in which K j,0 ∈ S
ndof, j
�0 constitutes a design-independent

stiffness matrix, where the notation S
ndof, j
�0 denotes the space

of ndof, j × ndof, j symmetric positive semidefinite matrices,

and ∀i ∈ {1, 2, 3} : K(i)
j,e ∈ S

ndof, j
�0 are portions of the e-

th element stiffness matrix that depend on the monomials
aie linearly. In the case of frame structures, this dependence
assumes that the moment of inertia Ie can be expressed in
the form

Ie(ae) = cIIa
2
e + cIIIa

3
e . (6)

For the optimization problem (4), it is natural to assume solv-
ability of the equilibrium system (4b) and forbid rigid body
motions if all optimized elements are present:

Assumption 2 ∀a > 0,∀ j ∈ {1, . . . , nlc} : K j (a) � 0.

Then, we can reformulate (4) equivalently to a non-linear
semidefinite program, see, e.g., (Achtziger and Kočvara
2008; Kanno 2011; Tyburec et al. 2021),

min
a

ne∑
e=1

ρe�eae (7a)

s.t.

(
c j −fTj
−f j K j (a)

)
� 0, ∀ j ∈ {1, . . . , nlc}, (7b)

a ≥ 0. (7c)

The problem (7) is in general non-convex due to the poly-
nomial nature of K j (a), recall Eq. (5). Nevertheless, (7b)
maintains a special structure that is described next.

3.2 Properties of the compliance function

Based on variational principles, we can express the compli-
ance function c j (a) of the j-th load case as

c j : {
a | a ≥ 0, f j ∈ Im(K j (a))

} �→ R,

c j (a) := max
u j

(
2fTj u j − uTjK j (a)u j

)
(8)

Remark 1 Stationarity condition of the maximum imply that
the maximizer u∗

j of the concave function solves the equi-
librium equation K j (a)u∗

j = f j , and thus based on (Tyburec

et al. 2021, Lemma 1), u∗
j = K j (a)†f j with •† denoting the

Moore-Penrose pseudo-inverse of •. Therefore, the actual
value of the maximum evaluates as fTj K j (a)†f j , rendering
the above definition equivalent to

c j : {
a | a ≥ 0, f j ∈ Im(K j (a))

} �→ R,

c j (a) := fTj K j (a)†f j . (9)

Next, we state basic properties of c j .

Proposition 1 (Monotonicity of scalarized compliance) For
a statically admissible design

{
ã | ã ≥ 0, f j ∈ Im(K j (ã))

}
and δ2 ≥ δ1 > 0, it holds that c j (δ1ã) ≥ c j (δ2ã).

Proof Using triangular inequality, we get

c j (δ2ã) − c j (δ1ã)

≤ max
u j

[
−uTjK j (δ2ã)u j + uTjK j (δ1ã)u j

]

= max
u j

[
uTj

(
ne∑
e=1

3∑
i=1

(δi1 − δi2)K
(i)
j,e

)
u j

]
≤ 0 (10)

as required because K(i)
j,e � 0 and 0 ≤ δ1 ≤ δ2. ��

Further,we investigate the range of c j , forwhich it suffices
to find infa c j (a) and supa c j (a). To this goal and similarly to
(Tyburec et al. 2019, Appendix A), we partition K j (a) and
f j in (7b) according to the dependence on the design vari-
ables a as follows. LetUN, j be orthonormal bases belonging

to Ker
(∑ne

e=1

∑3
i=1 a

i
eK

(i)
j,e

)
and let UR, j be the bases of

Im
(∑ne

e=1

∑3
i=1 a

i
eK

(i)
j,e

)
. We wish to emphasize here the

omitted term K j,0 in the calculation of the bases. Conse-
quently, UR, j may not span the whole space even if a > 0,
see, e.g., the reinforcement problem in Sect. 4.2 After pro-
jecting K j (a) via these bases, we receive the partitioning

(
UT
R, j

UT
N, j

)
K j (a)

(
UR, j UN, j

) =
(
KA, j (a) KT

AB, j
KAB, j KB, j

)
(11)

in which

∀a > 0 : UT
R, j

(
ne∑
e=1

3∑
i=1

aieK
(i)
j,e

)
UR, j � 0. (12)

Moreover, KA, j (a) is the only part that depends on a.
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Similarly, we define

(
fA, j

fB, j

)
=

(
UT
R, j

UT
N, j

)
f j . (13)

Then, (7b) can be equivalently rewritten1 as

⎛
⎝

c j fTA, j fTB, j
fA, j KA, j (a) KT

AB, j
fB, j KAB, j KB, j

⎞
⎠ � 0. (14)

Because KB, j � 0 due to Assumption 2, then, using the
Schur complement lemma (Haynsworth 1968), (14) is equiv-
alent to

(
csch, j −fTsch, j

−fsch, j Ksch, j (a)

)
� 0. (15)

with

fsch, j = fA, j − KT
AB, jK

−1
B, j fB, j (16a)

Ksch, j (a) = KA, j (a) − KT
AB, jK

−1
B, jKAB, j (16b)

csch, j (a) = c j (a) − fTB, jK
−1
B, j fB, j (16c)

being the condensed force vector, stiffness matrix, and
compliance, respectively. Then, we are ready to prove the
following proposition.

Proposition 2 For the partitioning in Eq. (14), it holds that

inf
a
c j (a) = fTB, jK

−1
B, j fB, j . (17)

Proof Based on (15), we have csch, j (a) ≥ 0. Hence,
c j (a) ≥ fTB, jK

−1
B, j fB, j due to (16c). Finally, it suffices to

show that c j (a) → fTB, jK
−1
B, j fB, j for a → ∞ component-

wise. Because ∀i, e : K(i)
j,e � 0 and (12), the eigenvalues of

KA, j (a) approach infinity as a → ∞. Hence,

csch, j (a) = fTsch, jKsch, j (a)−1fsch, j → 0 as a → ∞ (18)

and, therefore, c j (a) → fTB, jK
−1
B, j fB, j based on (16c). ��

Remark 2 For the case of KB, j ∈ S
0, we have infa c j (a) →

0.

Next, we consider the supremum part.

1 Notice, however, that the solution ũ j to the transformed sys-

tem
(
UT
R, j U

T
N, j

)T
K j (a)

(
UR, j UN, j

)
ũ j =

(
UT
R, j U

T
N, j

)T
f j differs

from u j in (4b). The original vector field u j can be recovered by another
transformation as u j = (

UR, j UN, j
)
ũ j .

Proposition 3 For the partitioning in Eq. (14), it holds that

1. supa c j (a)= fTsch, j
(
KA, j,0 − KT

AB, jK
−1
B, jKAB, j

)−1
fsch, j

if fsch, j ∈ Im(KA, j,0 − KT
AB, jK

−1
B, jKAB, j )

2. supa c j (a) = ∞ otherwise.

Proof The first part follows from (15) and corresponds to the
setting when fixed elements are able to transmit prescribed
loading to supports. For the second part, setting a → 0
renders the displacement field arbitrarily large, and thus the
compliance infinite. ��

3.3 Upper bounds to program (7) by scalarization

Using these compliance function properties, this section
develops a method for obtaining feasible upper bounds to
(7) under mild assumptions.

Let ã ∈ R
ne≥0 be a vector of fixed ratios of the cross-section

areas such that ∀ j ∈ {1, . . . , nlc} : f j ∈ Im
(
K j (ã)

)
. Further,

define a scaling parametrization of the cross-section areas via
a parameter δ > 0, i.e., a(δ) = δã. In what follows, we state
the conditions under which the values in Propositions 2 and 3
remain valid even though we replace c j (a) with c j (a(δ)).

Proposition 4 If fA, j ∈ Im

(
UT
R, j

(
ne∑
e=1

3∑
i=1

ãieK
(i)
j,e

)
UR, j

)

holds, then, infa c j (a) = infδ c j (a(δ)).

Proof The proof follows from Proposition 2. ��
Remark 3 Astatically admissible designmayviolate the con-
dition in Proposition 4 only ifK j,0 �= 0 and ∃e : ãe = 0 at the
same time, i.e.,whenoptimizing topologyof a reinforcement.
From the mechanical point of view, such situation corre-
sponds to the case of carrying loads through elements with
prescribed stiffness, although the optimized domain would
allow load transfer through elements that are eliminated with
ãe = 0. On the other hand, the infima are the same for stan-
dard topology optimization and for sizing optimization of
reinforcement problems.

Remark 4 If there is no fixed structural stiffness K j,0 = 0,
then the condition in Proposition 4 simplifies to statical
admissibility of the design, i.e., f j ∈ Im(K j (ã)).

For the case of upper bounds in Proposition 3, the situation
is considerably easier—they remain the same regardless of
ã.

Finally, we can state the procedure for constructing feasi-
ble upper bounds.

Proposition 5 Let ∀ j ∈ {1, . . . , nlc} : infδ c j (a(δ)) < c j
hold and let the feasible set of (4) have a non-empty inte-
rior. Then, there exists δ > 0 such that δã is feasible to
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(7). Furthermore, δ follows from a solution to the univariate
optimization problem

min
δ

δ (19a)

s.t. fTj K j (a(δ))†f j ≤ c j , ∀ j ∈ {1, . . . , nlc}, (19b)

δ > 0. (19c)

Proof Due to the assumption on the infimum, (19) is solvable
whenever (7) is, i.e., when infa c j (a) ≤ infδ c j (a(δ)) < c j .
Moreover, since supδ c j (a(δ)) does not depend on ã, Proposi-
tion 3, and (19b) is amonotonic function due to Proposition 1,
the equality sign in (19b) can always be satisfied for at least
one load case if c j ≤ supa c j (a) = infδ c j (a(δ)). ��

From the numerical perspective, the value of infδ c j (a(δ))
is obtained via Proposition 2 for a partitioning in (14) that
follows from a(δ) = ãδ, with ãe = 0 considered as an empty
contribution to K j,0.

Due to the monotonicity of (19b) in δ, the optimal scaling
factor δ, and thus an (upper-bound) feasible solution to (7),
can be found by a bisection-type algorithm.

3.4 Moment-sum-of-squares hierarchy

In this section, we modify (7) to be practically solvable to
global optimality by the moment-sum-of-squares hierarchy,
develop a sequence of feasible upper bounds, and settle a
simple sufficiency condition of global ε-optimality in the
spirit of (Tyburec et al. 2021).

3.4.1 Polynomial programming reformulation

For convergence guarantees of the moment-sum-of-squares
hierarchy, we need to certify algebraic compactness of the
feasible set, recall Assumption 1 and Theorem 1. This can be
secured by bounding the design variables through quadratic
constraints (Tyburec et al. 2021, Proposition 4).

To set these constraints, we first notice that while the lower
bounds for a come directly from the problem formulation,
recall (7c), the upper bounds can be established by exploiting
the results in Sect. 3.3. In particular, for any fixed ã > 0,
the condition in Proposition 4 is satisfied, allowing us to
compute optimal scaling δ∗ through the program (19), and
thus construct a feasible upper-bound to (7). An upper-bound
structural weight then amounts to

w = δ∗
ne∑
e=1

ρe�eãe. (20)

Since (20) bounds the weight from above, none of the struc-
tural elements can exceed the weight w at the optimum.

Therefore, the individual variables ae can be bounded as

0 ≤ ae ≤ w

ρe�e
(21)

which is then equivalent to

ae

(
w

ρe�e
− ae

)
≥ 0. (22)

From the numerical perspective, it is further advantageous to
scale the design variables, i.e., solve the optimization prob-
lem in terms of ∀e ∈ {1, . . . , ne} : as,e ∈ [−1, 1] rather than
in ∀e ∈ {1, . . . , ne} : ae ∈ [0, w/(�eρe)], which is achieved
by inserting

ae = as,e + 1

2

w

ρe�e
. (23)

After these modifications, the final formulation reads as

min
as

0.5w
(
ne + 1Tas

)
(24a)

s.t.

(
c j −fTj
−f j K j (as)

)
� 0, ∀ j ∈ {1, . . . , nlc}, (24b)

a2s,e ≤ 1, ∀ j ∈ {1, . . . , ne}. (24c)

3.4.2 Recovering feasible upper bounds and sufficient
condition of global "-optimality

In order to solve (24) globally,wegenerate a hierarchyof con-
vex outer approximations of the feasible set K(G(x)), recall
Sect. 2. The feasible set of these relaxations is described in
terms of the moments y that are indexed in the polynomial
space basis b2r (asc) = {1, as,1, . . . , as,ne , . . . }. Because the
emerging relaxations are linear in y, recall (3), we solve a
sequence of convex linear semidefinite programming prob-
lems.

Let now y(r)
a1s

be the optimal first-order moments associ-

ated with degree-1 polynomials in b2r (asc) of the r -th degree
relaxation. Unscaling these first-order moments provides us
with an estimate on the optimal scaling factors ã, i.e.,

ãe =
y(r)
a1s,e

+ 1

2

w

ρe�e
,∀e ∈ {1, . . . , ne}. (25)

For ã, it holds that f j ∈ Im
(
K j (ã)

)
by (Tyburec et al. 2021,

Proposition 6). Consequently, we show how to construct fea-
sible upper bounds next.

Theorem 2 Let y(r)
a1s

be the optimal first-order moments asso-

ciated with the r-th relaxation. If infδc j (a(δ)) < c j holds for
all j ∈ {1 . . . nlc} and the problem (4) is solvable, then δ∗ã,
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with ã set as (25) and δ∗ computed based on Proposition 5,
is a feasible (upper-bound) solution to (4).

Proof Same as in Proposition 5. ��
Finally, we also show that ε → 0 for problems with min-

imizers forming a convex set.

Remark 5 Due to f j ∈ Im
(
K j (ã)

)
being always satisfied,

the assumptions of Theorem 2 may be violated only when
infδ c j (a(δ)) > c j , which can happen only if K j,0 �= 0 and
∃e : ãe = 0 at the same time, recall Remark 3. ForK j,0 = 0,
the upper bounds can always be constructed.

Having the sequence of upper bounds in Theorem 2, and
a natural sequence of lower bounds from the relaxations, we
arrive at a simple condition of global ε-optimality.

Proposition 6 Let δ∗ã be a feasible (upper-bound) solution
to (4) constructed based on Theorem 2. Then,

(
δ∗ − 1

)
0.5w(ne + 1Ty(r)

a1s
) ≤ ε (26)

is a sufficient condition of global ε-optimality.

Proof The lower bound for the objective function amounts
to 0.5w(ne +1Ty(r)

a1s
), recall (24a) and (Henrion and Lasserre

2006, Section D). Similarly, the upper bound evaluates as

δ∗
ne∑
e=1

y(r)
a1s,e

+ 1

2

w

ρe�e
ρe�e = 0.5δ∗w(ne + 1Ty(r)

a1s
)

based on Eq. (25) and Theorem 2. Subtracting the lower
bound from the upper bound provides the worst-case esti-
mate for the optimality gap ε, Eq. (26). ��
Theorem 3 Let δ∗ã be a feasible (upper-bound) solution to
(4) constructed based on Theorem 2. If the set of global min-
imizers is convex, then, as r → ∞,

(
δ∗ − 1

)
0.5w(ne + 1Ty(r)

a1s
) = 0. (27)

Proof Because of Theorem 1 and satisfied Assumption 1,
for r → ∞, optimization over a set K is equivalent to opti-
mization over its convex hull Conv(K) (Tyburec et al. 2021,
Proposition 7). By Assumption 1, K is compact, and, thus,
Conv(K) is too. Therefore, we can express the convex hull
using its limits points d1,d2, . . . ,

Conv (K) = Conv
(∪∞

i=1 {di }
)
. (28)

Having assumed that the set of global minimizers is convex,
there must exist a convex set Conv

(∪∞
i=1

{
d∗
i

}) ⊆ Conv (K)

with points d∗
i that are associated with the minimum. ��

Table 1 24-element frame structure optimization.LBabbreviates lower
bound,UB stands for feasible upper bounds, and r is the relaxation num-
ber. Further, nc × m denotes the number of nc semidefinite constraints
of the size m, and n is the number of variables

r LB UB Time [s] nc × m n

1 0.046 0.160 0.10 10, 9 × 1, 37 54

2 0.103 0.125 16.65 55, 9 × 10, 370 714

3 0.118 0.118 12 732.90 220, 9 × 55, 2 035 5 004

4 Examples

In this section, we demonstrate the capabilities of the pre-
sented method by means of two illustrations: a modular
three-story structure, and a part design. All computations
were performed on a personal laptopwith 24GBofRAMand
Intel� Core™ i5-8350U CPU. For optimization, we relied
on the Mosek (MOSEK 2019) solver.

4.1 24-element modular frame structure

As the first illustration we investigate a modular frame struc-
ture containing 24 Euler-Bernoulli finite elements and 36
degrees of freedom, see Fig. 1a. For simplicity, we assume
the dimensionlessYoungmodulus E = 1.0, densityρ = 1.0,
as well as the dimensionless structural dimensions.

The frame structure is clamped at the bottom nodes a
and b , and subjected to horizontal loads at nodes c , e
and g , and to vertical forces acting at i , j and k .

We split the structural elements into several groups: first,
we use a different cross-section parametrization within the
structural elements, Fig. 1b. In addition, we also specify
groups of elements thatmust have the same cross-section size
to maintain structural symmetry: while for the columns, we
set a1 = a2, a3 = a4, a5 = a6, we require a7 = a8, a9 = a10
and a11 = a12 for the horizontal beams. Finally, we enforce
equal cross-section sizes within the circular tubes in a single
story, i.e., a13 = a14 = a15 = a16, a17 = a18 = a19 = a20,
and a21 = a22 = a23 = a24. Hence, we have nine indepen-
dent cross-section areas in total.

Because all structural elements are being optimized, the
term K0 in (5) is empty. Based on Remark 2, we thus have
infa c(a) = 0. As any positive compliance can thus be
attained, we set the compliance upper-bound to c = 5 000.
Starting with a uniform distribution of cross-section areas,
ã = 1, the optimization problem (19) yields an upper-bound
weight of w = 0.150.

Moreover, for any feasible first-order moments, Remark
5 assures us that feasible upper bounds can always be con-
structed. In the lowest, first-degree relaxation, we receive
the lower-bound weight of 0.046. Using the cross-section
area distribution provided by the optimal first-ordermoments

123



257 Page 8 of 10 M. Tyburec et al.

Fig. 1 24-element frame
structure: (a) boundary
conditions, (b) cross-section
parametrization, and (c)
convergence of the proposed
relaxation-based approach with
visualized feasible upper-bound
designs

to construct a feasible upper bound, recall Theorem 2, we
receive the weight 0.160. In the second relaxation, we obtain
the lower bound objective 0.103, from which we recover
an upper-bound weight 0.125. Final, third relaxation yields
a lower-bound weight of 0.118, and the projected upper-
bound design of weight 0.118, see Table 1. Hence, the global
optimality of the design is certified based on Proposition 6.
Similarly, the hierarchy also converged based on the flat
extension theorem of Curto and Fialkow (1996), allowing
for extracting the unique global minimizer. The upper-bound
and the optimal design appear visualized in Fig. 1c.

4.2 Part design

Second, we consider the problem of optimizing a structural
part. Such problems appear, e.g., in stiffening and reinforcing
structure design or in structural component optimizations.

Here, we assume the problem shown in Fig. 2a, consisting
of 12 nodes that are interconnected with 20 Euler-Bernoulli
beam elements. All these elements have square cross-

sections. While the elements drawn in Fig 2a with a solid
line are subject of optimization, the elements denoted with
dashed lines share the cross-section area of 0.01. Further, we
have again the dimensionless Young modulus E = 1.0 and
the density ρ = 1.0.

The structure is fully clamped at the nodes a and h ,
whereas symmetric boundary conditions are assumed along
the d – k axis. The structure is loaded by unitary vertical
forces at the nodes i and j , and by a halved vertical force
at the node k .

Because of the fixed elements 1 – 4 , 12, 13, and 18,
the term K0 is now present in (5). Using Proposition 2, we
thus receive a positive value of the compliance infimum,
infa c(a) = 578.9, which can be approached by the opti-
mized elements only in the limit. Thus, we set c = 1 000.

After setting ã = 1, the optimization problem (19) pro-
vides us with the upper-bound solution of the weight w =
0.285. Using this bound to make the design space compact
and solving the emerging optimization problem (24) via the
MSOShierarchy,we receive the lower boundweight of 0.133

Fig. 2 Frame structure
reinforcement problem. (a)
Discretization, boundary
conditions and cross-section
parametrization, and (b)
convergence of the proposed
relaxation-based approach with
visualized feasible upper-bound
designs
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Table 2 Part design optimization. LB abbreviates lower bound, UB
stands for feasible upper bounds, and r is the relaxation number. Further,
nc ×m denotes the number of nc semidefinite constraints of the sizem,
and n is the number of variables

r LB UB Time [s] nc × m n

1 0.133 0.181 0.04 14, 13 × 1, 19 104

2 0.170 0.170 29.52 105, 13 × 14, 266 2 379

in the first relaxation and the associated feasible upper-bound
design of the weight 0.181. The second relaxation makes the
hierarchy converge with respect to both the optimality gap
and the flatness of the moment matrices ranks (Curto and
Fialkow 1996). The optimal design, shown in Fig. 2, weights
0.170. In all the relaxations, setting ã based on the first-order
moments produced the same value of infδ c(a(δ)) = 578.9.

The hierarchy convergence appear summarized in Table 2.
We note here that because of the partitioning in (14) and five
constant rows/columns, we adopted the Schur complement
lemma to reduce the problem size and accelerate its solution.

5 Results and discussion

In this contribution,we have extended our previous results for
global compliance optimization of bending resistant struc-
tures (Tyburec et al. 2021) to theweightminimization setting.
To this goal, we have first exploited monotonicity of the
scalarized compliance function, and developed a univariate
problem (19) for computing feasible upper bounds to the
weight optimization problem (4) when the ratio of cross-
section areas is fixed. We proposed to solve this problem by
a bisection-type algorithm.

Based on such constructed upper bound, it is possible to
bound the design variables from above, and thus show that
the assumptionof algebraic compactness,which is needed for
the convergence of the Lasserre hierarchy, is satisfied. Devel-
oping and solving an efficient polynomial programming
formulation, we have shown that, under mild assumptions,
the first-order moments from the relaxationsmay serve as the
ratios of the cross-section areas, enabling a construction of
feasible upper bounds in each relaxation. Finally, a compar-
ison of the relaxations lower bounds with the constructed
upper bounds establishes a simple sufficient condition of
global ε-optimality, and this condition converges to zero in
the limit in the case of a convex set of global minimizers.

We have illustrated these theoretical results on a set of
two optimization problems. These problems revealed appli-
cability of the approach to small-scale problems and a rapid
convergence of the hierarchy.

We plan to extend our approach in several directions. First,
we are interested in problems in structural dynamics such

as eigenvalue problems (Achtziger and Kočvara 2008) and
steady-state harmonic oscillations. Second, we aim to inves-
tigatemethods for accelerating the optimization process, e.g.,
by exploiting structural (Zheng et al. 2021; Kočvara 2020)
and term sparsity, or adopting the very recent results in opti-
mization problemswith tame structure (Aravanis et al. 2022).
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