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Materials exhibit an extraordinary range of visual
appearances. Characterizing and quantifying appearance
is important not only for basic research on perceptual
mechanisms but also for computer graphics and a wide
range of industrial applications. Although methods exist
for capturing and representing the optical properties of
materials and how they vary across surfaces (Haindl &
Filip, 2013), the representations are typically very
high-dimensional, and how these representations relate
to subjective perceptual impressions of material
appearance remains poorly understood. Here, we used a
data-driven approach to characterizing the perceived
appearance characteristics of 30 samples of wood
veneer using a “visual fingerprint” that describes each
sample as a multidimensional feature vector, with each
dimension capturing a different aspect of the
appearance. Fifty-six crowd-sourced participants viewed
triplets of movies depicting different wood samples as
the sample rotated. Their task was to report which of
the two match samples was subjectively most similar to
the test sample. In another online experiment, 45
participants rated 10 wood-related appearance
characteristics for each of the samples. The results
reveal a consistent embedding of the samples across
both experiments and a set of nine perceptual
dimensions capturing aspects including the roughness,
directionality, and spatial scale of the surface patterns.
We also showed that a weighted linear combination of
11 image statistics, inspired by the rating characteristics,
predicts perceptual dimensions well.

Introduction

The visual appearance of materials results from
a wide range of physical phenomena including the
surface’s spectral and angular reflectance characteristics,
subsurface light scattering, and spatial variations
in pigmentation and surface relief. How the visual
system estimates such characteristics remains poorly
understood (Anderson, 2011; Bracci & Op de Beeck,
2023), and it also remains unclear which perceptual
dimensions the visual system uses to describe and
compare different materials (Fleming, 2017).

Capturing a comprehensive representation of a
surface’s physical appearance requires observing it
under a sufficient range of illumination and viewing
geometries. Complex photorealistic appearances
can be approximated by advanced image-based
representations used in computer graphics such as the
spatially varying bidirectional reflectance distribution
function (Nicodemus, Richmond, Hsia, Ginsburg,
& Limperis, 1977) or bidirectional texture function
(BTF; Dana, van Ginneken, Nayar, & Koenderink,
1999). However, these representations are extremely
high-dimensional, and there is no straightforward
mapping between such representations and subjective
visual appearance characteristics. Somehow, the visual
system summarizes the overall “look” of complex,
spatially-varying appearances to compare and contrast
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different materials. Everyday experience suggests
that observers do not need to view a material from
all possible view- and lighting-directions to obtain a
distinct impression of its appearance. Yet, although
the perceptual representation of materials is surely
lower-dimensional than a complete physical description
of the surface, there are nevertheless many potential
dimensions that the visual system might draw on to
describe materials (e.g., overall albedo, relief, glossiness,
contrast of surface patterns).

Our goal here was to establish and evaluate
approaches for identifying key visual properties
of materials—so-called “perceptual dimensions,”
from human observations of a dynamic video of
a flat wooden material sample. We use the terms
“perceptual dimension” and “perceptual embedding”
to refer to subjective visual representations of material
appearance. Different perceptual dimensions refer to
the different visual aspects or attributes that contribute
to the overall appearance of the visual input (e.g.,
color, texture, orientation). Therefore they can help in
understanding the key image cues and physical factors
that contribute to material appearance. Together, the
perceptual dimensions form a perceptual embedding
that sensory data into a continuous mathematical
space which captures the inherent relationships
between different materials, allowing for more efficient
processing and analysis.

We still do not understand much about the perceptual
dimensions and how they contribute to observers’
judgments of appearance. Which characteristics do
observers use to compare different materials? Is there a
“ranking” of characteristics, such that some aspects of
appearance dominate comparisons between materials,
whereas others play a secondary role? How specific
are certain characteristics to particular classes of
materials? Previous work on material perception has
often focused on highly constrained sets of stimuli
varying in one or a small number of physical properties
(Ferwerda, Pellacini, & Greenberg, 2001; Fleming,
Dror, & Adelson, 2003; Fleming, Bülthoff, 2005;
Motoyoshi, Nishida, Sharan, & Adelson, 2007; Wendt,
Faul, & Mausfeld, 2008; Wendt, Faul, Ekroll, &
Mausfeld, 2010; Fleming, Jäkel, & Maloney, 2011;
Marlow, Kim, & Anderson, 2012; Paulun, Schmidt,
van Assen, & Fleming, 2017; Van Assen, Barla,
& Fleming, 2018). Other studies have investigated
appearance judgments and categorization based on
photographs (e.g., Bell, Upchurch, Snavely, & Bala,
2015; Fleming, Wiebel, & Gegenfurtner 2013; Sharan,
Rosenholtz, & Adelson, 2009; Sharan, Liu, Rosenholtz,
& Adelson, 2013; Sharan, Rosenholtz, & Adelson, 2014;
Wiebel, Valsecchi, & Gegenfurtner, 2013). However, in
most cases, it is the experimenters that define which
characteristics are judged by participants.

Here we combined this tradition with a more
data-driven approach in order to identify dimensions

underlying appearance judgments for a set of thirty
samples of planar wood veneer with distinctive surface
patterns and textures. Wood is a challenging material to
characterize due to its complex and varied appearance.
It is associated with decorative attributes and is widely
used for furniture and interior design. Its structure
consists of elongated cells, which are radially oriented
rays and longitudinal cells or vessels forming growth
rings (Lewin & Goldstein, 1991). Hardwoods tend to
have a tighter grain pattern compared to softwoods,
resulting in various levels of texture, color, smoothness,
grain density, and straightness. All these aspects are
impacted by sawing direction and the sample location
in the tree trunk. The final visual structure is given by an
intersection of a sawing plane with three-dimensional
wood structure. Wood has high natural variability in
aesthetic characteristics among different species and
surface treatments. Previous studies have shown that
patterns of anisotropy, color variations and gloss are
the major factors influencing the visual (Nakamura,
Masuda, & Shinohara, 1999; Wan, Li, Zhang, Song,
& Ke, 2021), multimodal (Fujisaki, Tokita, & Kariya,
2015) aesthetic appeal of wood with impacts on
people’s preferences (Manuel, Leonhart, Broman, &
Becker, 2015), and emotions related to wooden surfaces
(Nordvik, Schütte, & Broman, 2009). To the best of our
knowledge, all previous studies of wood appearance
relied on static stimuli to derive subjective ratings of
predefined attributes or their relationship to physical
attributes of wood surfaces. This ignores how variable
the appearance of even a single sample can be across
changes in viewpoint relative to the surface and lighting,
as it is shown in Figure 1.

Our contribution to the prior work is twofold.
First, our work uses dynamic (rotating) rather than
static stimuli, showing the appearance of the 30 wood
samples across variable lighting and viewing conditions.
This allowed participants in our experiments to take
into account the look of the surface both with and
without specular reflections. The appearance of wood
can change substantially as a function of lighting
angle, especially because the elongated nature of fibers
and wood grain can lead to anisotropic reflectance
characteristics. This makes wood a particularly rich
class of materials to consider. To give participants
a reasonable summary of the range of appearances
exhibited by each sample, we used movies of the
samples rotating. The wood samples were carefully
selected from a base set of several hundred samples to
deliver as much visual variability as possible.

Second, instead of relying solely on a possibly
incomplete list of predefined visual attributes, we
also used similarity judgements to identify the
core dimensions underlying judgments of wood.
Similarity judgements are an established method for
characterizing the multidimensional space underlying
mental representations, previously used to understand
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Figure 1. An example of the effect of viewing angle on the appearance of four wood samples (shown in rows).

perceptual dimensions in object categories (Hebart,
Zheng, Pereira, & Baker, 2020), materials (Schmidt,
Hebart, & Fleming, 2022) or scenes (Josephs, Hebart,
& Konkle, 2023). In contrast to the previous studies, we
search for perceptual dimensions underlying similarity
judgments within a single category.

Specifically, we sought to derive a relatively small
number of perceptual dimensions that capture
judgments of similarity between movies of the
samples. It is important to note that for a given
similarity judgement, only a subset of all dimensions
might come into play. Here, we sought to find a set
of dimensions that together capture the similarity
relationships between multiple subsets of materials
from our sample of thirty wooden materials. In order

to do this, we first crowd-sourced 1218 perceptual
similarity judgments from 56 participants as shown
in the upper part of the block scheme in Figure 2.
We then applied an analysis method based on
sparse, non-negative matrix factorization (Variational
Interpretable Concept Embeddings; Muttenthaler et
al., 2022) to infer a set of dimensions that can predict
the similarity judgments. We show that even with
a small dataset of thirty samples, the method was
able to derive perceptual dimensions that predict the
similarity judgments. Specifically, our model identified
nine dimensions that together could explain over
75% of the variance in the similarity judgments.
Additionally, we showed that a linear regression of
standard image statistics obtained from stimuli videos
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Figure 2. An overview of the two psychophysical experiments on dynamic stimuli of 30 wood samples, along with their respective
analysis pipelines. Details of data visualizations 1–3: (1) Embedding of 30 samples (rows) into n similarity dimensions derived from the
VICE algorithm (columns). (2) Ordering of the 30 samples (columns) along n similarity dimensions (rows) according to their
embedding values. (3) Similarity matrix of 30 × 30 samples (green values indicate high similarity).

predicted the majority of the perceptual dimensions
well.

In addition to the similarity judgments, we
also asked a set of 45 participants to judge ten
experimenter-defined appearance characteristics
for each of the samples (brightness, glossiness,
colorfulness, directionality, complexity, contrast,
roughness, patchiness/regularity, line elongation,
spatial scale) as shown in the bottom part of the
block scheme in Figure 2. The purpose of this was
twofold. First, we sought to use the values of these
interpretable rating scales to facilitate interpretation of
the dimensions derived from the similarity judgments.
Second, we sought to cross-validate the embedding of
the samples within the 9D space. We reasoned that if
different samples are represented in a multidimensional
perceptual similarity space—with similar samples close
to one another and dissimilar ones further apart—then
it should be possible to probe this space through
multiple complementary methods (i.e., similarity
judgments and subjective feature ratings).

Our main contributions are the following:

• We learned that the perception of wood material
appearance is challenging and can be represented
by five to 10 perceptual dimensions.
• We identified particular features of wood
materials that participants use when making
similarity judgements, related mainly to roughness,
directionality and scale of visual features.
• We tested two methods for creating a mapping
that describes the relationship between material

stimuli: similarity judgments and attribute ratings.
Our results demonstrate that the two methods yield
embeddings that are substantially correlated but
not identical (sharing approximately 50% variance).
• Our analysis shows a significant proportion of
shared variance between individual ratings and
selected similarity dimensions.

Experiment 1

In the first experiment, we collected sparse similarity
judgements and used machine learning to infer the full
pairwise similarity matrix and to test the embedding of
samples in the latent space of wood appearance.

Methods

Participants
Fifty-six participants were recruited using the online

crowdsourcing platform Prolific (mean age = 40.5, SD
= 16.6, 35 males). All participants reported normal
or corrected-to-normal vision and no color vision
impairments; we did not perform any color vision
and visual acuity checks. On average, the experiment
took 14.0 minutes (SD = 4.9). The participants were
reimbursed with 2.1 GBP. All studies within this article
were approved by the Ethics Board of the Institute
of Psychology, Academy of Sciences of the Czech
Republic (PSU-308/Brno/2022).

Downloaded from jov.arvojournals.org on 06/04/2024



Journal of Vision (2024) 24(5):12, 1–21 Filip et al. 5

01 Afzelia
02 Masur birch
03 Pommele bubinga
04 Oak
05 Burr oak
06 Smoked oak
07 Eucalyptus
08 Gaboon
09 Pear
10 European apple
11 White ash
12 Ash heartwood
13 Maple burl
14 European lime (linden)
15 Macassar ebony
16 Movingui (lemon)
17 Olive
18 European walnut
19 Peruvian walnut
20 Padauk
21 Rosewood
22 Plane
23 Satinwood
24 Spruce
25 Spruce knotted
26 Tineo
27 American cherry
28 Tulipwood
29 Wenge
30 Zebrawood

Table 1. A complete list of wood species used in the experiment.

Apparatus and stimuli
We used 30 flat standard non-coated wood veneer

samples that are used for furniture manufacturing
(wood species are listed in Table 1). We captured video
sequences of slow rotations of the samples. Figure 3
shows the initial (left) and final (right) frames of each
video sequence, capturing specular and non-specular
view/light geometries for all samples. Video samples and
additional materials are available at https://osf.io/tz245.

All images in the video sequences were 42 × 42 mm
areas of the samples, captured by the UTIA goniometer
(Filip et al., 2013). In accordance with industry
standards in material observation (McCamy, 1996), we
fixed the polar angle of the camera and light to 45°
and only varied azimuthal angles to allow for faster
measurements. Each sequence starts with a difference of
90° between the azimuthal angles of light and camera
and includes a movement of the camera by 90° (arriving
at a difference of 180° between azimuthal angles),
resulting in specular and nonspecular material behavior
as shown in Figure 3. Each four-second sequence
consists of 60 image frames, repeated in reverse order

to create a continuous loop of rotating material. See
Supplementary Video S1.

To allow for smooth presentation in the experiment,
the image frames of all samples were cropped and
downsampled to 400 × 260 pixels, and combined
into single-trial frames with three samples on a black
background at qHD (quarter high definition, 960 ×
540 pixels) as shown in Figure 4(a). Each sequence
was started at a random time of the continuous loop
to prevent participants from responding to the initial
frames of the video sequence.

Because data was collected online, we did not
control for viewing distance (viewing angles) or
monitor settings. However, a post-hoc analysis of
monitor settings showed a minimal screen resolution
of 980 x 577 pixels, which allows for a full-resolution
presentation of our stimuli.

Experimental procedure
Experiment 1 consisted of 93 trials. In each trial,

participants judged the similarity of three presented
samples as shown in Figure 4(a), by deciding which
of two match stimuli (at the bottom of the screen)
was more similar to the test stimulus (at the top of
the screen; 2AFC match-to-sample design). Because
we study similarity within a single material category
(wood), we hypothesized a relatively low number of
three to five meaningful perceptual dimensions. In
line with the recommendations in (Haghiri, Rubisch,
Geirhos, Wichmann, & von Luxburg, 2019) (30 samples
and 3–5 dimensions: 900–1500 trials), we tested 1218
triplets, selected to account for 10% of all triplets
combinations with fixed match stimulus full similarity
matrix. We aimed for the most balanced coverage of
materials. Specifically, the 1218 triplets were created so
that each sample was presented as a match stimulus (the
top one) a similar number of times (i.e., 40 times [except
for 18 stimuli for which it was 41 times]). Also, for all
these 40 (41) positions for a given material, each of the
29 remaining materials was used equally often (two or
three times). To compute the noise ceiling and subjects’
consistency, we replicated the same set of triplets four
times, whereas two times an order of the test stimuli
was swapped, giving a total of 4872 triplet trials.

Across all triplets, each sample was presented as a
test stimulus in 160 to 164 trials and as a match stimulus
in 304 to 344 trials. Each triplet was judged four times
(i.e., by four different participants). Two out of four
repetitions swapped the left and right match stimuli to
control for a potential response bias. Each participant
was presented with one of 28 unique trial sets or its
copy with swapped match stimuli.

Data were collected online using a custom script in
the jsPsych framework (De Leeuw, 2015). After reading
the instructions, participants completed three practice
trials and 90 experimental trials (87 trials plus 3 catch
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Figure 3. All 30 samples of wood veneer for (left) specular, (right) non-specular (90° rotated) view/light geometries.

Figure 4. Example of stimuli frames of (a) the similarity judgement experiment, where participants responded to: “Which of the
bottom two materials appears most similar to the one on the top?” and (b) the rating experiment, where participants rated individual
samples according to different visual attributes.

trials). They initiated each trial by clicking the “Start”
button, after which a video with the three samples
started looping (Figure 4a). Participants responded to
the instruction below the video (“Which of the bottom
two materials appears most similar to the one on the
top?”) by clicking on the “left” or ”right” button at the
bottom. The response stopped the loop and initiated
the next trial, with a progress bar at the top showing the
number of remaining trials. Catch trials were presented
at fixed positions (fortieth, sixty-fifth, and eighty-fourth
trials) and featured the same sample presented twice, as
standard and match stimulus, yielding a ground truth
correct response.

Data analysis
All data are available from the following public

repository: [https://osf.io/tz245/]. We next sought to
identify a set of perceptual dimensions—with values
for every sample—that could account for the observed
pattern of similarity responses. To do this, we analyzed
the responses using Variational Interpretable Concept
Embeddings (VICE; Muttenthaler et al., 2022). This
algorithm takes as input the raw triplet judgements,
derives from these a sparse (i.e., incomplete) similarity
matrix, and estimates the full pairwise similarity matrix.
In the process, it iteratively estimates a set of underlying
dimensions that could account for the observed
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responses. As participants in our similarity judgement
study chose the more similar of two samples to a
match sample (i.e., 2AFC task), we applied the target
matching variant of VICE (instead of its odd-one-out
variant procedure).

Several of the VICE algorithm’s hyperparameters can
affect its results, including the number of dimensions.
To validate the performance of the model, we created
random splits of our participants’ similarity judgements
into training (90% of responses) and test sets (10% of
responses). Then, we performed a limited grid search
for selected hyperparameters of the model: learning
rate [0.0005, 0.001, 0.002], mixture of distributions in
the spike-and-slab prior [Gaussians, Laplace], spike (a
prior of probability at zero values) [0.125, 0.25, 0.75],
slab (a prior of probability for the non-zero values)
[0.2, 0.5, 1.0], and probability of relative weighting of
the distributions [0.4, 0.5, 0.6]. The training typically
converged within 200 epochs and typically resulted
in between eight and 11 dimensions (minimum four,
maximum 14 dimensions). We refer to the VICE model
dimensions as similarity dimensions in the rest of
the text. Details of the model selection and training
process are reported in Section 1 of the Supplementary
Material. The formula calculating the similarity matrix
from observers’ similarity judgements is given in
Supplementary Material as Equation (1).

Results

Consistency of similarity judgement responses
Our results show that participants were highly

consistent in their similarity judgments. When analyzing

interindividual consistency based on the four repetitions
of each triplet, in 569 triplets (47%) all four responses
were the same, in 439 triplets (36%) three responses
were the same, and in 210 triplets (17%) responses
were on par. This suggests that in the majority of trials
(83%) subjects were consistent, only in the remaining
17% they were at chance. Also, when comparing
sequences with their copies with swapped match stimuli,
swapping resulted in a different response in only 61
trials (5%).

Deriving perceptual dimensions from similarity
judgements

Based on the parameter grid search (see Section
1 of the Supplementary Material), we picked the
best performing model (nine dimensions; accuracy
on the training set = 0.760; accuracy on the test
set = 0.769). Importantly, even though the number
of similarity dimensions varied between different
resulting models from the parameter grid search, the
meaning of those dimensions was highly preserved.
Specifically, the embeddings obtained from the first five
best VICE models (with five to nine dimensions and
different hyper-parameters) were highly similar (mean
correlation between similarity matrices of the four next
best models to that of the best model was R = 0.922).
See the Supplementary Material for details. Thus, in the
following we analyze the best performing VICE model
under the justified assumption that it is representative
of a family of models with similar embedding.

The resulting embedding as shown in Figure 5a is
quite sparse, with on average only six values > 20%
percentile in each similarity dimension. Figure 5b

Figure 5. Details on the nine similarity dimensions of the best VICE model: (a) estimated embedding, (b) sum of embedding values for
individual dimensions (columns of a) and their cumulative sum, and (c) average accuracy on test set (blue) with 95% confidence
interval error-bar (red), approximate noise ceiling (gray), and chance level (red).
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Figure 6. Five samples for each similarity dimension rank-ordered based on embedding values. Each video sample is represented by
both the most non-specular and most specular condition. See left side of Supplementary Video S2.

shows the sum of loadings for individual dimensions
and suggests that the first five dimensions have a much
higher impact than the remaining four. Figure 5c
compares how well the similarity responses from
participants can be approximated by the values

estimated from the VICE model. Chance performance
in the 2AFCmatch-to-sample task (red) is 50%, with the
interparticipant noise ceiling (gray) at 82%. Similarly
to Hebart et al., 2020, we estimated an approximate
noise ceiling as the average agreement across the four
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Figure 7. Estimated pairwise similarity matrix with samples ordered based on hierarchical clustering and the depiction of the
corresponding samples in the individual clusters.

repetitions of each triplet. This approximates the best
possible prediction any model could achieve for our
dataset, given the variation in the judgement data.

Figure 6 shows samples rank-ordered by their
embedding values in each of the nine similarity
dimensions (highest values to the left). Each video
sample is represented by its two most distinct frames
(i.e., non-specular and specular reflection; refer to the
Supplementary Material to see the dynamic behavior of
the actual video samples).

The full pairwise similarity matrix of the wood
samples that we obtained from the estimated embedding
(see Hebart et al., 2020) is shown in Figure 7. For
similarity matrix computation was used Equation (1)
from the Supplementary Material. We used hierarchical
clustering (based on weighted average L2-norm) to
cluster similar samples together, showing that samples
had approximately three main visual modes, which
might be visually interpreted as samples having high
levels of roughness or contrast (M1), low spatial
frequency (M2), and prominent directional elements
(M3). These modes are also present in individual
similarity dimensions in Figure 6, where M1 is
represented by dimensions 1, 5, and 9; M2 by 2 and 6;
and M3 by 4, 8, and 3. Note that similar modes were
also found using the Louvain community detection
method (Blondel, Guillaume, Lambiotte, & Lefebvre,
2008), as reported in Section 2 of the Supplementary
Material.

Discussion

The analysis of participants’ similarity judgements
using the VICE model provided us with nine similarity
dimensions of wood. However, even though visualizing
the embedding by ranking samples within each

dimension may provide some intuition about the
meaning of the dimensions, it is not clear whether these
intuitions are the best description of the respective
dimensions. For this reason, we performed a second
comparative experiment relying on standard attributes’
ratings on a Likert scale.

Experiment 2

The main goal of the second experiment was to
obtain perceptual judgements for all wood samples
for a set of visual appearance attributes widely used
in the field of material perception. By being able
to describe our samples in terms of these specific
perceptual attributes, we aimed to provide a more valid
interpretation of the similarity dimensions from the
first experiment–and a corresponding understanding of
the main visual cues that naive observers use to describe
and discriminate between types of wood.

Methods

Participants
Forty-five volunteer observers participated in the

online experiment (age data were not collected). All
participants reported normal or corrected-to-normal
vision and no color vision impairments. On average, the
experiment took 22.0 minutes (SD = 17.6).

Apparatus and stimuli
The stimuli used in Experiment 2 were the same as in

Experiment 1.
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Figure 8. Five samples for each rating dimension rank-ordered based on average rating responses. Each video sample is represented
by both the most non-specular and most specular condition. See the right side of Supplementary Video S2.

Procedure

Participants were presented with 30 trials, each
showing one of the sample videos from Experiment 1.
The resolution of each stimuli image was 920 × 600
pixels. To make the task easier for participants, all
other materials were simultaneously presented for

comparison at a smaller scale at the top of the screen, as
shown in Figure 4b. Participants rated each material on
ten visual appearance attributes (brightness, glossiness,
colorfulness, directionality, complexity, contrast,
roughness, patchiness/regularity, line elongation, and
spatial scale), using a visual analog scale. The attributes
were selected based on a review of previous research

Downloaded from jov.arvojournals.org on 06/04/2024
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Figure 9. Interclass similarity, computed as Pearson correlation across all samples, with the dendrogram showing the results of
hierarchical clustering of attributes.

(Tamura, Mori, & Yamawaki, 1978; Rao & Lohse, 1996;
Fleming et al., 2013; Tanaka &Horiuchi, 2015, Nordvik
et al., 2009) and salient differences between samples
identified by the experimenters. For the participants,
the meaning of each visual attribute was explained
with a short sentence (e.g., brightness: “How bright is
the material in comparison with the others?”). Also, the
endpoints of each scale were labeled (e.g., brightness:
“dark” and “bright”). A full description of each visual
attribute and the corresponding endpoint labels is
provided in Section 4 of the Supplementary Material.

All attribute scales were on the screen simultaneously,
and at the start of each trial all sliders were set
to the center of each scale. Only after moving
all sliders, participants could proceed to the next
trial.

Data analysis
Again, a post-hoc analysis of monitor settings

showed a sufficient minimum screen resolution of 980
× 768 pixels. The inter-rater agreement was determined
using the intraclass correlation coefficient (ICC; Koo
& Li, 2016, with two-way random effects, based on
mean rating and consistency). More detailed analysis of
participants’ responses is provided in Section 5 of the
Supplementary Material. We computed the similarity
matrix from observers’ ratings using equations (2)
and (3) in the Supplementary Material. Note that as
attributes’ values are collected on a 100-point scale,
the similarity in a particular dimension is expressed
by the 100 minus absolute difference of rating values
(2), whereas the joint similarity matrix is the root mean
square individual-attribute similarity (3).

Results

The rating responses for each attribute formed
unimodal distributions with mean values close to the
central point (45.8 to 59.5) and similar SD values (21.7
to 29.6). The ICC indicated excellent reliability (ICC >
0.898) for all attributes, but spatial scale where ICC =
0.659 indicated only moderate reliability. Samples with
the highest rating responses for each rating dimension
are shown in Figure 8, with visually intuitive results in
the majority of dimensions (again, with the exception
of spatial scale).

Note that these examples also suggest similarities
between rating dimensions (i.e., overlap in samples
for, e.g., colorfulness and contrast). To measure these
interclass similarities, we computed Pearson correlations
for mean rating values across all 30 samples. As shown in
Figure 9, we observe a high positive correlation between
colorfulness-contrast, directionality-line elongations,
and complexity-patchiness/regularity. On the other
hand, a high negative correlation is observed for
brightness-colorfulness and brightness-contrast. These
similarities are also evident at the level of individual
samples, as is shown in Figure 13a, which shows
similarity matrices for individual rating dimensions. See
Supplementary Video S2 with material samples ranking
as a function of dimensions loadings of VICE (left)
and rating responses having the highest and the lowest
values.

Discussion

Our rating experiment provided reliable and visually
intuitive data on the selected visual appearance
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attributes, but also highlighted mutual dependencies
between some of the attributes. This suggests that our
samples can be described by less than 10 attributes,
that is, the latent visual dimensionality of our samples
is lower than 10. In the next section, we compare an
overlap between samples’ embeddings obtained from
the similarity and rating experiments.

Interpretation of similarity
dimensions

As the meaning of the similarity dimensions
discovered by the VICE model are not known, we
used cross correlation and multilinear regressions
between appearance ratings and similarity judgements
as well as between their respective similarity matrices.
This allowed us to assign meaning to the similarity
dimensions by relating them to the meaningful
appearance ratings.

Cross-correlation of similarity and rating
dimensions

In this section, we compare the reference similarity
matrix obtained from the similarity judgments
(Figure 7) with the (1) similarity matrices obtained
from individual appearance attribute ratings, and (2)

their combinations using L2-norm and linear regression
(also see Figure 2).

Across all appearance attributes, the mean
correlation between similarity matrices from ratings
and similarity judgements is relatively low (Pearson R
= 0.269 exclusion of matrix diagonal), with the highest
correlations for directionality (R = 0.378) and roughness
(R = 0.412). This confirmed our expectation that the
similarity embedding cannot be explained using a single
rating attribute.

For a direct correlation between all attributes’ ratings
and all VICE similarity dimensions, see Figure 10a.
The highest positive correlation was R = 0.739 and the
highest negative correlation was R = −0.812. Notably,
similarity dimensions 1, 3, 4, and 5 show similar
patterns of correlation to rating attributes colorfulness,
directionality, complexity, and roughness. On the other
hand, similarity dimension 7 is not correlated strongly
with any rating attribute, which suggests that none of
them can explain the visual appearance captured by
this particular dimension. To test whether the similar
pattern of correlations across similarity dimensions
follows from a strong dependency between individual
rating attributes, we computed principal component
analysis (PCA) on our rating data. Figure 10b shows
that only five PCA components explain 91.1% of the
variance, suggesting that the effective number of main
perceptual dimensions for our set of wood samples
is above 5. We confirm this hypothesis by using a

Figure 10. (a) Correlations of rating attributes (rows) to similarity dimensions (columns), with negative correlations in red and positive
correlations in green (range [−1, 1]). (b) Cumulative singular values loadings of PCA computed on correlations across rating attributes
(a), an indication of the effective perceptual dimensionality of the dataset.
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Figure 11. Sample rank-ordered by embedding values in VICE similarity dimensions. Inset: Correlations between similarity (VICE) and
rating attributes, obtained from linear regressions (R2 scores provide information on how well the linear regression using rating
attributes explained individual similarity dimensions. See Supplementary Video S3.

statistical approach to estimate the number of data
dimensions based on triplet embedding accuracy of
ordinal triplets embedding (Künstle, von Luxburg, &
Wichmann, 2022)—which identifies six as the inherent
dimensionality of our data (see details on this analysis
in Section 3 of the SupplementaryMaterial). This is also
supported by the steep drop of similarity embedding
factor loadings after the fifth perceptual dimension
(Figure 5b). However, note that VICE is not optimized
to obtain a low number of perceptual dimensions
but to retrieve sparse and non-negative dimensions.
Specifically, the purpose of the VICE algorithm is
to find an overarching set of dimensions used across
all comparisons, even if for any given comparison,
only a subset of these came into play. For example,
for one triplet of materials, color might be especially
important, but not for another. Our analysis of the five
best VICE models revealed that this dimensionality is

quite stable and at least five (9, 8, 8, 9, 5). The effect of
removing individual dimensions on model accuracy, as
well as an analysis of model stability, is provided in the
Supplementary Material.

A more quantitative comparison between similarity
dimensions and rating attributes is shown in Figure 11.
For each similarity dimension, we ordered and scaled
samples according to their embedding values along
each dimension. The inset shows how well the variation
in each similarity dimension is correlated with different
rating attributes. Here, we observe similar patterns for
dimensions 1, 3, 4, and 5, while dimension 7 is virtually
constant across rating attributes. R2 scores in the legend
demonstrate how well each similarity dimension can be
predicted by linear regression of rating attributes.

To compare the results obtained from the two
experiments, we computed the rating similarity matrix
as L2-norm across all attributes (see Equations 2 and 3
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Figure 12. A comparison of similarity matrices obtained by (a) similarity judgements and (b, c) ratings using L2-norm and linear
regression, respectively. The correlation between matrices is for (b) R = 0.627 (R2 = 0.393) and for (c) R = 0.720 (R2 = 0.519).
Corresponding embeddings of samples in the first two MDS dimensions for (d) similarity judgement and (e, f) ratings (after Procrustes
alignment). The Supplementary Material also features the exact mapping of wood sample locations in the MDS space.

in the Supplementary Materials). This shows us how
well combined ratings can predict the VICE similarity
matrix without any a priori information or weighting
(Pearson correlation instead of L2-norm yields very
similar results). A direct correlation between similarity
matrices obtained from similarity judgement and
attributes rating using L2-norm (excluding diagonal
elements) was R = 0.628 (R2 = 0.394). The matrices are
shown in the first row of Figures 12a and 12b.

We used multidimensional scaling (MDS) (Carroll &
Arabie, 1998) on the VICE similarity matrix to visualize
the embedding of wood samples in three-dimensional
space. The MDS projection of samples onto the first
two dimensions is shown in Figure 12d. In line with our
visual interpretation of the three main visual modes in
Figure 7, the first MDS dimension can be interpreted
as related to roughness, the second to directionality
and the third to spatial frequency. For clarity, we also
included these plots with the video samples as presented
to observers. We compared MDS results over the
similarity matrices and coordinates of all 30 samples

for the first two MDS dimensions after Procrustes
alignment, which are shown in Figure 12e. For MDS of
VICE similarity matrix into all three dimensions, see
the top part of the Supplementary Video S4.

Prediction of similarity matrix from rating
attributes

Beyond simple correlations between individual
ratings and similarity dimensions, we can test how
well a combination of rating attributes predicts
similarity judgements. To this end, we used multilinear
regression to predict the similarity judgement matrix
in Figure 12a by a linear combination of the rating
attribute similarity matrices shown in Figure 13a. The
matrices’ diagonals were kept to anchor scaling. The
regression model explains about 52% of the variance in
similarity judgements (R = 0.720, R2 = 0.519) while
still preserving the major similarity modes, as shown in
Figure 13a. To evaluate the importance of individual
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Figure 13. (a) Similarity matrices of individual rating attributes compared to the VICE similarity matrix and the result of the linear
combination of the 10 rating similarity matrices. (b) Results of leave-one-out regression analyses showing the respective drops in
correlation below the red baseline due to individual attributes removal.

rating attributes for the reconstruction, we performed
leave-one-out regressions and the resulting drops in
explained variance. Figure 13b shows that the most
important attributes are roughness, brightness, and
line. A comparison of the obtained MDS over the
similarity matrices and coordinates of all 30 samples
for the first two MDS dimensions after Procrustes
alignment is shown in Figure 12f. Also, see Section 6
of the Supplementary Material for samples alignment
according to MDS and Supplementary Video S4,
comparing three MDS dimensions of similarity
judgements similarity matrix (top) with its linear
regression using rating attributes (bottom).

Mapping between similarity dimensions and
rating attributes

Because there is no straightforward one-to-one
mapping between VICE similarity dimensions and
subjective rating attributes, in this section, we analyzed
how well each similarity dimension can be represented
by a combination of multiple rating attributes and
vice versa. First, we used linear regression to predict
individual VICE similarity dimensions by a linear
combination of the rating attributes. The linear
combination of ratings can well explain individual
similarity dimensions, with an average of R = 0.851
(R2 = 0.731). In Figure 14a, R2 scores of similarity
dimensions represented by the regression model are
shown as total bar height. All dimensions (with the
possible exception of 7 and 9) can be well explained by
a combination of rating attributes (R2 scores > 0.7).

As reported previously, dimension 7 is not well
predicted by any of the rating attributes. This might be
for two reasons: either none of our predefined attributes
captures the same visual appearance as that similarity
dimension, or there is a general bias in our rating data

that is introduced by a particular interpretation of the
to-be-rated attributes. For instance, line elongation,
patchiness/regularity, or spatial scale might have
different meanings at different frequency scales. For
instance, samples 22 and 30 (see Figure 3) both share a
fine detail structure and a distinct low-frequency stripy
pattern. As a result, observers might be confused as to
whether these attributes should be evaluated on a fine
or coarse scale, resulting in overall ambiguous ratings.

In the stacked bars of Figure 14a, we plot linear
regression values in different colors to visualize
the contribution of rating attributes to each of the
similarity dimensions. For example, dimension 1
is strongly negatively related to colorfulness and
roughness but strongly positively related to contrast,
regularity, and directionality, whereas dimension 5
represents materials that were judged low on line
elongation, brightness, and glossiness (see samples rank
ordering along dimensions in Figure 11).

Similarly to this analysis, we applied linear regression
to predict subjective rating attributes by a linear
combination of the VICE similarity dimensions. The
mean correlation between subjective ratings and their
linear model prediction is R = 0.859 (R2 = 0.737).
Results for individual rating attributes are reported as
total bar height in Figure 14b, demonstrating very good
performance of VICE dimensions in reproduction of
all ratings (with the possible exception of glossiness
and spatial scale). When we reduced the number of
VICE dimensions used for regression to only the two
or three most important, based on absolute values
of their regression coefficients, we still obtained
reasonable mean prediction performance across all
attributes R = 0.718 (R2 = 0.515). The regression
coefficient values for individual VICE dimensions
are shown in different colors within stacked bars in
Figure 14b. For instance, attribute colorfulness is mainly
represented by VICE dimension 3, whereas regularity
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Figure 14. R2 scores of regression of similarity dimensions by rating attributes (a), and regression of rating attributes by similarity
dimensions (b) are shown as the total height of stacked bars. Individual colors in the bars represent the contribution of regression
values of individual rating attributes (a)/VICE dimensions (b). Overlaid magenta graphs show R2 scores of VICE dimensions (a)/rating
attributes (b) when represented by regression of computational image statistics.

and directionality are strongly represented by VICE
dimension 6.

We have determined that the VICE similarity
dimensions provide valuable information, effectively
predicting the majority of rating attributes. However,
we discovered a surprising lack of significant overlap
between the VICE dimensions and our rating attributes,
leading to a non-intuitive interpretation of these
dimensions. We hypothesize that the use of dynamic
stimuli in our experiment caused individual dimensions
to encompass multiple visual cues used by observers,
making their complete disentanglement an open
challenge. The diminished performance of VICE
dimensions in predicting attributes such as glossiness
and spatial scale might be attributed to their low
intuitiveness for observers during the rating study.
Alternatively, it could be due to their overall low
importance, as indicated by the limited descriptive
performance of the VICE dimensions.

Relationship between perceptual dimensions
and image statistics

To relate similarity dimensions to computational
statistics, we used a number of standard image statistics
used in texture synthesis related to human low-level
perception of textures (Portilla & Simoncelli, 2000,
Motoyoshi et, 2007), namely minimum, maximum,
mean, variance, skewness, and kurtosis. We supplied

additional statistics evaluating image directionality
(Maskey & Newman, 2021) and frequency content in
three bands (low, mid, and high frequencies) computed
from PSD of the image converted to the Fourier
domain. The final values of statistics were averaged
across all frames of the movie sequence. We used
these statistics for linear regression of VICE similarity
dimensions and attributes ratings, and R2 scores of
results are shown as magenta overlaid plots in Figures
14a and 14b, respectively. We observe similar values of
R2 scores to those obtained from ratings regression,
and in general all similarity dimensions, except 7 and 9,
can be represented reasonably well using our statistics.
The mean R2 score across VICE similarity dimensions
was 0.65 (R = 0.73), and across rating attributes 0.79 (R
= 0.89).

Detailed plots of all regression coefficients are shown
in Section 8 of the Supplementary Material. Also,
see Supplementary Video S5, comparing three MDS
dimensions of similarity judgements similarity matrix
(top) with a similarity matrix obtained as L2-norm
of all 11 computational statistics (bottom). The video
demonstrates reasonable prediction performance of the
statistics.

General discussion

In this study, we set out to identify core perceptual
characteristics of wood. Characterizing the visual
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appearance of wood is complex because of the variety
of factors like color, grain patterns, fine-scale relief,
and reflectance behavior. Accordingly, a description
in physical terms requires very high-dimensional
measurements that capture the image projected by the
material surface across many lighting conditions and
viewing angles. Yet, we reasoned that when human
observers are asked to compare samples—or judge the
appearance of a single sample—they would rely on a
relatively small number of perceptual dimensions that
together summarize the overall “look” of each surface
and its texture—what we might call a “visual signature”
of the material (Sharan et al., 2013; Schmidt et al.,
2022).

Here, we wanted to estimate such an internal
multidimensional representation by asking observers
to make comparisons between samples. A secondary
goal was to test the extent to which different methods
of probing this putative representation yielded similar
embeddings of the material samples. We reasoned
that if observers draw on shared, core perceptual
dimensions to judge the appearance of wood, it should
be possible to probe this representation using distinct
tasks.

To test this, we performed two experiments using
movies of thirty samples of different wood veneers,
rotating in such a way as to reveal both non-specular
and specular appearance modes. In the first experiment,
we took a data-driven approach, asking participants
to make relative similarity judgments in a 2AFC task,
from which we sought to derive underlying perceptual
dimensions using the VICE algorithm (Muttenthaler
et al., 2022). In the second experiment, we defined a set
of 10 appearance characteristics and asked participants
to rate each sample in terms of all 10 characteristics,
effectively directly stating the location of each sample in
a 10-dimensional appearance space. Our main findings
can be summarized as follows:

• In Experiment 1, the VICE algorithm revealed
that nine similarity dimensions could account for
75% of the variance in the similarity judgments,
consistent with the notion of a low-dimensional
“visual fingerprint” summary representation of
their appearance.
• In Experiment 2, participants were consistent
in their judgments of the 10 appearance
characteristics, suggesting agreement about the
embedding of samples relative to one another.
• Despite substantial differences in the tasks between
the two experiments, we nevertheless found a
degree of overlap between embeddings of the
samples derived from the two tasks (over 50%
shared variance), providing further evidence for
a core representation of wood materials, with
similar-looking samples close to one another,
and more distinct ones further away from one

another within the multidimensional appearance
space.
• The consistency between the two experiments
can also be demonstrated by approximating the
dimensions inferred from Experiment 1 as a
weighted linear combination of the predefined
attributes ratings in Experiment 2.
• Finally, a set of quite simple low-level image
features, designed to capture similar appearance
characteristics as the rating attributes predict the
ratings and similarity dimensions surprisingly well,
using simple linear regression. Although these
image features will not be the exact quantities that
the visual system uses to represent and compare
the wood samples, this shows how we can use
straightforward image-computable models to
predict perceived differences in appearance (under
constant viewing conditions). This has potential
practical applications in many areas.

Our study also provides a proof-of-principle
demonstration that it is possible to establish
embeddings of items from a single basic-level category
(here: wood) within a perceptual space using either
a subset of all possible similarity comparisons, or
through direct rating of particular features. The study
differed from previous investigations in the use of
movies rather than static images, capturing a wide range
of appearances for each sample, and in the comparison
between similarity and appearance ratings.

Limitations and future directions

Although our study provides a first proof-of-principle
for identifying perceptual dimensions within a single
material category, there are a number of important
limitations of the approach, which we consider here.

Limited number of wooden samples
The stimulus set considered here consisted of only

thirty samples of different wood veneers, as listed
in Table 1. This is one of the largest sets of wooden
samples used in a psychophysical analysis to date,
and we carefully selected this set from a catalogue of
200 wood veneers to provide as broad and uniform a
range of appearances as possible. However, including
a larger number of samples would necessarily provide
additional information about the embedding and would
potentially reveal additional perceptual dimensions
by covering a wider range of appearances. On the
other hand, including more samples would have made
our similarity experiment much more demanding.
Thus, to validate our sample selection, we repeated
the attributes rating experiment on a different set of
thirty samples and obtained a much lower variability
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in image statistics and rating responses compared to
the main dataset. This suggests that we were successful
in picking samples with a high variability. It would
also be particularly interesting to include multiple
samples of each species (see Table 1) in future work
to capture within-item variability as well. We would
expect that although different samples would be clearly
discriminable, generally, they would tend to occupy very
close locations within the multidimensional perceptual
space.

Limited observation and illumination geometry
By using dynamic stimuli, in contrast to previous

studies, which tended to offer only a single view of
each sample, we were able to provide observers with
some information about how the appearance of the
samples changed depending on viewing conditions,
including both specular and non-specular conditions.
Nevertheless, this still represented a limited subset
of all possible lighting-sample-viewer configurations.
We had to limit camera and light trajectories so that
movies were of reasonable duration. Based on pilot
work with a range of different sampling parameters, we
identified a rotation that was of acceptable durations,
and that was intuitive for observers. As the appearance
of wood does not typically change much with polar
angle, we limited polar viewing angles to 45° and
changed azimuthal angles only. A comparison of
image histograms from our videos with those of the
full BTF for the same material (at polar angles 45°,
including over 400 images for different combinations
of illumination and view azimuthal angles) provided
mean differences of χ2 lower than 0.10. This leaves us
confident that the selected views were representative of
the overall appearance.

Dynamic range artefact in some stimuli
For three of 30 stimuli there was a briefly visible

flickering artefact for a few (three or four) frames
around the specular angle. This resulted from an error
in the tone mapping process of high dynamic range
data, but because it was limited to only a few samples
and the effect was small, we expect it to have a limited
impact on the results reported here.

Limited size of samples
On a related point, the visible area of the samples

was around 50 × 50 mm. This size was selected to
deliver fine surface details. On the other hand, for
certain species, there may be low-frequency content that
was excluded by the small size. To compensate for this
during video acquisition, the location of the captured
area on the veneer specimen was carefully selected
to demonstrate the main sample’s characteristics. A

similar comparison of histogram statistics with BTF
data over a large-scale of image plane resulted in
similarly low differences in histograms, again indicating
that the patch was representative of the sample as a
whole. Of course, our dataset cannot describe visual
behavior going beyond our sample size (i.e., too low
spatial frequencies in texture or slow gradient change
over the sample).

Limited coverage of triplets for similarity judgements
In Experiment 1, we measured only a small subset of

all possible stimulus triplets. Specifically, our experiment
had a coverage of 10%, which is nevertheless far
greater than the less than 2% coverage used in other
studies using related data analyses (Hebart et al.,
2020). On the other hand, our number of samples is
considerably lower, greatly reducing the number of
necessary trials. We followed the recommendations in
(Haghiri, Wichmann, & von Luxburg, 2020) to estimate
the number of judgements, although future studies
could potentially increase the coverage further for small
stimulus sets like ours.

Stability of similarity dimensions
Statistical inference methods like VICE are

stochastic, so repeated runs of the algorithm on the
same data can deliver slightly different outcomes.
This naturally raises questions about the stability and
interpretation of the outcome. We tested a wide range
of hyperparameter values, and found the values we used
delivered representative results. Importantly, although
the exact number of VICE similarity dimensions varied
across runs, the meanings of those dimensions (i.e., the
loadings across samples) were highly conserved. This,
along with the high extent to which the dimensions
could predict similarity ratings, gives high confidence
that the analysis delivered robust results. Increasing
the number and diversity of samples, as well as
the coverage, would lead to even greater stability,
although with obvious practical costs. It is nevertheless
important to emphasize that in interpreting results on
small and constrained stimulus sets like our, greater
emphasis should be placed on the embedding of items
within the multidimensional space than on the precise
number or direction of the dimensions returned
by VICE (or related algorithms). The convergence
between the ratings and the VICE analysis supports
this view.

Intuitive interpretability of individual similarity
dimensions

Although some studies (e.g., Hebart et al., 2020;
Josephs et al., 2023; Schmidt et al., 2022) have found
that analyses similar to VICE deliver dimensions that
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are highly intuitively interpretable, in our case, most
of the dimensions appeared to be better understood
as weighted combinations of several intuitive factors.
This can be seen in Figure 11, for example, in which
samples are ranked by their values of the nine
similarity dimensions returned by VICE. Some of the
dimensions seem to capture intuitive concepts. For
example, dimension 4 appears related to stripiness,
and this is consistent with the high loading of the
“Directionality” and “Line” features in the multiple
regression for this feature. Dimension 6, in contrast,
seems to be approximately the opposite, with an
emphasis on samples with turbulent texture patterns
rather than linear grain. However, for most of the
other dimensions, the interpretation is less intuitive.
This is likely due to the small and constrained sample
set. With diverse image sets that span the entire range
of commonly occurring objects, for example (Hebart
et al., 2020), almost all samples will have near-zero
values of any given attribute, although there are still
sufficient numbers of images with high values to enable
a dimension to emerge from the analysis. Indeed, such
datasets are particularly well suited for seemingly
meaningful individual dimensions to be recovered
by the sparse nonnegative matrix factorization.
By contrast, within-category samples, as in our
experiments, tend to involve characteristics that are
more uniformly distributed across samples. This is likely
to be one of the reasons that the recovered similarity
dimensions were composites of multiple factors.
Nevertheless, again it should be noted that we place
greater emphasis on the embedding of items within the
space than on the exact orientation of the underlying
dimensions.

Choice of rating dimensions
There are practical limits to the number of

appearance attributes that participants can feasibly be
asked to rate for each sample. As with the majority
of previous perceptual studies of wood surfaces
(Nakamura et al., 1999; Nordvik et al., 2009; Fujisaki
et al., 2015; Manuel et al., 2015, Wan et al., 2021),
we preselected a list of visual properties in our
rating experiment. This list, of course, is likely to be
incomplete as there are potentially infinitely many ways
of describing samples, including those that may make
intuitive visual sense but which cannot easily be put into
words. Nevertheless, we find that this set of similarity
dimensions leads to intuitive and repeatable judgments,
which are sufficient to capture an embedding of the
samples similar to that revealed by the similarity ratings
and VICE analysis. Future studies could also ask
participants, rather than the experimenters, to provide
terms that describe important appearance differences
between samples, which other participants would then
rate (see, e.g., Van Assen, Barla, & Fleming, 2018).

Conclusions

Our study sought to identify core perceptual
dimensions underlying the appearance of wood. Using
30 movies of rotating planar wooden veneer samples, we
asked participants to judge the similarity between items
and rate each sample along 10 predefined attributes.
Our main findings can be summarized as follows:

1. We find that woods have complex appearances. To
account for similarity judgments between samples
in our dataset, between five to 10 distinct perceptual
dimensions need to be considered.

2. The space of wood appearances depends on the
method used to probe it. Specifically, the material
embeddings resulting from the similarity judgments
and attribute ratings were substantially correlated
but not identical.

3. Individual similarity dimensions could be expressed
as a weighted linear combination of the following
10 attributes: brightness, glossiness, colorfulness,
directionality, complexity, contrast, roughness,
patchiness/regularity, line elongation, and spatial
scale.

4. Certain attributes appeared to be particularly
important to participants when making similarity
judgements, especially those related to the roughness,
directionality, and scale of visual features.

Together these findings suggest a core internal
representation of the samples, capturing the overall
“look” of the samples in a relatively small number of
similarity dimensions. The results not only reveal the
core dimensions underlying the perception of wood,
they also provide a proof of concept demonstration
for how perceptual dimensions underlying judgments
within a single basic-level category can be probed using
multiple tasks.

Keywords: texture, surface, color, categorization,
similarity, wood, material, perception, rating, dimension
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182 00, Praha 8, Czech Republic.

References

Anderson, B. L. (2011). Visual perception of
materials and surfaces. Current Biology, 21(24),
R978–R983.

Bell, S., Upchurch, P., Snavely, N., & Bala, K. (2015).
Material recognition in the wild with the materials
in context database. In: Proceedings of the
IEEE conference on computer vision and pattern
recognition, (pp. 3479–3487).

Blondel, V. D., Guillaume, J. L., Lambiotte, R., &
Lefebvre, E. (2008). Fast unfolding of communities
in large networks. Journal of Statistical
Mechanics: Theory and Experiment, 2008(10),
P10008.

Bracci, S., & Op de Beeck, H. P. (2023). Understanding
human object vision: a picture is worth a thousand
representations. Annual Review of Psychology, 74,
pp. 113–135.

Carroll, J. D., & Arabie, P. (1998). Multidimensional
scaling. Measurement, Judgment and Decision
Making, 179–250.

Dana, K.J., van Ginneken, B., Nayar, S.K., &
Koenderink, J.J. (1999). Reflectance and texture of
real-world surfaces, ACM Transactions on Graphics,
18(18), 1–34

De Leeuw, J. R. (2015). jsPsych: A JavaScript library for
creating behavioral experiments in a Web browser.
Behavior Research Methods, 47, 1–12.

Ferwerda, J. A., Pellacini, F., & Greenberg, D. P. (2001).
Psychophysically based model of surface gloss
perception. In SPIE Human vision and electronic
imaging vi, Vol. 4299, pp. 291–301.

Filip, J., Vavra, R., Haindl, M., Zid, P., Krupicka,
M., & Havran, V. (2013). BRDF slices: Accurate
adaptive anisotropic appearance acquisition. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 1468–1473).

Fleming, R. W., Dror, R. O., & Adelson, E. H. (2003).
Real-world illumination and the perception of
surface reflectance properties. Journal of Vision,
3(5), 3–3.

Fleming, R. W., & Bülthoff, H. H. (2005). Low-level
image cues in the perception of translucent
materials. ACM Transactions on Applied Perception,
2(3), 346–382.

Fleming, R. W., Jäkel, F., & Maloney, L. T. (2011).
Visual perception of thick transparent materials.
Psychological Science, 22(6), 812–820.

Fleming, R. W., Wiebel, C., & Gegenfurtner, K. (2013).
Perceptual qualities and material classes. Journal of
Vision, 13(8), 9–9.

Fleming, R. W. (2017). Material perception. Annual
Review of Vision Science, 3, 365–388.

Fujisaki, W., Tokita, M., & Kariya, K. (2015).
Perception of the material properties of wood based
on vision, audition, and touch. Vision Research,
109, 185–200.

Haghiri, S., Rubisch, P., Geirhos, R., Wichmann, F.,
& von Luxburg, U. (2019). Comparison-based
framework for psychophysics: Lab versus
crowdsourcing. arXiv preprint arXiv:1905.07234.

Haghiri, S., Wichmann, F. A., & von Luxburg, U.
(2020). Estimation of perceptual scales using
ordinal embedding. Journal of Vision, 20(9), 14–14.

Haindl, M., & Filip, J. (2013). Visual texture: accurate
material appearance measurement, representation
and modeling. Advances in Computer Vision and
Pattern Recognition. London: Springer-Verlag.

Hebart, M. N., Zheng, C. Y., Pereira, F., & Baker, C.
I. (2020). Revealing the multidimensional mental
representations of natural objects underlying
human similarity judgements. Nature Human
Behaviour, 4(11), 1173–1185.

Josephs, E. L., Hebart, M. N., & Konkle, T. (2023).
Dimensions underlying human understanding of
the reachable world. Cognition, 234, 105368.

Koo, T. K., & Li, M. Y. (2016). A guideline of selecting
and reporting intraclass correlation coefficients
for reliability research. Journal of Chiropractic
Medicine, 15(2), 155–163.

Künstle, D. E., von Luxburg, U., & Wichmann, F.
A. (2022). Estimating the perceived dimension
of psychophysical stimuli using triplet accuracy
and hypothesis testing. Journal of Vision, 22(13),
5–5.

Lewin, M., & Goldstein, I.S. (1991). Wood Structure
and Composition, International Fiber Science and
Technology. Boca Raton, FL: CRC Press.

Manuel, A., Leonhart, R., Broman, O., & Becker, G.
(2015). Consumers’ perceptions and preference
profiles for wood surfaces tested with pairwise
comparison in Germany. Annals of Forest Science,
72(6), 741–751.

Marlow, P. J., Kim, J., & Anderson, B. L. (2012). The
perception and misperception of specular surface
reflectance. Current Biology, 22(20), 1909–1913.

Maskey, M., & Newman, T. S. (2021). On measuring
and employing texture directionality for image

Downloaded from jov.arvojournals.org on 06/04/2024



Journal of Vision (2024) 24(5):12, 1–21 Filip et al. 21

classification. Pattern Analysis and Applications,
24(4), 1649–1665.

McCamy, C. S. (1996). Observation and measurement
of the appearance of metallic materials. Part I.
Macro appearance. Color Research & Application,
21(4), 292–304.

Motoyoshi, I., Nishida, S. Y., Sharan, L., & Adelson,
E. H. (2007). Image statistics and the perception of
surface qualities. Nature, 447(7141), 206–209.

Muttenthaler, L., Zheng, C. Y., McClure, P.,
Vandermeulen, R. A., Hebart, M. N., & Pereira, F.
(2022). VICE: Variational Interpretable Concept
Embeddings. Advances in Neural Information
Processing Systems, 35, 33661–33675.

Nakamura, M., Masuda, M., & Shinohara, K. (1999).
Multiresolutional image analysis of wood and other
materials. Journal of Wood Science, 45, 10–18.

Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsburg,
I.W., & Limperis, T. (1977). Geometrical
considerations and nomenclature for reflectance.
NBS Monograph 160, 1–52

Nordvik, E., Schütte, S., & Broman, N. O. (2009).
People’s perceptions of the visual appearance of
wood flooring: A kansei engineering approach.
Forest Products Journal, 59(11-12), 67–74.

Paulun, V. C., Schmidt, F., van Assen, J. J. R., &
Fleming, R. W. (2017). Shape, motion, and optical
cues to stiffness of elastic objects. Journal of Vision,
17(1), 20–20.

Portilla, J., & Simoncelli, E. P. (2000). A parametric
texture model based on joint statistics of complex
wavelet coefficients. International Journal of
Computer Vision, 40, 49–70.

Rao, A. R., & Lohse, G. L. (1996). Towards a texture
naming system: Identifying relevant dimensions of
texture. Vision Research, 36(11), 1649–1669.

Schmidt, F., Hebart, M. N., & Fleming, R. W. (2022).
Core dimensions of human material perception.
PsyArXiv, doi:10.31234/osf.io/jz8ks

Sharan, L., Liu, C., Rosenholtz, R., & Adelson, E. H.
(2013). Recognizing materials using perceptually
inspired features. International Journal of Computer
Vision, 103, 348–371.

Sharan, L., Rosenholtz, R., & Adelson, E. (2009).
Material perception: What can you see in a brief
glance?. Journal of Vision, 9(8), 784–784.

Sharan, L., Rosenholtz, R., & Adelson, E. H. (2014).
Accuracy and speed of material categorization in
real-world images. Journal of Vision, 14(9), 12–12.

Tamura, H., Mori, S., & Yamawaki, T. (1978). Textural
features corresponding to visual perception. IEEE

Transactions on Systems, Man, and Cybernetics,
8(6), 460–473.

Tanaka, M., & Horiuchi, T. (2015). Investigating
perceptual qualities of static surface appearance
using real materials and displayed images. Vision
Research, 115, 246–258.

Van Assen, J. J. R., Barla, P., & Fleming, R. W. (2018).
Visual features in the perception of liquids. Current
Biology, 28(3), 452–458.

Wan, Q., Li, X., Zhang, Y., Song, S., & Ke, Q. (2021).
Visual perception of different wood surfaces: An
event-related potentials study. Annals of Forest
Science, 78, 1–18.

Wendt, G., Faul, F., & Mausfeld, R. (2008). Highlight
disparity contributes to the authenticity and
strength of perceived glossiness. Journal of Vision,
8(1), 14–14.

Wendt, G., Faul, F., Ekroll, V., & Mausfeld, R. (2010).
Disparity, motion, and color information improve
gloss constancy performance. Journal of Vision,
10(9), 7–7.

Wiebel, C. B., Valsecchi, M., & Gegenfurtner, K.
R. (2013). The speed and accuracy of material
recognition in natural images. Attention, Perception,
& Psychophysics, 75, 954–966.

Supplementary material

Supplementary Video S1. 30 test wood video
sequences used in the experiments.

Supplementary Video S2. Rank ordered samples
(left) according to loadings values of similarity
dimensions, (right) mean rating attributes (the five
closes and 5 the most distant).

Supplementary Video S3. Rank ordered samples
scaled according to loadings values of similarity
dimensions.

Supplementary Video S4. Distribution of samples
along three MDS dimensions (top) for similarity
judgements, (bottom) for rating study.

Supplementary Video S5. Distribution of samples
along three MDS dimensions (top) for similarity
judgements, (bottom) for computational statistics
obtained from image sequence.

Supplementary Video S6. Result of community
detection using Louvain method (computed from
similarity matrices), distributing samples to three
clusters for (top) similarity judgements and (bottom)
rating study.
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