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Abstract. The real world is abundant with a diverse array of materi-
als, each possessing unique surface appearances that play a crucial role
in our daily perception and understanding of their properties. Despite
advancements in technology enabling the realistic reproduction of mate-
rial appearances for visualization and quality control, the interoperability
of material property information across various measurement represen-
tations and software platforms remains a complex challenge. A key to
overcoming this challenge lies in the automatic identification of mate-
rials’ perceptual features, enabling intuitive differentiation of properties
stored in disparate material data formats. This paper introduces a novel
approach to material identification by encoding perceptual features ob-
tained from dynamic visual stimuli. We conducted a psychophysical ex-
periment to identify and validate 16 particularly significant perceptual
attributes across 347 materials. Subsequently, we gathered attribute rat-
ings from 20-24 participants for each material, creating a 'material sig-
nature’ that encodes the perceptual properties of each material.
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1 Introduction

The digital representation of materials plays a pivotal role in numerous appli-
cations, ranging from virtual reality to industrial design. However, accurately
predicting the perceived properties of these materials from a human vision per-
spective remains a significant challenge in contemporary research. This difficulty
in mapping visual appearance to intuitive properties results both from the vari-
ety and complexity in material appearances as well as the rich space of human
perceptual inferences. Here, we aim to identify some of the most critical appear-
ance attributes of a diverse set of real-world materials including, but not limited
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to, fabric, leather, wood, plastic, metal, and paper, and use these to characterize
the space of appearances. We selected the samples to cover a broad spectrum of
textures, colors, and reflective properties, and use them to produce standardized
video sequences, to provide a comprehensive overview of material appearances
typically encountered in both everyday life and specialized industries. We opted
for captured videos showing the genuine material appearance of flat specimens
under different viewing conditions [5]. These dynamic material appearance data
allowed us to obtain reliable identification of the most important appearance
attributes as well as their human ratings. We collected ratings for 347 materials
spanning wide range of categories as shown in Fig. 1.

Fig. 1. Frame 30 from a video sequences of the 347 materials in the study.

The primary contributions of our paper are:

— Determination of key perceptual features — through rigorous analysis, we
have identified sixteen crucial perceptual attributes of these materials, pro-
viding a foundational understanding of material perception.

— Extensive public collection of human observer ratings — we have amassed a
substantial dataset by obtaining over 110,000 ratings from human observers
for the sixteen attributes across all material samples, offering a rich basis for
further analysis.

— Evaluation of the proposed features’ performance in material retrieval task
and providing their ratings publicly.
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2 Related work

Our work is related to human visual perception of comprehensive aspects of
real material appearance as a function of illumination and viewing conditions.
Namely identification of appearance visual attributes and their changes for differ-
ent material categories have been a subject of research interest for decades. Re-
searchers attempted to establish a connection between perceptual texture space
and computational statistics. Tamura et al. [28] suggested a computational form
of six basic texture properties and evaluated their performance in a psychophys-
ical experiment on 56 gray-scaled textures of Brodatz’s catalogue [1]. Rao and
Lohse [19] identified a perceptual texture space by grouping Brodatz’s textures
and using hierarchical cluster analysis, non-parametric multi-dimensional scal-
ing (MDS), classification and regression tree analysis, discriminant analysis, and
principal component analysis. They concluded that the perceptual texture space
can be represented by a three-dimensional space with axes describing repeti-
tiveness, contrast/directionality, and coarseness/complexity. [16] performed an
experiment with human subjects to obtain a pattern vocabulary governed by
grammar rules. Malik and Perona [13] presented a model of human preattentive
texture perception based on low-level human perception. Vanrell and Vitria [29]
suggested a texton-based four-dimensional texture space with perceptual tex-
tons’ attributes along each of the dimensions. Long and Leow [11] presented an
approach attempting to solve the missing link between the perceptual texture
space and the space of computational texture features, by reduction of Gabor
features represented by a convolutional neural network a four-dimensional tex-
ture space. Schwartz et al [22] proposed so called visual material traits encoding
appearance of characteristic material properties by means of convolutional fea-
tures of train image patches. In follow up work, researchers discovered space of
locally-recognizable material attributes from perceptual material distances by
training classifiers to reproduce this space from image patches [26]. Sawayama
et al. [21] created dataset of synthetic images with variable illumination and
geometries and conducted psychophysical experiments (an oddity task) discrim-
inating materials on one of six dimensions. Schwartz and Nishino [23] avoided
fixed set of attributes by proposing a method deriving material attributes an-
notation based on probing the human visual perception of materials by asking
simple yes/no questions comparing pairs of small image patches. Filip et al. [5]
analyzed perceptual dimensions of 30 wood materials were analyzed in by means
of a combination of similarity and rating studies and compared them to basic
image statistics.

Many studies represented textureless material appearance by means of bidi-
rectional reflectance distribution function (BRDF) [17] and its parametric mod-
els. Matusik et al. [14] psychophysically evaluated large sets of BRDFs, and
showed that there are consistent transitions in perceived properties between dif-
ferent BRDFs. They analyzed whether they possess any of the 16 perceptual
predefined attributes. They used the observers ratings to build a model in both
the linear and non-linear embedding spaces. Such a manifold is then used for edit-
ing/mixing between the measured BRDFs. Serrano, et al. [25] psychophysically
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analyzed isotropic BRDFs to identify smooth and intuitive material appearance
transition between different visual attributes. Lagunas et al. [10] presented a deep
learning model model measuring the similarity in appearance between different
BRDFs, which correlates with human similarity judgments. Serrano et al. [24]
collected a large-scale dataset of perceptual ratings of five appearance attributes
for combinations of material, shape, and illumination, to analyze the effects of
illumination and geometry on material perception across such a large collection
of varied BRDFs. Recently, Subias nad Lagunas [27] proposed a single-image
appearance editing generative framework that allows to intuitively modify the
material appearance of an object by increasing or decreasing high-level percep-
tual attributes describing such appearance (e.g., plastic, rubber, metallic, glossy,
bright, rough, and the strength and sharpness of reflections).

Related research also investigated angle-dependent material appearance rep-
resented by more advanced texture models. Jarabo et al. [9] ran perceptual
experiments to investigate the visual equivalence [18] of rendered images for dif-
ferent levels of bidirectional texture function (BTF) [2] filtering, and found that
blur in a spatial domain is less tolerable than in its angular counterpart. Filip et
al. [4] assessed accuracy of advanced material appearance representation using
BTF on 16 diverse physical material samples, by comparing human judgements
of material attributes made when viewing a computer graphics rendering to those
made when viewing a physical sample of the same material. Deschaintre et al. [3]
introduced a novel dataset that links free-text descriptions to various fabric ma-
terials. The dataset comprises 15,000 natural language descriptions associated
to 3,000 corresponding images of fabric materials. Authors identified a compact
lexicon, set of attributes and key structure that emerge from the descriptions
explaining how people describe fabrics.

What sets our study apart from the previous work is (1) identification of
interpretable appearance attributes derived from user studies rather than non-
interpretable visual features, and (2) the use videos capturing dynamic light
interaction with real materials samples rather than static or synthetic stimuli.

3 Capturing material data

We collected 347 material samples, with a focus on capturing a broad variety of
visual appearances but also the most common material categories.

For many material categories with spatially homogeneous appearances, such
as metal, plastic, and paper, we can relatively accurately represent individual
materials using parametric reflectance models, which encapsulate these materi-
als with compact, physically-related parameters. In contrast, our analysis focuses
on more visually complex materials that cannot be easily represented by such
models due to local physical effects like shadowing, masking, or subsurface scat-
tering. Therefore, the majority of materials in our collection come from fabric
and wood, which are categories with a wide range of appearances due to dif-
ferent fiber types and thread weaving patterns. For the remaining categories,
we focus mainly on material samples with specific non-homogeneous structures.
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Our dataset consists of 347 samples distributed to the following major categories:
fabric (157), wood (67), coating (30), paper (23), plastic (17), metal (14), leather
(11), and others (28) (see Fig. 1 showing one frame from the image sequence).
Our dataset contains, among others, materials from UTTA BRDF database [6]
and MAM 2014 benchmark [20].

As real-world illumination is important for correct matching of material prop-
erties especially in interactions between lighting and object geometry [8], we
decided to use dynamic stimuli showing material appearance from different ob-
servation directions. For each material sample, we produced a video sequence
showcasing the material’s non-specular and specular characteristics by a slow
rotation. These sequences featured close-up views of approximately 42 x 42 mm
areas of the samples, captured using the UTIA goniometer [7]. In line with indus-
try standards [15], we maintained a constant polar angle of 45 degrees for both
the camera and the light source, varying only the azimuthal angle of the camera
to facilitate more rapid measurements. Each sequence commenced with the light
and camera azimuthal angles differing by 90 degrees, followed by a 90-degree
camera movement, resulting in a final difference of 180 degrees between the az-
imuthal angles probing specular reflection of the material. Comprising 60 image
frames of resolution 632 x 412, each 4-second sequence was played in reverse
order after completion, creating an 8-second continuous loop that effectively
illustrates the dynamic behavior of the rotating material.

4 Selection of main perceptual attributes

In this section, we describe two studies to identify key visual features for describ-
ing the appearance of the material videos in our dataset. The scheme depicting
our psychophysical assessment of materials is shown in Fig. 2-a.
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Fig. 2. (a) Scheme of the proposed approach to obtain human ratings of visual at-
tributes. (b) visualization of the attributes for a given material using a polar plot
grouping related visual properties.
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4.1 Study 1 — Attributes identification

First, we performed an online free naming study. For this, we created three ar-
rangements of 70 material videos each, randomly selected from our full dataset.
Participants were then asked to type and rank at least five most visually distin-
guishing features, in the order of their importance, that they thought sets apart
all the materials presented within each arrangement. We collected a total of 451
valid text responses from 32 participants with a mean response duration per
arrangement of 2.8 minutes. Subsequently, we grouped synonyms and equivalent
terms into clusters, and removed all responses with occurrences < 0.45 % (i.e.
with less than two responses) obtaining a condensed set of 21 visual material
attributes. In Figure 2, the plot on the left shows the probability a, for each
attribute (calculated across participants and three trials), as well as the average
ranking a, by participants, and the combination of both, a, - (max(a,) — a,)-

colorsat scale colorsat
roughness sparkle roughness
shiny colorsat shiny
brightness opacity texture
texture texture brightness
pattern category pattern
soft attractiveness soft
rotation brightness category
category roughness rotation
natural gritty sparkle
sparkle rotation natural
height soft height
colortones shiny colortones
warm physical scale
usage colortones usage
scale height warm
dense natural attractiveness
attractiveness pattern dense
gritty usage gritty
physical warm physical
opacity dense opacity
0 05 0 2 4 0 1 2
attribute probability attribute order attribute importance

Fig. 3. Attribute statistics obtained from the psychophysical experiment: attribute
probability (left), attribute order (middle), and their combination attribute importance
(right).

As two of the most frequent terms texture and patterns are vague without
further elaboration we replaced them with the more specific attributes pattern
complexity, striped pattern, checkered patterns. The clustersgritty, physical, and
opacity were removed as they were rarely mentioned (less than five responses).
In total, we did not account only for 1.5 % responses.

The most prominent attributes that participants used to describe the visual
appearances of our material videos include common optical attributes such as
color variability, saturation, roughness, brightness, shininess, texture, and pat-
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tern, but also tactile or subjective attributes like warmth, hardness, naturalness,
and attractiveness. The final set of sixteen perceptual attributes used in our
rating study is shown in Tab. 1, together with the boundary materials and the
instructive questions for all attributes that were given to the participants.

Table 1. A list of 16 perceptual attributes evaluated in the rating study and their
description.

ID attribute extreme values description
1. color vibranc dull, vibrant How richly colored is the material, ranging from
i ging
monochromatic or neutral-colored materials to
vibrantly colored materials?

2. surface roughness smooth, rough How rough is the material, ranging from fine or
smooth to coarse or grainy?

3. pattern complexity plain, complex How complex are the patterns on the material,
ranging from simple to intricate?

4. striped pattern no, pronounced Stripes|To what extent does the material exhibit stripy
patterns?

5. checkered pattern no, pronounced checks |To what extent does the material exhibit check-
ered patterns?

6. brightness black, white How bright is the material, ranging from dim or
subdued to bright or luminous?

7. shininess matt, mirror How shiny is the material, ranging from dull or
non-reflective to highly reflective?

8. sparkle none, sparkling To what extent does the material exhibit
sparkling and glittery effects?

9. hardness soft, hard How hard is the material, ranging from soft or
plush to firm or rigid?

10. movement effect none, extreme To what extent does the appearance change due

i g
to camera movement?
11. pattern scale fine, large How large are the pattern elements, ranging
b)
from fine-grained or uniform to large or blotchy
patterns?

12. naturalness manmade, natural How natural is the material, ranging from man-
made to natural origin?

13. thickness flat, thick How deep is the material structure, ranging

b)
from flat or thin to thick?

14. multicolored single, many How multicolored is the material, ranging from
a single or uniform color to colorful or many
colors?

15. value cheap, luxurious How valuable is the material, ranging from low-
cost or cheap to extravagant or luxurious?

16. warmth cold, warm How warm is the material to the touch, ranging
from cool or cold to pleasant or warm?

4.2 Study 2 — Attributes validation

As the clustering of attributes might have been subject to experimenter bias, we
performed a second study to validate the 16 attributes. We asked six participants
to cluster all 451 valid text responses into the 16 predefined attributes (Tab.1).
Overall, the inter-rater agreement was notably high (Fleiss’ Kappa score of 0.786)
and for 198 out of 451 responses (43.9%), all six raters reached a unanimous
decision. For 254 (56.3%) of responses at least three raters agreed, and for 396
(87.8%) responses at least two raters did.

4.3 Study 3 — Boundary materials identifications

To create a representative visual anchor for the rating study, we asked 9 online
participants to pick from the three arrangements of 70 material videos, the ma-
terial exhibiting the lowest and the highest value of a specified visual attribute
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(e.g., Which of the materials displays the greatest level of brightness?). Partici-
pants completed 96 responses each (3 arrangements x 16 attributes x 2 extrema).
Out of 9 participants, the same material video was perceived to express the low-
est value of an attribute by 3.6 participants on average, and the highest value by
2.8 on average. We removed double occurrences, yielding the arrangement of 25
materials in Fig. 4 which were used as anchor materials in the following rating
study.

5 Rating study

In each trial, we showed a material video stimulus on the left, together with
a fixed set of the anchor materials on the right. For each perceptual attribute
(Tab. 1), we showed all material videos in random order and online participants
provided their evaluation with a slider (Fig. 4). Anchor materials were the same
for all tested videos and attributes. We collected a total of 111 040 ratings

Fig. 4. An example of the rating stimulus with boundary materials on the left.

(20-24 participants/attribute). Data were normalized at the participant level
by Z-scoring and then computing mean rating scores across all participants. We
excluded participants’ ratings from the analysis, when their values had a negative
correlation with the mean (typically 1-2 participants per attribute). Finally, we
obtained mean opinion score values for 16 attributes and 347 materials.

We can use the obtained ratings of our attributes in various scenarios, such
as directly comparing the visual similarity of materials. For instance, during
material retrieval, one can filter materials by using only selected attributes. As a
similarity measure for comparing sets of attributes of two material samples, we
used Pearson correlation; however, other metrics are also possible. Fig. 5 shows
rank ordering of materials based on their rating values for individual attributes,
where samples are shown in non-specular and specular conditions. Each image
illustrates the material appearance under non-specular (left) and specular (right)
conditions.
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Fig. 5. Ten materials having the highest ranking along individual attributes.

To obtain insight in two dimensional embedding of the material samples,
we also performed t-distributed stochastic neighbor embedding (t-SNE) [12] as
shown in Fig. 6. For classes wood, fabric, carpet, and coating we observe coherent
clusters while for other categories we can see considerable overlaps. This is due
to high variability in sample appearance withing this class, e.g. metal in a form
of sheet or pins.

This finding is supported by clustering of the similarity matrix between ma-
terials’ attributes computed using Pearson correlation shown in Fig. 7.

6 Application to Material Retrieval

The material attributes for each material can be visualized in a polar plot,
creating a unique visual signature of the material’s appearance, as illustrated
in Fig. 2-b. The azimuthal ordering of attributes is based on their relationships,
forming five clusters loosely related to gloss, texture and pattern, light and color,
and both physical and abstract properties. The most significant attributes having
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Fig. 6. Material samples proximity obtained as two-dimensional embedding of the sam-
ples obtained using t-SNE.

higher values are positioned near the plot’s boundary, while the less important
ones are closer to its center. Fig. 8 displays the visual attributes computed as the
median value across all samples in seven major material categories. This allows
us to clearly distinguish between categories; for example, fabric is characterized
as thick and warm, whereas coatings and leather are identified as hard and shiny.

We utilized Pearson correlation between material attributes as a measure for
retrieving materials with similar appearance and presented the results in Fig. 9,
where the three materials most similar to the query are displayed. Size of the
retrieved images indicate their correlation to the query image and can serve as
approximate measure of material typicality in the dataset. We observe that the
retrieval is highly effective when similar materials are present in the category,
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Fig. 7. Material samples proximity obtained a similarity matrix between the materials
with corresponding clustering.
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Fig. 8. A comparison of typical visual attributes for major material categories in our
dataset.

such as carpet (013), fabric (067, 093), leather (114), sand (176), or wood (210).
However, even in the absence of similar materials in the dataset, the retrieval
system suggests plausible materials, such as fancy fabric (103), crinkled paper
(123), or paper clips (137). Retrieval performance for all materials can be found
in a supplementary material.
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Fig. 9. Examples of similar materials retrieval based on a correlation between at-
tributes’ values: material in query, its visual signature and five retrieved images from
our dataset having the closest appearance.

7 Discussion

The main contribution of this paper is definition of the crucial visual attributes
for identification of material visual properties. Although our study uses one of
the largest sets of material samples used in a psychophysical analysis to date,
and we carefully selected this set from a portfolio of real-world materials, the
number of samples per material category varies. The highest number of samples
is in the categories of fabric and wood due to their inherited high visual vari-
ability. This could potentially impact selection of our visual attributes and skew
their generalization towards these categories. On the other hand, including more
samples would have made our similarity experiment much more demanding.
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Our current study is limited to a fixed level-of-detail of the material surface.
It analyzes the sample area of 40 x 40 mm and thus is limited to materials with
relatively fine and stationary textures and cannot describe visual behavior of
materials beyond our sample size, i.e., textures with too low spatial frequencies
or slow gradient changes over the sample. Also our dynamic stimuli represented
a limited subset of all possible lighting-sample-viewer configurations. We had
to limit camera and light trajectories so that movies were of reasonable dura-
tion. Therefore, we do not account for specific retroreflective, goniochromatic, or
anisotropic behavior of materials due to changes in viewing and lighting angles
which are not present in our stimuli.

We consider this work as a proof-of-concept study, which can be extended
in the future by collecting ratings of even wider range of materials. To support
future research in this area, we have made all stimuli data and rating responses
available in a public repository.

8 Conclusions

In a series of psychophysical studies involving 347 materials across various cat-
egories, we identified a set of sixteen material attributes and had them rated
by twenty observers. Our findings indicate that these attributes perform well in
facilitating intuitive, human-centered comparisons and retrievals of material ap-
pearances, thereby creating a unique visual signature for each material. This sig-
nature enables effective material retrieval based on perception-related features.
In future work, we aim to predict human ratings of these attributes using image
statistics derived from photographs of the materials, which would allow for the
automatic computational identification of the material appearance fingerprint.
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