
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjit20

Journal of Information and Telecommunication

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tjit20

Texture recognition under scale and illumination
variations

Pavel Vácha & Michal Haindl

To cite this article: Pavel Vácha & Michal Haindl (2024) Texture recognition under scale and
illumination variations, Journal of Information and Telecommunication, 8:1, 130-148, DOI:
10.1080/24751839.2023.2265190

To link to this article:  https://doi.org/10.1080/24751839.2023.2265190

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 07 Oct 2023.

Submit your article to this journal 

Article views: 172

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjit20
https://www.tandfonline.com/journals/tjit20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24751839.2023.2265190
https://doi.org/10.1080/24751839.2023.2265190
https://www.tandfonline.com/action/authorSubmission?journalCode=tjit20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tjit20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24751839.2023.2265190?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24751839.2023.2265190?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2023.2265190&domain=pdf&date_stamp=07 Oct 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2023.2265190&domain=pdf&date_stamp=07 Oct 2023


Texture recognition under scale and illumination variations
Pavel Vácha and Michal Haindl

The Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czechia

ABSTRACT
Visual scene recognition is predominantly based on visual textures
representing an object’s material properties. However, the single
material texture varies in scale and illumination angles due to
mapping an object’s shape. We present a comparative study of
the colour histogram, Gabor, opponent Gabor, Local Binary
Pattern (LBP), and wide-sense Markovian textural features
concerning their sensitivity to simultaneous scale and illumination
variations. Due to their application dominance, these textural
features are selected from more than 50 published textural
features. Markovian features are information preserving, and we
demonstrate their superior performance for scale and illumination
variable observation conditions over the standard alternative
textural features. We bound the scale variation by double size,
and illumination variation includes illumination spectra,
acquisition devices, and 35 illumination directions spanned above
a sample hemisphere. Recognition accuracy is tested on textile
patterns from the University of East Anglia and wood veneers
from UTIA BTF databases.
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1. Introduction

A human observer recognizes a visual scene using shape and material attributes. Unfor-
tunately, the surface material’s appearance vastly changes under variable observation
conditions, negatively affecting its automatic and reliable recognition in numerous artifi-
cial intelligence applications. As a consequence, most material recognition attempts
apply unnaturally restricted observation conditions, which is shown in Varma
and Zisserman (2009), Bell et al. (2015), Gibert et al. (2015).

Scale Invariant Feature Transform (SIFT) features modelled using the Johnson distri-
bution, which allows features to be invariant in rotation, scale, and illumination, are intro-
duced in Hlaing and Zaw (2018). Authors Roy et al. (2018) proposed fractal dimension
calculated in the Gaussian scale-space texture representation. Fractal images are com-
bined with LBP images using an indexing function to obtain scale-invariant features.
Galois field-based features in Shivashankar et al. (2018) were used for rotation and
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scale invariant texture classification. Rotation, scale, and illumination invariant features by
Yang et al. (2018) use LBP and log-polar energy-based descriptors in the dual-tree
complex wavelet transform domain. Another rotation, illumination, and scale invariance
variant of LBP (IRSLBP) was published by Veerashetty and Patil (2020), where partial
scale invariance was achieved using three different neighbourhood radii and a scale-
selective and noise-robust extended LBP (SNELBP) was proposed in Luo et al. (2022).
An LBP modification with some extent of rotation, illumination, and scale invariance
was described by the method (Shu et al., 2022). Rotation and scale invariant features
based on the LBP and Gabor filter combination were presented in Muzaffar
et al. (2023). Although over 50 textural features were compared in Liu et al. (2018),
Simon and Uma (2018), we restricted our comparison to the most effective and, thus,
dominant textural features.

An ideal model for representing and classifying materials should be capable of cap-
turing fundamental perceptual materials properties. A multi-dimensional visual
texture is an appropriate surface reflectance function model paradigm. The seven-
dimensional Bidirectional Texture Function (BTF) is the best measurable represen-
tation, as shown in Haindl and Filip (2013). BTF can be measured simultaneously,
even if it is not a trivial task, using state-of-the-art measurement devices, computers,
and the most advanced visual data mathematical models, see Haindl (2023). Features
derived from such multi-dimensional data models preserve information because
they can synthesize data spaces resembling the original measurement data space.
The authors have introduced a family of fast multi-resolution Markov random field-
based models, and in Haindl and Vacha (2015), these models are shown to be
robust to illumination conditions.

This paper is an extended version of our ICCCI 2022 paper (Vácha & Haindl, 2022) with
the additional comparison of textural features, detailed analysis of recognition with
different scale factors, and reciprocity of training and test conditions. This paper’s contri-
bution is a joint test of scale and illumination variations to simulate realistic visual scene
recognition conditions and we present a comparative analysis with several of the most
common alternative textural features representing four alternatives’ most commonly
used textural features. For this analysis, we use the unique UTIA BTF visual material
measurements introduced by Haindl et al. (2015).

2. Markovian textural features

The texture is factorized into K levels of the Gaussian down-sampled pyramid and
subsequently each pyramid level is modelled by a wide-sense Markovian type of
model – the Causal Auto-regressive Random field (CAR) model. Let us assume
that each multispectral ( colour) texture is composed of C spectral planes (usually
C = 3), Yr = [Yr,1, . . . , Yr,C]

T is the multispectral pixel at location r. The multiindex
r = (r1, r2) is composed of row index r1 and column index r2. The spectral planes
are mutually decorrelated by the Karhunen–Loéve transformation. The two-dimen-
sional models assume that the j-th spectral plane of the pixel at position r can be
modelled as:

Yr, j = gjZr,j + er , (1)

JOURNAL OF INFORMATION AND TELECOMMUNICATION 131



where Zr,j = [Yr−s,j:∀s [ Ir]T is the h× 1 data vector, er is Gaussian white noise with
constant but unknown variance, gj = [a1,j, . . . , ah,j] is the 1× h unknown parameter
vector. Some selected contextual causal or unilateral neighbour index shift set is
denoted Ir and h = cardinality(Ir) , see example in Figure 1. The texture is analysed
in a chosen direction, where multi-index t changes according to the movement on
the image lattice I. Given the known CAR process history
Y (t−1),j = {Yt−1,j, Yt−2,j, . . . , Y1,j, Zt,j, Zt−1,j, . . . , Z1,j}, ĝj can be estimated using fast,
numerically robust recursive statistics (Haindl, 2012):

Vt−1,j =
∑t−1

u=1 Yu,jYu,j
T ∑t−1

u=1 Yu,jZu,j
T∑t−1

u=1 Zu,jYu,j
T ∑t−1

u=1 Zu,jZu,j
T

( )
+ V0

= Vy,j(t−1) VT
zy,j(t−1)

Vzy,j(t−1) Vz,j(t−1)

( )
,

(2)

ĝT
t−1,j = V−1

z,j(t−1)Vzy,j(t−1), (3)

lt−1,j = Vy,j(t−1) − VT
zy,j(t−1)V

−1
z,j(t−1)Vzy,j(t−1), (4)

where the positive definite matrix V0 represents prior knowledge.

2.1. Colour invariants

Our textural features are as,j∀s [ Ir , j = 1, . . . , C which are colour invariants and
additional colour invariant features derived from this model in Haindl
and Vácha (2017). The spectral index j is excluded for simplification in invariants (6)–(20).

a1 =
∑C
j=1

ai,j ∀i , (5)

a2 = 1+ ZT
t V

−1
z(t) Zt , (6)

a3 =
���������������������������������∑
∀r[I

Yr − ĝtZr
( )T

l−1
t Yr − ĝtZr
( )√

, (7)

a4 =
����������������������������∑
∀r[I

Yr − m
( )T

l−1
t Yr − m
( )√

} , (8)

Figure 1. Unilateral contextual neighbourhood Ir of sixth-order used for CAR model. X marks the
current pixel, the bullets are pixels in the neighbourhood, the arrow shows movement direction,
and the grey area indicates acceptable neighbourhood pixels.
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b1 = ln
c(r)
c(t)

lt| | lr| |−1
( )

, (9)

b2 = ln
c(r)
c(t)

Vz(t)
∣∣ ∣∣ Vz(r)

∣∣ ∣∣−1
( )

(10)

b3 = ln Vz(t)
∣∣ ∣∣ lt| |−h
( )

, (11)

b4 = ln Vz(t)
∣∣ ∣∣ Vy(t)

∣∣ ∣∣−h( )
, (12)

b5 = tr Vy(t) l
−1
t

{ }
, (13)

b6 = ln
∑
∀r[I

1
|I| p Yr|Y (r−1)( )

Vy(t)
∣∣ ∣∣12( )

, (14)

b7 = ln ln p Y (t)|M( ) +(
(c(t + 1)+ 2) ln Vy(t)

∣∣ ∣∣), (15)

b8 =
c(r)
c(t)

lt| | lr| |−1
( )1

2

, (16)

b9 =
c(r)
c(t)

Vz(t)

∣∣ ∣∣ Vz(r)

∣∣ ∣∣−1
( ) 1

2h

(17)

b10 = Vz(t)
∣∣ ∣∣ lt| |−h
( )1

2, (18)

b11 = Vz(t)
∣∣ ∣∣ Vy(t)

∣∣ ∣∣−h( )1
2, (19)

b12 =
�������������
Vy(t)
∣∣ ∣∣ lt| |−1

√
, (20)

where μ is the mean value of Yr and c(t) is a number of the pixel from the beginning.
p(Y (t)|M) is the posterior probability of the model (1), and p(Yr|Y (r−1)) is prediction prob-
ability, both defined in Haindl (2012).

We used neighbourhood Ir of sixth order (see Figure 1), where h = 14, r = 0 corre-
sponding to prior, and t equals to the last pixel in the image. All invariants (6)–(20)
were computed on all spectral planes and concatenated into the feature vector as
shown on the diagram in Figure 2. The CAR model and colour invariant feature vector
were computed on K = 5 Gaussian pyramid levels and in 3 directions, and the features
were again concatenated. Finally, the feature vectors were compared with fuzzy contrast
FC3 introduced by Santini and Jain (1999). Downscaling on the Gaussian pyramid is poss-
ible as the image provides sufficient resolution. It may be needed for lower-resolution
images to use K = 4 levels of the Gaussian pyramid, which was also tested. When the Kar-
hunen–Loéve transformation preceded CAR features computation, they were denoted by
the ’-KL’ suffix.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 133



3. Frequented alternative features

Hundreds of textural features were published, and testing all these features on the exten-
sive UTIA BTF wood database (426 465 wood images, 260 TB of data) is infeasible. Hence,
we compare the CAR features with the following most frequented alternatives, each com-
pared with their author’s suggested distance.

3.1. Histogram based features

The most straightforward features used in this study are based on histograms of
colours or intensity values. Although, these features cannot be considered proper
textural features because they are not able to describe spatial relations, which
are the critical texture properties, their advantage is robustness to various geom-
etrical transformations, fast and easy implementation. The cumulative histogram
proposed in Stricker and Orengo (1995) is defined as the distribution function
of an image histogram. The i-th bin Hi is computed as Hi =

∑
ℓ≤i hℓ, where hℓ

is the ℓ-th bin of ordinary histogram. The distance between two cumulative histo-
grams is computed in the L1 metric. The cumulative histogram is more robust
than the ordinary histogram because a small intensity change characterized by
a one-bin shift in the ordinary histogram, have only negligible effect on the
cumulative histogram.

3.2. Gabor features

The Gabor filters introduced and used by Bovik (1991), Randen and Husøy (1999),
Grigorescu et al. (2002), Han and Ma (2007), Li et al. (2009) can be considered
as orientation and scale tuneable edge and line (bar) detectors and statistics
of Gabor filter responses in a given region are used to characterize the under-
lying texture information. A two-dimensional Gabor function g(r):R2 � C can be
specified as

g(r) = 1
2psr1sr2

exp − 1
2

r21
s2
r1

+ r22
s2
r2

( )
+ 2piUr1

[ ]
,

where sr1 , sr2 , U are filter parameters. The convolution of a texture image and Gabor
filter extracts the edges of given frequency and orientation range. The whole filter
set is obtained by four dilatations and six rotations of the function g(r). The filter
set is designed so that Fourier transformations of filters cover most of the image
spectrum; see Manjunath and Ma (1996) for details. Finally, given a single spectral

Figure 2. The texture analysis algorithm flowchart uses 2D random field models; the K-L transform-
ation step is optional.
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image with values Yr,j , r [ I, j = 1 , its Gabor wavelet transform is defined as

Wkf,j(r1, r2) =
∫
u1,u2[R

Yr,j g
∗
kf(r1 − u1, r2 − u2) du1 du2,

where (·)∗ indicates the complex conjugate, ϕ and k are orientation and scale of the
filter. The Gabor features are defined as the mean m j and the standard deviation s j

of the magnitude of filter responses W. The Gabor features of colour images have
been computed on grey images or each spectral plane separately and concatenated
to form a feature vector. The distance between feature vectors is measured by L1s
metric, where each feature is normalized by its standard deviation (estimated
from all datasets) before L1 metric is computed.

Another extension of the Gabor filters to colour textures by Jain and Healey (1998) is
based on adding a chromatic antagonism, while Gabor filters themselves to model the
spatial antagonism. Opponent Gabor’s features consist of the monochrome part of fea-

tures: hkf,j =
�������������∑

r W
2
kf,j(r)

√
, where Wkf,j is the response to the Gabor filter of orientation

ϕ and scale k, j is j−th spectral plane of the image. The opponent part of features is:

ckff′ ,jℓ =

�����������������������������∑
r

Wkf,j(r)
hkf,j

−Wkf′ ,ℓ(r)

hkf′ ,ℓ

( )2
√√√√ ,

for all spectral planes j, ℓ with j = ℓ and |f− f′| ≤ 1. (Opponent features could also be
expressed as the correlation between spectral plane responses.) The distance between
feature vectors is measured by L2s metric, where each feature is normalized by its stan-
dard deviation (estimated from all datasets) before L2 metric is computed.

3.3. Local binary patterns

Local Binary Patterns (Ojala et al., 2002) are histograms of texture micro patterns. For each
pixel, a circular neighbourhood around the pixel is sampled, P is the number of samples,
and R is the circle’s radius. The sampled point values are thresholded by the central pixel
value and the pattern number is formed:

LBPP,R =
∑P−1

s=0

sgn Ys − Yc( )2s, (21)

where sgn is the sign function, Ys is the grey value of the sampled pixel, and Yc is the grey
value of the central pixel. Subsequently, the histogram of patterns is computed. Because
of the thresholding, the features are invariant to any monotonic grey-scale change. The
multiresolution analysis is done by growing the circular neighbourhood size. However,
complex patterns do not have enough occurrences in a texture. Therefore, uniform LBP
features LBPu comprise only a subset of patterns. All LBP histograms were normalized
to have unit L1 norm. As the authors suggested, the similarity between LBP feature
vectors is measured using Kullback-Leibler divergence. We have tested features
LBP8,1+8,3 , which are combination of features with radii 1 and 3, and uniform version
LBPu16,2 on radius 2. They were computed either on gray images or each spectral plane
of the colour image and concatenated. LBP features exist in various modifications:
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(Ahonen et al., 2009; Fu & Wei, 2008; Heikkilä et al., 2009; Khellah, 2011; Liao et al., 2009;
Nanni et al., 2012; Zhang et al., 2010), but they have similar behaviour; hence we chose
two of their variants as representatives of the whole group as any comparison cannot
be considered an exhaustive investigation without the LBP strategy.

3.4. Discussion

We excluded fashionable neural net features due to their uncompetitiveness on often
restricted test data in practical applications. They need to be more understood, waste-
ful, dependent on the net topology, and thus cannot be regarded as well-defined tex-
tural features. Moreover, we use only one to six training images, which are insufficient
for neural net robust learning. The MRF features outperformed deep Convolutional
Neural Networks (CNN) in the bark recognition problem even on extensive training
data, as demonstrated in Remeš and Haindl (2019). This result is understandable
because MRF features are descriptive, while neural net features are discriminative.
Similar results were presented in the extensive comparison of the multilayer NN
marble textures classification with 17 LBP feature variants and three key-point
texture descriptors types in Sidiropoulos et al. (2021). In their results, the CNN features
never outperform all these alternatives. Another comparison where NN – ScatNet,
PCANet, FV-AlexNet, and RandNet do not outperform LBP features on Outex, CUReT,
ALOT, and KTHTIPS data can be consulted in Liu et al. (2016). However, it would be
interesting to include tests with a low number of training samples, which would
reveal the robustness of features to various conditions as performed in Burghouts
and Geusebroek (2009), Vácha et al. (2011).

Table 1 shows sizes of feature vectors of compared textural features. The fastest fea-
tures to compute are colour histogram and LBP, followed by five times slower 2DCAR
and nine times slower both Gabor and opponent Gabor features.

4. Experiments

We tested the scale sensitivity of the selected textural features on two databases:

(i) University of East Anglia (UEA) Uncalibrated Image Database was introduced by Finlay-
son et al. (2000) and consists of patterns under different illumination spectra,

(ii) wooden BTF measurements from the extensive UTIA BTF database, introduced by
Haindl et al. (2015), compose of material images under varying illumination directions.

In both experiments, all images were scaled down to 95%, 90%, 85%, . . . , 50% of their
original size, and regions with the exact resolution were cropped. Consequently, the

Table 1. The sizes of feature vectors of compared textural features.
Colour histogram 384 LBPu16,2, gray 243
Gabor, gray 48 LBPu16,2, colour 729
Gabor, colour 144 LBP8,1+8,3, gray 512
Opponent Gabor 252 LBP8,1+8,3, colour 1536
2D CAR-KL 1515 2D CAR-KL (K = 4) 1212
2D CAR 1515
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image of scale 50% covers double the size of the original texture image, but with half of
the details than scale 100% (see examples in Figure 5 and Figure 11). The training set con-
tains only images with original scales, and the classification accuracy was tested for all
scales separately.

Training images per each material were randomly selected from the training set, and
the remaining images were classified using the Nearest Neighbour (1-NN) classifier. The
number of training images went from 1 to 6, and the results were averaged over 103 of
random selections of training images. Even single training samples were randomly
selected so they could have different illumination conditions for each material, making
recognition more challenging.

4.1. University of East Anglia uncalibrated image database

The UEA dataset contains 28 textile designs captured with six different devices (4 colour
cameras and two colour scanners), and images for cameras were illuminated with three
different illumination spectra, which sums up to 394 images in total. Examples of
images are displayed in Figure 3, variations of their appearance in Figure 4, and
different scales in Figure 5. UEA images are supposed to include even non-linear relations
of their values caused by different processing in acquisition devices (gamma correction),
and no light calibration was performed; see (Finlayson et al., 2000) for more details. Since
the UEA database images include some scale variations, we have corrected this and
rescaled the images to have the same scale and resolution. In total, we used 4312
images with 332× 275 resolution.

Table 2 summarizes recognition accuracy for the compared features. The 2D CAR fea-
tures are superior for all test numbers of random training images per material. The classifi-
cation accuracy of 2D CAR-KL averaged over all scale variations goes from 48.4% for one
training sample to 70.2% for six training samples per class. The standard deviation is less
than 4 for one training sample and less than 3 for six training samples for all features. The
2D CAR model achieved slightly better results without the Karhunen-Loève transform-
ation, however, we include 2D CAR-KL for more detailed analysis since it had better
classification accuracy for experiments reported in Haindl and Vacha (2015). Moreover,
the 2D CAR-KL model on K = 4 levels of the Gaussian pyramid achieved lower accuracy
than the standard K = 5 levels because the images have sufficient resolution. The only
comparable features are opponent Gabor features that achieved similar performance as

Figure 3. Examples of patterns included the UEA database.
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2D CAR-KL with slightly lower accuracy for one training sample. Colour histograms suffer
from their sensitivity to colour changes, resulting in low performance (from 15.3% to
32.6%). Even though the colour histograms are robust to scale variation (because they
do not describe spatial relations) they are unable to recognize materials under different
illumination spectra. LBP features did not perform satisfactorily as well.

Detailed comparison of scale variation is displayed in Figure 6, where we can see as
classification accuracy significantly increases if scales of training and test samples are
closer to each other. The only exception is colour histogram features, which cannot recog-
nize the same materials on the same scale due to insufficient robustness to the illumina-
tion spectra changes (regardless of the number of random training samples per class). The

Figure 4. The appearance of patterns from the UEA database with varying illumination spectra (3
columns on the left) and additional acquisition devices (2 columns from the right).

Figure 5. The appearance of patterns from the UEA database with varying scales, from the left, the
scale factor is 50%, 60%, 75%, 90%, and 100%.
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2D CAR-KL features again achieved the best results. Classification accuracy for one train-
ing sample starts at 23.1% for half scale factor and goes to 64.9% for the same scale (15%
better than alternative features). Opponent Gabor features were slightly better for the

Table 2. Classification accuracy [%] averaged over all scales and illumination conditions on the UEA
dataset.
No. of training samples 1 3 6

Colour histogram 15.3 23.2 32.6
Gabor, gray 29.6 44.5 53.2
Gabor, colour 33.9 46.2 59.7
Opponent Gabor 44.0 61.0 70.1
LBPu16,2, gray 18.4 35.0 45.8
LBPu16,2, colour 17.7 31.2 41.2
LBP8,1+8,3, gray 13.9 28.8 38.2
LBP8,1+8,3, colour 14.1 28.2 38.1
2D CAR-KL (K = 4) 43.1 58.2 67.0
2D CAR-KL 48.4 62.8 70.2
2D CAR 52.1 66.2 73.0

Note: Columns display results for the increasing number of training samples per class.

Figure 6. The illustration of the classification accuracy [%] progresses with decreasing scale differ-
ences among training and test sets (UEA dataset). On the left, for one training sample, and on the
right, for six training samples per class.

Figure 7. The classification accuracy [%] for all combinations of scales among training and test sets on
the UEA dataset, one training sample per class was used.
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highest difference in the scale factor. A similar situation applies to six training samples,
where classification accuracy goes from 36.9% to 90.0% for 2D CAR-KL features.
However, opponent Gabor features performed better with a significant difference in
scale factor (0.5 – 0.7).

4.1.1. Across scales
Figure 7 shows classification accuracy across different training and test scale combi-
nations, with a single training sample averaged over 103 of random selections. As
expected, classification accuracy decreases with a more considerable difference in scale
factors. It is worth noting that the last rows of images in Figure 7 correspond to the
2D CAR-KL and opponent Gabor graphs on the left in Figure 6. Interestingly, recognition
accuracy on the diagonal decreases as the scale factor goes from 0.5 to 1. This decrease
may be caused by the fact that images with a scale factor of 0.5 (left column in Figure 5)
cover a larger area of the original material (although being subsampled), so they contain
comprehensive information, and the extracted features can be more discriminative.

This discrepancy is more apparent in Figure 8, which compares the original training on
a scale factor of 1 and training on a scale swapped to a factor of 0.5. We can see a 15%
difference in recognition accuracy between training on a scale of 1 and 0.5 for 2D CAR-
KL and opponent Gabor features when the test scale is the same as the training scale.
The difference in recognition accuracy decreases with the test scale moving further
from the training scale, and there is no difference for training on a scale factor of 0.5
with a test scale factor of 1 or vice versa.

4.2. Wood UTIA BTF database

This study’s Wood UTIA BTF database contains veneers from sixty-five varied European,
African, and American wood species, examples of images are shown in Figure 9. The
UTIA BTF database1 was measured using the high-precision robotic gonioreflectometer

Figure 8. Classification accuracy [%] on the UEA dataset with one training sample, on the left for the
training sample with the scale factor of 1 and on the right with the scale factor of 0.5.

1http://btf.utia.cas.cz/
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described in Haindl et al. (2012), which consists of independently controlled arms with a
camera and light. Its parameters, such as angular precision of 0.03 degrees, the spatial res-
olution of 1000 DPI, or selective spatial measurement, classify this gonioreflectometer as a
state-of-the-art device. They measured each wood sample in 81 viewing positions times
81 illumination positions, resulting in 6561 images per sample, 4 TB of data. Because of
substantial storage requirements, we took only images for one camera position (top
view), and we selected 35 from 81 illumination directions (1 image with a tilt of 0
degrees, 12 images with 30 deg, ten images with 60 deg, and 12 images with 75 deg).
The images uniformly represent the space of possible illumination directions; see
example images in Figure 10. Images with different scales are displayed in Figure 11. In
total, we used 25,025 images with 816× 802 resolution.

Table 3 summarizes recognition accuracy for the compared features. The 2D CAR fea-
tures are superior for all test numbers of random training images per material. The classifi-
cation accuracy of 2D CAR-KL averaged over all scale variations goes from 45.4% for one
training sample to 69.4% for six training samples per class. The standard deviation is less
than 4 for one training sample and less than 2 for all features. The 2D CAR-KL model on K
= 4 levels of the Gaussian pyramid achieved lower accuracy than the standard K = 5 levels
as the images have sufficient resolution. The best alternative is opponent Gabor features.
However, their accuracy is more than 20% points lower than 2D CAR-KL. Neither colour
histogram nor LBP features performed satisfactorily since the recognition accuracy is
less than 13.3% and 25.6% for 1 and 6 training samples, respectively. This is because binar-
ized LBP micropatterns are sensitive to illumination direction, as confirmed by Vácha
and Haindl (2012). Additionally, authors (Haindl & Vácha, 2017) show that LBP features
are susceptible to even minor scale variations.

The detailed comparison of scale variation is displayed in Figure 12. The classification
accuracy increases as the scales of training and test samples are closer (except for

Figure 9. Examples of wood veneers included the Wood UTIA BTF database.
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histogram features). The best results were again achieved by 2D CAR-KL features, where
classification accuracy for one training sample starts at 22.7% for half scale and goes to
60.9% for the same scale. This improvement is more than 10% better than the opponent
Gabor features for all scale factors. A similar situation holds for six training samples, where

Figure 10. The illustration of the appearance of four veneers from the Wood UTIA BTF database in
varying illumination directions. The left column is illuminated from the surface normal, and the direc-
tion of illumination tilt increases to the right: 0, 30, 60, 60, and 75 degrees, illumination azimuth is 0,
90, 180, 252, and 345 degrees, respectively.

Figure 11. The appearance of two veneers from the Wood UTIA BTF database in varying scales, from
the left, the scale factor is 50%, 60%, 75%, 90%, and 100%.
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classification accuracy goes from 31.5% to 91.0% for 2D CAR-KL features, again more than
10% better than opponent Gabor features.

4.2.1. Across scales
Figure 13 shows classification accuracy across different training and test scale combi-
nations with a single training sample (averaged over 103 of random selections). As
expected, classification accuracy decreases with a more considerable difference in scale
factors. It is worth noting that the last rows of images in Figure 13 correspond to the
2D CAR-KL and opponent Gabor graphs on the left in Figure 12. Similarly to the UEA
dataset, recognition accuracy on the diagonal decreases as a scale factor goes from 0.5
to 1. The reason is that images with a scale factor of 0.5 (left column in Figure 11)
contain more comprehensive information, and the extracted features are more
discriminative.

The comparison between the original training on scale factor of 1 and training on scale
swapped to factor of 0.5 is displayed in Figure 14. The difference in recognition accuracy
between training on a scale of 1 and 0.5 is 9% for 2D CAR-KL, and 6% for opponent Gabor

Table 3. Classification accuracy [%] averaged over all scales and illumination angles on the Wood UTIA
BTF dataset.
No. of training samples 1 3 6

Colour histogram 10.6 19.7 28.6
Gabor, gray 11.9 20.2 25.1
Gabor, colour 18.0 28.6 36.8
Opponent Gabor 24.0 36.4 44.3
LBPu16,2, gray 7.2 11.0 13.3
LBPu16,2, colour 10.9 16.0 19.6
LBP8,1+8,3, gray 10.8 15.8 19.3
LBP8,1+8,3, colour 13.3 21.0 25.6
2D CAR-KL (K = 4) 39.9 55.7 64.3
2D CAR-KL 45.4 61.4 69.4
2D CAR 32.8 47.1 55.7

Note: Columns display results for the increasing number of training samples per class.

Figure 12. Classification accuracy [%] progresses with decreasing scale differences among training
and test sets (Wood UTIA BTF). On the left, for one training sample, and on the right, for six training
samples per class.
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features. Again, the difference in recognition accuracy decreases with the test scale
moving further from the training scale.

4.2.2. Illumination tilt
The additional experiment utilizes different illumination angles in Wood UTIA BTF and
splits classification accuracy for different illumination tilts. The single training sample
was fixed to the illumination from a normal surface direction (0-degree tilt), and the
remaining images were classified. The classification accuracy is averaged for each illumi-
nation tilt: 30, 60, and 75 degrees (12, 10, and 12 images). Training and test sets have the
same scaling factor: 1. The results are displayed in Table 4, where classification accuracy
decreases as illumination direction moves further from training sample illumination. The
last column’s average results roughly correspond to the left graph in Figure 12 for test
scale factor 1. As the scale variation is absent, the results of LBP and opponent Gabor fea-
tures are comparable.

Figure 13. The classification accuracy [%] for all combinations of scales among training and test sets
on the Wood UTIA BTF dataset, one training sample per class was used.

Figure 14. Classification accuracy [%] on the Wood UTIA BTF dataset with one training sample, on the
left for the training sample with the scale factor of 1 and on the right with scale factor of 0.5.
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5. Conclusion

The results indicate that Markovian illumination invariant texture features (2D CAR), based
on the Markovian descriptive model, are the most robust textural features for realistic
texture classification under natural conditions when learning and classifying textures
differ in scale and illumination properties. The 2D CAR features outperformed alternative
tested textural features, i.e. the Gabor, opponent Gabor, variants of LBP, or colour histogram
texture features. 2D CAR statistical features are analytically derived from the underlying
descriptive textural model and can be efficiently, recursively, and adaptively learned.
Their additional advantage is their numerically robust estimation. Themethod’s correct rec-
ognition accuracy improvements are between 27% and 44%, compared to the LBP features
andup to 25%compared to the opponent Gabor features (the second-best alternative). The
worst are colour histograms, with an accuracy decrease between 35% and 43%. The colour
Markovian textural featureswere also successfully applied elsewhere in recognition ofwood
veneers using a smartphone camera, reportedbyHaindl andVacha (2015), or tree taxonomy
categorization based on bark or coniferous tree needles as shown in Remeš
and Haindl (2019). The presented results apply to recognition with bounded scale variation.
The full-scale-invariant textural features should be considered for extreme expected scale
variation. However, fully invariant features usually lose some discriminability. Thus, each
applicationmust carefully balance invariance with expected variability and discriminability.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The Czech Science Foundation project GAČR 19-12340S supported this research.

ORCID

Michal Haindl http://orcid.org/0000-0001-8159-3685

Table 4. Classification accuracy [%] is shown for different illumination tilts (declination angle from the
surface normal) without any scale variation (Wood UTIA BTF).
Illumination tilt [deg] 30 60 75 avg.

Colour histogram 5.6 1.7 1.5 3.0
Gabor, gray 26.9 10.3 5.5 14.2
Gabor, colour 30.2 13.4 5.4 16.3
Opponent Gabor 50.1 26.1 14.9 30.8
LBPu16,2, gray 46.8 16.3 9.2 24.1
LBPu16,2, colour 52.7 20.0 12.9 28.5
LBP8,1+8,3, gray 55.4 22.1 12.1 29.9
LBP8,1+8,3, colour 55.8 25.2 13.6 31.5
2D CAR-KL (K = 4) 76.4 54.6 32.4 54.5
2D CAR-KL 83.3 62.9 42.1 62.8
2D CAR 74.7 49.7 25.8 50.1

Note: The training sample is illuminated from the surface normal direction.
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